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Deep neural network (DNN) based multivariate time series (MTS) forecasting has been
widely studied in many domains. The approach has also been successfully applied to pro-
duct sales forecasting, which is invaluable in the strategic development of enterprises.
However, one key challenge is to efficiently combine all influential factors into a unified
framework by considering their long short-term correlations. This is particularly challeng-
ing for real time sales predictions with many important features unknown from the per-
spective of future vision, because of the complex and dynamic changing environment of
sales time series. Besides, DNN based methods could not effectively capture stable linear
correlations between multivariate sales time series. To address these challenges, a novel
Stage future-vision-based multiple Long Short-term model with prior knowledge (SLST-
PKNet) is proposed. The model constructs sub-models according to the types of different
influential factors, and a stage future vision mechanism is used to model dependent corre-
lations between future influential factors and product sales by combining a two-layer con-
volutional neural network (TLCNN) and a two-stage LSTM (TSLSTM) into a unified
framework. The combination of TLCNN and TSLSTM is the basic component for long
short-term modeling, and is an effective solution for capturing dynamic patterns by fusing
the outputs from different layers and stages. A dynamic co-integration mechanism (DCI) is
introduced to capture strong correlations between time series, which DNN is not good at.
In order to further improve the capability of the model to capture long short-term patterns
from complex environment, domain prior knowledge (PK) is integrated as supervision
information. Extensive experiments are conducted on two sales datasets: Galanz and
Cainiao. SLST-PKNet achieves significant performance improvements over 11 state-of-
the-art baselines. The proposed model is also evaluated on two new datasets: Traffic and
Exchange-Rate, to further verify its generalization capability. The data and code could be
visited at: https://github.com/lixt47/SLST-PKNet.
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1. Introduction

1.1. Background

Product sales prediction is an important task for enterprises, and has been widely studied in both academia and industry
[10,33,34,35]. Accurate forecasts of product sales can help enterprises to significantly improve their revenues by, for exam-
ple, streamlining inventory management. A key challenge of product sales prediction is to efficiently model the complex,
non-linear dependencies that exist, not only between time steps but also in a variety of variables [4,36,37]. This could be
regarded as a multivariate time series (MTS) prediction problem. Examples of relevant dependencies include the new arrival
of similar products, new promotion strategies from competitors, the impact of the time that promotion occurs, etc. Tradi-
tional time series prediction methods such as vector auto-regression (VAR) [2,25] and gaussian process (GP) [32] usually
assume certain distributions, and ignore dependencies between variables [27].

In recent years, deep neural network (DNN) based multivariate time series analysis has been successfully used to predict
financial trends, analyze traffic jams, and forecast electricity consumption. DNN has advantages arising from their flexibility
in capturing nonlinearity. One widely-used approach to DNN-based multivariate time series prediction is to use a recurrent
neural network (RNN) [6,11,20]. long short-term memory (LSTM) [17] and gated recurrent unit (GRU) [6] have been used to
capture long-range dependencies of time series due to the vanishing gradient problem associated with RNN [6,17]. Combin-
ing attention mechanisms [38] can further improve the capability of RNNs to help model temporal patterns between frag-
ments of input time sequences and output predictions [13,15,18]. Other technologies that have performed well in time series
forecasting include Transformer [23], tensor decomposition [36], adversarial training [37], time series decomposition [27],
extreme value prediction [16,21], and explainable time series prediction [14,30]. Recently, Zhou et al [43] designed a novel
Transformer framework for efficient long time-range dependency analysis, which attracts many researchers’ attention in
making long-term analysis.

1.2. Limitations of existing research for sales prediction

Modeling a mixture of influences of long short-term patterns [2,28,41], for which traditional approaches may fail, is an
important research direction for MTS prediction. The approach uses a convolutional neural network (CNN) to capture local
correlations among different time series in each time step, and then applies LSTM/GRU to model long and short-term tem-
poral patterns [20]. Existing research performs well on time series with significant patterns: for example, traffic time series
have a strong periodic pattern; time series of different exchange rate have strong correlation patterns. Factors influencing
sales time series however, are more complex, due to the changeable and complex environment. Consequently, traditional
methods do not perform the task of sales prediction as well as expected. The main reasons for their limitations are summa-
rized below:

(1) Existing DNN-based models take all time series as input without considering their different types or attributes. The
prediction of sales is influenced by many changeable and complicated internal and external factors. Such as price fluc-
tuations, competitive products, ad hoc promotion activities, etc. Different types of time series and their inner corre-
lations have different effects on the sales prediction. However, current researches seldom address this problem. An
example can be seen in Fig. 1(a), which presents a situation where, although the promotional intensity is increasing,
the sales of all products of the same type are falling. If we use traditional methods to model all the time series without
considering their different types, the model will learn contradictory correlations, which will lead to prediction errors.

(2) The proposed CNN-LSTM framework seldom considers capturing stable correlations between input time series. The
non-linear nature of the CNN-LSTM improves the capture of non-linear correlations, but its ability to detect stable lin-
ear correlations is reduced. However, traditional methods adopt auto-regression (AR) to model linear correlations,
which overlook stable correlations between input time series. Fig. 1(b) shows an example where correlations between
sales time series in a MTS are complex, but for a subset of the MTS, over a certain time period, there will exist stable
correlations between the time series in the subset (a phenomenon that is often caused by bundle promotion strate-
gies), and the stable correlations are useful for predicting sales.

(3) Existing researches are limited when it comes to practical applications, such as the prediction of product sales for
which future influence factors of target sales time series are usually unknown. For example, the challenge of predicting
sales of a product over a given time period (t + 1). Promotion strategies affecting the product at t + 1 is usually
unknown, because from the perspective of the model at time t, they have yet to occur. Relevant studies such as
MLCNN, DARNN accomplish similar tasks by providing a means to fuse near and distant vision [5,28]. However, the
solution seldom considers using a more logical method to model future representations of influence features or factors
based on current time series. In addition (see Fig. 1(c)), because of the complex and dynamic changing environment,
frequency and range of sales often fluctuates a great deal (As shown in windows TW1 �3), and the weight-sharing
strategy of MCLNN and DARNN cannot effectively capture those dynamic patterns.
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Fig. 1. Examples of the unique characteristics of sales multivariate time series.
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(4) Previous research seldom considers using prior knowledge to address the influence of long short-term patterns. Mem-
ory time-series network (MTNet) adopt a memory-network to record long short-term variable dependencies [3].
MTNet performs well on time series with strong temporal patterns, such as traffic time series. For sales time series
however, the influential factors are more complex, making patterns hard to detect without prior knowledge. As seen
in Fig. 1(d), sales of products peak at several fixed time points such as Nov, Feb and Jun in a year, which indicate hol-
idays and well-known e-commerce promotion days. Conventional promotion features, such as daily discounts cannot
fully explain peaks in sales at the fixed time without indicating their importance in advance, because there are other
promotions, such as advance deposit discounts, coupons, etc., running concurrently. A further consideration is that the
performance of the products at those time points affect subsequent sales. Current studies cannot incorporate such
potential correlations without specifying them in advance.

2. Research objective

The direct application of existing DNN-based methods to sales prediction will cause significant errors, because recent
research seldom takes into account the unique characteristics of sales time series. Here, we propose a novel SLST-PKNet
model that systematically optimizes the existing DNN-based model by considering such characteristics, including the influ-
ences of different feature time series, and the influences of long short-term patterns with prior knowledge, also by detecting
stable linear correlations and dynamic non-linear patterns between MTS. In addition, the problems existing in the practical
application of the model are taken into consideration.

2.1. Solution and innovations

The proposed SLST-PKNet model addresses these issues by combining stage future vision-based feature representations
and MTS based long short-term patterns detection with prior knowledge (PK), into a unified framework. The main benefits of
the new model are summarized below:

� Three sub-models have been developed to investigate different influences of different types or features of time series on
target product sales time prediction: (1) Product sub-model investigates common temporal patterns from different time
series dealing with the same product type; (2) Marketing sub-model investigates the influence of marketing features
(such as promotion or marketing strategies); (3) Product-Marketing sub-model captures the complex influence of both
product and marketing features on the target product.
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� A TLCNN-TSLSTM framework is proposed to model future vision-based long short-term variable dependencies in a more
logical way. This has the potential to increase the accuracy of predictions of product sales by adopting a Two-stage LSTM
(TSLSTM) to fuse the outputs of a two-layer convolutional neural network (TLCNN). The methods can result in better
modeling of the dynamic changeable environment of sales predictions compared with existing methods.

� A dynamic co-integration (DCI) component and a prior knowledge (PK) component are introduced to help construct the
influence of dynamic temporal patterns. The DCI can efficiently capture stable linear correlation patterns between target
and feature time series. This may significantly contribute to predictions of future product sales. The PK component inte-
grates prior knowledge (such as periodic influences, promotional events and marketing plans) into the long short-term
model, helping to guide model training more accurately.

� Extensive experiments were conducted on two real product datasets: Galanz and Cainiao. The results show that the pro-
posed model significantly outperforms 11 state-of-the-art baselines. An ablation test verifies the contributions of each
module. In addition, experiments conducted on two public datasets, from Traffic and Exchange-Rate, also show the poten-
tial value.

The SLST-PKNet is an optimization solution developed according to the characteristics of sales time series. However, it is
also relevant to time series prediction tasks in other fields. In the following sections, ‘Related Work’ reviews other works in
the field and discusses their limitations to the task of sales prediction. ‘Model Description’ focuses on the innovations and
introduces each component in detail. ‘Experiments’ describes the process by which the performance of the proposed model
was verified. In the ‘Discussion’ section, both theoretical and practical significance of the research is explored.
3. Related work

3.1. Statistical analysis-based time series prediction

Research into time series modeling has been integral to topics involving forecasts based on trends, such as financial pre-
dictions, traffic flow analysis, forecasts of electricity consumption, etc. Traditional methods mainly focus on statistical anal-
ysis based parametric models [2,15,20], such as AR, ARIMA, exponential smoothing, structural linear models, vector auto
regression (VAR), simultaneous equation models, etc. When applying traditional methods to MTS prediction, it is necessary
to carry out stationarity and co-integration tests between time series to ensure strict and stable linear correlations [2,12,26];
then to solve the pseudo regression problem to a certain extent. Periodic influence is also investigated in many studies. Some
researchers treat the time interval p of the cycle as a known, (eg, seasonal influences), so when predicting the values at time
t + 1, the value at t + 1 – pwill be taken as an important feature [20,27]. Other researchers argue that there are many periodic
patterns in a MTS, so they often use a window or a periodic function to scan the MTS for potential patterns [7,9,26,42].

