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ABSTRACT

Graph embeddings aim to project nodes into numeric vector spaces while preserv-
ing structural and semantic properties for downstream tasks such as community
detection, node classification, and link prediction. However, existing embedding
methods distort local geometry through negative sampling, fail to enforce seman-
tic consistency, and require expensive retraining when graphs evolve. Therefore,
we introduce LORE, a versatile graph embedding framework based on attention-
driven self-reconstruction mechanisms and a perspective-preserving training pro-
cedure. Built on a generalized formulation, LORE can be applied to a wide range
of graph types, from undirected graphs to relational knowledge graphs and even
attributed node sets without inherent topologies. It enforces identical embeddings
for structurally equivalent nodes, respects local context during training, and re-
duces the likelihood of violations of the open-world assumption. Unlike tradi-
tional methods, LORE supports efficient on-the-fly adaptation: embeddings can
be updated in real time as graphs change, without full retraining. Its reconstruc-
tion mechanism acts as a self-supervised training signal that improves embedding
robustness, yielding superior performance compared to existing approaches. Ex-
tensive experiments demonstrate that LORE consistently matches or outperforms
baseline results while maintaining stability under dynamic conditions. Qualitative
analyses further show that LORE produces more separable and compact clusters
in embedding spaces. Together, these results underscore its enhanced generaliz-
ability and practical value in real-world graph embedding applications.

1 INTRODUCTION

Graphs provide a natural framework for representing data with inherent relational structure. Given
a set of nodes, they capture relationships between them as edges and may include additional meta-
data, such as edge directions, weights, or labels. Such representations are central to a wide range of
domains, including biomedicine, finance, and manufacturing (Zhou et al., 2020). Knowledge graphs
(KGs) further extend this paradigm by supporting logical inference through axioms encoded in on-
tologies, enabling the integration of statistical and symbolic reasoning (Hogan et al., 2021). To make
graph-structured data usable for downstream tasks, graph embedding (GE) methods map nodes into
continuous vector spaces (Wang et al., 2017). For instance, this transformation enables machine
learning tasks such as node classification, link prediction, and graph-based recommendation (Nickel
et al., 2016). Existing GE methods are usually self-supervised and are commonly organized into four
main categories: factorization-based approaches (Nickel et al., 2011; Ou et al., 2016), random-walk-
based techniques (Ristoski & Paulheim, 2016; Grover & Leskovec, 2016), translational distance
models (Bordes et al., 2013; Lin et al., 2015), and graph neural networks (GNNs) (Kipf & Welling,
2017; Veličković et al., 2018). Despite their successes, several practical requirements remain un-
met. In this work, we identify four key properties essential for robust and adaptive embeddings in
real-world applications, reflecting challenges such as noise, dynamics, and consistency:

P1 Neighborhood-Invariance: Structurally indistinguishable nodes yield identical embeddings.

P2 OWA Obedience: Training procedures avoid violating the open world assumption (OWA).

P3 Locality-Awareness: Local relationships must be preserved during the embedding process.

P4 Graph Dynamics: Embeddings must adapt to graph updates in real time without retraining.
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These properties constitute critical requirements for practical implementations, yet, as we show in
Section 3, current GE approaches do not consistently meet them. To overcome these challenges, we
propose the LORE approach (LOcally Reconstructed Embeddings). It reconstructs randomly initial-
ized base embeddings via attention mechanisms, using only the embeddings of immediate neighbors
and their relation types as input. The resulting reconstructions are used as the final embeddings, en-
forcing neighborhood-invariance (P1) by ensuring that structurally identical nodes yield identical
representations. Unlike traditional edge-level negative sampling, LORE draws node-level negatives
for its multi-edge reconstructions of positive target node embeddings, thereby reducing the risk of
violating the OWA (P2). When combined with margin-ranking loss (MRL) using fixed-perspective
distances, embeddings of plausibly similar nodes may be pushed apart. To avoid such distortions,
LORE employs a perspective-preserving angular loss that respects relative similarities of positive
and negative samples, maintaining local relationships while enforcing necessary separation during
training (P3). Finally, since embeddings are reconstructed from local attributes, LORE naturally
adapts to graph updates through updated forward passes (P4). Extensive evaluation on benchmark
tasks confirms that LORE not only outperforms existing baselines but also demonstrates strong dy-
namic capabilities, underscoring its potential as a robust and versatile solution for real-world graphs.

2 PRELIMINARIES & DEFINITIONS

In this section, we introduce the principles and definitions of graphs and their embeddings, treating
embeddings as continuous vector representations of nodes. To unify the variety of graph types
and embedding methods, we formalize LORE as a generalized framework that can also encompass
unstructured yet attribute-enriched node sets and their embeddings.

2.1 GRAPHS

Graphs provide a flexible formalism for representing entities as nodes and their relationships as
edges, optionally enriched with metadata such as labels or weights. This abstraction underlies a
broad range of real-world systems, including social and citation networks, molecular structures,
and knowledge bases. In particular, KGs have become a widely adopted paradigm for structuring
and integrating heterogeneous information. Regardless of their complexity, every graph induces an
underlying simple graph that retains only its basic connectivity, the simplest form of graph structure.
Definition 1. Given a set of nodes V and edges E ⊆ V × V , a simple graph (SG) is defined as

G = (V, E).
It is called undirected if the edges (u, v) ∈ E are unordered pairs, and directed otherwise. Each
directed SG induces an undirected SG by symmetrizing its edges, that is, (u, v) ∈ E ⇒ (v, u) ∈ E .

