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Abstract

Visual Autoregressive (VAR) has emerged as a promising approach in image genera-1

tion, offering competitive potential and performance comparable to diffusion-based2

models. However, current AR-based visual generation models require substan-3

tial computational resources, limiting their applicability on resource-constrained4

devices. To address this issue, we conducted analysis and identified significant5

redundancy in three dimensions of the VAR model: (1) the attention map, (2)6

the attention outputs when using classifier free guidance, and (3) the data preci-7

sion. Correspondingly, we proposed efficient attention mechanism and low-bit8

quantization method to enhance the efficiency of VAR models while maintaining9

performance. With negligible performance lost (less than 0.056 FID increase), we10

could achieve 85.2% reduction in attention computation, 50% reduction in overall11

memory and 1.5x latency reduction. To ensure deployment feasibility, we devel-12

oped efficient training-free compression techniques and analyze the deployment13

feasibility and efficiency gain of each technique.14

1 Introduction15

Visual Autoregressive (VAR [12]) modeling has explored the autoregressive (AR) paradigm for visual16

generation, achieving performance comparable to state-of-the-art diffusion models. By leveraging the17

"multi-scale" nature of images, VAR introduces a scale-by-scale generation scheme, progressing from18

coarse to fine. However, despite operating on high-level visual tokens, the VAR generation process still19

requires iterative token generation across multiple scales, resulting in substantial computational cost.20

This challenge hinders the broader application of VAR models on resource-constrained platforms,21

highlighting the need for efficiency improvements. In this paper, we focus on designing training-free22

model compression techniques to reduce the computational and memory burden of VAR models. We23

hope our research could shed some lights on practical acceleration of VAR and even more AR-based24

image generative models [11, 21].25

Based on algorithmic characteristics, we explore the redundancy for VAR to design corresponding26

optimization. As presented in Fig. 1, we conclude the redundancy in the following dimensions:27

Redundancy In Attention Map. As discussed in prior literature on vision transformer [5], visual28

models tend to exhibit a local feature extraction nature. Using global attention that aggregates all29

tokens may therefore be redundant, with much of the computation spent on representing relatively30

weak long-range relationships between visual tokens. Inspired by this, we visualize the attention31

map of the VAR model in Fig. 2-(a) and find that tokens primarily focus on their local window in32

the attention map, while most attention values for distant tokens are close to zero. Additionally, we33

observe a unique “multi-diagonal” pattern in the VAR attention map, where visual tokens are locally34

aggregated within each scale.35
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Figure 1: Three dimensions of redundancy and corresponding compression techniques. We
discover redundancy exists in the attention map level, the classifier free guidance level, and the
representation data precision level. We design the multi-diagonal windowed attention, CFG-wise
sharing, and mixed precision quantization to address the above redundancy.
In order to leverage the unique characteristics of VAR attention maps, we propose replacing global36

attention with windowed local attention at each stage, which we term “multidiagonal windowed37

attention”. This approach effectively reduces both the computational and memory costs of attention.38

By incorporating multi-diagonal windowed attention, we could save 70-80% of attention computation39

without compromising performance. While attention computation is not a critical bottleneck in the40

current experimental setting (VAR on ImageNet 256x256) due to the relatively low resolution, it is41

important to note that attention costs scale quadratically with token length. A recent research [17]42

suggests that for 2K resolution generation, attention computation can become the primary bottleneck.43

Redundancy In Attention Outputs When Using Classifier-Free Guidance (CFG). The CFG44

technique [2] is widely applied in conditioned generation, not only for diffusion models but also45

for autoregressive (AR) models [6, 12]. In this technique, the model is run twice—once with46

and once without the control signal—and the outputs are combined via a weighted sum. The47

weighting coefficient controls the strength of the control signal. Recent studies [17] have identified48

computational redundancy between the conditional and unconditional inferences in diffusion models.49