Most existing studies use manual methods to select the appropriate time series for regression analysis through a co-
integration test. This may lead to two problems when the method is directly applied to real sales predictions. Firstly, manual
selection will omit many useful patterns; secondly, manual selection is not a good way to combine models for capturing
non-linear correlations into a unified framework. Another problem is that current periodic research seldom considers the
influence that the local sequence of periodic events has on the prediction, and the accumulation of the influence of different
periodic events.
3.2. Deep neural network-based time series prediction

Deep neural networks (DNNs) are attracting increasing attention in the field of multivariate time series (MTS) forecasting.
One popular learning framework that uses DNN-based methods is CNN-LSTM/GRU. LSTNET [20], for example, models long
short-term patterns based on a CNN-GRU framework. To do so, it uses a recurrent-skip component to model long-term tem-
poral patterns which can be controlled by assigning parameter p. Dual-stage attention-based recurrent neural nets (DA-
RNN) [28] can also model long-term temporal patterns based on Multivariate Time Series. However, they are thought not
to give sufficient consideration to spatial correlations among different components of exogenous data. Dual self-attention
networks (DSANET) [18] adopt CNN to model global and local temporal patterns, and use a self-attention mechanism to
extract sequence features. MTNet [4] designs a memory component and incorporates it with three separate encoders and
an auto-regressive component; it then trains all the components jointly. MLCNN [5] provides a near and distant fusion vision
method to improve predictive performance by adopting a multi-task learning framework and fusing forecasting information.
Spectral time graph neural networks (StemGNN) [3] combine graph Fourier transforms (GFT) and discrete Fourier transforms
(DFT) into an end-to-end framework. GFT and DFT are used to model inter-series correlations and temporal dependencies
separately. After passing the input data through GFT and DFT, the spectral representations hold clear patterns and can be
predicted effectively by convolution and sequential learning modules. Yakhchi et al. [40] proposed a novel convolutional
attention network, which could effectively capture sequential patterns for future decision-making. Park et al. [31] proposed
DeepGate, a novel time series forecasting framework based on the explicit global–local decomposition to further improve the
performances of MTS predictions. Transformer [38] based methods have also been applied to the task of MTS prediction [23].
The multi-head attention and position embedding of Transformer can help capture useful information between different
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time points from both long and short-term perspectives. Informer [43] and Pyraformer [24] are two representative
Transformer-based models. Informer mainly uses the sparsity of attention scores to make optimization. Pyraformer designs
a new attention module to bridge the gap between capturing remote dependencies and reducing the temporal and spatial
complexity. The two models have achieved excellent performance on multiple datasets.
3.3. Product sales prediction

Forecasting of product sales has been studied for decades and continues to attract attentions. Methods based on tradi-
tional machine learning rely mainly on ARIMA, vector auto-regression, feature engineering and ensemble learning
[14,34]. Shen et al. [34] incorporated popular machine learning models such as ARIMA, Xgboost, support vector regression,
gaussian process etc, into a unified ensemble model to forecast product sales for JD.com, one of the largest e-commerce com-
panies in China. They also shared their experiences of constructing large-scale feature sets, such as correlation coefficients,
entropy, SKU promotion et al, which could significantly improve forecasting accuracy.

In recent years, DNN-based methods have been used to improve sales predictions by capturing non-linear correlations,
Fan et al. [13] proposed a novel data-driven model to learn hidden patterns’ representations with DNN and attending to dif-
ferent parts of the history for forecasting the future. Shi et al. [36] proposed a novel BHT-ARIMA model, which incorporates
multi-way delay embedding transform (MDT) tensors and tensor ARIMA into a unified framework to capture the intrinsic
correlations among multiple time series. The model converts the input MTS into a higher order tensor by conducting dupli-
cation matrix operations; it then calculates the kernel tensor by using low-rank tensor decomposition. They used the kernel
tensor to predict sales of computers. Ekambaram et al. [10] applied attention based multi-modal time-series forecasting to
new products in a dataset from a famous fashion house. All the multiple time-series were modelled together based on pro-
duct images and optional attributes. Kıymet et al. [19] adopted attention-LSTM to realize tourism demand forecasting, the
use of DNN model for feature processing can improve model performance. Wang et al. [39] proposed a time series forecast-
ing scheme based on a multivariate grey model and uses artificial fish swarm algorithm to optimize the settings. The model
could obtain better performances in price predictions of products such as orange juice. Du et al. [9] proposed BODE method
combines 10 disparate model candidates, including the latest DNNs to improve the performance of time series predictions.
The model was also evaluated on the prediction task of monthly commodity prices.

Although recent DNN-based research has produced great improvements in the task of time series predictions, it seldom
considers the unique characteristics of sales time series comprehensively (Sales prediction is often taken as a subtask in their
research), which may limit the performances of existing solutions (As is introduced in subsection 1.2). For the first limitation,
which does not consider different time series type, we design different sub-models to investigate the influences of different
time series type. For the second limitation, which does not consider extracting time series with stable linear correlations
from MTS, we design a dynamic co-integration (DCI) component to solve the problem. For the third limitation, which is that
at future prediction time t + 1, important factors are unknown, and it is hard to model the future vision-based dependent
correlations from the dynamic, changeable sales MTS. We design a novel TLCNN-TSLSTM framework to solve the problem
to a certain extent. For the last limitation, which indicates that sales prediction is significantly influenced by periodic factors
and important promotional activities. The periodic and promotional influence are hard to learn without prior knowledge,
because of noisy information from other feature time series. We have therefore designed the prior knowledge (PK) compo-
nent to enhance the influence of domain knowledge towards sales predictions, and the knowledge can be taken as the super-
vision information to guide the model training.
4. Problem definition

Assume the sales time series of a product P (SKU) is Y ¼ Y0;Y1; � � � ;Y tf g, where Yi is the sales at the i th i 2 0; t½ �ð Þ time.eY ¼ Y1;Y2; � � � ;YM
n o

is the set of time series of M products with the same type of P (for example: Microwave Ovens with

different model numbers) and in the same warehouse with P. For each Yj in eY j � Mð Þ, Yj ¼ Yj
0; Y

j
1; � � � ;Yj

t

n o
is the sales time

series of the jth product in set eY . For example, YM
t indicates the sales of the Mth product at time t. X ¼ X1;X2; � � � ;XN

n o
is the

set of N time series of marketing features (such as promotions, users’ visiting records etc) towards target time series Y ,

Xk ¼ Xk
0;X

k
1; � � � ;Xk

t

n o
is the kth time series of set X, where k � N. X and eY are also taken as feature sets of Y. The objective

function of target product P could be described as: bY tþ1 ¼ f Y ; eY ;X� �
, where f is the proposed model SLST-PKNet, and bY tþ1

is the predicted sales of product P at time t + 1.
Another important issue which we should emphasize is that the division method of time is mainly based on the demands

of manufacturing enterprises. In general, they assign two weeks as a time period, and would like to predict products’ sales
over the following fortnight. This is illustrated in Fig. 2. The standard practice is to divide a month into two time periods. The
maximum range Rmax is used to capture dynamic co-integration (DCI) based stationary correlations, while the minimum
range Rmin is for a neural network model to detect short-term complex patterns for predicting Ytþ1. The rest of the time
series is defined as long-term parts.
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Fig. 2. Time divisions used in time series for model training and testing.
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The main differences between the proposed model and the existing long short-termmodel can be summarized as follows.
First, the model takes the influence of different time series types into considerations. Second, the model uses DCI to capture
stable linear correlations from MTS. Third, the proposed long short-term model is based on a combination of TLCNN and
TSLSTM. This combination can model future unknown dependent correlations, it can provide dynamic weight to each time
point of the sales sequence by controlling the weight of each stage’s input of TSLSTM. Fourth, the incorporation of prior
knowledge (PK) helps by capturing long short-term patterns. PK is of two different types: seasonal influence (SI) and promo-
tional influence (PI). Inclusion of a PK component allowed the impact of SI and PI to be incorporated in long short-term
modeling.

5. Model description

The framework of the proposed SLST-PKNet is shown below in Fig. 3. The input Multivariate Time Series (MTS) consists of

three types of time series: Y; eY ;X. The SLST-PKNet model comprises three sub-models, which model three types of correla-

tion: Y; eYn o
, Y ;Xf g and Y ; eY ;Xn o

.

Y; eYn o
captures temporal patterns of Y based on a set of time series, eY , all of which have the same product type. Each Yi in

eY has the same product type as Y , and both Yi and Y are in the same warehouse. Thus, according to consumer behavior the-
ory [10,19,34], the correlation patterns show common sales trends and competitive relationships between time series in

Y ; eYn o
. This design is similar to those of previous studies, which group time series of the same type (such as traffic flow,

electricity consumption), and take the group as the input of MTS prediction.
Y ;Xf g captures the influence of the marketing feature set X on the target time series Y. The X of a product includes price,

promotion, users’ visiting records, etc. According to consumer behavior theory [10,19,34], the marketing features of a pro-
duct have a significant influence on its future sales trends.

Y; eY ;Xn o
emulates the combined influences of eY and X on Y . According to research into feature interactions and combi-

nations [15,34], the inner-correlations between features with different types will make positive contributions towards sales
predictions. However, combining different types of features will also interfere with the accuracy of sales prediction. So we

design sub-models Y; eYn o
and Y;Xf g to reduce the interference.

To simplify the description, we use a unified method to represent the three different sub-models:

S ¼ Y ;U u1;u2; � � � ;uLf gf g, where U 2 eY ;X;XeYn o
. ui is the ith time series of U. For example, if U ¼ eY , then ui ¼ eY i. For each

sub-model, the next step uses Dynamic Co-Integration (DCI) to calculate the stationary short-term influence range for cap-
turing strong temporal linear patterns. Meanwhile, a two-layer convolutional neural network (TLCNN) with dropout [1,5]
models local correlations between different time series at time t (Ct) and t + 1 (Ctþ1). The outputs Ct and Ctþ1 become the
inputs for 2 two-stage.

