
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CORAL: CONTACT-RICH ADAPTIVE LLM-BASED
CONTROL FOR ROBOTIC MANIPULATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-Language-Action (VLA) systems often lack adaptability and explainabil-
ity due to their black-box structure and dependency on fixed action sets from ex-
tensive tele-operated datasets, limiting their effectiveness in complex, dynamic
manipulation scenarios. To address this issue, we propose Contact-Rich Adaptive
LLM-based Control (CoRAL), a novel modular framework capable of effectively
managing complex, dynamic, and contact-rich manipulation tasks. By integrat-
ing foundational vision and language models with motion planning and reactive
controllers, our system achieves zero-shot planning and adaptive manipulation
without relying on extensive tele-operated action datasets. Unlike conventional
VLAs, we explicitly separate the roles of vision models and Large Language Mod-
els (LLM): the vision module handles environmental parameter initialization and
object pose tracking, while the LLM generates initial contact strategies and cost
function estimations. This collaboration establishes a physical understanding of
the scene, instantiated as a dynamic planning world model for our planner. Addi-
tionally, this modular approach significantly enhances both the explainability and
performance of the overall framework, as demonstrated by ablation studies. Fur-
thermore, we introduce a memory unit to leverage past manipulation experiences,
enabling the generalization and efficient reuse of learned contact strategies and
parameter adjustments across diverse manipulation scenarios. Experiments con-
ducted on challenging contact-rich tasks validate our framework’s robustness and
highlight the critical design elements that contribute to its effectiveness. Website:
https://sites.google.com/view/CoRAL

1 INTRODUCTION

Foundational models have demonstrated significant success in various fields, leading to increased
efforts to apply these models within robotics (Firoozi et al., 2025; Tayyab Khan & Waheed, 2025).
Particularly, Vision-Language-Action (VLA) systems have garnered considerable attention for their
potential in robotic manipulation tasks (Ma et al., 2024; Zhong et al., 2025; Sapkota et al., 2025).
However, existing VLA frameworks struggle to effectively handle contact-rich manipulation tasks,
which constitute a substantial portion of daily interactions (Hao et al., 2025; Yu et al., 2025; Xue
et al., 2025). These tasks pose significant challenges, as they require not only precise trajectory plan-
ning but also sophisticated interaction force management and adaptive control strategies. Achieving
success in such complex scenarios typically necessitates extensive training through teleoperation or
detailed dynamic modeling, methods that are labor-intensive and reduce generalizability.

Humans, by contrast, rely on initial estimations, subsequently refine their strategies based on sen-
sory feedback, and adjust interactions accordingly (Flanagan et al., 2006; Johansson & Flanagan,
2009; Kim et al., 2015). Similar to this cognitive framework, we propose a novel modular system,
Contact-Rich Adaptive LLM-based Control (CoRAL), that integrates reasoning, planning, and
control modules into a cohesive architecture. Our model begins by estimating 6-DoF object poses
from RGB-D data using FoundationPoseWen et al. (2024), and then a Vision-Language Model
(VLM) infers physical parameters such as mass and friction from the estimated object poses, the
environment image, and the textual task description (Fig. 1). The planning stage generates initial
contact strategies and actions, which are executed in the evaluation environment through reactive
control modules. The outcomes from these actions are continuously monitored, with the tracked
poses from FoundationPose being used for iterative refinement of plans.

1

https://sites.google.com/view/contactvla

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Vision

Evaluation
World

Planning World

Table:
m = 10kg

μ = 0.5

Cutting Board:
m = 0.4kg

μ = 0.6

"First push the board until the board
will be in the pickable position then

pick the board"

MPPI Costs:

MPPI
Best Action

(u)

LLM

Evaluation
 World

 "Costs defined for the push were
initially dominant.

 Costs are reformulated for the pick."

Refine Costs:

LLM

Internal World Model Task Formulation Action & Feedback Loop

"Pick the cutting
board"

Figure 1: The conceptual workflow of CoRAL, illustrated with the “pick the cutting board” task.
Photorealistic images were synthetically generated.

A key innovation of our approach is the strategic integration of vision and Large Language Mod-
els (LLMs) with motion planners and controllers, substantially enhancing action explainability and
enabling more effective reasoning. Our modular structure clearly delineates roles: vision module
manages parameter estimation for environment modeling, while LLM provides symbolic reasoning,
initial contact strategies, and cost estimations. The reactive controller then applies these symbolic
outputs in the evaluation world, establishing a tight feedback loop between high-level strategy and
low-level sensory information. Our main contributions are:

• We propose a novel framework that integrates a Large-Language-Model (LLM) model with
a reactive motion controller, enabling zero-shot planning and robust execution for dynamic,
contact-rich manipulation.

• Unlike monolithic VLA architectures, we explicitly separate the roles of the vision models
for perception and the LLM for reasoning, a design choice that demonstrably enhances
both manipulation performance and system explainability.

• We introduce an LLM-driven, closed-loop feedback mechanism that enables the system
to adapt its plan mid-execution, successfully completing complex, multi-step manipulation
sequences.

• Our framework’s performance and adaptability are further enhanced by a memory unit that
stores and retrieves past experiences to bootstrap effective solutions for novel tasks.

We evaluate CoRAL on a challenging suite of manipulation tasks, including novel contact-rich prob-
lems, such as picking up a thin object from a table and standardized benchmarks from the LIBERO
suite Liu et al. (2023). Our extensive experiments and detailed ablation studies confirm that this
modular structure significantly improves system performance and explainability, effectively address-
ing the limitations of conventional VLA frameworks.

2 RELATED WORK

From End-to-End Policies to Decoupled Reasoning The advent of foundation models has shifted
robotic manipulation towards Vision-Language-Action (VLA) models, which learn general-purpose
policies from large-scale datasets Firoozi et al. (2025); Ma et al. (2024). Leading examples like
OpenVLA Kim et al. (2025b), π0 Black et al. (2024) and RT-X O’Neill et al. (2024) utilize an
end-to-end approach, directly mapping multimodal inputs to low-level actions. While powerful,
this paradigm’s reliance on imitation learning makes it data-dependent and often brittle in novel
physical scenarios, particularly those involving complex contact dynamics not well-represented in
the training data. To overcome these limitations, an emerging trend decouples high-level reasoning
from low-level control. Frameworks like ThinkAct Huang et al. (2025), Inner Monologue Huang
et al. (2022) and those using Embodied Chain-of-Thought (ECoT) Zawalski et al. (2024) leverage
LLMs to generate explicit reasoning steps that guide a separate, learned action policy. Similarly,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

MolmoAct Lee et al. (2025) produces mid-level spatial plans as “trajectory traces” before predicting
actions, enhancing explainability and steerability. The OneTwoVLA architecture Lin et al. (2025)
formalizes this by explicitly modeling a System 1 (fast, reactive acting) and System 2 (slow, de-
liberate reasoning). Our work, CoRAL, aligns with this decoupling philosophy but takes a distinct
neuro-symbolic path by grounding the LLM’s reasoning directly in a controller, rather than another
learned model.

Integrating Foundation Models with Motion Planners and Controllers A promising alterna-
tive to end-to-end learning is the integration of foundation models with traditional motion planners,
leveraging semantic understanding to guide physically-grounded trajectory optimization. For in-
stance, IMPACT Ling et al. (2025) utilizes a VLM to generate a static 3D cost map of the envi-
ronment, assigning higher costs to fragile objects to enable a planner like RRT* to find paths with
“acceptable contact”. Similarly, VLMPC Zhao et al. (2024) embeds a VLM within a Model Predic-
tive Control (MPC) Garcia et al. (1989) loop, where it provides perceptual guidance by identifying
sub-goals and sampling candidate action sequences. CoRAL significantly advances this paradigm
by elevating the role of the LLM from a perceptual guide to a high-level strategist. Instead of merely
identifying objects or goals, our LLM formulates the structure of the Model Predictive Path Inte-
gral (MPPI) Williams et al. (2017) controller cost function itself and proposes symbolic contact
strategies. This approach grounds abstract, commonsense reasoning directly into the mathematical
formulation of the optimal control problem, enabling a more profound and explainable link between
high-level intent and low-level dynamic execution.

Tackling Contact-Rich Manipulation Contact-rich manipulation remains a grand challenge, as
it requires nuanced force control and physical understanding beyond simple trajectory generation.
One major line of work addresses this by augmenting perception with physical sensors, such as in
ForceVLA Yu et al. (2025), TLA Hao et al. (2025) and VLA-Touch Bi et al. (2025), which explic-
itly integrate force or tactile data into the policy’s input stream. Further research in this direction,
such as Reactive Diffusion Policy (RDP) Xue et al. (2025) and FACTR Liu et al. (2025), proposes
specialized architectures and training curricula to more effectively fuse this real-time feedback into
a learned policy. While effective, this hardware-centric approach risks creating a new data bottle-
neck, as it requires large-scale, specialized multimodal demonstration datasets that are difficult to
collect Firoozi et al. (2025). CoRAL tackles this problem from a different angle. Although it also
leverages real-time force feedback for its reactive controller, it critically eliminates the need for
prior demonstration datasets containing such data. Instead, our framework uses the LLM to formu-
late a high-level strategy and cost function that explicitly reasons about interaction forces, which the
MPPI controller then robustly executes by adapting to live sensor data online. This neuro-symbolic
approach combines the benefits of physical sensing with the zero-shot reasoning of foundation mod-
els, thereby avoiding the imitation learning bottleneck while still achieving precise, force-aware
control.

3 METHODOLOGY

CoRAL is a neuro-symbolic framework designed for zero-shot, contact-rich manipulation. It strate-
gically decouples high-level reasoning from low-level control by integrating a vision pipeline that
continuously tracks object poses and enriches the world model with physical parameters estimated
by the VLM, a LLM acting in two distinct roles (Task Formulation and Online Adaptation), a Mem-
ory Unit for experience retrieval, and a Model Predictive Path Integral controller (MPPI) for reactive
execution. The overall architecture, which features nested feedback loops for rapid and robust adap-
tation, is illustrated in Figure 2. Below, we detail each component of this architecture.