In this work, we investigate whether similar redundancy exists in AR models, using VAR as a50

representative example. By visualizing the similarity between the attention QKV of the conditional51

and unconditional branches in VAR generation (in Fig. 2)-(b), we observed significant overlap across52

different blocks, heads, and scales. For leveraging this redundancy, following previous work, we53

propose sharing the attention output between the conditional and unconditional branches, thereby54

skipping the computation for one branch. Combining multidiagonal windowed attention with the55

CFG sharing technique, we could reduce 85-90% of attention computation.56

Redundancy In Data Precision. Prior low-bit quantization methods [3, 7] reveal that the high57

precision floating-point (FP) representation for neural network weight and activation are redundant.58

The Post Training Quantization (PTQ) has proven to be an effective method for both reducing model59

size, memory footprint, and computational complexity. Following recent advances in diffusion visual60

generation model quantization [18, 19], we apply post training quantization technique to VAR models.61

Although W8A8QKV8 quantization achieves satisfying performance. We empirically witness notable62

visual quality degradation for lower bit-width (W6A6 and W4A8). Furthermore, we discover that63

the quantization is “bottlenecked” by some highly sensitive layers under lower bit-width, and adopt64

mixed precision quantization method to preserve these highly sensitive layers at higher bit-width.65

We summarizes the knowledge of our redundancy analysis, the performance-efficiency trade-off, and66

deployment feasibility of existing methods in Sec 5.2.67

2 Attention Redundancy: Multi-Diagonal Window Attention (MDWA)68

We visualize the attention map for VAR models in Fig. 2-(a). As shown, for most tokens, the attention69

map concentrates within local regions at each scale, with more than 80% of the values representing70

interactions between spatially distant visual tokens being close to zero. Therefore, replacing the71

original global attention with local windowed attention can significantly reduce computation while72

preserving the majority of meaningful values in the attention map. Leveraging the unique multi-73

diagonal characteristics of the VAR attention map, we propose a specialized multi-diagonal windowed74

attention (MDWA) pattern to compress redundancy at the attention map level.75
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(a) (b)

Figure 2: Attention map characteristics. (a) Multi-diagonal concentration. VAR model’s attention
values are concentrated on multiple diagonals, with each diagonal exhibiting a distinct shape across
different scales. Consequently, we have designed a separate window attention mechanism for each
scale, which we refer to as Multi-Diagonal Window Attention (MDWA). (b) Similarity of Attention
Outputs between Conditional and Unconditional Generation.

Specifically, considering the VAR model with K scales, each scale containing s2k tokens. For the76

k-th scale, the attention mechanism aggregates tokens from the current scale (s2k) with all tokens77

from previous scale (
∑k

1 s
2
i ). For example, when k = 2, the attention map X has a shape of [4, 5],78

where 4 represents the number of visual tokens at the current scale (22), and 5 represents the total79

tokens from previous scales (12 + 22). As shown in Fig.2-(a), we separate the attention map into80

N parts (indicated by vertical black lines) and design a local windowed attention pattern (marked81

by blue lines) with window width w. We introduce a metric, Rw, to control the trade-off between82

performance and efficiency. The Rw is defined as the division of the summation of all elements83

within the window, with respect to the summation of all values in the current part. Since the attention84

values are within range [0, 1], the value of Rw could be interpreted as the measurement of “how many85

percentage of dominant attention values are contained in the local window”. We gradually increase86

the window size from zero until Rw reaches a specific pre-defined ratio R0 (e.g., 0.95). Table 187

presents the performance efficiency trade-off with different R0. When R0 = 1, the attention pattern88

falls back to full attention. We further provide the detailed process of the MDWA pattern design.89

(1) We perform model inference on a subset of the training data and save the attention maps (after90

softmax) as a reference for designing the attention pattern.91

(2) Given an attention map at the k-th scale with the shape [s2k,
∑k

1 s
2
i ], we first divide it into k − 292

parts, where the first part contains [s2k,
∑3

1 s
2
i ], and the rest j-th part has the shape [s2k, s

2
k−j+1]. For93

each part, we gradually increase the window size w until the ratio Rw reaches a predefined value R0.94