LSTM (TSLSTM) models. These are a short-term two-stage LSTM (ST-TSLSTM) and a long-term two-stage LSTM (LT-

TSLSTM). ST-TSLSTM models correlations of short-term temporal patterns, and h2;ST
tþ1 Y;Uð Þ is the hidden state at t + 1 of

the second-stage of ST-TSLSTM. LT-TSLSTM uses prior knowledge to model correlations of long-term temporal patterns,

and h2;LT
tþ1 Y;Uð Þ is the hidden state at t + 1 of the second-stage of LT-TSLSTM. Finally, outputs are taken from the following

sub-models:

Outputs from Y ; eYn o
: bY tþ1 Y ; eY� �

¼ REG1 h2;ST
tþ1 Y; eY� �

; h2;LT
tþ1 Y ; eY� �� �

.

Outputs from Y ;Xf g: bY tþ1 Y ;Xð Þ ¼ REG2 h2;ST
tþ1 Y ;Xð Þ; h2;LT

tþ1 Y;Xð Þ
� �

.

Outputs from Y ; eY ;X
n o

: bY tþ1 Y;XeY� �
¼ REG3 h2;ST

tþ1 Y;XeY� �
;h2;LT

tþ1 Y;XeY� �� �
.

bYDCI

tþ1 ¼ VAR DCI Y ;X; eY� �� �
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Fig. 3. The framework of the proposed SLST-PKNet model.
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where REG1, REG2 and REG3 represent three regression models. The outputs of the models are the predicted sales at time

t + 1, which are bY tþ1 Y; eY� �
, bY tþ1 Y;Xð Þ and bY tþ1 Y;XeY� �

. The output of DCI is the set of selected time series with strong linear

correlations from Y ; eY ;Xn o
, and is used as the input of a vector auto-regression based machine learning (VAR) model to pre-

dict sales bYDCI

tþ1 at time t + 1. Thus, the final predicted sales bY tþ1 can be represented as the weight-sum of all predicted sales

from different components. bY tþ1 ¼ F bY tþ1 Y; eY� �
; bY tþ1 Y ;Xð Þ; bY tþ1 Y;XeY� �

; bYDCI

tþ1

� �
,where F is the weight-sum function. The fol-

lowing content will introduce each component in detail.

5.1. Notation explanation

Table 1 summarizes important notations in the manuscript. The notations are divided into three parts: Input, Model and
Output. Input describes the mathematical representation of input data. Model describes the mathematical representations of
the main variables and components of the proposed SLST-PKNet model, which includes DCI component, TLCNN, TSLSTM, PK
component, ST-TSLSTM and LT-TSLSTM. Output describes the mathematical representations of the model output.

5.2. Dynamic co-integration (DCI)

Existing DNN-based methods emphasize the ability to detect non-linear and complex correlations, but neglect strong lin-
ear patterns derived from sales time series. More importantly, existing methods tend to use auto-regression (AR) to model
linear correlations of the target time series itself, but seldom consider correlations between target and feature time series. To
address these limitations, we propose a DCI mechanism that assigns dynamic ranges for each prediction task, and focuses on
detecting linear correlations between time series from different dynamic ranges. More importantly, the mechanism helps
balance the performance between stationary linear correlations and complex non-linear correlations.
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Table 1
Notations.

Type Notation Explain

INPUT Y ¼ Y0;Y1; � � � ;Ytf g The sales time series of a target product P from time 0 to t. The task is to predict its sales at time t + 1.eY ¼ Y1;Y2; � � � ;YM
n o

The set of time series of M products of the same product type as P, and in the same warehouse as P.

Yj ¼ Yj
0;Y

j
1; � � � ;Yj

t

n o
in

eY j � Mð Þ
The sales time series of the jth product in set eY .

X ¼ X1;X2; � � � ;XN
n o

The set of N time series of marketing features.

Xk ¼ Xk
0;X

k
1; � � � ;Xk

t

n o
in

X k � Nð Þ

The time series of the kth feature in set X.

U ¼ u1;u2; � � � ;uL

� �
,

U 2 eY ;X;XeYn o U 2 eY ;X;XeYn o
. The set U can represent any of the three sets of eY , X and XeY . ui is the ith time series of U.

S = {Y, U ¼ u1;u2; � � � ;uL

� �
} The set S of time series, includes both Y and its related U.

MODEL DCI

component:S
�
2 S ¼ Y ;XeYn o S

�
is a subset of S. Any two time series in S

�
can pass the co-integration test, which indicates that there exist

stable linear correlations between the two time series.

DCI component: Rmax Rmax and time step t define which part (t – Rmax – t) of the whole time series should be processed by the
DCI component.

DCI component:VAR DCI �ð Þð Þ DCI is used to detect subset S
�
from S. VAR is used to build regression models based on all time series from

S
�
.

TLCNN: F1 and F2; C
1
0 t and

C2
1 tþ1

In formula (2), F1 is the 1st convolutional layer that captures dependent correlations C1
0 t from input S. F2

is the 2nd convolutional layer that captures and infers dependent correlations C2
1 tþ1 from C1

0 t .

TSLSTM: h1Ra Rb
and h2

Raþ1 Rbþ1
Ra Rb is defined as a time segment on a 0 – t timeline. The start and end time are Ra and Rb.

h1
Ra Rb

is the 1st stage of TSLSTM, and takes C1
Ra Rb

as input to encode the state of MTS from Ra to Rb .

h2
Raþ1 Rbþ1 is the 2nd stage of TSLSTM, and takes C2

Raþ1 Rbþ1 as input to infer the state of MTS from Ra þ 1 to

Rb þ 1 based on h1
Ra Rb

.

TSLSTM:h1
Rb

¼ PRb
i¼Ra

a1i � h1
i In formula (4), h1

Rb
is the hidden state of the 1st stage of TSLSTM at time Rb.

a1i is the attention weight of the ith time of the 1st stage of TSLSTM.

TSLSTM:h2
Rbþ1 ¼ PRbþ1

i¼Raþ1a2i � h2
i In formula (4), h2

Rbþ1 is the hidden state of the 2nd stage of TSLSTM at time Rbþ1.
a2i is the attention weight of the ith time of the 2nd stage of TSLSTM.

PK component:h2;SI
Rbþ1 S; d ¼ Tð Þ In formula (5), h2;SI

Rbþ1 is the 2nd stage hidden state of TSLSTM at time Rb þ 1 based on seasonal influence

(SI). T is a seasonal cycle.
PK component:

h2;PIRbþ1 S;d ¼ Rb þ 1� tpð Þ
In formula (6), h2;PI

Rbþ1 is the 2nd stage hidden state of TSLSTM at time Rb þ 1 based on promotional

influence (PI). tp is a fixed promotion time.

PK component:h2;PK
Rbþ1 Sð Þ In formula (7), h2;PK

Rbþ1 Sð Þ is the hidden state of PK component at time Rb þ 1, and is a combination of both

h2;SI
Rbþ1 and h2;PI

Rbþ1.

ST-TSLSTM:h2;ST
tþ1 S; t � Rmin tð Þ For a TSLSTM, ST-TSLSTM is defined as Ra ¼ t � Rmin and Rb ¼ t, where Rmin is a constant to determine

the range of short-term (ST).

LT-TSLSTM:h2;LT
tþ1 Sð Þ For a TSLSTM, LT-TSLSTM is defined as Ra ¼ 0 and Rb ¼ t. In addition, the hidden state h2;PK

tþ1 Sð Þ of PK
component at time t + 1 is also integrated to model the seasonal and promotional influences from a long-
term (LT) perspective. A detailed description is given in formula (8).

Type Notation Explain

OUTPUT bY tþ1 Y; eY� � bY tþ1 Y ; eY� �
uses eY to predict bY tþ1 of Y based on both ST-TSLSTM and LT-TSLSTM.

bY tþ1 Y;Xð Þ bY tþ1 Y ;Xð Þ uses X to predict bY tþ1 of Y based on both ST-TSLSTM and LT-TSLSTM.bY tþ1 Y;XeY� � bY tþ1 Y ;XeY� �
uses XeY to predict bY tþ1 of Y based on both ST-TSLSTM and LT-TSLSTM.

bYDCI
tþ1

bYDCI
tþ1 uses {Y;X, eY } to predict the value of Y at time t+1 based on a DCI component.bY tþ1

bY tþ1 is the final prediction of Y at time t+1 by integrating

bY tþ1 Y ; eY� �
, bY tþ1 Y ;Xð Þ, bY tþ1 Y ;XeY� �

and bYDCI
tþ1.
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Algorithm 1 Description of Dynamic Co-Integration (DCI).

1. # INPUT: A set of time series: S ¼ Y;u1;u2;u3; � � � ;uLf g, where ui�X [ eY .
Time step: t. Max range: Rmax. Min short-term range: Rmin.

2. # OUTPUT: O = [ Y ; S
�n o

k
], where S

�
is subset of S and Y R S

�
.

3. Set O, S
�
as empty sets.

4. Function ciTest ({Y, S
�
}):

5. Return {Y, S
�
} If each u

�
i in S

�
can pass co-Integration test with Y.
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6. Else delete non-significant variables from S
�
and Return {Y, S

�
}.

7. MAIN:
8. If Y(t � Rmax t)’s one-order sequence is not stationary:
9. Return O = [].

10. For each ui in S: # Stationarity Test for each ui.
11. S

�
. append (ui) if ui(t � Rmax t) is stationary or first-order stationary.

12. Let k = Rmax.
13. While k > 15:
14. O.append (ciTest({Y(t – k – t), S

�
(t – k – t)})).

15. k --.
16. Return O.

A description of DCI is presented in Algorithm 1, where the input is described in line 1. The set of time series S includes both

target time series Y and its related set of time series u1;u2;u3; � � � ;uL with length as L, where ui�X [ eY , which means thatui

may belong to the set of X or eY . Time step t and Rmax define which part (t–Rmax – t) of the whole time series should be
processed by the DCI component. Rmin is the minimum time series range assignment, and is mainly taken as the input of

the DNN for short-term non-linear patterns detection. The output O is a list containing a set of Y; S
�n o

k
. In each Y; S

�n o
k
, S
�

is a set of selected time series from S, each of which can pass the co-integration test with Y, which indicates the presence

of strong linear correlation patterns in the set of Y ; S
�n o

k
. kmeans that the linear correlation is limited to t-k – t section, while

k < Rmax. Lines 4 – 6 define a function, ciTest, which recursively detects Y ; S
�n o

from the original {Y, S} by using a co-

Integration test. The main function is in Lines 7 – 16. Lines 10 – 11 test whether all the original time series from {Y, X, eY}
are stationary or first-order stationary. This operation is a necessary condition for the subsequent co-integration test. Lines

13 – 16 recursively detects all Y; S
�n o

k
, where k >= 15 and k <= Rmax. When k is reduced from Rmax to 15, the detected linear

correlations are stronger. The reason for assigning k>=15 is that the k of more than 80 % Y ; S
�n o

k
is greater than 15. Although a

smaller k will obtain more optimal subsets, resulting in the detection of stronger correlations, their contributions are limited
in the experiment, because most of the correlations can be explained by subsets with a bigger k value. A smaller k means
fewer samples, which will result in lower confidence levels.