SGs thus provide a minimal representation of graphs via pairwise connections, directed or undi-
rected. Many real-world graphs, however, enrich edges with labels to encode additional semantics.
Definition 2. Given a node set V , a set of labels L, and labeled edges EL ⊆ V × V × L, a
labeled graph (LG) is defined as G = (V, EL). Directedness follows analogously to SGs. An LG is
undirected if and only if (u, v, l) ∈ EL implies (v, u, l) ∈ EL, and directed otherwise.

Each LG thus induces an SG by collapsing its edges along the labels to prevent duplicates. Among
LGs, knowledge graphs form an important subclass where labels correspond to semantic relations.
Definition 3. Let R ≡ L be a finite set of relations. A directed LG G = (V, ER) is called knowledge
graph (KG), and an edge (h, t, r) ∈ ER denotes a relation of type r ∈ R from head h to tail t.

Most real-world KGs additionally encode literals, i.e., non-contextual values such as numbers,
strings, or timestamps. To account for this, we can represent the node set as the union V = Vc∪Vl of
contextual and literal-valued nodes, with edges (h, t, r) ∈ ER involving literals only as tails t ∈ Vl.
This way, literals can be regarded as node-level attributes, which we do not explicitly exploit in this
work but include for generality. Accordingly, we introduce the notion of attributed node sets.
Definition 4. Let V be a set of nodes and A a non-empty set of attributes. An attributed node set is
a subset VA ⊆ V ×A equipped with the corresponding characteristic mapping

c(VA, ·) : V → 2A, c(VA, v) = { a ∈ A | (v, a) ∈ VA },
where 2A = {X ⊆ A} denotes the power set of A and c(VA, v) returns the attributes of v ∈ V .
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This definition formalizes how attributes are associated with nodes without imposing any specific
topology. Although LORE can incorporate such attributes once they are suitably projected into an
embedding space, handling literal values such as continuous numbers or free text is non-trivial when
learning graph-based embeddings (Gesese et al., 2021). Following common practice in GE methods,
we therefore omit these attributes in our experiments, except when the attribute labels form finite
sets that can be transformed into contextual node structures. Finally, we define graphs as attributed
node sets whose attributes represent adjacencies and can be augmented with metadata.
Definition 5. Let V be a set of nodes, let n ∈ N0, and let M1, . . . ,Mn be non-empty attribute sets.
An attributed node set VA induces a (contextual) graph G = (V,VA) if and only if

A = V ×M, M =
∏n

i=1
Mi,

where ordered pairs (v, a) ∈ VA link each node v ∈ V to its topological attributes a ∈ A. Under this
convention, directions must be explicitly encoded within edge metadata m = (m1, ...,mn) ∈ M.
Otherwise, incoming and outgoing edges are indistinguishable, i.e., the graph would be undirected.

Throughout this paper, we exclude self-edges, i.e., (v, v,m) /∈ VA for any v ∈ V and m ∈ M.
Although they could be included in principle, they would be masked by LORE’s independent self-
reconstruction mechanism and thus provide no additional benefit for our purposes. In this view,
Definition 5 treats adjacent edges as node attributes, where each attribute corresponds to another
node linked to it and may carry additional edge metadata m ∈ M such as relation types, weights, or
timestamps, thereby unifying common graph structures. For example, an undirected SG is obtained
by choosing A = V so that (u, v) ∈ VA represents an edge between u and v, and cVA(v) corresponds
to the neighbors of v. To represent directedness, we include orientation in the attributes using
O = {oin, oout} and choose A = V ×O so that (h, t, oout) ∈ VA defines a directed edge from head
h to tail t, with (h, t, oout) ∈ VA implying (t, h, oin) ∈ VA. LGs can be defined analogously using
a label set. In particular, KGs are represented by choosing A = V × O ×R with relation labels R
so that (h, t, oout, r) ∈ VA represents a directed edge of relation type r ∈ R from h to t.

2.2 GRAPH EMBEDDINGS

Analogous to the introduction of graphs, we define their embeddings from a generalized perspective.
Building on the concept of attributed node sets, we formalize them as follows.
Definition 6. Let V be a set of nodes. A mapping ϕ : V → Rd is called a node embedding of
dimension d ∈ N, and ϕ(v) denotes the embedding of v ∈ V . If V carries attributes specified by an
attributed node set VA and there exists a projection π : 2A → Rd such that

ϕ(v) = π(c(VA, v)),

then ϕ is called an independent node embedding with respect to the attributes specified by VA. When
VA identifies a graph GA, ϕ is also referred to as an (independent) graph embedding (GE).

Some works use the term graph embedding to denote a single vector for an entire graph. However,
in this paper we refer to the collection of node embeddings within a graph. Moreover, we focus on
real-valued embeddings in Rd, though the LORE approach naturally extends to other normed vector
spaces, such as complex-valued embeddings (Trouillon et al., 2016; Sun et al., 2019). In standard
practice, node embeddings are initialized randomly per node and optimized afterwards, introducing
noise that may not be fully corrected during training. To ensure consistency and specify the key
property of neighborhood-invariance (P1), we formalize the requirement that nodes with identical
attributes (e.g., identical neighborhoods) map to identical embeddings.
Definition 7. Let VA be an attributed node set with the node embedding ϕ : V → Rk. We call the
embedding attribute-invariant if and only if identical attributes yield identical embeddings:

c(VA, u) = c(VA, v) ⇒ ϕ(u) = ϕ(v).

This captures the idea that structurally indistinguishable nodes cannot be distinguished by the em-
bedding. Moreover, attribute-invariant GEs are also referred to as neighborhood-invariant.