(3) This process is repeated to determine the optimal window size for each scale, block, and head of95

the attention map.96

Image Evaluation Settings. We adopt FID [1], IS [10] for fidelity evaluation, and ImageReward [15]97

for human preference. Following the original VAR code implementation, we use the 10-scale VAR98

with a CFG scale of 4. We generate 8K images on the ImageNet dataset to ensure the stability of the99

metric scores.100

MDWA implementation details. In the original VAR design, the sk values for the 10 scales are101

(1, 2, 3, 4, 5, 6, 8, 10, 13, 16). We collect 80 samples in the training set and save their attention maps as102

reference. The multi-diagonal windowed attention patterns are designed following the aforementioned103

process. Additionaly, through analyzing the distribution of attention values, we observe that in the104

initial parts of the attention map, certain tokens occasionally exhibit uniformly high attention values105

across all tokens. This aligns with the "attention sink" phenomenon described in prior literature [14].106

Since the computational cost of these initial parts is relatively low, we retain the full attention pattern107

for the first three parts of the attention map.108

Experimental Results. The width of our designed multi-diagonal window attention mechanism was109

determined by a threshold setting. We tested different threshold values, including 0.95, 0.9, 0.85,110
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Table 1: Performance of MDWA for different Threshold on ImageNet. Image quality evaluation
and Calculation saving for different Threshold settings in Multi-Diagonal Window Attention.

Threshold FLOPs Saving(%) FID(↓) IS(↑) Image Reward(↑)
1 0.00 13.39 257.34 -0.28

0.95 70.34 13.47 260.95 -0.28
0.90 73.43 13.50 261.45 -0.29
0.85 75.47 13.72 259.54 -0.31
0.80 76.82 13.77 258.45 -0.34
0.70 79.36 13.94 254.17 -0.40
0.60 81.39 14.39 250.97 -0.48

(a) original (b) MDWA (c) MDWA+ASC

Figure 3: Comparison of original image generation with the techniques of Multi-Diagonal Window
Attention(MDWA) and CFG-wise attention sharing(ASC).

0.8, 0.7, and 0.6, and evaluated the image quality generated under each threshold. We generated 8k111

ImageNet images for evaluation, as shown in Table 1. The threshold of 0.95 yielded the best results,112

while a threshold of 0.6 still produced acceptable image quality.113

3 CFG Redundancy: Attention Sharing across CFG (ASC)114

Classifier-free guidance (CFG) is widely used for conditional generation [9][8][2], requiring two115

model inferences: one with the condition signal and one without. Previous research [17] has explored116

reducing the redundancy from the similarity between conditional and unconditional inferences in117

diffusion models. Building on this, we investigate similar redundancy in AR-based image generation.118

As shown in Fig.2-(b), we observe high similarity between the attention maps of conditional and119

unconditional inferences. Based on this, we propose the Attention Sharing across CFG (ASC)120

technique, which reuses the attention output from the conditional inference for the unconditional121

inference, significantly reducing attention computation cost. Since the vast majority of layers exhibit122

high attention map similarity, we reuse the attention maps across the entire network. We will further123

explore selectively reusing maps in layers with higher similarity to balance performance and efficiency124

in future work.125

Experimental Results. We applied the Attention Sharing across CFG (ASC) technique with the126

MDWA technique, the results, as presented in Table 3. The generated images indicate that the loss127

introduced by ASC is minimal. In fact, for some metrics, ASC even outperformed the non-shared128

attention computation, demonstrating its effectiveness. Combining the MDWA with ASC, we could129

achieve 85%-90% attention computation savings with negligible visual quality degradation.130