The output of Algorithm 1 helps to capture strong linear correlations between Y and selected time series. For each

selected subset Y ; S
�n o

k
of output O, a VAR-based (vector auto-regression) machine learning model is adopted. Thus,

VAR DCI Y ;XeY� �� �
is represented by formula (1).
bYDCI

tþ1 ¼ VAR DCI Y;XeY� �� �
¼

XLen Oð Þ

i¼1

WDCI
i � VAR Y t � i tð Þ; S

�
t � i tð Þ

n o
i

� �
ð1Þ
where WDCI
i is the weight matrix. The smaller i indicates that there exist stronger linear correlations in subset Y; S

�n o
i
. bYDCI

tþ1 is

the predicted sales of target time series Y at time t + 1.

5.3. Two-layer convolutional neural network (TLCNN)

The main aim of TLCNN is to learn the local dependencies between variables at time t and to infer dependencies at time

t + 1. For all three time series combinations {Y; eY }, {Y;X} and {Y; eY ;X}, we use S = {Y, U u1;u2; � � � ;uLf g}, where

U 2 eY ;X;XeYn o
to represent them in a unified way. Then the TLCNN output at time t and t + 1 can be defined as:
C1
t ¼ F1 S 0 tð Þð Þ ¼ StackHh¼1 r W1;h

t 	 S 0 tð Þ þ b1;h
t

� �� �
:F1 : Rt�L ! Rt�H

C2
tþ1 ¼ F2 C1

t

� �
¼ StackHh¼1 r W2;h

tþ1 	 C1
t þ b2;h

tþ1

� �� �
:F2 : Rt�H ! Rt�H ð2Þ
where F1 and F2 are convolutional layers with H filters. 0 – t is the length of time series; C1
t is the representation of S’s local

dependencies at time t; C2
tþ1 is the inferred representation at time t + 1, which is mainly used for predictive tasks at time t + 1.

The dropout mechanism [1,5] is also used on each layer’s output to avoid over-fitting and to obtain more steady results.

StackHh¼1 r W1;h
t 	 S 0 tð Þ þ b1;h

t

� �� �
and StackHh¼1 r W2;h

tþ1 	 C1
t þ b2;h

tþ1

� �� �
are formula expressions of F1 and F2 [5,20]. W1;h

t and

W2;h
tþ1 are the weight matrix of the hth filter of F1 and F2. b

1;h
t and b2;h

tþ1 are the bias items, andr is an activation function, which
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is empirically assigned as LeakyReLU. Above all, for a whole time span (0 – t) of a MTS S with length L, the output of TLCNN

can be represented as: C1
0 t ¼ C1

0;C
1
1; � � � ;C1

t

n o
and C2

1 tþ1 ¼ C2
1; C

2
2; � � � ;C2

tþ1

n o
.

5.4. Two-stage LSTM (TSLSTM)

The outputs of TLCNN, which are C1
0 t and C2

1 tþ1, are then fed into a TSLSTM to capture sequence correlation patterns.

Assuming a time range of Ra to Rb (Fig. 4), the outputs C1
Ra Rb

and C2
Raþ1 Rbþ1 will be fed separately into the two-stage LSTM

(h1
Ra Rb

and h2
Raþ1 Rbþ1). The purpose of this two-stage design is to predict the dependent correlations between future unknown

influence variables (such as different promotion strategies at future time t + 1) and then to use the predicted correlations to

forecast future sales at time t + 1. Following on from this, C1
Ra Rb

is fed into the first stage LSTM (h1
Ra Rb

) to model the variable’s

influence on current sales at the same time step (Ra, Ra þ 1, . . ., Rb). The output of stage 1, which is h1
Ra ;h

1
Raþ1; � � � ;h1

Rb

n o
, is then

fed into a one-layer dense network to fit a loss function LOSS bYh1
Rb
;YRb

� �
¼ jbYh1

Rb
� YRb j.

The final output h1
Rb

of the first-stage is taken as the input of the second-stage LSTM h2
Raþ1 Rbþ1

� �
. In this stage, values for

C2
iþ1 (mainly inferred from C1

i where i 2 Ra;Rb½ �), are fed into each state h2
iþ1 to capture the future influence of all variables

at time i + 1. The output of stage 2, which is h2
Raþ1; h

2
Raþ2; � � � ;h2

Rbþ1

n o
, is fed into another one-layer dense network with loss

function LOSS bYh2
Rbþ1;YRbþ1

� �
¼ jbYh2

Rbþ1 � YRbþ1j. The hidden state at time i is hk
i (k 2 1;2f g represents the two stages of

TSLSTM). The recurrent unit of TSLSTM includes: Input Gate ink
i , Forget Gate f ki , Cell Status cellki , Output Gate outki , and the

output hidden state hk
i . Win;k, Wc;k,Wf ;k and Wo;k are the parameter matrices. r is the sigmoid function and 
 is the

element-wise product.

Input Gate: ink
i ¼ r Win;k � hk

i�1; add Cj
i

� �
� þ bin;k

h �
; where j � k:

�
Forget Gate: f ki ¼ r Wf ;k � hk

i�1; add Cj
i

� �
� þ bf ;k

h �
; where j � k:

�
Cell Status:cki ¼ tanh Wc;k � hk

i�1; add Cj
i

� �
� þ bc;k

h �
; where j � k:

�
cellki ¼ ink

i 
 cki þ f ki 
 cellki�1.

Output Gate: outki ¼ r Wo;k � hk
i�1; add Cj

i

� �
� þ bo;k

h �
; where j � k:

�

Hidden State : hk
i ¼ outki 
 tanh cellki

� �
ð3Þ
Unlike the traditional CNN-LSTM model, which mainly adopts a weight-sharing strategy, an add function is designed.

When k = 1, add Cj
i

� �
is equal to C1

i ; when k = 2, add Cj
i

� �
is x1 � C1

i þx2� C2
i , where x1 and x2 are learnable parameters.

This operation could provide additional useful information from the first-stage to the second-stage for capturing dynamic
changing patterns by fusing C1

i and C2
i . An attention mechanism, which can improve capture of sequence correlations, is also

incorporated into the TSLSTM. The final output of hidden state hk
Rb

can be seen in formula (4).
h1
Rb

¼
XRb
i¼Ra

a1i � h1
i ;a1i ¼

exp sim h1
i ;h

1
Rb

� �
PRb

j¼Ra
exp sim h1

j ;h
1
Rb

� �
h2
Rbþ1 ¼

XRbþ1

i¼Raþ1

a2i � h2
i ;a2i ¼

exp sim h2
i ; h

2
Rbþ1

� �
PRbþ1

j¼Raþ1 exp sim h2
j ;h

2
Rbþ1

� � ð4Þ
where a1i and a2i are attention weights of h1
i and h2

i at time i; and sim is used to calculate similarity between the two hidden
states by using dot production. Compared with traditional methods, such as DARNN, MTNet, MLCNN, TSLSTM has unique
advantages: first, TSLSTM uses C2

Raþ1 Rbþ1 to model future dependent correlations between variables, which is more practical

when applied to sales prediction; second, the add function of TSLSTM uses two parameters x1 and x2 to combine C1
i and C2

i

at the second-stage LSTM. It can provide more useful information for future trend predictions, and the dynamic x1 and x2

assignment can overcome the limitations of a traditional weight-sharing strategy of CNN-LSTM, enabling it to capture more
dynamic non-linear patterns.
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Fig. 4. The framework of TSLSTM component.
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5.5. Prior knowledge (PK) component

Prior knowledge is defined as well-known domain specific experience or knowledge. The PK component incorporates
prior knowledge into TSLSTM to improve sales prediction. Prior knowledge consists of two types: seasonal or cyclical influ-
ences (SI) and the influence of fixed annual promotional times (PI). SI is straightforward: sales of a product in a specific
month are correlated to sales in the same month the following year (cycle interval T is approximately-one year). PI captures
the influence of important promotional activities. Experts can determine the future sales potential of a product by analyzing
its sales performances at fixed promotional times. Such times typically include important holidays, and promotional festivals
in e-commerce (such as 11th Nov in China). If a product sells good over a fixed period, then there is likely to be another sales
peak a few months later, so predictions of the peak value should not be based solely on promotional strategies, prior knowl-
edge is also important.

PK component uses TSLSTM to construct new models for these knowledge factors. The model framework is shown in

Fig. 5. The input includes target sales time series Y and a set of related time series U ¼ u1;u2; � � � ;uLf g, U 2 X; eYn o
. Assum-

ing that the time section is still from Ra to Rb, then in order to predict future sales YRbþ1, the S ¼ YRa Rb ;URa Rb

� �
is fed into

TLCNN to obtain a new MTS with information from local dependent variables. The new MTS is then processed by TSLSTM,
which captures the correlation patterns of YRbþ1; SI

� 	
, YRbþ1;PI
� 	

separately. PK component consists of three TSLSTM, which

output three states: h2
Rbþ1 S;Ra Rbð Þ, h2;SI

Rbþ1 and h2;PI
Rbþ1 separately. h2

Rbþ1 S;Ra Rbð Þ means to use TSLSTM to encode multivariate

time series (MTS) S from start time Ra to end time Rb, and the superscript 2 of h indicates that h2
Rbþ1 S;Ra Rbð Þ is the output

of the second stage of TSLSTM. h2;SI
Rbþ1 is the output of seasonal or cyclical influences (SI), which mainly uses periodic patterns

to represent the states of S at time Rb þ 1, and can be used to capture correlation patterns between YRbþ1 and SI. h2;PI
Rbþ1 is the

output of the influence of important promotional activities (PI), which mainly uses the influence patterns of promotional
activities to represent the states of S at time Rb þ 1, and can be used to capture correlation patterns between YRbþ1 and PI.

h2
Rbþ1 is taken as the initial model for fine-tuning of h2;SI

Rbþ1 and h2;PI
Rbþ1. The integration of h2;SI

Rbþ1 and h2;PI
Rbþ1 will generate h2;PK

Rbþ1,
which takes the prior knowledge of both PI and SI into consideration.