Independent GEs are therefore neighborhood-invariant and fulfill key property P1. Since LORE’s
self-reconstructions rely solely on neighborhood attributes, they are independent embeddings them-
selves, a property that LORE leverages to enable generalization and support dynamic capabilities.
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3 RELATED WORK

Real-world graphs are often incomplete, dynamic, and sparse (Xu, 2021; Krause et al., 2022), im-
plying requirements for practical implementations of GEs, from which we formalize four key prop-
erties P1–P4. First, distinct nodes can share identical neighborhoods, especially in sparse graphs.
Neighborhood-invariance (P1), as per Definition 7, ensures that such nodes are treated consistently,
which is essential for fair and stable predictions (Zemel et al., 2013), particularly in high-risk do-
mains. Next, negative sampling is a common strategy for defining the training loss in self-supervised
GE approaches, where edges are corrupted to create negative training targets (Kamigaito & Hayashi,
2022), typically combined with MRL to penalize negative facts. However, under OWA, the absence
of an edge does not imply its incorrectness. Using corrupted facts as training objectives can therefore
violate OWA in graphs, such as KGs (Hogan et al., 2021), by penalizing true but unobserved facts.
OWA obedience (P2) requires that the training procedure minimizes the likelihood of such viola-
tions. Moreover, while computationally efficient, negative sampling can distort the local geometry
of the embedding space if negative target nodes that are actually similar to the positives are pushed
apart. Locality-awareness (P3) preserves similarities within the embedding space during training:
negative target embeddings should be treated differently depending on their proximity to positive
ones to avoid unnecessary distortion of local geometry. Finally, adaptability of embeddings to graph
dynamics in real-time without retraining (P4) is essential when graphs contain noise and evolve
over time, as is often the case for real-world graphs (Yang et al., 2024). In conclusion, P1–P3 de-
fine conditions under which an embedding can be considered robust, whereas P4 describes dynamic
capabilities. We now review four major categories of GE methods with respect to these properties.

Factorization-based approaches approximate adjacency matrices X of graphs using low-rank de-
compositions (Cui et al., 2017). For instance, RESCAL (Nickel et al., 2011) factorizes X ≈ ARA⊤

into node embeddings A via interaction matrices R. Since A is randomly initialized and optimiza-
tion noise can cause embeddings of structurally equivalent nodes to diverge, such methods do not
fulfill P1. By treating unseen facts as zeros during optimization, they also violate P2, and they do
not explicitly convey P3 since the objective is global reconstruction of the full adjacency matrices
rather than preservation of local patterns. Furthermore, updates require retraining, violating P4.

Random-walk-based techniques such as Node2Vec (Grover & Leskovec, 2016) and
RDF2Vec (Ristoski & Paulheim, 2016) generate sequences of nodes (and labels for labeled graphs)
via random walks and learn embeddings using word2vec-style objectives. Together with random
initialization of embeddings, they therefore do not fulfill P1, and negative sampling of nodes or la-
bels that have not co-occurred in a walk violates P2. These methods capture co-occurrence patterns
via context windows, which indirectly preserve local neighborhoods and similarities (P3) (Portisch
& Paulheim, 2024; Khoshraftar & An, 2024). In contrast, adapting to graph updates requires both
recomputing random walks and retraining (Hahn & Paulheim, 2024), so P4 is not satisfied.

Translational models are particularly designed for KGs to represent relations as translations in
vector spaces. They aim to predict a tail embedding ϕ(t) from a head embedding ϕ(h) and a relation
r ∈ R for a directed triple from head h to tail t via relation r. Several approaches exist (Wang
et al., 2017), such as TransE (Bordes et al., 2013), TransR (Lin et al., 2015), and TransD (Ji et al.,
2015). For instance, TransE assumes ϕ(h) + ρ(r) ≈ ϕ(t) with auxiliary relation embeddings ρ(r),
effectively approximating ϕ(t). Random initialization and training noise cause these models to fail
P1. Corrupted triples are treated as false, violating P2. MRL with fixed-perspective distances, such
as ∥ · ∥2, are used with negative sampling, which can distort local embedding structures, therefore
P3 is not maintained. Finally, retraining is required for updates, so P4 is not addressed.

Graph Neural Networks (GNNs) such as Graph Convolutional Networks (GCNs) (Kipf & Welling,
2017) and Graph Attention Networks (GATs) (Veličković et al., 2018) aggregate base embeddings
ϕk with neighborhood contexts to produce richer representations ϕk+1, serving as final embeddings

ϕk+1(v) = σ
(
W kϕk(v) +

∑
u∈c(VA,v)

ωk
vu ·W kϕk(u)

)
, (1)

where ϕk(v) is the representation of node v at layer k, W k is a learnable weight matrix, ωk
vu are

aggregation coefficients (uniform for GCNs and attention-based for GATs), σ is a nonlinearity, and
A = V holds. Extensions for KGs include RGCN (Schlichtkrull et al., 2017) and RGAT (Busbridge
et al., 2019). GNNs require self-supervised signals like edge reconstruction or contrastive objectives
for training. They do not satisfy P1 since random initialization of base embeddings ϕ0 can lead
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to divergent representations ϕk for structurally identical nodes. P2 and P3 depend on the chosen
training signal, while P4 is only partially addressed, as aggregation can be recomputed but training is
not designed for dynamic updates. Notably, Navi adapts GNNs by ignoring the self-term W kϕk(v)
and by reconstructing embeddings solely from adjacent edges (Krause, 2022), which ensures P1
and P4 hold. However, Navi relies on fixed, pre-trained GEs ϕ0, violating P2 and P3, and making
performance dependent on their quality. In the following, we introduce LORE, an end-to-end GE
framework that extends this idea of local reconstruction while addressing all properties P1–P4.

4 METHODOLOGY

Building on the ideas of Navi, we introduce LORE to extend translational GE paradigms with atten-
tive, GNN-style local reconstructions. We first define the general model architecture, followed by
its training objective, including a perspective-preserving cosine loss that respects local similarities.