4 Data Precision Redundancy: Mixed Precision Quantization131

Post Training Quantization(PTQ) has proven to be an efficient and effective model compression
method [7]. It converts the floating-point data into low-bit integers,the process could be represented
as:

xq = round(clamp((x− z)/s,−2B−1, 2B−1))

The s (scale) and z (zero point) are quantization parameters, which are determined offline based on
stored calibration data with:

s = max(abs(x))
z = (max + min)/2
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However, we empirically observe that using this straightforward quantization method leads to sig-132

nificant quality degradation, even at W8A8QKV8 (weights, activation, and the QKV in attention133

are quantized to 8-bit integers). Building on recent advancements in language model quantiza-134

tion [13][16], we adopt dynamic quantization parameters for activation quantization, where s and z135

are computed online to adapt to diverse activations. Since calculating these quantization parameters136

only requires obtaining the maximum and minimum values of the data, the additional computational137

cost remains minimal. We apply this dynamic quantization scheme to VAR models, with results138

presented in Table 2.139

While achieving W8A8QKV8 quantization without performance loss, we still observe quality degra-140

dation at lower bit-widths (e.g., W4A8QKV8). To investigate the cause, we analyzed the model and141

found that quantizing certain layers leads to significant performance drops, while others do not. This142

reveals that highly quantization-sensitive layers create a bottleneck for low-bit quantization. As shown143

in Fig. 5 in the appendix, our extensive analysis of the VAR model layers indicates that quantizing144

the "ffn.fc2" layer to W4A6 causes a disproportionately larger quality degradation compared to145

other layers. To address this "bottleneck phenomenon", we propose employing mixed precision146

quantization, maintaining higher bit-widths for these particularly sensitive layers.147

(a) fp16 (b) w8a8 (c) w4a8 (d) w6a6

(e) fp16 (f) w8a8+MP (g) w4a8+MP (h) w6a6+MP

Figure 4: Comparison of original image, quantized image and quantized image with protection
of sensitive layers. Top row: Naive quantized image exhibit substantial blurring or loss of legible
content. Bottom row: A significant improvement in image quality post-quantization.

Quantization Scheme. We adopt the simple min-max quantization scheme. The quantization148

parameters for activation are dynamic and computed online with negligible overhead. The mixed149

precision plan are determined offline based on the calibration data.150

Experimental Results. The evaluation scheme are kept consistent with Sec.2. As shown in Table151

2 and Fig. 4, both W8A8 and W8A8QKV8 exhibit no performance loss, generating images nearly152

identical to those produced with FP16. However, the images generated by W4A8 and W6A6 show153

noticeable blurring, underscoring the need for mixed precision quantization. By adopting mixed154

precision quantization, both W4A8 and W6A6 experience significant improvements in visual quality155

and metric scores. In fact, W4A8 with mixed precision can achieve nearly the same generation quality156

as uniform W8A8 quantization.157

5 Analysis158

5.1 Ablation Studies159

As demonstrated in Fig. 3, the introduction of MDWA and ASC results in only a slight performance160

degradation (+0.05 FID). Furthermore, replacing the uniform W4A8QKV8 quantization with a161

mixed precision scheme significantly reduces performance loss. LiteVAR maintains performance162

comparable to the FP16 baseline while effectively compressing redundancy across three dimensions.163
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Table 2: Performance of image generation on ImageNet under various settings of quantization.
Mixed-precision design significantly improves the performance under low bitwidth quantization.

Bit-width
(W/A/QKV) Mix-Precision (FP16) FID(↓) IS(↑) Image reward(↑)

16/16/16 − 13.39 257.34 -0.28

8/8/8 − 12.71 249.04 -0.33
✓ 13.08 253.43 -0.30

4/8/8 − 54.29 40.71 -1.43
✓ 12.82 228.59 -0.41

6/6/8 − 66.53 26.08 -1.68
✓ 18.54 133.13 -0.75

4/6/8 − 111.24 9.79 -2.10

4/4/8 − 133.38 6.63 -2.15

Table 3: Ablation studies of LiteVAR techniques. When gradually incorporating LiteVAR’s
techniques, compressing attention by 85% and reducing the bit width to W4A8QKV8, the generated
images are acceptable.