To model the influence of SI and PI towards YRbþ1, the first step is to construct the time range of SI and PI. The method for
doing so is shown in Fig. 6.

Here, d represents the distance between two time periods, and T (where T = 24) represents a seasonal cycle, making the
time range of SI: t + 1 – T � 1 – t + 1 – T + 1. Time period (tp) contains all the fixed promotion days in a year. Sales perfor-
mance of a product around these days is likely to have an effect in determining sales in the subsequent months, so the time
range of PI is set as tp � 1 – tp + 1. Two new models are constructed based on these time range settings:

S ¼ Y;Uf gRbþ1�T�1 Rbþ1�Tþ1; Y;Uf gRbþ1

h i
for SI, and S ¼ Y ;Uf gtp�1 tpþ1; Y;Uf gRbþ1

h i
for PI.

The two new models adopt the attention mechanism of TSLSTM separately with sine and cosine position embedding pe
(pos) [38],where pos 2 Rb þ 1� T � 1;Rb þ 1� T þ 1½ � in SI and pos 2 tp� 1; tpþ 1½ � in PI. The models then obtain two hidden

state representations h2;SI
Rbþ1 S; d ¼ Tð Þ and h2;PI

Rbþ1 S; d ¼ Rb þ 1� tpð Þ of both SI and PI in formulas (5) and (6):
h2;SI
Rbþ1 S;d ¼ Tð Þ ¼ aSI

Rbþ1
� h2

Rbþ1 þ pe Rb þ 1ð Þ
� �

þ
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X2
i¼0

aSI
i � h2

Rbþ1�T�1þi þ pe Rb þ 1� T � 1þ ið Þ
� �

ð5Þ
h2;PI
Rbþ1 S;d ¼ Rb þ 1� tpð Þ ¼ aPI

Rbþ1
� h2

Rbþ1 þ pe Rb þ 1ð Þ
� �

þ

X2
i¼0

aPI
i � h2

tp�1þi þ pe tp� 1þ ið Þ
� �

ð6Þ
where h2
Rbþ1, h

2
Rbþ1�T�1þi and h2

tp�1þi are the hidden states derived by TSLSTM at time Rb þ 1, Rb þ 1� T � 1þ 1 and tp� 1þ i.

aSI
Rbþ1

and aSI
i are the attention weights of SI, and aSI

Rbþ1
þP2

i¼0aSI
i ¼ 1. aPI

Rbþ1
and aPI

i are the attention weights of PI, and

aPI
Rbþ1

þP2
i¼0aPI

i ¼ 1. Formulas (5) and (6) describe the dependent correlations using prior knowledge (SI and PI). Assume

there are Z different tps in the MTS S (there are more than 1 fixed annual promotion times in a year), and all the outputs

are integrated in formula (7) to obtain the PK representation h2;PK
Rbþ1 of S at time Rb þ 1.
h2;PK
Rbþ1 Sð Þ ¼ rSI � h2;SI

Rbþ1 S;d ¼ Tð Þ þ
XZ
i¼1

rPI
i � h2;PI

Rbþ1 S; d ¼ Rb þ 1� tpið Þ ð7Þ
where rSI, rPI
i 2 R , represent the important weight of SI h2;SI

Rbþ1 and the ith PI h2;PI
Rbþ1, the time point of which is tpi, towards PK

representation h2;PK
Rbþ1.
5.6. Short-term two-stage LSTM (ST-TSLSTM)

ST-TSLSTM helps to capture short-term complex and non-linear influence patterns not well handled by traditional meth-
ods. For a MTS S ¼ Y;Uf g, it is assumed that the current task is to predict the sales at time t + 1. We then define the range of
short-term as being from Ra ¼ t � Rmin to Rb ¼ t, where Rmin is a constant determined by experience and experiment. We

then use TSLSTM to predict the future state representation h2;ST
tþ1 S; t � Rmin tð Þ at time t + 1 based on short-term MTS St�Rmin t .
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5.7. Long-term two-stage LSTM (LT-TSLSTM)

LT-TSLSTM helps to capture the long-term complex and non-linear influence patterns in predicting future sales. For a MTS
S ¼ Y ;Uf g, the time range is the whole time series, from Ra ¼ 0 to Rb ¼ t. We can use TSLSTM to obtain the hidden state rep-

resentation of each time point as: h2
0;h

2
1; � � �h2

t ;h
2
tþ1. For prior knowledge SI, we can obtain its hidden state h2;SI

tþ1 S; d ¼ Tð Þ by
using the PK component in formula (5), where T = 24 represents a cycle length of one year. For prior knowledge PI, we

can obtain all its hidden states h2;PI
tþ1 S; d ¼ t þ 1� tpið Þ in formula (6). tpi is the ith fixed promotion time, and tpi satisfies

Rmin<t þ 1� tpi < 24. Consequently, a time point tpi which is too close (within short-term) or too far away (above 1 year)
from t + 1 is not considered by PI. According to formula (7), the final hidden state representation of PK component at time

t + 1 is h2;PK
tþ1 . Therefore, the future hidden state h2;LT

tþ1 of LT-TSLSTM can be represented as:
1 http
h2;LT
tþ1 Sð Þ ¼ h1 � h2

tþ1 S;0 tð Þ þ h2 � h2;PK
tþ1 Sð Þ ð8Þ
where h1, h2 are weight parameters, which indicate the importance of h2
tþ1 0 tð Þ and h2;PK

tþ1 .

5.8. Generating the predictions

The proposed SLST-PKNet is divided into three sub-models: Y;Xf g, Y ; eYn o
and Y;XeYn o

, where Y is the target time series

and Ytþ1 is the sales to be predicted. For each sub-model, ST-TSLSTM and LT-TSLSTM are adopted to capture long short-term
dependencies, the formulas of which are as below:
bY tþ1 Y; eY� �
¼ WeY � contact h2;ST

tþ1 Y ; eY� �
; h2;LT

tþ1 Y; eY� �h i
þ beY

bY tþ1 Y;Xð Þ ¼ WX � contact h2;ST
tþ1 Y;Xð Þ; h2;LT

tþ1 Y;Xð Þ
h i

þ bX

bY tþ1 Y;XeY� �
¼ W

XeY � contact h2;ST
tþ1 Y ;XeY� �

;h2;LT
tþ1 Y;XeY� �h i

þ b
XeY ð9Þ
where WeY ;WX ;W
XeY 2 R1�2K are learnable vectors, K is the dimension length of TSLSTM, and beY , bX, b

XeY 2 R. h2;ST
tþ1 Sð Þ and

h2;LT
tþ1 Sð Þ are the output of ST-TSLSTM and LT-TSLSTM. The final prediction of SLST-PKNet is then obtained by integrating

DCI (in formula (1)), and all the sub-model outputs below in formula (10), where bY tþ1 denotes the model’s final prediction
at time t + 1. The Adam algorithm is utilized to optimize the parameters [20,28].
bY tþ1 ¼ b1 � bY tþ1 Y ; eY� �
þ b2 � bY tþ1 Y ;Xð Þ þ b3 � bY tþ1 Y;XeY� �

þ b4 � bYDCI

tþ1 ð10Þ
6. Experiment

6.1. Experimental data

On the basis of referring to the design of existing research experiments [5,22,36], we conducted extensive sales forecast-
ing experiments on 2 benchmark datasets: Galanz and Cainiao. Table 2 summarizes the corpus statistics including descrip-
tions of both samples and features.

� Galanz dataset: This dataset is collected from Galanz, one of the leading home appliance enterprises in China. Over a two-
year period, they stored more than 600 products in 100 warehouses. We selected 190 products in 10 warehouses.

� Cainiao dataset: The second set of data comes from Cainiao company,1 one of the largest Intelligent logistics companies in
China. There are more than 200 products in 5 warehouses.

For the Galanz dataset, we implemented the following rules to select high-quality data (190 products from 10 ware-
houses). We first removed products that had no sales records for the most recent three months; next, we removed products,
the total sales of which were less than a specific threshold; finally, we removed products for which the percentage of missing
values (0 sales) was greater than 30 %. The Cainiao data came from a public dataset. We used the whole dataset for training
and testing.

We used historical time-series to predict sales of each product stored in the warehouses. Each product was grouped,
firstly by warehouse, then by product ID. For each group, training and testing samples were generated by dividing the whole
time series into a set of sub-series. The minimum length of each sub-series was greater than 5; the last time period of each
s://tianchi.aliyun.com/competition/entrance/231530/information.
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Table 3
Data Description of Traffic and Exchange-Rate.

Traffic Exchange-Rate

Length of time series 17,544 7,588
Number of variables 862 8
Sample rate 1 h 1 day

Table 2
Data Description of Galanz and Cainiao.

Galanz Cainiao

Product type 190 200
Samples 55,361 74,595
Features

dHistorical Sales

dAmount of Shop Discount

dPerform Discount Amount

dDiscount Rate

dHistorical Sales

dUser visits Records

dVisits to Cart

dCollections user visits.
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sub-series was taken as the label for prediction; other periods were taken as features. This procedure yielded 55,361 samples
from Galanz and 74,595 samples from Cainiao. All datasets were split in chronological order to produce a training set (60 %),
a validation set (20 %) and a testing set (20 %). These were named, respectively GWN (Galanz) and CWN (Cainiao). Ware-
house IDs were used to divide Galanz testing data into 10 groups (GW1, GW2, GW3, . . .GW10) and Cainiao testing data into
5 groups (CW1, CW2, . . .CW5).

We also tested the effect of the model on two new datasets: Traffic and Exchange-Rate (Table 3):

� Traffic: A collection consists of 48 months (2015–2016) hourly data from the California Department of Transportation,
which describes the road occupancy rates (between 0 and 1) measured by different sensors on San Francisco Bay area
freeways.

� Exchange-Rate: A collection consists of the daily exchange rates of eight foreign countries including Australia, British,
Canada, Switzerland, China, Japan, New Zealand and Singapore ranging from 1990 to 2016.