3.1 ENVIRONMENT PERCEPTION AND WORLD MODEL INITIALIZATION

The first step is to translate raw visual, textual, and geometric inputs into a structured, physics-aware
world model. Our perception pipeline achieves this through a two-stage process that first establishes
the geometric state of the scene and then identifies it with physical properties. The process involves
two core steps:

1. Pose Estimation and Tracking: We employ FoundationPose Wen et al. (2024), a state-
of-the-art pose estimation model, to determine and continuously track the 6-DoF poses of

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

User / UI VLM +
Tracker

Planning
World

Parameters (θ)

LLM
(Task Formulation) Initial Plan (J₀, C₀)Memory

Unit

MPPI

LLM
(Online Adaptation)

State
Metrics

Evaluation
World

SuccessLog Episode Eₜ

Finish

Save to Memory

Action (uₜ)

Updated θ

Refined Plan (Jₜ, Cₜ)

Input
 (I, M, T)

Evaluate

 Success

Refine

Match

Found? No

Yes Retrieved Plan (Jmem, Cmem)

2

1

Retry

 Tracker

Figure 2: The overall architecture of the CoRAL framework. Given an input image I , object models
M and task description T , the vision module extracts world parameters θ. If the Memory Unit finds
a similar successful experience, its retrieved plan (Jmem, Cmem) is used to guide the MPPI controller.
Otherwise, the LLM (Task Formulation) module generates an initial plan (J0, C0). The system then
enters the main execution cycle, which is governed by two nested feedback loops labeled (1) and
(2). (1) The Inner Loop is a high-frequency re-planning cycle. At each step, the MPPI, guided
by the current plan, generates an action ut based on the latest ‘State Metrics’. This loop (‘Retry’)
continues until the task succeeds or a refinement is needed. (2) The Outer Loop is a low-frequency,
high-level adaptation cycle. If the inner loop fails persistently, the ‘Refine’ path is taken, where the
LLM (Online Adaptation) updates both the world model parameters (θ) for the ‘Planning World’
and the strategic ‘Refined Plan (Jt, Ct)’ for the MPPI. Successful episodes are stored back into the
Memory Unit.

all interactable objects. This model takes the RGB-D camera images I , and the known 3D
geometric models of the objects, M , as input. The output is a real-time stream of estimated
pose data for each object in the scene.

2. Physical Parameter Estimation: The pose data, along with the visual input and the
language-based task description T , is then fed into a multimodal foundation model (GPT-
4o), which acts as our VLM. The VLM’s role is to leverage its extensive world knowledge
to infer the unobservable physical properties of the objects based on their appearance and
the context provided by the task. It estimates crucial attributes like mass and friction coef-
ficients, which are vital for accurate physical simulation.

The combined output of this perception pipeline is a structured set of world parameters, θ. For each
object, θ contains its semantic label (derived from the input 3D model), its continuously tracked
pose from FoundationPose, and its estimated physical attributes from the VLM. These parameters
are crucial as they are used to construct and continuously update the internal Planning World
that the MPPI planner operates on.

3.2 LLM-DRIVEN TASK FORMULATION AND MEMORY RETRIEVAL

Once the world is perceived, the system formulates a concrete plan. This is handled by the ‘LLM
(Task Formulation)’ module, which can generate a plan from scratch or leverage past experiences
from the ‘Memory Unit’.

Memory Retrieval: Before invoking the LLM, the system queries the ‘Memory Unit’ with the
current world parameters θ and task T . Our memory module is based on Retrieval-Augmented
Generation (RAG), storing successful “experience episodes” indexed by task definitions and envi-
ronmental parameters. Instead of relying on predefined similarity metrics, the LLM embeds the
current task into a latent semantic space to retrieve the most relevant past experience:

(Jmem, Cmem) = RAGRetrieve(T, θ) (1)

where Jmem denotes the final cost function that led to a successful episode, and Cmem denotes the
corresponding contact strategy, which also resulted in a successful completion of the task. If a suffi-
ciently similar and successful past experience is found, its stored plan (Jmem, Cmem) is retrieved and

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

used as the initial plan, bypassing the computationally expensive initial LLM call and accelerating
performance.

Plan Generation from Scratch: If no suitable memory is found, the ‘LLM (Task Formulation)’
module is invoked. It acts as a high-level strategist, translating the task T and world parameters θ
into a formal optimization problem. Its output is an initial plan tuple (J0, C0), where:

• Initial MPPI Cost Function (J0): The LLM generates the mathematical structure and
relative weights of a cost function. Specifically, for a given task, the LLM provides a
structured cost functional, for instance:

J0(x0:H ,u0:H−1) =

H−1∑
t=0

[
wd

∥∥ptarget − pobj(t)
∥∥2

+ wc I{no contact at t}

+ wu ∥ut∥2
]

(2)

Here, the weights wd, wc, wu are determined by the LLM based on the task description
(e.g., for a pushing task, wc would be high). pobj(t) is the object’s tracked position at
time t, and I{·} is an indicator function penalizing the absence of contact. This expression
is only an illustrative example: in general, the LLM is free to introduce any cost terms
constructible from the available state, pose, and action variables, and is not restricted to a
fixed finite set of cost terms.

• Initial Contact Strategy (C0): The LLM proposes promising surfaces for making contact
to guide the planner’s exploration. It specifies a set of focused surface regions {Rj}, from
which we generate candidate contact points as:

C0 =

M⋃
j=1

{
cj + ej

(
cosϕ t1,j + sinϕ t2,j

)
∣∣∣ ϕ = 2πk

Nj
, k = 0, . . . , Nj − 1

}
(3)

where for each region j, cj is the center, ej is the radius, and {t1,j , t2,j} are tangent vectors.
This biases sampling towards strategically advantageous regions.

This generated strategy is then used within the MPPI sampling process by biasing the initial control
perturbations to explore actions that bring the end-effector closer to the LLM-proposed contact
regions, thereby significantly pruning the search space.

3.3 REACTIVE PLANNING AND EXECUTION (THE INNER LOOP)

The core of our system is a high-frequency, reactive execution cycle governed by the MPPI con-
troller. This corresponds to the Inner Loop (1) in Figure 2.

MPPI Formulation: The MPPI controller solves a stochastic optimal control problem at each
timestep. Given a state-transition model xt+1 = f(xt, ut) + ϵt, where xt is the system state, ut

is the control input, and ϵt is system noise, the objective is to find a sequence of control inputs
U = {u0, . . . , uH−1} that minimizes the expected total cost:

U∗ = argmin
U

E

[
ϕ(xH) +

H−1∑
t=0

q(xt, ut)

]
(4)

where ϕ(xH) is a terminal state cost and q(xt, ut) is the running cost at each step. The LLM-
generated cost function, J0 (from Eq. 2), directly defines the terms used in this optimization. Specif-
ically, the running cost q(xt, ut) is the expression inside the summation of J0:

q(xt, ut) = wd

∥∥ptarget − pobj(t)
∥∥2 + wc I{no contact at t}+ wu ∥ut∥2 (5)

MPPI approximates this optimization by:

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1. Sampling K control sequence perturbations δUk ∼ N (0,Σ) from a Gaussian distribution.

2. Creating K rollout trajectories by applying the perturbed control sequences Vk = Uprev +
δUk in the ‘Planning World’.

3. Calculating the total cost S(Vk) for each of the K trajectories.

4. Computing an exponentially weighted average of the perturbations to update the control
sequence:

Unew = Uprev +

K∑
k=1

wkδUk where wk =
exp

(
− 1

λS(Vk)
)∑K

j=1 exp
(
− 1

λS(Vj)
) (6)

Following the receding horizon principle, only the first action, u0, of the newly optimized sequence
Unew is executed.

Reactive Control Augmentation: To achieve robustness against the inherent sim-to-real gap, we
augment the nominal planned action with a real-time feedback term. The final control command νt
sent to the robot is:

νt = ut +Kf · (xdes − xmeasured) (7)

where ut is the action computed by MPPI, the error term is calculated from real-time sensors (e.g.,
force/torque, proprioception), and Kf is a feedback gain matrix. This ‘Retry’ loop continues at a
high frequency, constantly re-planning and correcting based on physical feedback.

3.4 ONLINE ADAPTATION VIA LLM-DRIVEN REFINEMENT (THE OUTER LOOP)

If the inner loop fails to make progress after a predefined number of attempts, a hyperparameter
we denote as Nretry, the system triggers the low-frequency Outer Loop (2). This invokes the ‘LLM
(Online Adaptation)’ module, which acts as a diagnostician and re-strategist.

The input to this module is the logged episode data Et, which contains the history of states, actions,
the contact strategies and cost functions that were used, and the estimated physical parameters that
led to the failure. By analyzing this rich context, the LLM performs two critical functions:

1. World Model Correction: The LLM can refine the initial physical parameter estimates.
For example, if the robot pushes an object but the object moves less than predicted, the
LLM can infer that its initial estimate of the object’s mass was too low and output an
‘Updated θ‘.

2. Strategy Refinement: The LLM can also alter the plan itself. It might change the weights
of the cost function (e.g., prioritizing force control over position accuracy) or propose an
entirely new contact strategy. This results in a ‘Refined Plan (Jt, Ct)’.

This refined world model and plan are then fed back into the inner loop, allowing the system to learn
from its failures and adapt its entire approach within a single task execution.

4 EXPERIMENTS

We conducted a series of experiments in a simulated environment to rigorously evaluate the perfor-
mance of CoRAL. Our evaluation is designed to answer three key research questions: (RQ1) How
does CoRAL perform on complex, contact-rich manipulation tasks in a zero-shot setting compared
to state-of-the-art baselines? (RQ2) How critical is each core component of our neuro-symbolic
architecture—specifically the vision/language model role separation, the online refinement loop,
and the memory unit—to the overall success? (RQ3) Can the system demonstrate robustness and
adaptability by reasoning about and recovering from failures?