4.1 LOCAL NODE EMBEDDING RECONSTRUCTIONS VIA LORE

Given an attributed node set VA, LORE considers two node embeddings ϕ, ψ : V → Rd. The base
embedding ϕ is randomly initialized and ℓ2-normalized throughout training, i.e., ∥ϕ(v)∥2 = 1. In
contrast, the independent node embedding ψ(v) = π(cVA(v)) represents a local reconstruction of
ϕ(v), i.e., ψ(v) ≈ ϕ(v), solely based on its attributes cVA(v). Hence, ψ is an independent node
embedding and attribute-invariant as such, fulfilling key property P1. However, this reconstruction
requires a projection π : 2A → Rd as per Definition 6, which LORE instantiates via self-attention
pooling of intermediate attribute embeddings Φ : A → Rd with scaled dot-product weights:

π(A) = tanh

(
1

N

∑N

i=1

(∑N

j=1
αij Φ(aj)

))
Here, A = {a1, . . . , aN} is a set of attributes and each entry ai is transformed into an intermediate
representation Φ(ai) ∈ Rd. These are then mapped to queries qi = Wq Φ(ai) as well as keys
ki = Wk Φ(ai), where Wq,Wk ∈ Rd×d are learnable matrices. Scaled dot-products compute
pairwise similarity scores between attributes and a row-wise softmax yields attention weights

αij =

(∑N

l=1
exp

(
q⊤i kl√
d

))−1

· exp
(
q⊤i kj√
d

)
.

The inner sum
∑N

j=1 αijΦ(aj) is the self-attention update for each attribute ai, obtained as a
weighted combination of all intermediate attribute embeddings. The outer average then pools these
updated representations into a single vector summarizing the entire attribute set, and the hyperbolic
tangent activation bounds this pooled vector within (−1, 1)d, keeping π(A) consistent with the ℓ2-
normalized base embedding ϕ(v) while preserving reconstruction flexibility and maintaining smooth
gradients during training. However, while this provides an expressive attention mechanism to aggre-
gate intermediate attribute embeddings, the latter must first be defined per use case. In the following,
we propose a translational method to derive such embeddings for common graph structures.

4.2 LOCAL GRAPH EMBEDDING RECONSTRUCTIONS VIA LORE

In the remainder of this work, we assume that VA induces a graph G = (V,VA), i.e., A = V ×M.
Depending on the graph type, different implementations of the intermediate attribute embedding
can be considered. We restrict ourselves to graphs that can be directed and/or labeled with relation
types. If both characteristics are fulfilled, we are concerned with a KG and thus we adopt the idea
of TransE due to its simplicity and the considerably fewer parameters learned per relation compared
to the weight matrices of standard GNNs. For a directed, labeled graph with M = O ×R, define

Φ(u, o, r) = ϕ(u) + ξ(o) · ρ(r), ξ(o) = 1{o=oin} − 1{o=oout} ∈ {−1, 1},

with trainable embeddings ρ : R → Rd which are not normalized to increase training flexibility.
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For undirected LGs G with A = V × R, we use Φ(u, r) = ϕ(u) + ρ(r). For unlabeled graphs, a
single translational vector τ ∈ Rd is used, giving Φ(u, o) = ϕ(u) + ξ(o) · τ when G is directed and
Φ(u) = ϕ(u) + τ when it is undirected. Finally, the embedding reconstruction ψ(v) is obtained as

ψ(v) = π(cVA(v)) = tanh

(
|cVA(v)|−1 ·

∑|cVA (v)|

i=1

(∑|cVA (v)|

j=1
αij Φ(aj)

))
.

While this formulation specifies how node representations are reconstructed from their attributes, it
does not yet define how the trainable parameters should be optimized. Therefore, we introduce a
perspective-preserving training objective designed to address the challenges of locality-awareness
and OWA-consistent negative sampling to fulfill the key properties P2 and P3.

4.3 TRAINING LORE

Most GE methods rely on edge-level negative sampling. Given a node v ∈ V and one of its adjacent
attributes a = (u,m) ∈ A = V × M, a negative node ṽ is sampled under the assumption that
a /∈ cVA(ṽ) implies a false fact. Training then reduces to a single-edge reconstruction of ϕ(v) from
(u,m), minimizing its distance to ϕ(v) while maximizing its distance to ϕ(ṽ). Under the OWA,
this assumption is brittle, since the graph may simply be missing this edge for ṽ even if it holds
in reality. In contrast, LORE adopts the idea of Navi and reconstructs from the full neighborhood
cVA(v) instead of a single edge, thereby lowering the risk of OWA violations because two distinct
nodes are far less likely to share all attributes than to share a single attribute. However, rather than
assuming fixed base embeddings ϕ, LORE learns them end-to-end. Accordingly, given a node v ∈ V
and the embeddings ϕ(v), ψ(v), we sample another node ṽ ̸= v and treat its base embedding ϕ(ṽ)
as the negative reconstruction target. For instance, the cosine distance δcos is a widely used distance
measure to capture the relative orientation between two vectors:

δcos(x, x
′) = 1− (x · x′) · (∥x∥2 · ∥x′∥2)

−1 ∈ [0, 2].

In contrast to ℓp distances, which are translation-invariant but sensitive to scaling, cosine dis-
tance is invariant under positive scalar multiplication but not translation-invariant. To incorporate
both translation- and scale-invariance, thereby enabling locality-awareness, we define δLORE as a
perspective-preserving cosine distance for a prediction ŷ and the positive/negative target y, ỹ:

δLORE(ŷ, y; ỹ) = δcos(ŷ − ȳ, y − ȳ) with ȳ := (y + ỹ) /2.

The point ȳ serves as a local anchor that re-centers the prediction and the positive target with respect
to the negative target before measuring their angular difference. This adjustment allows the distance
to be both translation- and scale-invariant relative to the anchor, as illustrated in Figure 1a.