Traffic and Exchange-Rate datasets have been split into training set (60 %), validation set (20 %) and test set (20 %) in
chronological order.

6.2. Metrics

Assume the testing dataset is XTest. The total number of testing samples is jXTestj. We consider three conventional eval-
uation metrics which are commonly used in the corresponding tasks. These are defined in equations (11) to (13), where,

for the ith testing sample in XTest, Yi denotes the true sales of and bY i denotes the predicted sales. RMAE and RRSE are scaled
version of the widely used mean absolute error (MAE) and root square error (RSE), and CORR is the correlation coefficient. A
low value of RMAE, RRSE and high value of CORR indicates good performance.

Relative Mean Absolute Error (RMAE) [5,20]:
RMAE ¼
mean

P
i2XTest

Yi � bY i




 


� �
mean

P
j2XTest

Yj

� � ð11Þ
Root Relative Squared Error (RRSE) [18,20]:
RRSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i2XTest

Yi � bY i

� �2
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i2XTest
Yi �mean Yð Þð Þ2

q ð12Þ
Correlation Coefficient (CORR) [18,20]:
CORR ¼ 1
jXTestj

XjXTest j

i¼1

P
i Y i �mean Yð Þð Þ bY i �mean bY� �� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i Y i �mean Yð Þð Þ2 bY i �mean bY� �� �2

r ð13Þ
110



D. Li, X. Li, K. Lin et al. Information Sciences 625 (2023) 97–124
CORR is used to investigate the linear correlation between true sales Ytþ1 and predicted sales bY tþ1. Thus, to a degree, it
reflects the stability of the prediction results. The lower value of RMAE is not the only criterion by which to judge the per-
formance of the model, because the model may only perform well on specific testing data, but have large deviations when
tested with other data. In this case, the CORR of the model will be very low. A high CORR value indicates that in most cases,
the deviation distribution between predicted sales and real sales is stable and not prone to large fluctuations.
6.3. Models for comparison

WaveNet2: A sequence generation model proposed by DeepMind [29]. Its core is an extended causal convolutional layer,
which allows it to properly deal with temporal sequences and long-term dependencies without a marked increase in model
complexity.

DARNN3: The Dual-stage Attention-based Recurrent Neural Network [28] uses a two-stage attention mechanism for MTS
predictions. The first stage attention learns the weights of input variables, and the second stage attention learns the weights
of hidden states across all time steps for forecasting.

LSTNet4: The Long- and Short-term Time-series Network [20] model contains a convolutional layer to extract local depen-
dency patterns, a recurrent layer to capture long-term dependency patterns, and a recurrent-skip layer to capture periodic prop-
erties in the input data for forecasting.

MTNet5: Memory Time-series Network [3] is jointly trained by a large memory component, three separate encoders, and an
auto-regressive component. The memory and attention component store the long-term historical data and deal with periods of
time rather than single time steps.

MLCNN6: Multi-Level Construal Neural Network [5] is a multi-task deep learning framework that improves predictions by
fusing information from future times. The framework uses a convolutional neural network to extract multi-level representa-
tions, then models interactions between multiple predictive tasks and fuses their future visions through an encoder-decoder
framework.

MLCNN-PK: MLCNN-PK is an optimized version of MCLNN by incorporating PK component with MLCNN.
StemGNN7: Spectral time graph neural network (StemGNN) [3] combines Graph Fourier Transform (GFT) and Discrete Four-

ier Transform (DFT) into an end-to-end framework. GFT and DFT are used to model inter-series correlations and temporal
dependencies separately. The GFT and DFT based spectral representations can be predicted effectively by convolution and
sequential learning.

ST-Norm8: ST-Norm [8] proposed two types of normalization modules including temporal normalization and spatial nor-
malization to refine the high-frequency and local components of the original data respectively. They can be integrated into a
canonical deep learning architecture.

Informer9: Informer [43] designs a probSparse self-attention mechanism and distilling operation to address the Trans-
former’s challenges of secondary time complexity and secondary memory usage. Meanwhile, a carefully designed generative
decoder alleviates the limitations of the traditional encoder-decoder architecture.

Pyraformer10: Pyraformer [24] can bridge the gap between capturing remote dependencies and achieving low temporal and
spatial complexity. In addition, a pyramidal attention module is introduced, with an inter-scale tree structure that combines
features of different resolutions, while adjacent connections within the same scale model contain time dependences of different
ranges.

BHT-ARIMA11: BHT-ARIMA [36] is designed to solve practical application problems in MTS prediction. In this model, the
source time series data are augmented by high-order tensors with the help of multi-path delay transformation technology,
and the classical time series prediction model ARIMA is combined with tensor decomposition. The model has been used to pre-
dict PC sales.
6.4. Experiment details

Grid searching strategy is adopted to find the best hyper-parameters for the proposed model and all the baselines. For
LSTM, hidden size and hidden layer are set at 256 and 1 respectively; full connect layer size is 128; batch size is set at

16. For WaveNet, dense hidden size is set at 64; dilation rates are set at 2i for i in range 1 to 4, Kernel size is set at 3 and
the number of filters is set at 128. For DARNN, the encoder and decoder hidden layer are all set at 128, batch size is 16; time
2 https://github.com/ibab/tensorflow-wavenet.
3 https://github.com/fanyun-sun/DARNN.
4 https://github.com/laiguokun/LSTNet.
5 https://github.com/Maple728/MTNet.
6 https://github.com/smallGum/MLCNN.
7 https://github.com/microsoft/StemGNN.
8 https://github.com/JLDeng/ST-Norm.
9 https://github.com/zhouhaoyi/Informer2020.

10 https://github.com/alipay/Pyraformer.
11 https://github.com/yokotatsuya/BHT-ARIMA.
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step is assigned as 28. For LSTNet, CNN and RNN hidden size are set at 100; CNN kernel size is 6; batch size is 16; skip and
skip hidden are set at 24 and 5; highway window is set at 28. For MTNet, (as reported in the research [4]), CNN hidden size
and RNN hidden size are set at 16 and 32 respectively; CNN filter height is 3; batch size is 64 and the number of long-term
memory series is 7.

For SLST-PKNet, the short-term range Rmin is set at 4 for both Galanz and Cainiao and the Rmax is set at 20. Parameter of
seasonal influence (SI) is set at 24. Important annual promotion days include: Dec.31, Feb.11, May.1, June.18, Oct.1, Nov.11
and Dec.12. These are selected as parameters of promotional influence (PI). The hidden dimension of the Recurrent and Con-
volutional layer is set at 100. CNN kernel size is 6. Dropout is performed after each layer, except the input and output ones,
and the rate is set to 0.2. The adam algorithm is utilized to optimize the parameters.
6.5. Main results

Experimental evaluations of two benchmark sales datasets were conducted on each warehouse, and the results (10-folder
cross validation), compared with 11 baselines, as reported in Tables 4-6. 10-folder cross-validation is adopted to evaluate the
proposed and all baselines on the whole datasets as well as testing data in each warehouse of both Galanz and Cainiao
(Tables 4-6). The error ranges of most of the results are smaller than 0.1, which indicates that all models have been effec-
tively trained.

SLST-PKNet significantly outperforms the other baselines on the total testing data GWN and CWN. The average improve-
ment in GWN is about 37 % by RMAE, 46 % by RRSE, and the average improvement in CWN is about 46 % by RMAE, 29 % by
RRSE. Compared with the best baselines, the improvements are 3.2 % and 17.1 % on Galanz and 18.5 % and 6.8 % on Cainiao.

The greater improvement in RRSE indicates that the predicted bY i derived from baselines, have stronger fluctuations when the
values of testing samples are diverse, which suggests that the results are not stable if the sales of different products vary
greatly (For example, products with high and low sales). In addition, by studying the CORR metrics, we find that the pre-
Table 4
Performance of the proposed SLST-PKNet model on Galanz dataset. (GW = Galanz Warehouse, GW1 – GW5 are the top 5 ranked warehouses).

Metrics Methods GW1 GW2 GW3 GW4 GW5 GWN

RMAE WaveNet 0.56 ± 0.057 0.06 ± 0.001 0.54 ± 0.033 0.83 ± 0.076 0.82 ± 0.008 1.20 ± 0.023
LSTNet 0.51 ± 0.002 0.06 ± 0.003 0.74 ± 0.005 0.76 ± 0.046 0.85 ± 0.032 1.18 ± 0.014
MTNet 0.52 ± 0.011 0.18 ± 0.004 0.71 ± 0.003 0.79 ± 0.005 0.87 ± 0.004 1.24 ± 0.008
DARNN 0.71 ± 0.006 0.57 ± 0.038 0.22 ± 0.004 0.82 ± 0.078 0.73 ± 0.028 1.25 ± 0.026
MLCNN 0.20 ± 0.001 0.16 ± 0.004 0.24 ± 0.130 0.35 ± 0.003 0.45 ± 0.020 0.65 ± 0.006
MLCNN-PK 0.18 ± 0.023 0.15 ± 0.001 0.21 ± 0.011 0.33 ± 0.003 0.44 ± 0.003 0.63 ± 0.023
StemGNN 0.51 ± 0.000 0.05 ± 0.008 0.74 ± 0.001 0.76 ± 0.023 0.85 ± 0.008 1.10 ± 0.007
ST-Norm 0.23 ± 0.043 0.08 ± 0.007 0.20 ± 0.007 0.12 ± 0.023 0.69 ± 0.015 0.83 ± 0.004

Informer 0.51 ± 0.001 0.07 ± 0.001 0.75 ± 0.000 0.76 ± 0.006 0.82 ± 0.063 1.14 ± 0.007
Pyraformer 0.51 ± 0.003 0.10 ± 0.003 0.76 ± 0.004 0.76 ± 0.000 0.88 ± 0.004 1.21 ± 0.003
BHT-ARIMA 0.25 ± 0.000 0.06 ± 0.000 0.53 ± 0.000 0.36 ± 0.000 0.64 ± 0.001 0.95 ± 0.000

SLST-PKNet 0.17 ± 0.023 0.15 ± 0.011 0.19 ± 0.005 0.30 ± 0.016 0.38 ± 0.001 0.61 ± 0.010

RRSE WaveNet 1.01 ± 0.008 1.06 ± 0.012 1.03 ± 0.003 1.01 ± 0.013 1.10 ± 0.011 1.01 ± 0.003