Simulation Environment: All experiments were conducted in the evaluation world, implemented
using ROBOSUITE library Zhu et al. (2020), which is based on the MUJOCO physics engine Todorov
et al. (2012). The robot is a simulated 7-DoF Franka Emika Panda arm with a parallel-jaw gripper.
Sensory inputs include RGB-D images from a fixed camera, proprioceptive feedback, and force/-
torque data provided by the physics engine, which are essential for our reactive control. In addition

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

to our custom environments, two benchmark tasks from the LIBERO suite Liu et al. (2023) were
also incorporated for evaluation.

Implementation Details: The VLM and LLM modules were implemented using the GPT-4o API.
The MPPI controller was integrated on top of the ROBOSUITE/MUJOCO environment. To improve
computational efficiency, our MPPI implementation parallelizes the rollout of K = 200 trajectories
over a planning horizon of H = 50 steps at each control cycle on the CPU. The key hyperparameters
for the controller are the temperature λ = 0.1 and the outer-loop trigger threshold Nretry = 15
persistent failures. The entire framework was run on a desktop computer with an Intel Core i9-
13900K CPU, 64 GB of RAM, and a single NVIDIA RTX 4060 Ti GPU.

Tasks and Evaluation Metrics: We evaluated our framework on six challenging, contact-rich
manipulation tasks, shown in Fig. 3, designed to be difficult for purely vision-based, collision-
avoidant planners. Each task was performed 10 times with randomized initial object poses, object
masses, surface friction coefficients and the object dimension for the box object. The tasks are as
follows: T1: Push and Pick Cutting Board, a multi-stage task testing pushing and reasoning about
object parts and pose for grasping; T2: Pick Box & T3: Pick and Place in Clutter, a standard
pick-and-place task to establish a baseline; T4: Push with Constant Force, testing the reactive
controller’s ability to manage force feedback; T5: Flip Box, a dynamically complex maneuver and;
T6: Flip with Wall, requiring multi-contact reasoning to use the wall as a fixture; Evaluation
Metrics: We use two primary metrics: Success Rate (binary measure across 10 trials) and Average
Completion Time in seconds for successful trials.

Figure 3: CoRAL on six different tasks with the tracked pose overlay of the object of interest.

Comparative Baselines: We compare CoRAL against two state-of-the-art methods and four in-
ternal ablations. The State-of-the-Art Baselines are: OpenVLA-OFT Kim et al. (2025a) and
π0.5 Black et al. (2025), two leading end-to-end VLA models. For each model, we rely on the
officially released LIBERO-OBJECT checkpoint for pick-and-place tasks and the LIBERO-GOAL
checkpoint for all other tasks. This setup tests CoRAL’s zero-shot capabilities against powerful
policies. In addition, we include two Human Expert-Designed Cost baselines. In the single-stage
variant, an expert manually designs a single MPPI running-cost for each task. In the FSM variant,
the expert is allowed to construct an explicit finite-state machine with phase-specific costs (e.g.,

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 1: Comprehensive comparison against the state-of-the-art baselines and ablation study of our
method variants across all tasks. Performance is measured by success rate (x/10 trials) and average
completion time in seconds for successful trials.

Method T1: Push+Pick Board T2: Pick+Place Box T3: Pick+Place Clutter T4: Push Const. Force T5: Flip Box T6: Flip w/ Wall

Success Time (s) Success Time (s) Success Time (s) Success Time (s) Success Time (s) Success Time (s)

State-of-the-Art Baseline

OpenVLA-OFT Kim et al. (2025a) 0/10 - 10/10 5 9/10 7 0/10 - 1/10 9 0/10 -
π0.5 Black et al. (2025) 0/10 - 10/10 12 8/10 13 0/10 - 3/10 21 0/10 -

Human Expert-Designed Cost Baselines

Expert (hand-designed cost, single-stage) 0/10 - 10/10 38 10/10 40 9/10 32 9/10 47 3/10 79
Expert (hand-designed costs, FSM) 8/10 154 10/10 40 10/10 44 10/10 48 10/10 58 9/10 95

Our Method (Ablation Study)

CoRAL (Ours, with Memory) 4/10 162 10/10 45 10/10 49 9/10 52 9/10 63 7/10 108
CoRAL (w/o Memory) 2/10 212 10/10 54 9/10 61 9/10 109 7/10 98 5/10 164
CoRAL (w/o Refinement) 0/10 – 10/10 42 3/10 36 6/10 34 4/10 51 2/10 92
CoRAL (Unified VLM) 0/10 – 2/10 21 0/10 – 1/10 35 0/10 – 0/10 –
CoRAL (w/o Pose Tracking) 0/10 – 0/10 – 0/10 – 0/10 – 0/10 – 0/10 –

push–then–pick or push–then–flip). In both cases, the cost functions are tuned in a separate de-
sign environment and then evaluated as-is in our randomized test environment, providing an upper
bound on what carefully engineered, task-specific objectives can achieve. Our Ablation Baselines
are: CoRAL (w/o Pose Tracking), which removes FoundationPose and relies on the VLM to es-
timate object poses, testing the criticality of a dedicated pose estimator; CoRAL (w/o Memory),
which removes the experience retrieval mechanism; CoRAL (w/o Refinement), which disables the
online adaptation loop; and CoRAL (Unified VLM), which uses a single multimodal prompt for
both perception and planning to test the importance of separating VLM/LLM roles.

4.1 RESULTS AND ANALYSIS

Table 1 presents a comprehensive overview of our experimental findings.

4.1.1 STATE-OF-THE-ART COMPARISON (RQ1)

CoRAL significantly outperforms both state-of-the-art baselines, OpenVLA-OFT and π0.5, partic-
ularly in tasks requiring sophisticated physical reasoning (T1, T4, T5, T6). While both baselines
perform well on the simpler pick-and-place tasks (T2, T3), their performance degrades sharply on
the more complex, contact-rich scenarios. This is a critical finding, as both models were fine-tuned
on the LIBERO benchmark, which should theoretically demonstrate some generalization for ma-
nipulation tasks in similar environments. However, our results indicate that even fine-tuning an
end-to-end policy is insufficient for scenarios that demand explicit physical modeling and reasoning
about forces or multi-contact strategies. These policies fail to generate the non-obvious maneuvers
required for tasks like the wall-flip (T6) or maintaining steady force for pushing (T4). In contrast,
our framework excels by allowing the LLM to directly formulate a cost function that optimizes for
these physical interaction dynamics, enabling robust zero-shot execution without any task-specific
fine-tuning.

4.1.2 COMPARISON TO HUMAN-DESIGNED COST FUNCTIONS

The two human baselines approximate an upper bound from carefully engineered,task-specific ob-
jectives. As expected, the Expert (FSM) variant achieves the strongest overall performance, and the
single-stage expert design remains competitive, particularly on simpler tasks such as T2–T4, where
CoRAL largely matches but does not surpass its success rate and speed (Table 1). On more sequen-
tial and contact-heavy tasks (T1, T5, T6), CoRAL narrows the gap to the expert, achieving higher
success rates than the single-stage baseline while remaining below the FSM upper bound. This
shows that our LLM-based controller can recover much of the structure of expert-designed costs au-
tomatically, substantially reducing manual tuning effort while approaching expert-level performance
on the hardest tasks.

4.1.3 ABLATION STUDY ANALYSIS (RQ2)

Our ablation studies clearly demonstrate the necessity of each component in our architecture.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The Synergy of Separated VLM/LLM Roles: The CoRAL (Unified VLM) variant, which tasked
a single VLM with both perception and planning, failed on nearly all complex tasks. This starkly
illustrates our core hypothesis: separating the role of a VLM for perception from a dedicated LLM
for strategy formulation is crucial for robust performance. The specialized modules provide more
reliable and structured outputs for the planner.

The Importance of Online Refinement: The w/o Refinement variant showed a dramatic perfor-
mance drop in multi-stage tasks like T1 (Push and Pick Board), with success falling from 4/10 to
0/10. In this task, the initial plan often failed because the VLM’s initial friction estimate was slightly
off, causing the board to slip during the pick. The full CoRAL framework, however, used the outer
loop for the LLM to diagnose this from the physical outcome, refine the friction parameter in its
world model, and successfully complete the task. This shows the system’s ability to learn from
failure.

The Benefit of Experience Reuse: The full framework with Memory consistently achieved the
highest success rates and fastest completion times. For instance, in T1 and T3, memory boosted the
success rate from 2/10 to 4/10 and 9/10 to 10/10, respectively. By retrieving a successful “push-to-
edge” strategy from a past experience, the system provided the planner with a superior initialization,
accelerating convergence and leading to more robust solutions.

The Criticality of a Dedicated Pose Estimator: The w/o Pose Tracking ablation, which removed
FoundationPose and relied solely on the VLM for pose estimation, resulted in a catastrophic failure
across all tasks (0/10 success). The VLM, while powerful for semantic understanding, is ill-suited
for the precision required by 6-DoF pose tracking through dynamic interactions. It frequently pro-
duced trivial or physically impossible pose estimations (“hallucinations”) that rendered the planner’s
output useless. This result provides conclusive evidence that a dedicated, high-fidelity pose estima-
tor is not merely beneficial but a critical and non-negotiable component of our architecture, serving
as the geometric foundation upon which all subsequent physical reasoning is built.

4.1.4 ROBUSTNESS ANALYSIS (RQ3)

Analysis of LLM-Guided Contact Strategy: To isolate the contribution of the LLM’s initial con-
tact strategy (C0), we conducted a targeted ablation on the challenging “Flip with Wall” task (T6).
We compared the performance of our full framework against a variant where the LLM only provided
the cost function (J0), forcing the MPPI planner to rely on uninformed, random sampling to find
useful contact points.