Method FID IS ImageReward

MDWA ASC Quant(W/A/QKV) (↓) (↑) (↑)

− − 16/16/16 13.39 257.34 -0.28

✓ − 16/16/16 13.47 260.95 -0.28
✓ ✓ 16/16/16 13.45 248.8 -0.27
✓ ✓ 4/8/8 52.27 33.87 -1.6
✓ ✓ 4/8/8+MP 13.34 224.74 -0.39

5.2 Takeaways for VAR Compression Techniques164

Efficiency Improvement. The MDWA and CFG-sharing could reduce 85%-90% attention compu-165

tation and reduce 80% attention map activation memory cost with negligible computational cost.166

Although for current application (ImageNet 256×256), the attention computation and attention167

map memory cost is not excessive. However, the attention computation and memory cost grows168

quadratically with the token length. For higher resolution (2K) generation, the attention operation169

becomes the major bottleneck. In such case, the efficient attention mechanism could significantly170

reduce the computation cost (69.6% of the FLOPs), and the memory cost for saving the attention171

map (31.07GB). The quantization could effectively reduce both the computational cost and memory172

cost of the model. Taking W8A8 as an example, it could reduce 2× of model memory, and achieve173

around 1.5× latency speedup.174

Efficiency of Compression Methods. In addition to the efficiency improvement that the compression175

method brings, the efficiency of the compression method itself is also critical for practical application.176

Therefore, we design training-free compression techniques. Unlike many pruning-based methods177

that require model fine-tuning, MDWA attention compression eliminates the need for additional178

training or large-scale data. Similarly, for post-training quantization, we employ an efficient scheme179

that does not rely on gradient-based optimization of quantization parameters.180

Deployment Feasibility. The CFG-sharing technique requires no additional hardware support to181

implement, while the MDWA and quantization requires customized CUDA kernels to achieve speedup182

and memory savings. For the low-bit quantization, we adopt the commonly used minmax dynamic183

quantization scheme, which is supported by many deployment frameworks [4, 20]. The mixed184

precision quantization also does not requires additional support other than the W4A8 kernel (which185

is also supported by mainstream deployment frameworks).186

6



References187

[1] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.188

Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in189

neural information processing systems, 30, 2017.190

[2] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint191

arXiv:2207.12598, 2022.192

[3] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,193

Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for194

efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer195

vision and pattern recognition, pages 2704–2713, 2018.196

[4] Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song197

Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv198

preprint arXiv:2405.04532, 2024.199

[5] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining200

Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings201

of the IEEE/CVF international conference on computer vision, pages 10012–10022, 2021.202

[6] Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar203

quantization: Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.204

[7] Markus Nagel, Marios Fournarakis, Rana Ali Amjad, Yelysei Bondarenko, Mart Van Baalen,205

and Tijmen Blankevoort. A white paper on neural network quantization. arXiv preprint206

arXiv:2106.08295, 2021.207

[8] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical208

text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3,209

2022.210

[9] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton,211

Kamyar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al.212

Photorealistic text-to-image diffusion models with deep language understanding. Advances in213

neural information processing systems, 35:36479–36494, 2022.214

[10] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.215

Improved techniques for training gans. Advances in neural information processing systems, 29,216

2016.217

[11] Peize Sun, Yi Jiang, Shoufa Chen, Shilong Zhang, Bingyue Peng, Ping Luo, and Zehuan Yuan.218

Autoregressive model beats diffusion: Llama for scalable image generation. arXiv preprint219

arXiv:2406.06525, 2024.220

[12] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive mod-221

eling: Scalable image generation via next-scale prediction. arXiv preprint arXiv:2404.02905,222