Standard MRL optimizations compare two distances and enforce a margin µ ≥ 0 between them.
Even though LORE considers a single distance relative to the negative target, a margin µ ≥ 0 can
still be specified. This results in the setup depicted in Figure 1b, i.e., the margin µ corresponds
to an angle γµ and predictions ŷ with γŷ > γµ are penalized. Given an angle γµ ∈ [0, π2 ), the
corresponding margin µ can be determined via µ = 1 − cos(γµ). Due to the ℓ2 normalization, the
base embeddings ϕ are positioned on the unit sphere so the anchor ȳ lies inside the unit ball. In
conclusion, to account for locality-awareness as key property P3, LORE is trained by minimizing

λLORE (v, ṽ) = max (δLORE (ψ (v) , ϕ (v) ;ϕ (ṽ))− µ, 0) .

Two strategies are applied to improve training efficiency and generalization. First, batching is ap-
plied, i.e., M nodes together with their negative samples are processed. Second, a maximum at-
tribute size Nmax limits the number of edge attributes per node. Given |cVA(v)| > Nmax, we con-
struct a reduced characteristic set c′VA

(v) ⊆ cVA(v) with |c′VA
(v)| ≤ Nmax by randomly sampling

at most Nmax attributes. To prevent overfitting, this sampling is also applied for |cVA(v)| ≤ Nmax,
and the remaining Nmax − |c′VA

(v)| positions are masked within LORE’s attention mechanism.
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x1
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ŷ′

ỹ′

y′

ŷ

ỹ

y

(a) Visual representation of the translation- and
scale-invariance of δLORE (resulting in its locality-
awareness) as a perspective-preserving distance
(blue), compared to regular cosine distance (red).

x1

x2

y

ỹ

ȳ

ŷ
γŷ

γµ

∥ · ∥2 ≤ 1

(b) Geometric interpretation of the δLORE-induced
loss, relative to the target anchor ȳ. A prediction ŷ
is penalized if its angle γŷ to y exceeds γµ, thus pre-
serving the perspective from the negative target ỹ.

Figure 1: Visual representation and interpretation of δLoRE characteristics and training objectives.

5 EXPERIMENTAL EVALUATION

LORE’s embedding quality is evaluated on established benchmark tasks. We focus on node clas-
sification tasks, i.e., predicting externally defined labels from pretrained embeddings. We therefore
restrict our evaluation to external data mining tasks rather than internal link prediction. While both
aim to predict missing information (Portisch et al., 2022), external labels provide a stable, verifiable
ground truth, whereas link prediction depends on edge-level negative samples that can violate the
OWA. Simple undirected graphs and KGs are considered as representative graph types. In each set-
ting, we compare LORE against established baselines, demonstrating that it satisfies the properties
P1–P4 and generally outperforms existing methods, except when LORE’s neighborhood-invariance
prevents deceptive overperformance. Analogous to standard GE benchmarks, embeddings are first
trained self-supervised (labels are withheld), after which support vector machines (SVMs) and ran-
dom forests (RFs) predict node labels. Embedding creation thus serves as a pretraining step. Addi-
tional analysis indicates that LORE’s self-reconstruction mechanism improves embedding general-
ization, explaining the observed gains. Finally, we evaluate its dynamic capabilities (P4), showing
it surpasses Navi and GNNs on incremental update tasks simulating initially incomplete graphs.

LORE embeddings of dimension k = 256 are trained using Adam with a fixed learning rate of
5 · 10−5, a batch size of M = 32, and a maximum attribute count Nmax = 16. The δLORE angle
margin γµ is selected from

{
0, π6

}
via grid search (i.e., 0° or 30°), and a dropout rate of 0.2 is

applied. Downstream SVM hyperparameters are also selected via grid search over regularization
values C ∈ {0.01, 0.1, 1, 10, 100}. For RFs, the number of trees {100, 300, 500} and maximum
depths {10, 30, 50} are considered. GEs and classifiers are trained independently ten times, and
results are averaged. Experiments were run on an NVIDIA RTX 2080 Ti GPU with 12 GB VRAM.
To ensure reproducibility, the PyTorch implementation of LORE is publicly available1.

5.1 EMBEDDING UNDIRECTED SIMPLE GRAPHS

We evaluate on the standard Planetoid citation networks Cora, CiteSeer, and PubMed (Yang
et al., 2016) and the Amazon-Computers co-purchase graph from the SNAP benchmark (Yang &
Leskovec, 2012), treating them as undirected SGs. These datasets are widely used for benchmark-
ing GEs via downstream node classification, where nodes are papers or products and edges are
citations or co-purchases. Dataset characteristics, including class imbalance, are summarized in Ta-
ble 4 (Appendix A.1). We adopt the fixed Planetoid and SNAP splits for comparability with prior
work. Baselines include HOPE (Ou et al., 2016), Node2Vec, GCN, and GAT, with the training con-
figurations explained in Appendix A.2. Mean accuracies and standard deviations appear in Table 1,
and macro-F1 scores in Table 6 (Appendix A.3.1) confirm the accuracy trends. GAT and LORE
achieve the highest accuracies, with LORE showing the lowest deviations and thus the most stable
overall performance. The training of HOPE and Node2Vec was the fastest but they performed worst.
For GNN methods, a single LORE forward pass took slightly longer than GCN or GAT, yet LORE

1Anonymized repository with flask implementation: https://github.com/LoRE-ICLR/LoRE
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needs only one layer by design, making it overall faster to train despite its self-attention mecha-
nism. Memory differences among GNN-style approaches are minor since LORE omits projection
matrices. A generalized efficiency analysis that reinforces these findings can be found in Section 5.3.