The guided trajectory (With Strategy, green) is direct and purposeful, immediately moving the end-
effector to the correct corner of the box to initiate the flip (Figure 5 in Appendix). In contrast,
the unguided trajectory (Without Strategy, red) is chaotic and inefficient, exploring large, irrele-
vant portions of the workspace. The planning cost for the unguided agent remains high and erratic,
indicating a constant struggle to find a viable plan. This visual difference is confirmed by the quanti-
tative results: the guided approach was 83.9% faster (32 vs. 199 steps) and the end-effector traveled
a 63.9% shorter path (1.33 m vs. 3.69 m). This analysis provides clear evidence that the LLM’s
symbolic contact strategy is critical for transforming a computationally intractable, long-horizon
contact problem into a solvable one by intelligently pruning the vast action search space.

Robustness of Online Parameter Adaptation: Beyond strategy and cost function refinement,
CoRAL’s ‘Online Adaptation’ module, driven by the LLM, exhibits a crucial ability to correct the
agent’s internal world model online. To demonstrate this, we intentionally initialized the Evaluation
World with a severely overestimated mass (2.0 kg vs. a ground truth of 0.1 kg) and friction coeffi-
cient (0.9 vs. 0.5) for the cutting board. These initial biases represent a severe sim-to-real gap or a
VLM hallucination.

Figure 4 vividly illustrates the adaptation process. The LLM’s ‘Online Adaptation’ module, when
triggered by persistent failures in the inner loop (e.g., the board not moving as expected despite high
pushing force), diagnosed the discrepancy. Through an iterative refinement process, it progressively
adjusted its estimated mass and friction parameters. As shown in the graph, after several adaptation
cycles, the agent’s belief about both mass and friction converged remarkably close to their true
values. This online correction of physical parameters is fundamental to the framework’s robustness,
allowing it to overcome initial environmental mischaracterizations and successfully execute contact-
rich tasks that would otherwise fail due to a misaligned internal world model. This capability is a

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

cornerstone for deploying robots in unknown environments where accurate a priori physical models
are often unavailable.

Figure 4: Object mass correction.

Sequential Reasoning and Experience Reuse
in the Cutting Board Task The “Push and
Pick Cutting Board” task (T1) is specifically
designed to test the framework’s capabilities
in long-horizon, sequential manipulation. The
task’s difficulty lies in its two distinct phases:
a stable push across a surface until a portion of
the board is exposed for grasping followed by
a precise grasp of the board. As evidenced by
our results in Table 1, this sequential challenge
highlights the importance of two core components of our architecture: online adaptation and expe-
rience reuse.

First, the long-horizon nature of the task means that small errors in the initial world model can ac-
cumulate and lead to failure in the later stages. This is clearly demonstrated by the w/o Refinement
ablation, which failed entirely on this task (0/10 success rate). While its initial plan was often suffi-
cient for the pushing phase, slight inaccuracies in the estimated friction parameter caused the board
to end up in an unexpected final pose, leading to a failed grasp. Our full model, however, leverages
the outer loop to learn from the outcome of the push, allowing the ‘LLM (Online Adaptation)’ to
refine its friction estimate and update the plan for the subsequent pick, thereby enabling success.

Second, this task powerfully illustrates the benefit of the ‘Memory Unit’. The performance of our
full model without memory was respectable (2/10), but the inclusion of the memory module boosted
the success rate significantly to 4/10. This shows that after just a single successful completion, the
system can store the entire successful interaction context (the refined parameters, cost function, and
contact strategy). When faced with a similar task configuration, it retrieves this proven strategy,
providing the MPPI planner with a superior initialization that leads to more robust and efficient
execution. This result demonstrates that CoRAL can learn from its experiences, and it highlights a
clear path towards few-shot performance improvements where the system becomes more adept as it
gathers successful episodes.

Explainability and Automated Failure Recovery A key advantage of our neuro-symbolic design
is its inherent explainability, particularly during failure recovery. Unlike opaque end-to-end models,
CoRAL can articulate why it failed and what it is doing to correct its plan. We demonstrate this with
a scenario where the “Flip with Wall” task persistently fails, triggering the Outer Loop.

Instead of just outputting a new set of parameters, the ‘LLM (Online Adaptation)’ module provides a
full natural language diagnosis of the failure and a detailed log of the corrective actions it is taking.
The LLM provided a correct natural language diagnosis of a poorly weighted cost function and
proceeded to adjust the specific weights to remedy the failure (Appendix ??). This capability to
“think out loud” is a critical feature for building trust and diagnosing failures in complex robotic
systems, providing a level of transparency that is simply not possible with black-box policies.

5 LIMITATIONS & CONCLUSION

In this paper, we introduced CoRAL, a novel framework that addresses the challenges of zero-shot,
contact-rich manipulation. Our approach departs from conventional end-to-end paradigms by inte-
grating foundation models with a reactive controller. Experiments on challenging tasks demonstrate
that this modular, synergistic design enables the system to adapt to unseen scenarios without prior
demonstrations, significantly enhancing both performance and explainability over monolithic ap-
proaches. While promising, the framework’s performance is currently contingent on the fidelity of
the vision-based world model and is subject to computational latency from its sequential pipeline.
These limitations and future research directions are discussed in detail in Appendix A.3.2. We
believe this hybrid paradigm—coupling large-scale, pre-trained knowledge with rigorous real-time
control—is a promising direction for creating more capable and physically intelligent robotic agents.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Jianxin Bi, Kevin Yuchen Ma, Ce Hao, Mike Zheng Shou, and Harold Soh. Vla-touch: Enhancing
vision-language-action models with dual-level tactile feedback. arXiv preprint arXiv:2507.17294,
2025.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, et al. π0: A vision-language-action flow
model for general robot control. arXiv preprint arXiv:2410.24164, 2024.

Kevin Black, Noah Brown, James Darpinian, Karan Dhabalia, Danny Driess, Adnan Esmail,
Michael Equi, Chelsea Finn, Niccolo Fusai, et al. π0. 5: a vision-language-action model with
open-world generalization. arXiv preprint arXiv:2502.19645, 2025.

Roya Firoozi, Johnathan Tucker, Stephen Tian, Anirudha Majumdar, Jiankai Sun, Weiyu Liu, Yuke
Zhu, Shuran Song, Ashish Kapoor, Karol Hausman, et al. Foundation models in robotics: Ap-
plications, challenges, and the future. The International Journal of Robotics Research, 44(5):
701–739, 2025.

J Randall Flanagan, Miles C Bowman, and Roland S Johansson. Control strategies in object manip-
ulation tasks. Current opinion in neurobiology, 16(6):650–659, 2006.

Carlos E Garcia, David M Prett, and Manfred Morari. Model predictive control: Theory and prac-
tice—a survey. Automatica, 25(3):335–348, 1989.

Peng Hao, Chaofan Zhang, Dingzhe Li, Xiaoge Cao, Xiaoshuai Hao, Shaowei Cui, and Shuo
Wang. Tla: Tactile-language-action model for contact-rich manipulation. arXiv preprint
arXiv:2503.08548, 2025.

Chi-Pin Huang, Yueh-Hua Wu, Min-Hung Chen, Yu-Chiang Frank Wang, and Fu-En Yang.
Thinkact: Vision-language-action reasoning via reinforced visual latent planning. arXiv preprint
arXiv:2507.16815, 2025.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, Pierre Sermanet, Noah Brown, Tomas Jackson, Linda
Luu, Sergey Levine, Karol Hausman, and Brian Ichter. Inner monologue: Embodied reasoning
through planning with language models. In Conference on Robot Learning (CoRL), 2022.

Roland S Johansson and J Randall Flanagan. Coding and use of tactile signals from the fingertips in
object manipulation tasks. Nature Reviews Neuroscience, 10(5):345–359, 2009.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Opti-
mizing speed and success. arXiv preprint arXiv:2502.19645, 2025a.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan P. Foster, Pannag R. Sanketi, Quan Vuong, Thomas Kollar, and Chelsea
Finn. OpenVLA: An open-source vision-language-action model. In Conference on Robot Learn-
ing (CoRL), volume 270, pp. 2098–2120. PMLR, 2025b.

Sung Soo Kim, Manuel Gomez-Ramirez, Pramodsingh H Thakur, and Steven S Hsiao. Multimodal
interactions between proprioceptive and cutaneous signals in primary somatosensory cortex. Neu-
ron, 86(2):555–566, 2015.

Jason Lee, Jiafei Duan, Haoquan Fang, Yuquan Deng, Shuo Liu, Boyang Li, Bohan Fang, Jieyu
Zhang, Yi Ru Wang, Sangho Lee, et al. Molmoact: Action reasoning models that can reason in
space. arXiv preprint arXiv:2508.07917, 2025.

Fanqi Lin, Ruiqian Nai, Yingdong Hu, Jiacheng You, Junming Zhao, and Yang Gao. Onetwovla: A
unified vision-language-action model with adaptive reasoning. arXiv preprint arXiv:2505.11917,
2025.

Yiyang Ling, Karan Owalekar, Oluwatobiloba Adesanya, Erdem Bıyık, and Daniel Seita. Impact:
Intelligent motion planning with acceptable contact trajectories via vision-language models. arXiv
preprint arXiv:2503.10110, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36:44776–44791, 2023.

Jason Jingzhou Liu, Yulong Li, Kenneth Shaw, Tony Tao, Ruslan Salakhutdinov, and Deepak
Pathak. Factr: Force-attending curriculum training for contact-rich policy learning. arXiv preprint
arXiv:2502.17432, 2025.

Yueen Ma, Zixing Song, Yuzheng Zhuang, Jianye Hao, and Irwin King. A survey on vision-
language-action models for embodied ai. arXiv preprint arXiv:2405.14093, 2024.

Abby O’Neill, Abdul Rehman, Abhiram Maddukuri, Abhishek Gupta, Abhishek Padalkar, Abraham
Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, Ajinkya Jain, et al. Open x-embodiment:
Robotic learning datasets and rt-x models: Open x-embodiment collaboration 0. In 2024 IEEE
International Conference on Robotics and Automation (ICRA), pp. 6892–6903. IEEE, 2024.