LSTNet 1.03 ± 0.012 1.16 ± 0.019 1.03 ± 0.012 1.02 ± 0.011 1.12 ± 0.006 1.03 ± 0.014
MTNet 1.05 ± 0.006 2.77 ± 0.099 1.04 ± 0.060 1.12 ± 0.083 1.19 ± 0.064 1.02 ± 0.043
DARNN 0.82 ± 0.014 3.56 ± 0.034 0.23 ± 0.013 0.85 ± 0.004 0.71 ± 0.045 0.68 ± 0.024
MLCNN 0.65 ± 0.065 2.37 ± 0.299 0.22 ± 0.007 0.14 ± 0.015 0.55 ± 0.001 1.24 ± 0.019
MLCNN-PK 0.64 ± 0.007 2.21 ± 0.075 0.21 ± 0.011 0.12 ± 0.011 0.54 ± 0.001 1.20 ± 0.052

StemGNN 1.04 ± 0.001 1.05 ± 0.148 1.04 ± 0.004 1.03 ± 0.002 1.12 ± 0.002 1.29 ± 0.003
ST-NORM 0.72 ± 0.015 1.21 ± 0.061 0.18 ± 0.002 0.09 ± 0.028 0.75 ± 0.009 0.64 ± 0.009
Informer 1.02 ± 0.005 1.06 ± 0.022 1.01 ± 0.003 1.01 ± 0.002 1.11 ± 0.002 1.03 ± 0.001
Pyraformer 1.01 ± 0.000 1.52 ± 0.088 1.00 ± 0.000 1.00 ± 0.002 1.09 ± 0.004 1.03 ± 0.002
BHT-ARIMA 0.44 ± 0.000 1.18 ± 0.000 0.71 ± 0.000 0.41 ± 0.000 0.84 ± 0.000 1.49 ± 0.000
SLST-PKNet 0.75 ± 0.002 2.42 ± 0.053 0.14 ± 0.003 0.15 ± 0.026 0.52 ± 0.006 0.53 ± 0.008

CORR WaveNet 0.38 ± 0.019 0.24 ± 0.140 0.23 ± 0.023 0.50 ± 0.076 0.59 ± 0.058 0.28 ± 0.007
LSTNet 0.08 ± 0.002 0.38 ± 0.012 0.17 ± 0.010 0.02 ± 0.026 0.01 ± 0.046 0.02 ± 0.003
MTNet 0.05 ± 0.014 0.05 ± 0.003 0.23 ± 0.005 0.03 ± 0.026 0.12 ± 0.003 0.12 ± 0.011
DARNN 0.70 ± 0.004 0.20 ± 0.089 0.99 ± 0.001 0.77 ± 0.046 0.76 ± 0.011 0.74 ± 0.042
MLCNN 0.94 ± 0.006 0.68 ± 0.148 1.00 ± 0.001 0.96 ± 0.005 0.94 ± 0.004 0.59 ± 0.007

MLCNN-PK 0.95 ± 0.003 0.71 ± 0.063 0.99 ± 0.000 0.97 ± 0.035 0.95 ± 0.022 0.60 ± 0.011

StemGNN 0.95 ± 0.018 0.39 ± 0.100 0.96 ± 0.001 0.92 ± 0.024 0.65 ± 0.043 0.14 ± 0.013
ST-NORM 0.93 ± 0.014 0.17 ± 0.043 0.94 ± 0.001 0.95 ± 0.002 0.80 ± 0.155 0.78 ± 0.009
Informer 0.74 ± 0.186 0.31 ± 0.093 0.82 ± 0.105 0.86 ± 0.002 0.61 ± 0.051 0.53 ± 0.029
Pyraformer 0.79 ± 0.019 0.42 ± 0.029 0.86 ± 0.039 0.80 ± 0.086 0.50 ± 0.095 0.57 ± 0.004
BHT-ARIMA 0.95 ± 0.000 0.16 ± 0.000 0.94 ± 0.000 0.95 ± 0.000 0.80 ± 0.003 0.29 ± 0.000
SLST-PKNet 0.99 ± 0.007 0.61 ± 0.022 0.96 ± 0.013 0.97 ± 0.008 0.96 ± 0.012 0.85 ± 0.003
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Table 5
Performance of the proposed SLST-PKNet model on Galanz dataset. (GW = Galanz Warehouse, GW6 – GW10 are the last 5 ranked warehouses).

Metrics Methods GW6 GW7 GW8 GW9 GW10 GWN

RMAE WaveNet 1.14 ± 0.021 1.05 ± 0.098 1.38 ± 0.114 1.19 ± 0.239 1.24 ± 0.004 1.20 ± 0.023
LSTNet 0.04 ± 0.027 1.08 ± 0.035 0.93 ± 0.097 0.98 ± 0.008 1.05 ± 0.020 1.18 ± 0.014
MTNet 0.29 ± 0.011 0.95 ± 0.001 1.25 ± 0.023 1.12 ± 0.006 1.37 ± 0.004 1.24 ± 0.008
DARNN 0.29 ± 0.032 1.15 ± 0.068 1.08 ± 0.108 0.88 ± 0.056 0.98 ± 0.021 1.25 ± 0.026
MLCNN 0.15 ± 0.013 0.75 ± 0.025 0.60 ± 0.030 0.62 ± 0.048 0.52 ± 0.010 0.65 ± 0.006

MLCNN-PK 0.12 ± 0.005 0.73 ± 0.055 0.59 ± 0.020 0.59 ± 0.125 0.51 ± 0.005 0.63 ± 0.023
StemGNN 0.04 ± 0.003 0.93 ± 0.013 1.25 ± 0.015 0.98 ± 0.008 1.23 ± 0.011 1.10 ± 0.007

ST-NORM 0.08 ± 0.009 0.74 ± 0.011 0.85 ± 0.015 0.76 ± 0.006 0.94 ± 0.051 0.83 ± 0.004
Informer 0.47 ± 0.042 0.51 ± 0.046 1.10 ± 0.123 1.12 ± 0.096 1.16 ± 0.135 1.14 ± 0.007

Pyraformer 0.05 ± 0.003 0.98 ± 0.002 1.23 ± 0.001 1.03 ± 0.002 1.28 ± 0.004 1.21 ± 0.003
BHT-ARIMA 0.03 ± 0.000 0.79 ± 0.000 1.06 ± 0.003 0.81 ± 0.000 1.00 ± 0.000 0.95 ± 0.000
SLST-PKNet 0.18 ± 0.003 0.50 ± 0.006 0.55 ± 0.011 0.85 ± 0.007 0.30 ± 0.016 0.61 ± 0.010

RRSE WaveNet 0.98 ± 0.001 1.01 ± 0.034 0.94 ± 0.003 0.98 ± 0.010 1.05 ± 0.001 1.01 ± 0.003
LSTNet 1.03 ± 0.023 1.04 ± 0.003 1.09 ± 0.031 1.07 ± 0.004 1.10 ± 0.043 1.03 ± 0.014
MTNet 1.08 ± 0.033 1.15 ± 0.105 1.11 ± 0.003 1.08 ± 0.012 1.14 ± 0.109 1.02 ± 0.043
DARNN 5.16 ± 0.012 0.88 ± 0.015 0.74 ± 0.001 0.74 ± 0.044 0.84 ± 0.011 0.68 ± 0.024
MLCNN 2.61 ± 0.009 1.87 ± 0.136 0.83 ± 0.003 0.65 ± 0.019 0.47 ± 0.022 1.24 ± 0.019

MLCNN-PK 2.35 ± 0.033 1.83 ± 0.011 0.81 ± 0.038 0.63 ± 0.021 0.46 ± 0.102 1.20 ± 0.052

StemGNN 1.05 ± 0.080 1.04 ± 0.000 1.12 ± 0.000 1.07 ± 0.001 1.05 ± 0.003 1.29 ± 0.003
ST-NORM 0.99 ± 0.002 0.82 ± 0.018 0.70 ± 0.020 0.68 ± 0.012 0.74 ± 0.040 0.64 ± 0.009
Informer 1.04 ± 0.010 1.04 ± 0.000 1.10 ± 0.000 1.06 ± 0.001 1.04 ± 0.001 1.03 ± 0.001
Pyraformer 1.00 ± 0.000 1.04 ± 0.000 1.09 ± 0.004 1.06 ± 0.000 1.04 ± 0.000 1.03 ± 0.002
BHT-ARIMA 0.63 ± 0.000 0.91 ± 0.000 0.91 ± 0.001 0.85 ± 0.000 0.79 ± 0.000 1.49 ± 0.000

SLST-PKNet 0.58 ± 0.012 0.45 ± 0.002 0.42 ± 0.009 0.89 ± 0.031 0.41 ± 0.001 0.53 ± 0.008

CORR WaveNet 0.29 ± 0.004 0.08 ± 0.005 0.51 ± 0.061 0.33 ± 0.012 0.02 ± 0.010 0.28 ± 0.007
LSTNet 0.17 ± 0.012 0.05 ± 0.023 0.02 ± 0.065 0.02 ± 0.002 0.10 ± 0.090 0.02 ± 0.003
MTNet 0.21 ± 0.028 0.07 ± 0.030 0.02 ± 0.005 0.03 ± 0.019 0.18 ± 0.012 0.12 ± 0.011
DARNN 0.86 ± 0.004 0.52 ± 0.016 0.77 ± 0.033 0.67 ± 0.053 0.57 ± 0.016 0.74 ± 0.042
MLCNN 0.86 ± 0.007 0.64 ± 0.012 0.87 ± 0.002 0.91 ± 0.004 0.93 ± 0.064 0.59 ± 0.007

MLCNN-PK 0.88 ± 0.033 0.66 ± 0.003 0.88 ± 0.001 0.93 ± 0.013 0.94 ± 0.011 0.60 ± 0.011

StemGNN 0.88 ± 0.003 0.61 ± 0.000 0.72 ± 0.000 0.72 ± 0.024 0.77 ± 0.018 0.14 ± 0.013

ST-NORM 0.57 ± 0.013 0.60 ± 0.024 0.70 ± 0.021 0.72 ± 0.006 0.74 ± 0.094 0.78 ± 0.009
Informer 0.23 ± 0.116 0.49 ± 0.003 0.71 ± 0.051 0.58 ± 0.139 0.55 ± 0.040 0.53 ± 0.029
Pyraformer 0.36 ± 0.018 0.41 ± 0.007 0.50 ± 0.029 0.55 ± 0.115 0.74 ± 0.001 0.57 ± 0.004
BHT-ARIMA 0.88 ± 0.000 0.62 ± 0.000 0.67 ± 0.000 0.65 ± 0.001 0.87 ± 0.000 0.29 ± 0.000
SLST-PKNet 0.85 ± 0.001 0.90 ± 0.011 0.92 ± 0.002 0.65 ± 0.033 0.96 ± 0.015 0.85 ± 0.003
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dicted bY i of SLST-PKNet has strong correlations with the true number of sales Yi for both GWN and CWN (0.85 and 0.79

respectively). For the other baselines, correlations between bY i and Yi were much weaker. As for the performances from dif-
ferent warehouses, the proposed SLST-PKNet obtained the highest scores of all the three metrics on 3 of the 5 Cainiao ware-
houses (CW1, CW4 and CW5), and on 4 of the 10 Galanz warehouses (GW5, GW7, GW8 and GW10). On each single indicator
(RMAE, RRSE and CORR), the proposed model can obtain the best performances on at least 50 % of warehouses. While for the
best baseline models, the maximum value is 40 %, which is obtained by ST-Norm. ST-Norm has the best RRSE on 2 of the 5
warehouses of Cainiao.