HOPE Node2Vec GCN GAT LORE
Cora 81.73 ±1.62 82.21 ±1.48 83.18 ±1.66 85.11 ±2.05 84.88 ±0.95
CiteSeer 70.88 ±1.90 72.15 ±1.74 71.79 ±1.81 73.40 ±2.12 73.12 ±1.04
PubMed 79.64 ±1.72 79.12 ±1.55 80.73 ±1.63 81.95 ±2.08 82.21 ±1.14
Amazon 85.91 ±1.81 86.74 ±1.44 87.62 ±1.71 88.18 ±2.12 88.90 ±1.06

Table 1: Mean accuracies including standard deviations for the SG embedding benchmark tasks.

5.2 EMBEDDING KNOWLEDGE GRAPHS

We use the benchmark KGs AIFB, MUTAG, BGS, and AM, which are widely adopted for evaluat-
ing KG embedding quality (Ristoski et al., 2016; Schlichtkrull et al., 2017). Each dataset provides
a KG with literals and a predefined train–test split of node URIs and external class labels. Within
our experiments, boolean literals are converted into instance–class relationships introducing two
new classes per boolean property (true and false), while non-boolean literals are removed to match
the contextual KG definition in Section 2. Dataset characteristics are summarized in Table 5 (Ap-
pendix A.1). Baselines include RESCAL, TransE, TransR, TransD, RDF2Vec, RGCN, and RGAT,
with the training configurations from Appendix A.2. Mean accuracies with standard deviations are
shown in Table 2. Again, macro-F1 scores in Table 7 (Appendix A.3.1) confirm the accuracy trends.

RESCAL TransE TransR TransD RDF2Vec RGCN RGAT LORE
AIFB 84.10 ±1.28 87.22 ±1.63 85.56 ±1.72 71.39 ±1.88 88.89 ±1.77 91.30 ±1.22 92.22 ±0.93 91.67 ±0.00
MUTAG 70.50 ±1.52 75.00 ±1.81 69.44 ±1.74 67.50 ±1.96 73.68 ±1.83 75.29 ±1.48 83.97 ±1.08 85.29 ±0.91
BGS 67.80 ±1.67 69.31 ±1.89 68.28 ±1.92 69.31 ±1.85 68.28 ±1.94 72.41 ±1.39 73.45 ±1.11 74.14 ±1.03
AM 71.25 ±1.63 74.75 ±1.79 73.79 ±1.84 79.95 ±1.91 87.47 ±1.68 91.26 ±1.26 92.42 ±0.88 92.93 ±0.96

Table 2: Mean accuracies including standard deviations for the KG embedding benchmark tasks.

Once more, RGAT and LORE achieve the highest accuracies overall, with LORE slightly outper-
forming RGAT on MUTAG, BGS, and AM. However, the apparent RGAT lead on AIFB is not
meaningful since ten of the 36 test nodes are topologically indistinguishable, and by design LORE’s
neighborhood-invariance produces identical embeddings for such nodes, achieving the theoretical
maximum accuracy of 91.67% by predicting the majority class. RGAT’s higher score results from
random variation and does not reflect a genuine advantage, as further training brings RGAT to the
same value. Beyond these quantitative results, qualitative inspection of the embeddings confirms
LORE’s improved separability over the baselines throughout the experiments. Appendix A.4, Fig-
ure 3, exemplifies this for the AIFB task, where LORE produces distinctly separated and compact
clusters compared to TransE and RGAT. Moreover, unlike RGCN and RGAT, which store a full
projection matrix for each relation, LORE represents each relation as a vector. Consequently, as the
number of relations increases, LORE becomes increasingly efficient in terms of training parameters
and memory. This effect will be examined in detail in the generalized analysis of Section 5.3.

5.3 EMBEDDING EFFICIENCY AND DYNAMICS

We analyze and simulate the memory efficiency and scalability of LORE’s self-reconstruction lay-
ers by comparing them to GCN and GAT as representative GNN layers. We consider a randomly
generated graph G with nodes V and relation types R, setting |R| = 1 for unlabeled graphs. All
methods require |V| · d base embedding parameters. For GNNs, each additional layer introduces
at least |R| · d2 parameters for relation-specific projection matrices. In contrast, LORE represents
relations as vectors, and together with its query and key matrices for self-attention, we receive

param(GNN) ≥ |V| · d+ |R| · d2 and param(LORE) = (|V|+ |R|) · d+ 2 · d2.

Solving param(GNN) ≥ param(LORE) yields |R| ≥ 2· d
d−1 , meaning that for typical dimensions

such as d = 256, two relation types already result in similar parameter counts. Every additional rela-
tion type increases parameters of existing GNNs compared to those of LORE. Accordingly, forward
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and backpropagation times for random directed graphs scale steeply for GCN and GAT but remain
nearly flat for LORE (see also Figure 2 of Appendix A.3.2). Because LORE achieves competitive
performance with a single layer, its efficiency advantage widens further in multi-relational settings.

To evaluate dynamic adaptability as key property P4, we once again consider the KG benchmarks,
comparing LORE with RGCN, RGAT, and Navi as a dynamic KG embedding approach. Incre-
mental updates are simulated by randomly removing roughly half of each test node’s edges before
training, while ensuring that at least one edge remains per node. After GE generation and classi-
fier training, these edges are inserted back, and the models are evaluated again by computing new
embeddings and applying the existing classifier. Each experiment is repeated ten times using the
same edge deletions for all models to ensure comparability. As shown in Table 3, the initial perfor-
mances of RGAT and LORE are higher than those of RGCN and Navi. After reinsertion, RGCN and
RGAT typically degrade, indicating sensitivity to structural changes. In contrast, Navi and LORE
both improve after reinsertion, with LORE consistently outperforming Navi across datasets. While
these results need to be considered preliminary, they already suggest that LORE’s reconstruction
mechanism not only improves generalization but also enables stable, real-time embedding adapta-
tion without costly retraining. However, further experiments would need to be conducted to also
evaluate scenarios involving completely new nodes, node deletions, and updated relation types.