Corrado Pezzato, Chadi Salmi, Elia Trevisan, Max Spahn, Javier Alonso-Mora, and Car-
los Hernández Corbato. Sampling-based model predictive control leveraging parallelizable
physics simulations. IEEE Robotics and Automation Letters, 2025.

Ranjan Sapkota, Yang Cao, Konstantinos I Roumeliotis, and Manoj Karkee. Vision-language-action
models: Concepts, progress, applications and challenges. arXiv preprint arXiv:2505.04769, 2025.

Muhammad Tayyab Khan and Ammar Waheed. Foundation model driven robotics: A comprehen-
sive review. arXiv e-prints, pp. arXiv–2507, 2025.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ international conference on intelligent robots and systems, pp. 5026–5033.
IEEE, 2012.

Bowen Wen, Wei Yang, Jan Kautz, and Stan Birchfield. Foundationpose: Unified 6d pose estimation
and tracking of novel objects. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 17868–17879, 2024.

Grady Williams, Andrew Aldrich, and Evangelos A Theodorou. Model predictive path integral
control: From theory to parallel computation. Journal of Guidance, Control, and Dynamics, 40
(2):344–357, 2017.

Han Xue, Jieji Ren, Wendi Chen, Gu Zhang, Yuan Fang, Guoying Gu, Huazhe Xu, and Cewu Lu.
Reactive diffusion policy: Slow-fast visual-tactile policy learning for contact-rich manipulation.
arXiv preprint arXiv:2503.02881, 2025.

Jiawen Yu, Hairuo Liu, Qiaojun Yu, Jieji Ren, Ce Hao, Haitong Ding, Guangyu Huang, Guofan
Huang, Yan Song, Panpan Cai, et al. Forcevla: Enhancing vla models with a force-aware moe for
contact-rich manipulation. arXiv preprint arXiv:2505.22159, 2025.

Michał Zawalski, William Chen, Karl Pertsch, Oier Mees, Chelsea Finn, and Sergey Levine. Robotic
control via embodied chain-of-thought reasoning. arXiv preprint arXiv:2407.08693, 2024.

Wentao Zhao, Jiaming Chen, Ziyu Meng, Donghui Mao, Ran Song, and Wei Zhang. VLMPC:
Vision-language model predictive control for robotic manipulation. In Robotics: Science and
Systems (RSS), 2024.

Yifan Zhong, Fengshuo Bai, Shaofei Cai, Xuchuan Huang, Zhang Chen, Xiaowei Zhang, Yuanfei
Wang, Shaoyang Guo, Tianrui Guan, Ka Nam Lui, et al. A survey on vision-language-action
models: An action tokenization perspective. arXiv preprint arXiv:2507.01925, 2025.

Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martı́n-Martı́n, Abhishek Joshi, Soroush Nasiri-
any, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for robot
learning. arXiv preprint arXiv:2009.12293, 2020.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 QUALITATIVE COMPARISON WITH STATE-OF-THE-ART VLA MANIPULATION
FRAMEWORKS

Table 2: Comparison with State-of-the-Art VLA Manipulation Frameworks

Framework Primary Modality Planning & Control Strategy Reasoning Mechanism Data Requirement
OpenVLA Kim et al. (2025b) Vision, Language End-to-End Learned Policy (Action Token Prediction) Implicit (in VLM backbone) Large-scale Imitation Learning Demos
π0 (pi-zero) Black et al. (2024) Vision, Language End-to-End Learned Policy (Flow Matching) Implicit (in VLM backbone) Large-scale Imitation Learning Demos

ForceVLA Yu et al. (2025), TLA Hao et al. (2025) Vision, Language, Tactile/Force End-to-End Learned Policy Implicit (in network weights) Large-scale Tactile/Force Demos
VLA-Touch Bi et al. (2025) Vision, Language, Tactile VLA Policy + Tactile-based Refinement Controller Explicit VLM Planning + Semantic Tactile Feedback Leverages pretrained models; no VLA fine-tuning

ThinkAct Huang et al. (2025), ECoT Zawalski et al. (2024) Vision, Language End-to-End Learned Policy Explicit LLM Reasoning (Chain-of-Thought) Large-scale Imitation Learning Demos
OneTwoVLA Lin et al. (2025) Vision, Language Unified Policy (Adaptive Acting & Reasoning) Explicit LLM Reasoning (System 2) Imitation Demos + Synthetic Reasoning Data
MolmoAct Lee et al. (2025) Vision, Language Multi-stage Pipeline (Perception, Spatial Plan, Action) Explicit Spatial Reasoning (Trajectory Traces) Large-scale Imitation Learning Demos

IMPACT Ling et al. (2025) Vision, Language VLM-based Static Cost Map + RRT* Implicit (semantic object labeling) N/A (Planner-based)
VLMPC Zhao et al. (2024) Vision, Language VLM-guided Model Predictive Control (MPC) Explicit VLM Reasoning (for cost & sampling) N/A (Planner-based)

CoRAL (Ours) Vision, Language, Tactile/Force LLM-guided MPPI + Reactive Control Explicit LLM Reasoning (Strategy Formulation) Zero-Shot (No Demos)

As the comparative analysis in Table 2 illustrates, the field of robotic manipulation has historically
involved a trade-off. End-to-end VLA models achieve impressive behaviors but are fundamentally
constrained by large-scale demonstration datasets, while traditional planner-based systems are zero-
shot but often lack high-level semantic reasoning. CoRAL is designed to synthesize the strengths of
these disparate paradigms. To the best of our knowledge, CoRAL is the first framework to simulta-
neously integrate explicit LLM-driven strategy formulation with a dynamic, reactive controller
that leverages real-time tactile and force feedback, all while operating in a zero-shot manner that
completely eliminates the need for prior demonstration data.

A.2 PRELIMINARIES

In this section, we introduce the Model Predictive Path Integral (MPPI) controller, which forms the
core of our methodology, and provide a formal problem formulation for the contact-rich manipula-
tion tasks we address.

A.2.1 MODEL PREDICTIVE PATH INTEGRAL (MPPI)

Model Predictive Path Integral (MPPI) Williams et al. (2017) is a sampling-based Model Predictive
Control (MPC) Garcia et al. (1989) algorithm designed to solve stochastic optimal control problems.
It is particularly effective for systems with nonlinear and complex dynamics. MPPI operates by
simulating thousands of potential control sequences in parallel from the current state to determine
the optimal subsequent control input.

Consider a system with discrete-time stochastic dynamics described by xt+1 = f(xt,ut)+ϵt, where
xt is the state of the system, ut is the control input, and ϵt represents system noise. The objective
of MPPI is to find a control sequence U = {u0,u1, . . . ,uH−1} that minimizes an expected cost
function:

J(U) = E

[
ϕ(xH) +

H−1∑
t=0

q(xt,ut)

]
(8)

Here, ϕ(xH) is the terminal cost, and q(xt,ut) is the running (or stage) cost, which typically in-
cludes terms for tracking error and control effort. H is the planning horizon.

At each time step, MPPI samples K candidate control sequences by adding random noise pertur-
bations to a nominal sequence. These are rolled out in simulation to get trajectories, and the total
cost Sk for each is computed. The optimal control is then calculated via an exponential weighting
of these costs. This process is repeated at each time step following the receding horizon principle.
In our approach, the symbolic reasoning provided by the LLM forms the initial structure for the
running cost function q(·).

A.2.2 PROBLEM FORMULATION

In this work, we address long-horizon, contact-rich manipulation tasks specified by visual and lin-
guistic commands. Our goal is to develop a robotic system capable of interacting with objects of
unknown physical properties (e.g., mass, friction) and generalizing to new scenarios in a zero-shot
manner.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

We formulate the problem as a POMDP. The state of the system, xt ∈ X , includes the robot’s state
xr(t) and the states of environmental objects xo(t). The action space, U , consists of continuous
control commands applicable to the robot’s end-effector.

At the beginning of each task, the system receives an RGB-D image I , a natural language instruction
T , and the corresponding 3D object models M . The system’s objective is not to learn a fixed
policy, but rather to compute, at each step, a control action ut that leads to a sequence of actions
U = {u0, . . . ,uH−1} that successfully completes the task.

The core challenge is to bridge the gap from high-level, multimodal inputs (I,M, T) to these low-
level, continuous control actions. Our approach decomposes this problem into two stages:

1. Strategy Formulation: We use the vision module and LLM to translate the multimodal
inputs (I,M, T) into an initial cost function J0 and contact candidates C0 for the planner.

2. Online Planning and Control: We employ the MPPI planner to compute the optimal
action sequence online, guided by the LLM’s strategy and adapted using real-time sensory
feedback.

This formulation accurately frames our system as an online planner that reasons and computes ac-
tions on the fly, rather than an agent executing a pre-learned, static policy.

A.3 DISCUSSION & LIMITATIONS

Our work introduces CoRAL, a framework that represents a deliberate architectural shift away from
the prevailing end-to-end paradigm for Vision-Language-Action (VLA) models. By decoupling
high-level reasoning from low-level, physics-based planning and control, we address several funda-
mental challenges in contact-rich manipulation, particularly regarding explainability, data efficiency,
and physical grounding.

A.3.1 DISCUSSION

Our experimental results validate the core hypotheses of CoRAL, demonstrating that a modular,
neuro-symbolic architecture can overcome the fundamental limitations of end-to-end models in
complex, contact-rich manipulation. We discuss the key implications of our findings below.

The Synergy of Grounded Reasoning and Reactive Control: Our experiments reveal a clear
synergy between high-level reasoning and low-level reactive control. The performance gap between
CoRAL and end-to-end baselines like OpenVLA, especially in tasks requiring non-trivial strategies
(e.g., T6: Flip with Wall), highlights the brittleness of purely imitative policies. These models fail
because their training data lacks examples of using the environment as a tool. In contrast, CoRAL’s
success stems from its ability to reason: the LLM formulates an explicit optimization problem (J0)
that defines the task’s success conditions, while the MPPI controller finds a physically plausible
solution. This makes the system’s intent transparent and grounds abstract reasoning in a formal
control framework, a more robust approach than conditioning a black-box policy as is done in works
like ECoT Zawalski et al. (2024).