2024.223

[13] Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han.224

Smoothquant: Accurate and efficient post-training quantization for large language models.225

In International Conference on Machine Learning, pages 38087–38099. PMLR, 2023.226

[14] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming227

language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.228

[15] Jiazheng Xu, Xiao Liu, Yuchen Wu, Yuxuan Tong, Qinkai Li, Ming Ding, Jie Tang, and Yuxiao229

Dong. Imagereward: Learning and evaluating human preferences for text-to-image generation.230

Advances in Neural Information Processing Systems, 36, 2024.231

[16] Zhewei Yao, Reza Yazdani Aminabadi, Minjia Zhang, Xiaoxia Wu, Conglong Li, and Yuxiong232

He. Zeroquant: Efficient and affordable post-training quantization for large-scale transformers.233

Advances in Neural Information Processing Systems, 35:27168–27183, 2022.234

[17] Zhihang Yuan, Pu Lu, Hanling Zhang, Xuefei Ning, Linfeng Zhang, Tianchen Zhao, Shengen235

Yan, Guohao Dai, and Yu Wang. Ditfastattn: Attention compression for diffusion transformer236

models. arXiv preprint arXiv:2406.08552, 2024.237

7



[18] Zhihang Yuan, Chenhao Xue, Yiqi Chen, Qiang Wu, and Guangyu Sun. Ptq4vit: Post-training238

quantization for vision transformers with twin uniform quantization. In European conference239

on computer vision, pages 191–207. Springer, 2022.240

[19] Tianchen Zhao, Tongcheng Fang, Enshu Liu, Wan Rui, Widyadewi Soedarmadji, Shiyao241

Li, Zinan Lin, Guohao Dai, Shengen Yan, Huazhong Yang, et al. Vidit-q: Efficient and242

accurate quantization of diffusion transformers for image and video generation. arXiv preprint243

arXiv:2406.02540, 2024.244

[20] Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind245

Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and246

accurate llm serving. Proceedings of Machine Learning and Systems, 6:196–209, 2024.247

[21] Le Zhuo, Ruoyi Du, Han Xiao, Yangguang Li, Dongyang Liu, Rongjie Huang, Wenze Liu,248

Lirui Zhao, Fu-Yun Wang, Zhanyu Ma, et al. Lumina-next: Making lumina-t2x stronger and249

faster with next-dit. arXiv preprint arXiv:2406.18583, 2024.250

8



A Appendix / supplemental material251

Visualizing the Sensitivity of various kind of Linear Layers to Bit-Width Reduction.

Figure 5: Comparison the impact on image quality of all seven types of linear layers:
"word_embed", "attn.mat_qkv", "attn.proj", "ffn.fc1", "ffn.fc2", "ada_lin.1", and "head".

252

We observed a particularly noticeable decrease in image quality after quantization for the "ffn.fc2"253

layer. To address the quantization bottleneck, we have set the bit width of ffn.fc2 to FP16 to safeguard254

sensitive layers.255

More data for baseline quant:256

Table 4: Performance of image generation on ImageNet under various bitwidths of quantization.
Bit-width

(W/A/QKV) FID(↓) IS(↑) Image reward(↑)

Original Mask Cfg Original Mask Cfg Original Mask Cfg

16/16/16 13.39 13.47 13.45 257.34 260.95 248.80 -0.28 -0.28 -0.27

8/8/16 12.92 13.21 13.52 252.20 258.15 244.45 -0.32 -0.32 -0.30
8/8/8 12.71 13.02 13.38 249.04 241.02 241.04 -0.33 -0.37 -0.29
4/8/8 54.29 56.31 52.27 40.71 33.76 33.87 -1.43 -1.54 -1.60
6/6/8 66.53 68.89 62.09 26.08 24.57 28.13 -1.68 -1.73 -1.72
4/6/8 111.24 112.79 102.44 9.79 9.52 10.48 -2.10 -2.13 -2.10
4/4/8 133.39 134.26 139.40 6.63 6.60 5.89 -2.15 -2.15 -2.14