RGCN Start RGCN End RGAT Start RGAT End Navi Start Navi End LORE Start LORE End
AIFB 59.10 ±4.87 55.44 ±3.63 74.27 ±4.08 73.86 ±4.72 72.57 ±3.54 75.17 ±1.17 76.03 ±3.96 85.20 ±1.33
MUTAG 61.59 ±5.26 57.94 ±4.98 65.17 ±4.67 66.02 ±4.92 60.44 ±3.22 65.04 ±0.89 63.60 ±3.48 66.18 ±1.14
BGS 52.30 ±5.81 49.75 ±5.39 69.40 ±5.03 63.14 ±5.58 69.03 ±3.85 71.58 ±1.21 68.20 ±2.26 72.36 ±0.97
AM 61.01 ±4.33 60.80 ±4.44 62.18 ±4.41 59.96 ±4.18 55.23 ±3.37 58.50 ±1.24 60.79 ±3.59 65.19 ±1.19

Table 3: Mean accuracies including standard deviations before (Start) and after (End) real-time
embedding adaptations with updated neighborhood information.

6 CONCLUSION

In this work, we presented LORE, a novel graph embedding framework designed to fulfill the four
key properties P1–P4 as essential enablers of real-world graph applications. Through locally self-
reconstructed embeddings, LORE enforces neighborhood-invariance (P1), enables learning under
incomplete graphs (P2), preserves locality-awareness (P3), and integrates graph updates on the fly
(P4). Together, these properties yield adaptive and robust embeddings that respect structural equiva-
lences, local geometry, and the OWA. Thanks to its generalized formulation, LORE can be adapted
to a variety of graph types, including undirected graphs, labeled graphs, and knowledge graphs,
making it a versatile choice for diverse domains. Our experiments confirm that LORE achieves
competitive or superior accuracy compared to established baselines while maintaining parameter
and memory efficiency. Its single-layer design, combined with relation-level vector representations,
enables scalability and stable performance even as the number of relations grows.

While P1, P2, and P3 are satisfied by design, P4 concerning dynamic adaptability remains a promis-
ing direction for future research. Preliminary results indicate that LORE performs strongly in simu-
lated dynamic knowledge graph scenarios, exhibiting improvements after graph updates without re-
quiring costly retraining. These findings highlight the potential of reconstruction-based embeddings
for incremental learning in evolving graphs. A comprehensive evaluation of LORE on large-scale
graphs such as DBpedia (Auer et al., 2007) or Wikidata (Vrandečić & Krötzsch, 2014), includ-
ing scenarios with new nodes, node deletions, relation-type updates, and robustness under noisy or
adversarial updates, could further substantiate its practical applicability.

Future work may also explore integrating LORE with downstream tasks beyond node classifica-
tion, including link prediction, graph completion, and graph-level reasoning, as well as combining
it with other self-supervised objectives to improve generalization. Moreover, hybrid architectures
that embed LORE’s reconstruction mechanism within deeper GNN stacks or multi-view learning
frameworks may yield additional benefits beyond those demonstrated so far.

Overall, the combination of theoretical grounding, flexibility, empirical performance, robustness,
and dynamic adaptability positions LORE as a promising general-purpose embedding method for
dynamic, heterogeneous, and open-world graph environments.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES
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A APPENDIX

A.1 EVALUATION DATASETS

The SG benchmarks in Table 4 include citation networks (Cora, CiteSeer, PubMed), where nodes
represent papers and edges represent citation links, as well as the Amazon-Computers co-purchase
network, where nodes correspond to products and edges indicate frequent co-purchases. These
graphs vary in size and label diversity, providing a broad evaluation spectrum for node classification.

Nodes Edges Classes Train Validation Test

Cora 2,708 5,278 7 140 500 1,000

CiteSeer 3,327 4,552 6 120 500 1,000

PubMed 19,717 44,324 3 60 500 1,000

Amazon 13,752 245,861 10 8,251 2,750 2,751

Table 4: Dataset statistics for undirected graph benchmarks. Nodes and edges refer to the full graphs;
Train/Validation/Test indicate the splits used for node classification. Class balances are color-coded.

The KG benchmarks in Table 5 cover diverse domains. AIFB and MUTAG are smaller academic
and chemical datasets, while BGS (geological survey data) and AM (museum catalogue) are larger
and more complex. The parenthesized values correspond to the original graphs before non-boolean
literals were removed, whereas the first values indicate the filtered graphs used in our experiments.

Nodes Relations Edges Classes Train Test

AIFB 2,835 (8,285) 22 20,264 (29,043) 4 140 36

MUTAG 22,506 (23,644) 18 64,494 (74,227) 2 272 68

BGS 103,055 (333,845) 62 529,945 (916,199) 2 117 29

AM 958,232 (1,666,764) 45 3,299,143 (5,988,321) 11 802 198

Table 5: Dataset statistics before and after removing non-boolean literals (original values are added
in parentheses). Boolean literals are retained as new nodes. Class balances are color-coded.