Online Adaptation as an Alternative to Large-Scale Tactile Datasets: A significant implication
of our work is a path away from the data-hungry paradigm of modern robotics. State-of-the-art
methods like ForceVLA Yu et al. (2025) achieve impressive results by incorporating tactile feedback,
but this requires creating massive, specialized demonstration datasets. Our results demonstrate a
more data-efficient alternative. CoRAL also uses real-time force feedback, but its role is redefined:
it serves as a signal for online adaptation, not offline imitation. The success of our outer feedback
loop, particularly in tasks where initial parameter estimates were deliberately inaccurate, proves that
the LLM can diagnose physical failures and refine its world model on the fly. This ability to learn
from direct interaction significantly lowers the barrier to entry for creating sophisticated, contact-
aware robots without relying on pre-collected, large-scale tactile data.

Zero-Shot Planning and the Path to Lifelong Learning: Perhaps the most significant result is
CoRAL’s ability to perform zero-shot planning for novel tasks. This capability stems from its core
design: instead of learning how to act, it leverages the pre-existing knowledge of foundation models
to reason about how to plan. By generating a cost function from a single image and a language com-

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

mand, the system dynamically tackles new objectives. The consistent performance boost provided
by the ‘Memory Unit’ in our ablation studies further points towards a lifelong learning capability.
By retrieving and bootstrapping successful strategies, the system becomes more efficient and robust
over time, a contrast to the static nature of policies that require extensive fine-tuning or retraining to
adapt Kim et al. (2025b); Lee et al. (2025).

A.3.2 LIMITATIONS AND FUTURE WORK

Despite its promising results, CoRAL has several limitations that define clear directions for future
research.

Fidelity of the Internal World Model: The entire framework is predicated on the quality of the
simulated planning world constructed by the vision module. This dependency is a significant limi-
tation; the performance of the MPPI planner is directly correlated with how accurately this internal
model reflects real-world physics. We can think of this simulated planning environment as the
robot’s “mind,” where it mentally rehearses actions before execution. The better this mental model,
the more seamlessly the robot can translate its plans into successful evaluation-world actions. Cur-
rently, the system is vulnerable to inaccuracies in object pose estimation, and VLM “hallucinations”
or inaccuracies—misjudging an object’s material could lead to a grossly incorrect estimate for mass
or friction. While our feedback loop is designed to correct for such errors, a sufficiently poor ini-
tialization could prevent the planner from converging. Future work should focus on creating higher-
fidelity internal world model, potentially by learning residual dynamics models online to capture
unmodeled effects (e.g., non-rigid dynamics, complex friction) and better bridge the sim-to-real
gap.

Computational Latency: Vision perception, LLM reasoning, and MPPI planning are the sources of
computational latency. In our implementation, the LLM and VLM component uses GPT-4o via the
OpenAI API, and a single query takes on average around 1.5 seconds to return a response as an LLM
and 2.3 seconds to responds as a VLM. Importantly, the LLM call is not issued at every control step;
it is only triggered when the outer loop (e.g., strategy or cost-function/parameter update) is invoked,
every 15 control steps. Before execution starts, we make a single VLM call for physical parameter
estimation (2.3 s) and perform the initial object registration with FoundationPose (2.1 s), leading
to a one-time startup latency of about 4.4 s. During execution, FoundationPose tracking incurs 36
ms per pose update, and MPPI (200 trajectories, horizon 50) takes, on average, 0.4 s per planning
iteration, which is the main bottleneck. As a result, a typical inner-loop update without an LLM
call has an image-to-command latency of roughly 0.44 s, while an outer-loop update that involves
online LLM adaptation or failure recovery adds about 3 s (two GPT-4o calls: one for cost, one for
parameters). If a similar episode is found in the memory unit, the initial LLM call is skipped and
the rollout starts from a warm cost function, which reduces both the number of LLM queries and the
overall latency.

Another important bottleneck arises from the use of simulation environments for planning. MPPI
requires rolling out many trajectories in parallel, and while this is embarrassingly parallel in princi-
ple, its efficiency is constrained by the underlying physics engine. In our work, we implement MPPI
with parallelized environments on the CPU, since MuJoCo currently does not support GPU-based
simulation and we aim to remain comparable to VLA baselines that are commonly benchmarked on
LIBERO, which is built on top of MuJoCo. In a real-world deployment, or with a GPU-accelerated
physics backend, the trajectory rollouts could be significantly faster. More generally, the perfor-
mance of the MPPI planner can be improved by combining such systems-level optimizations with
algorithmic advances, such as more efficient sampling strategies and horizon adaptation Firoozi et al.
(2025); Ma et al. (2024); Pezzato et al. (2025), to bring the overall latency closer to what is required
for highly dynamic, real-time robotic tasks.

Reliance on Generalist LLMs for Strategy Formulation: A core component of our system is
the LLM’s ability to generate a viable cost function for the MPPI planner. We currently use a
generalist, off-the-shelf LLM (GPT-4o), which performs remarkably well but is not specialized for
robotics or physics-based planning. The quality and coherence of the generated cost function are
not guaranteed for entirely novel or abstract tasks that fall outside the LLM’s vast but general pre-
training data. A promising direction for future work is to fine-tune or develop LLMs specifically for
the task of generating optimization objectives for robotic control, potentially leading to more robust
and efficient strategy formulation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.4 CONTACT STRATEGY ABLATION

Figure 5 illustrates the results of the LLM-guided contact strategy ablation, detailed in the main
text’s robustness analysis. To purely isolate the impact of the strategic guidance on the planner,
this specific experiment was conducted using known ground truth object poses and sizes, thereby
eliminating any potential confounds from the perception module. The figure visualizes the stark
difference between the direct, efficient trajectory generated with the LLM’s guidance (green) and
the erratic, inefficient path taken by the unguided planner (red).

Figure 5: Ablation of the LLM-guided contact strategy on the “Flip with Wall” task. (Left) The
trajectory with the LLM’s strategy (green) is direct and efficient, while the unguided trajectory (red)
is erratic. (Right) The planning cost for the guided agent is significantly lower and more stable,
indicating an easier optimization problem.

A.5 INTERNAL WORLD MODEL FOR PLANNING AND ADAPTATION

The core of CoRAL’s reasoning capability lies in its use of an explicit internal world model. This
model is a simulated, physics-aware representation of the real world, constructed and parameterized
by the vision module’s output, θ. This internal model is not merely a passive environment for the
planner; it serves two critical functions in our architecture:

1. A Sandbox for Mental Rehearsal: The MPPI controller leverages this world model to
perform a number of parallel “mental rehearsals” (rollouts) of potential action sequences.
This allows the agent to anticipate the physical consequences of its actions—such as contact
forces and object displacement—before executing them in the evaluation world, enabling
proactive and intelligent decision-making.

2. An Adaptable Belief State: This world model represents the agent’s current “belief” about
the physical properties of its environment. Crucially, this belief is not static. The outer feed-
back loop, driven by the ‘LLM (Online Adaptation)’ module, directly refines this model by
updating its parameters (θ) based on discrepancies between predicted and observed out-
comes. This turns the world model into a dynamic, adaptable belief state that is continu-
ously improved through physical interaction, connecting our work to principles of online
system identification and model-based reinforcement learning.

Below is the direct natural language output from the ‘LLM (Online Adaptation)’ module after being
triggered by persistent failures in the “Flip with Wall” task. The LLM was provided with the episode
history (Et) and prompted to diagnose the failure and propose a refined cost function.

A.6 EXAMPLE OF AN LLM-GENERATED COST FUNCTION

Figure 1 shows a direct example of a Python cost function generated by the ‘LLM (Task Formula-
tion)’ module for the multi-stage “Push and Pick Cutting Board” task (T1). This code serves as the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

--- Outer Loop Triggered: Analyzing failure and refining strategy...

LLM Explanation: The previous cost function was failing because it did not sufficiently priori-
tize the critical aspects of the task, such as ensuring the box is flipped onto its side and maintaining
contact with the wall. The rewards and penalties were not balanced effectively to guide the robot towards
achieving the task goal. Specifically, the orientation error was not heavily penalized, and the rewards for
contact and elevation were not strong enough to drive the desired behavior.

In the new version, the following improvements have been made:

1. Increased Penalty for Orientation Error: The weight on the angle error has been increased
to emphasize the importance of achieving the correct orientation.

2. Stronger Rewards for Contact and Elevation: The rewards for maintaining contact with the
wall and elevating the box have been increased, encouraging the robot to push the box against
the wall and attempt a flip.

3. Adjusted Proximity Penalties: The penalties for the end-effector’s distance from the box and
the box’s distance from the wall have been adjusted to better guide the robot’s actions.

4. Relaxed Orientation Threshold: The threshold for the orientation reward has been slightly
relaxed to allow for some tolerance in achieving the target orientation, which can help in stabi-
lizing the box on its side.

These changes aim to create a more balanced and effective cost
function that better aligns with the task objectives. Simulated
environment’s cost function has been updated.

Figure 6: Direct output from the LLM during an online adaptation cycle. The model provides a
clear, human-readable diagnosis of the previous plan’s failure and details the specific changes made
to the cost function for the next attempt.

running cost, q(xt, ut), within the MPPI objective (Eq. 4). The function demonstrates the LLM’s
ability to translate a complex, sequential goal—“push the board until the handle is over the edge,
then pick it”—into a structured, computable objective that the planner can optimize.

The function skillfully balances multiple, often competing, objectives by implementing a dynamic,
state-aware logic:

• Dynamic Goal Blending: It calculates a ‘grasp score’ based on the board’s stability and
how far its handle overhangs the table edge. This score is used in a sigmoid function to
create a “soft switch” that smoothly transitions the robot’s objective from pushing the board
to picking the handle.