We generated 8,000 images on ImageNet to evaluate the quality of our approach. The bitwidth257

designs for the linear layer portion included W16A16 (the original unquantized model), W8A8,258

W4A8, W6A6, and W4A6. For the attention computation part, we explored bit-widths of KV8 and259

KV16. As shown in the table, quantizing the KV section to a bit-width of 8 has minimal impact on260

image quality. When the quantization precision for the linear layer is set to W8A8KV8, the image261

quality is comparable to the original floating-point 16-bit (fp16) images. However, W4A8 and W6A6262

exhibited significant blurring, and W4A4 resulted in completely illegible images. Subsequently,263

we integrated quantization techniques with sparse attention computation to discuss whether the264

accuracy could still be maintained. As indicated in the table, the image quality degradation after265

sparse computation and ASC (Attention Sharing across CFG) is minimal, demonstrating that we can266

significantly reduce computational requirements by approximately 70-90% while ensuring image267

quality is preserved.268

More data for quantization with mixed-precision design to protect sensitive layers:269

Experimental data in 4 reveals that when the weights and activations of linear layers, as well as the270

attention computation, are set to 8-bit width, the image quality is essentially preserved. However,271

when the weights and activations are designed with lower bit-widths (e.g., W6A6 or W4A8), the272

image quality degrades significantly. This is due to the sensitivity of the "ffn.fc2" layer type to273

quantization, as illustrated in Figure 5. To address this phenomenon, we set the bit-width of this layer274

type to fp16, while maintaining the quantized bit-widths for other layers. We can observe that this275

mixed-precision design significantly improves the performance of W6A6 and W4A8, resulting in276

noticeably better image quality. For certain metrics (e.g., FID), the W4A8 configuration can even277

achieve comparable performance to the baseline W8A8 quantization.278

More examples for image generation in different quantization settings.279
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Table 5: Performance of image generation on ImageNet under various settings of quantization.
Mixed-precision design significantly improves the performance under low bitwidths quantization.

Bit-width
(W/A/QKV) FID(↓) IS(↑) Image reward(↑)

Original Mask Cfg Original Mask Cfg Original Mask Cfg

16/16/16 13.39 13.47 13.45 257.34 260.95 248.80 -0.28 -0.28 -0.27

8/8/8 12.71 13.02 13.38 249.04 241.02 241.04 -0.33 -0.37 -0.29
8/8/8+MP 13.08 13.37 13.57 253.43 251.84 244.16 -0.30 -0.34 -0.28

4/8/8 54.29 56.31 52.27 40.71 33.76 33.87 -1.43 -1.54 -1.60
4/8/8+MP 12.82 13.23 13.34 228.59 229.58 224.74 -0.41 -0.44 -0.39

6/6/8 66.53 68.89 62.09 26.08 24.57 28.13 -1.68 -1.73 -1.72
6/6/8+MP 18.54 22.19 20.11 133.13 117.32 125.88 -0.75 -0.86 -0.80

Further examples are presented in the following figures, which compare the original image to both280

the quantized image and the quantized image with the enhanced protection of sensitive layers.281

(a) fp16 (b) w8a8 (c) w4a8 (d) w6a6

(e) fp16 (f) w8a8+MP (g) w4a8+MP (h) w6a6+MP

Figure 6: More comparison examples.
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(a) fp16 (b) w8a8 (c) w4a8 (d) w6a6

(e) fp16 (f) w8a8+MP (g) w4a8+MP (h) w6a6+MP

Figure 7: More comparison examples.

(a) fp16 (b) w8a8 (c) w4a8 (d) w6a6

(e) fp16 (f) w8a8+MP (g) w4a8+MP (h) w6a6+MP

Figure 8: More comparison examples.
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