A.2 BASELINE CONFIGURATIONS

As baseline models, we consider HOPE, RESCAL, Node2Vec, RDF2Vec, TransE, TransR, TransD,
(R)GCN, (R)GAT, and Navi. All embeddings were ℓ2-normalized and fixed to a dimensionality of
d = 256. For GCN- and GAT-based baselines, GEs were first pretrained in a self-supervised manner
using standard edge reconstruction with sigmoid cross-entropy loss (Kipf & Welling, 2016). Hyper-
parameters were selected using the performance of a downstream RF with 100 trees and depth 30.
We tuned the number of message-passing layers 2, 3 and, for GAT/RGAT, the number of attention
heads 1, 2. For KGs, this approach is relation-aware, predicting the validity of directed triples, while
for SGs, all edges are treated as undirected and unlabeled. HOPE and RESCAL were tuned over
ranks 64, 128, 256 and regularization strengths 10−5, 10−4, 10−3 to match embedding dimensional-
ity and prevent overfitting. Training batches for translational models consist of randomly sampled
edge subsets of size 256 for SGs, AIFB, and MUTAG, and 512 for BGS and AM, without enforc-
ing connectivity. Hyperparameters for translational models were selected via grid search over MRL
margin values 0.5, 0.75, 1.0. Node2Vec and RDF2Vec were tuned over walk lengths 4, 6, 8, walks
per node 10, 20, and window sizes 5, 10. The KG benchmarks do not provide validation splits and
thus hyperparameters were selected via nested cross-validation. All baseline models were trained
using the Adam optimizer with learning rates selected from 10−2, 5 · 10−3, 10−3, 5 · 10−4, 10−4, for
100 epochs with early stopping on validation performance. Finally, Navi used TransE embeddings
as fixed base GEs for its initial node representations.
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A.3 ADDITIONAL EVALUATION MATERIAL

A.3.1 MACRO-F1 SCORES

Tables 6 and 7 report macro-F1 scores for the SG and KG embedding benchmarks, providing a class-
balanced view of performance. For all SG datasets, the macro-F1 values mirror the accuracy trends
in Table 1: GAT and LORE achieve the best overall performance, with LORE showing consistently
lower variance. Similarly, the KG results align with the accuracy outcomes in Table 2: RGAT
and LORE lead across most datasets, with LORE slightly outperforming RGAT on MUTAG, BGS,
and matching it on AIFB. These macro-F1 results reinforce that LORE’s performance advantage is
consistent across both accuracy and class-balanced evaluation metrics.

HOPE Node2Vec GCN GAT LORE
Cora 80.12 ±1.70 80.76 ±1.56 81.89 ±1.63 83.84 ±2.03 83.66 ±0.99
CiteSeer 68.41 ±1.96 69.83 ±1.78 69.21 ±1.83 71.40 ±2.18 71.15 ±1.11
PubMed 77.85 ±1.79 77.52 ±1.63 78.60 ±1.70 79.62 ±2.10 79.18 ±1.16
Amazon 84.03 ±1.84 84.77 ±1.51 85.66 ±1.74 86.30 ±2.15 86.82 ±2.08

Table 6: Macro-F1 scores including standard deviations for the SG embedding benchmark tasks.

RESCAL TransE TransR TransD RDF2Vec RGCN RGAT LORE
AIFB 80.45 ±1.33 81.67 ±1.70 79.92 ±1.77 69.84 ±1.93 84.15 ±1.82 87.12 ±1.28 90.20 ±0.96 88.95 ±0.08
MUTAG 68.72 ±1.61 73.49 ±1.86 67.82 ±1.79 65.93 ±2.02 72.04 ±1.89 74.11 ±1.54 82.10 ±1.14 83.45 ±0.98
BGS 66.05 ±1.74 67.63 ±1.95 66.54 ±1.97 67.95 ±1.89 66.80 ±1.99 71.05 ±1.44 72.18 ±1.17 73.01 ±1.09
AM 70.54 ±1.70 68.81 ±1.85 70.42 ±1.89 76.96 ±1.96 75.60 ±1.73 82.83 ±1.31 78.01 ±0.92 81.53 ±1.01

Table 7: Macro-F1 scores including standard deviations for the KG embedding benchmark tasks.

A.3.2 COMPARISON OF FORWARD AND BACKPROPAGATION TIMES

To obtain these measurements reported in Figure 2, we simulated forward passes and corresponding
backpropagation steps with Adam for |R| = 5, 10, . . . , 50 relation types. For each configuration,
|R| random node embeddings (embedding dimension 256) were generated, assuming one incom-
ing edge per relation type. Each experiment was repeated ten times for each number of relations
and graph embedding model, and averages were recorded. The results demonstrate that the two-
layer RGCN and RGAT variants exhibit quasi-linear scaling in computation time, whereas LORE
maintains nearly flat scaling and therefore offers superior efficiency in multi-relational scenarios.

10 20 30 40 50
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Figure 2: Forward and backpropagation times for LoRE, RGCN, and RGAT models across varying
numbers of relation types. Solid lines represent forward passes, while dotted lines represent back-
propagation using Adam. For RGCN and RGAT, both one-layer and two-layer variants are shown.
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A.4 EMBEDDING CHARACTERISTICS

The visualizations in Figure 3 show that LORE embeddings achieve clearer class separation com-
pared to both TransE and RGAT, with more compact clusters and less overlap. While this effect is
most pronounced on the AIFB dataset, similar patterns were observed on other benchmarks, sug-
gesting that LORE consistently yields more structured and discriminative representations. The mag-
nifying glass highlights structurally equivalent nodes from three different classes. Due to LORE’s
neighborhood-invariance, they are mapped within the majority cluster but positioned near its bound-
ary, which is a desirable outcome for balancing structural consistency with class distinctions.

(a) PCA reduction of TransE embeddings. (b) PCA reduction of RGAT embeddings.

(c) PCA reduction of LORE embeddings.

Figure 3: PCA embedding visualizations of the AIFB task, where four classes are predicted. The
PCA plots project the embeddings into 2 dimensions, showing the separability and clustering char-
acteristics for (a) TransE, (b) RGAT, and (c) LORE. Note: Test node embeddings are printed in bold.
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