• Phase-Specific Rewards: The cost function provides rewards tailored to the current phase.
In the push phase, it rewards progress in moving the board to the edge (‘Push progress
reward’). In the pick phase, it rewards correct gripper alignment and lifting the board
(‘Pick-phase alignment’, ‘Reward lift after grasp’).

• Stability Constraints: Throughout the push phase, it heavily penalizes any lateral drift or
rotation of the board, ensuring a stable push.

• Contact Management: It explicitly manages contact, penalizing the gripper for losing
contact with the board during the push phase.

This example highlights how CoRAL’s LLM grounds abstract, sequential instructions into a sophis-
ticated, mathematical objective that enables the execution of complex, long-horizon tasks.

1 def state_cost(self):
2 # --- Helper lambdas ---
3 def sigmoid(x): return 1.0 / (1.0 + np.exp(-x))
4 def clip01(v): return max(0.0, min(1.0, float(v)))
5

6 # --- EE pose ---
7 ee_state = p.getLinkState(self.panda, self.grasp_link,
8 computeForwardKinematics=True,

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

9 physicsClientId=self.cid)
10 ee_pos = np.array(ee_state[0])
11 cost = 0.0
12

13 # --- Board pose/vel ---
14 board_pos, board_ori = p.getBasePositionAndOrientation(self.board,

physicsClientId=self.cid)
15 board_pos = np.array(board_pos)
16 linvel, angvel = p.getBaseVelocity(self.board, physicsClientId=self.

cid)
17

18 # --- World/task params with safe defaults ---
19 push_axis = np.array(getattr(self, ‘‘push_axis", [1.0, 0.0, 0.0]),

dtype=float)
20 push_axis /= (np.linalg.norm(push_axis) + 1e-9)
21 table_edge_x = getattr(self, ‘‘table_edge_x", self.board_init_pos[0]

+ 0.25)
22 desired_overhang = getattr(self, ‘‘desired_overhang", 0.06)
23

24 # --- Contact strategy points ---
25 pick_point = np.array(getattr(self, ‘‘best_contact_point", board_pos

), dtype=float)
26 push_point = np.array(getattr(self, ‘‘push_contact_point",
27 board_pos + 0.5 * desired_overhang *

push_axis), dtype=float)
28

29 # --- Overhang & readiness for grasping ---
30 overhang_m = np.dot(pick_point - np.array([table_edge_x, board_pos

[1], board_pos[2]]), push_axis)
31 overhang_nrm = clip01(overhang_m / max(1e-6, desired_overhang))
32 v = np.linalg.norm(linvel) + 0.5 * np.linalg.norm(angvel)
33 stability = clip01(np.exp(-3.0 * v))
34 grasp_score = 0.7 * overhang_nrm + 0.3 * stability
35 r = sigmoid(12.0 * (grasp_score - 0.55)) # soft switch: r -> 1 as

grasp becomes viable
36

37 # --- Blended target following (Push vs. Pick) ---
38 w_follow_push = 12.0 * (1.0 - r)
39 w_follow_pick = 20.0 * r
40 cost += w_follow_push * np.linalg.norm(ee_pos - push_point)
41 cost += w_follow_pick * np.linalg.norm(ee_pos - pick_point)
42

43 # --- Push progress reward ---
44 cost -= 18.0 * (1.0 - r) * overhang_nrm
45

46 # --- Contact management (for push phase) ---
47 in_contact = bool(getattr(self, ‘‘in_contact", True))
48 cost += (22.0 * (1.0 - r)) * (0.0 if in_contact else 1.0)
49

50 # --- Pick-phase alignment ---
51 ee_quat = ee_state[1]
52 if hasattr(self, ‘‘handle_desired_ori") and self.handle_desired_ori

is not None:
53 q_diff = p.getDifferenceQuaternion(ee_quat, self.

handle_desired_ori)
54 w = max(-1.0, min(1.0, float(q_diff[3])))
55 angle = 2.0 * math.acos(w)
56 cost += (28.0 * r) * angle
57

58 # --- Lateral drift & rotation penalties (for push phase) ---
59 dp = board_pos - np.array(self.board_init_pos)
60 axial = np.dot(dp, push_axis) * push_axis
61 lateral = dp - axial
62 cost += 10.0 * (1.0 - r) * np.linalg.norm(lateral)
63 q_diff_b = p.getDifferenceQuaternion(board_ori, self.board_init_ori)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

64 wb = max(-1.0, min(1.0, float(q_diff_b[3])))
65 ang_b = 2.0 * math.acos(wb)
66 cost += 8.0 * (1.0 - r) * ang_b
67

68 # --- Reward lift after grasp ---
69 lift_h = board_pos[2] - self.board_init_pos[2]
70 cost -= (32.0 * r) * max(0.0, float(lift_h))
71

72 # --- General penalties ---
73 if hasattr(self, ‘‘last_action"):
74 cost += 0.001 * np.linalg.norm(self.last_action) ** 2
75 cost += 0.01 * getattr(self, ‘‘current_step", 0)
76

77 return cost

Listing 1: The complete, LLM-generated running cost function q(x, u) for the “Push and Pick
Cutting Board” task (T1). It demonstrates a sophisticated, multi-stage logic with a soft switch to
blend objectives between the pushing and picking phases.

A.7 VLM PROMPTING FOR PHYSICAL PARAMETER ESTIMATION

This section details the query sent to the VLM (GPT-4o) to infer the physical properties of objects
in the scene, which are used to parameterize the internal world model, θ. Unlike methods that use
VLMs for identification, our approach leverages the VLM’s physical commonsense reasoning. The
VLM’s task is not to identify objects, but to estimate their unobservable physical attributes based on
their known identity and estimated geometric state.

The prompt, shown in Figure 2, provides the model with all available context: the full scene image
(passed implicitly to the multimodal model), the natural language task description T , and a JSON
object for each relevant item. This JSON object is populated with the object’s known semantic
‘label’ (from its 3D model) and its current 6-DoF ‘pose’, as estimated by FoundationPose.

The VLM’s sole task is Estimation: It must use its vast, pre-trained knowledge about the real world
to estimate the physical properties of the object, such as its ‘mass kg’ and ‘friction coeff’, based on
its visual appearance (e.g., material, size) and the provided context. By constraining the output to
be only the completed JSON object, we ensure the response is directly parsable by our system.

1 # Prompt sent to GPT-4o to act as the VLM
2 You are a robotics expert with a deep understanding of physics.
3 Your task is to estimate the physical properties of an object for a

simulation, based on its appearance in an image.
4

5 Task Description: ‘‘Push the cutting board until the handle is off the
table, then pick it up."

6

7 I have an object in the scene. I know what it is and I have an estimate
of its current pose. Please provide your best estimate for its mass (
in kg) and friction coefficient based on the image.

8

9 Object Data:
10 {
11 ‘‘cutting_board": {
12 ‘‘pose_estimated": [0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
13 ‘‘mass_kg": "?",
14 ‘‘friction_coeff": "?"
15 }
16 }
17

18 Respond ONLY with the completed JSON object, filling in the unknown
values.

19

20 # --
21 # Example VLM JSON Response for the task above:
22 {

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

23 ‘‘cutting_board": {
24 ‘‘pose_estimated": [0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
25 ‘‘mass_kg": 0.4,
26 ‘‘friction_coeff": 0.4
27 }
28 }
29

Listing 2: The structured prompt sent to the multimodal model (GPT-4o) to act as our VLM. The
model is provided with the object’s known label and estimated pose, and is tasked only with filling
in the unknown physical parameters (?).

A.8 LLM PROMPTING FOR COST FUNCTION GENERATION

1 You are an expert in optimal control, physics-based planning, and contact
-rich manipulation.

2 Your job is to generate an initial mppi cost function that adapts to the
task description

3 and world parameters.
4

5 IMPORTANT: The structure must be GENERAL and TASK-ADAPTIVE.
6 Do NOT hard-code logic for a specific task. Instead, infer the

requirements from the task description.
7

8 You must output ONLY a Python-like function:
9

10 def state_cost(self):
11

12 STRUCTURAL REQUIREMENTS:
13 1. The cost must be composed of weighted terms for:
14 - distance-to-goal or subgoal
15 - contact or interaction constraints (if relevant)
16 - orientation/alignment terms (if relevant)
17 - force or stability terms (if relevant)
18 - control effort
19 - time/step penalty
20

21 2. If the task involves MULTIPLE PHASES (e.g., push then pick, flip then
place),

22 you MUST:
23 - infer subgoals,
24 - compute a phase progress score,
25 - optionally blend objectives using a soft switch (sigmoid-based).
26

27 3. If the task involves CONTACT-RICH behavior (e.g., pushing, flipping,
using a wall),

28 include:
29 - contact incentives or penalties,
30 - drift or slippage penalties,
31 - force-dependent shaping terms (if sensed).
32

33 4. If the task is SIMPLE (e.g., pick-and-place),
34 use a single-stage goal-driven cost with alignment and distance terms.
35

36 5. ALL TERMS must be conditional on task semantics.
37 Only include what is relevant for the input task.
38

39 6. ALL WEIGHTS must be numeric (choose reasonable magnitudes).
40

41 7. The function MUST be fully executable Python-like pseudocode using:
42 - norms
43 - dot products
44 - quaternions (if needed)
45 - sigmoid for soft transitions

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

46 - optional heuristics (e.g., stability)
47

48 FORMAT (MANDATORY):
49 Return ONLY the code block:
50

51 def state_cost(self):
52 ...
53 return cost
54

55 --
56 TASK DESCRIPTION:
57 "{TASK_DESCRIPTION}"
58

59 POSE_STATE:
60 {TRACKED_POSES_JSON}
61

62 PHYSICAL_PARAMS:
63 {ESTIMATED_PARAMS_JSON}
64

65 Return ONLY the Python code block.

Listing 3: General task-adaptive prompt used by the LLM to generate initial MPPI cost functions.

A.9 LLM PROMPTING FOR ONLINE ADAPTATION

The ‘LLM (Online Adaptation)’ module is triggered when the system detects persistent failures.
Unlike the initial task formulation, the adaptation prompts are designed to be diagnostic, providing
the LLM with a history of recent failed interactions to inform its corrections. The module employs
two distinct prompting strategies depending on the type of refinement needed: strategy refinement
(correcting the plan) and world model correction (correcting physical parameters).

A.9.1 STRATEGY REFINEMENT PROMPT

When the logic of the plan itself is suspected to be flawed, the system asks the LLM to act as a
robotics programmer and rewrite the core ‘state cost’ function. As shown in Figure 4, the prompt
provides the LLM with the task, the environment’s attributes, the recent execution history (e.g.,
last 5 steps of object positions and resulting costs), and critically, the current, failing source code
of the cost function. It is then instructed to return a corrected code block and a natural language
explanation of its changes. This process is the source of the explainable failure recovery analysis
presented in the main text.

1 # Python function that builds the prompt for cost function refinement.
2 def ask_state_cost_fn(self, task: str, history: list, env: BoxPushEnv):
3 # Grab the current, failing source code of the cost function.
4 try:
5 current_src = inspect.getsource(env.state_cost.__func__)
6 except (OSError, IOError):
7 current_src = env.state_cost_src
8

9 # --- The prompt sent to the LLM ---
10 prompt = (
11 f’‘Task: {task}\n"
12 ‘‘You have full freedom to compute any cost that helps ’{task}’.\

n"
13 ‘‘History of last 5 steps (object_pos, resulting_cost):\n"
14 f"<RECENT_EXECUTION_HISTORY>\n\n"
15 ‘‘Please output TWO things, separated by ’---’:\n"
16 ‘‘1) Python code for a method ‘def state_cost(self): ...‘ (

indented block only)\n"
17 ‘‘2) A brief explanation why the previous cost was failing and

how the new one addresses it.\n\n"
18 f’‘Here is the CURRENT implementation that is failing:\n"
19 f"{current_src}"

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

20)
21

22 # Query the LLM and parse the response (code_str, explanation)
23 resp = openai.chat.completions.create(...)
24 content = resp.choices[0].message.content
25 code_str, explanation = content.split("---",1)
26 return code_str.strip(), explanation.strip()
27

Listing 4: The Python function and prompt structure used for Strategy Refinement. The LLM is
given the failing code and recent history to rewrite the cost function.

A.9.2 WORLD MODEL CORRECTION PROMPT

If the strategy is believed to be correct but the physical outcomes do not match the simulation (e.g.,
the robot pushes but the object barely moves), the system asks the LLM to act as a physicist and
refine the object parameters. The prompt, detailed in Figure 5, provides the LLM with the agent’s
current belief about the physical parameters (mass, friction) and the recent execution history. The
LLM’s task is to analyze the discrepancy between actions and outcomes in the history and propose
corrected physical parameters, returning them in a machine-parsable JSON format.

1 # Python function that builds the prompt for physical parameter
refinement.

2 def ask_params_refinement(self, history: list, object_params: list):
3

4 # --- The prompt sent to the LLM ---
5 prompt = (
6 ‘‘We have the following object parameters:\n"
7 f"{json.dumps(object_params, indent=2)}\n\n"
8 ‘‘Recent execution history (last 5 steps):\n"
9 f"<RECENT_EXECUTION_HISTORY>\n\n"

10 ‘‘Based on this, propose refined values for mass and
friction_coef."

11 ‘‘Return ONLY a JSON array of objects with keys "
12 "‘label’, ‘mass’, and ‘friction’.\n"
13 ‘‘Example output:\n"
14 "[\n"
15 " {\‘‘label\":\‘‘cutting_board\",\‘‘mass\":0.45,\‘‘friction

\":0.35}\n"
16 "]"
17)
18

19 # Query the LLM and parse the JSON response
20 resp = openai.chat.completions.create(...)
21 text = resp.choices[0].message.content.strip()
22 try:
23 return json.loads(text)
24 except json.JSONDecodeError:
25 # Fallback to extract JSON if LLM adds extra text
26 ...
27

Listing 5: The Python function and prompt structure for World Model Correction. The LLM
analyzes the recent history to refine its belief about the object’s physical properties.

A.10 LLM-DRIVEN CONTACT STRATEGY GENERATION

A key challenge in contact-rich manipulation is determining precisely where to make contact with
an object. Uniformly sampling an object’s entire surface is computationally inefficient and unlikely
to yield strategically useful points. To overcome this, CoRAL leverages the LLM’s commonsense
physical reasoning to intelligently narrow the search space. This is achieved through a two-stage
process, detailed in Figure 6, which translates a high-level task into a concrete set of candidate
contact points (C0).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Stage 1: Strategic Region Proposal. First, the ‘LLM (Task Formulation)’ module queries a foun-
dation model (GPT-4o) with a structured prompt that includes the task description and the VLM-
estimated object parameters. The prompt, shown in Figure 7, explicitly instructs the LLM to act
as a robotics expert and identify 1-3 small, promising surface regions for contact on each relevant
object. The LLM is constrained to return this information in a structured JSON format, specifying
each region’s 3D center, surface normal, radius (extent), and the desired number of samples. For the
“Push and Pick Cutting Board” task, the LLM correctly identifies that pushing should occur on the
board’s main surface, while grasping should target the handle.

Stage 2: Geometric Candidate Sampling. Second, the structured JSON response from the LLM
is passed to a geometric sampling function (‘sample-points-in-region’). This function translates
the LLM’s abstract region definitions into a dense set of 3D point coordinates. For each region, it
defines a 2D disk in 3D space oriented by the provided center and normal vectors. It then samples
the requested number of points within this disk, generating the final set of candidate contact points,
C0, which are then used to bias the MPPI planner’s exploration as described in the main text.

1 # Stage 1: Query the LLM to propose strategic contact regions.
2 def ask_region_strategy(object_params, task_desc):
3 # The prompt is shown in Figure˜\ref{fig:contact_prompt}
4 prompt = f"..."
5 resp = client.chat.completions.create(...)
6 return resp.choices[0].message.content
7

8 # Stage 2: Sample concrete 3D points from an LLM-defined region.
9 def sample_points_in_region(region):

10 c = np.array(region[‘‘center"], dtype=float)
11 n = np.array(region[‘‘normal"], dtype=float)
12 r = float(region[‘‘extent"])
13 k = int(region[‘‘num_samples"])
14

15 # Create two orthonormal tangent vectors to define the plane of the
disk.

16 if abs(n[2]) < 0.9:
17 axis = np.array([0.0, 0.0, 1.0])
18 else:
19 axis = np.array([0.0, 1.0, 0.0])
20 t1 = np.cross(n, axis)
21 t1 /= np.linalg.norm(t1)
22 t2 = np.cross(n, t1)
23 t2 /= np.linalg.norm(t2)
24

25 # Sample k points within the 2D disk defined by the tangents.
26 pts = []
27 for _ in range(k):
28 rho = np.sqrt(np.random.rand()) * r # Uniform sampling in a

disk
29 theta = np.random.rand() * 2 * np.pi
30 offset = rho * np.cos(theta) * t1 + rho * np.sin(theta) * t2
31 pts.append((c + offset).tolist())
32 return pts
33

Listing 6: The two-stage Python implementation for generating the contact strategy C0. The ‘ask-
region-strategy’ function queries the LLM for high-level guidance, and ‘sample-points-in-region’
translates that guidance into concrete 3D coordinates.

1 # The prompt sent to the LLM (Task Formulation) module:
2 Task: Push the cutting board until the handle is off the table, then pick

it up.
3

4 You have objects with parameters:
5 {
6

7 ‘‘board": [{TRACKED_POSES_JSON} , {ESTIMATED_PARAMS_JSON}],

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

8 ‘‘table": [{TRACKED_POSES_JSON} , {ESTIMATED_PARAMS_JSON}]
9 }

10

11 Instead of uniform sampling, identify for each object 1-3 small surface
regions

12 where contact is most promising.
13 For each region, return:
14 - center: [x,y,z]
15 - normal: unit surface normal [nx,ny,nz]
16 - extent: radius in meters around center
17 - num_samples: how many points to sample there
18

19 Respond ONLY a JSON mapping each label to its ‘‘regions" array.
20

21 # Example LLM JSON Response:
22 {
23 ‘‘object": {
24 ‘‘regions": [
25 {
26 ‘‘center": [0.5, 0.0, 0.01],
27 ‘‘normal": [0, 0, 1],
28 ‘‘extent": 0.1,
29 ‘‘num_samples": 30
30 }
31]
32 }
33

Listing 7: The structured prompt and an example JSON response for the “Push and Pick Cutting
Board” task. The prompt constrains the LLM to provide a structured, machine-readable output.

24

	Introduction
	Related Work
	Methodology
	Environment Perception and World Model Initialization
	LLM-driven Task Formulation and Memory Retrieval
	Reactive Planning and Execution (The Inner Loop)
	Online Adaptation via LLM-driven Refinement (The Outer Loop)

	Experiments
	Results and Analysis
	State-of-the-Art Comparison (RQ1)
	Comparison to Human-Designed Cost Functions
	Ablation Study Analysis (RQ2)
	Robustness Analysis (RQ3)

	Limitations & Conclusion
	Appendix
	Qualitative Comparison with State-of-the-Art VLA Manipulation Frameworks
	Preliminaries
	Model Predictive Path Integral (MPPI)
	Problem Formulation

	Discussion & Limitations
	Discussion
	Limitations and Future Work

	Contact Strategy Ablation
	Internal World Model for Planning and Adaptation
	Example of an LLM-Generated Cost Function
	VLM Prompting for Physical Parameter Estimation
	LLM Prompting for Cost Function Generation
	LLM Prompting for Online Adaptation
	Strategy Refinement Prompt
	World Model Correction Prompt

	LLM-driven Contact Strategy Generation