Transformer and tensor decomposition-based methods are also competitive baselines. For example, BHT-ARIMA is a ten-
sor decomposition-based model, and obtains the best RRSE on GW1 and GW6. However, SLST-PKNet also outperforms BHT-
ARIMA significantly, the average improvements on GWN and CWN are 42 %, 46 % and 31 % in terms of RMAE, RRSE and CORR.
Compared with Informer and Pyraformer, the average improvements are 49 %, 41 % and 47 % respectively.

The main reason for the improved performance of SLST-PKNet is that, as stated in the Introduction, the model has four
advantages over competitive baselines, such as MLCNN-PK, ST-NORM, Transformer-based models and BHT-ARIMA. First,
the model takes the influences of different time series types into consideration. Second, by incorporating a DCI component,
SLST-PKNet treats linear and non-linear correlations separately. Third, the two-layer and two-stage designs of TLCNN and
TSLSTM can use the hidden state at time t to infer the future unknown dependent correlations at time t + 1 recursively
by adopting dynamic weight strategy, and so can better capture dynamic changing patterns for future vision-based sales pre-
diction from a more microscopic level. The state-of-the-art baselines, such as BHT-ARIMA, maps the internal correlations of
the input MTS to each orthogonal dimension of the kernel tensor without particularly modeling the dynamic correlations,
and this operation may lose some useful patterns, because it does not fully consider the complexity of factors affecting
the future states of MTS. Similarly, Informer and Pyraformer mainly focus on capturing attention based long short-term
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Table 6
Performance of the proposed SLST-PKNet model on Cainiao dataset. (CW = Cainiao Warehouse).

Metrics Methods CW1 CW2 CW3 CW4 CW5 CWN

RMAE WaveNet 1.364 ± 0.007 1.391 ± 0.000 1.053 ± 0.009 1.882 ± 0.022 1.135 ± 0.049 1.340 ± 0.002
LSTNet 1.229 ± 0.003 1.109 ± 0.005 1.004 ± 0.001 1.814 ± 0.003 0.982 ± 0.004 1.159 ± 0.006
MTNet 1.395 ± 0.004 1.255 ± 0.004 1.304 ± 0.003 2.274 ± 0.003 1.164 ± 0.004 1.461 ± 0.006
DARNN 1.197 ± 0.016 1.247 ± 0.089 1.315 ± 0.081 2.064 ± 0.098 1.343 ± 0.090 1.479 ± 0.043
MLCNN 1.198 ± 0.007 1.165 ± 0.000 0.994 ± 0.007 1.819 ± 0.008 1.016 ± 0.022 1.218 ± 0.001
MLCNN-PK 1.173 ± 0.023 1.122 ± 0.013 0.975 ± 0.002 1.797 ± 0.002 0.985 ± 0.010 1.192 ± 0.001
StemGNN 1.090 ± 0.234 0.789 ± 0.143 0.881 ± 0.282 1.569 ± 0.328 0.810 ± 0.249 0.988 ± 0.215
ST-NORM 0.758 ± 0.097 0.638 ± 0.007 0.591 ± 0.007 1.254 ± 0.012 0.704 ± 0.143 0.788 ± 0.015
Informer 1.329 ± 0.002 1.244 ± 0.000 1.056 ± 0.000 1.854 ± 0.047 1.063 ± 0.003 1.302 ± 0.001
Pyraformer 1.335 ± 0.000 1.244 ± 0.000 1.056 ± 0.001 1.907 ± 0.001 1.068 ± 0.000 1.307 ± 0.001
BHT-ARIMA 1.271 ± 0.000 1.188 ± 0.000 1.008 ± 0.000 1.796 ± 0.001 1.014 ± 0.000 1.241 ± 0.000
SLST-PKNet 0.651 ± 0.002 0.601 ± 0.013 0.546 ± 0.003 0.985 ± 0.021 0.443 ± 0.008 0.642 ± 0.008

RRSE WaveNet 1.875 ± 0.022 1.335 ± 0.033 1.977 ± 0.016 2.279 ± 0.026 1.165 ± 0.015 1.427 ± 0.021
LSTNet 1.000 ± 0.001 0.969 ± 0.002 1.036 ± 0.001 1.003 ± 0.001 0.991 ± 0.002 0.997 ± 0.003
MTNet 1.094 ± 0.005 1.132 ± 0.006 1.531 ± 0.001 1.346 ± 0.002 1.037 ± 0.004 1.093 ± 0.006
DARNN 0.897 ± 0.004 0.976 ± 0.029 0.952 ± 0.062 1.012 ± 0.011 1.005 ± 0.001 0.990 ± 0.010
MLCNN 0.951 ± 0.008 1.048 ± 0.039 1.015 ± 0.000 0.990 ± 0.003 0.982 ± 0.004 0.988 ± 0.001
MLCNN-PK 0.942 ± 0.016 1.032 ± 0.103 1.003 ± 0.003 0.965 ± 0.021 0.968 ± 0.075 0.976 ± 0.007
StemGNN 0.847 ± 0.197 0.916 ± 0.284 2.792 ± 2.090 0.909 ± 0.120 0.804 ± 0.229 0.751 ± 0.031
ST-NORM 0.646 ± 0.035 0.619 ± 0.012 0.673 ± 0.028 0.770 ± 0.018 0.650 ± 0.067 0.732 ± 0.008
Informer 1.043 ± 0.001 1.040 ± 0.001 1.049 ± 0.000 1.029 ± 0.000 1.032 ± 0.001 1.033 ± 0.000
Pyraformer 1.042 ± 0.001 1.038 ± 0.001 1.047 ± 0.000 1.030 ± 0.000 1.032 ± 0.000 1.032 ± 0.000
BHT-ARIMA 0.978 ± 0.000 1.019 ± 0.000 0.998 ± 0.000 0.936 ± 0.000 0.985 ± 0.000 0.961 ± 0.000
SLST-PKNet 0.605 ± 0.036 0.648 ± 0.001 0.895 ± 0.001 0.651 ± 0.003 0.502 ± 0.002 0.682 ± 0.011

CORR WaveNet 0.231 ± 0.024 0.262 ± 0.003 0.246 ± 0.001 0.184 ± 0.004 0.212 ± 0.001 0.087 ± 0.050
LSTNet 0.278 ± 0.003 0.337 ± 0.005 0.161 ± 0.000 0.216 ± 0.001 0.271 ± 0.008 0.246 ± 0.001
MTNet 0.012 ± 0.001 0.031 ± 0.002 0.005 ± 0.001 0.004 ± 0.001 0.029 ± 0.001 0.006 ± 0.001
DARNN 0.668 ± 0.010 0.557 ± 0.026 0.617 ± 0.020 0.615 ± 0.003 0.809 ± 0.012 0.192 ± 0.011
MLCNN 0.826 ± 0.014 0.743 ± 0.003 0.634 ± 0.002 0.803 ± 0.008 0.806 ± 0.011 0.713 ± 0.008
MLCNN-PK 0.833 ± 0.005 0.752 ± 0.007 0.641 ± 0.001 0.811 ± 0.001 0.818 ± 0.020 0.721 ± 0.013

StemGNN 0.741 ± 0.013 0.713 ± 0.071 0.796 ± 0.051 0.790 ± 0.026 0.792 ± 0.028 0.509 ± 0.233
ST-NORM 0.792 ± 0.037 0.776 ± 0.010 0.771 ± 0.017 0.743 ± 0.020 0.765 ± 0.055 0.739 ± 0.003
Informer 0.182 ± 0.066 0.177 ± 0.070 0.150 ± 0.013 0.199 ± 0.026 0.251 ± 0.081 0.185 ± 0.009
Pyraformer 0.195 ± 0.002 0.114 ± 0.000 0.146 ± 0.040 0.129 ± 0.032 0.178 ± 0.029 0.139 ± 0.003
BHT-ARIMA 0.681 ± 0.000 0.415 ± 0.000 0.676 ± 0.000 0.800 ± 0.003 0.618 ± 0.000 0.721 ± 0.002
SLST-PKNet 0.847 ± 0.012 0.773 ± 0.002 0.651 ± 0.000 0.826 ± 0.000 0.863 ± 0.003 0.799 ± 0.005
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dependencies from MTS, while seldom consider how the state evolves from t to t + 1 at the micro level, and what kind of
linear or nonlinear influences of factors are effective in this process.

The MLCNN-PK model is a more suitable baseline for making comparison, and can be used to further illustrate the three
advantages mentioned above. In one aspect, MLCNN-PK is a very competitive baseline, which obtains one best RMAE, one
best RRSE and three best CORRs on both Galanz and Cainiao datasets. In another aspect, MLCNN-PK also incorporates PK
component, thus the comparison between MLCNN-PK and SLST-PKNet can be seen as an evaluation of the three advantages
of SLST-PKNet. As shown in the experiment, SLST-PKNet outperforms MLCNN-PK significantly, the average improvements on
both GWN and CWN are 25 %, 43 % and 16 % in terms of RMAE, RRSE and CORR.

Fourth, the model is able to capture sales patterns from a set of products of the same type by incorporating prior knowl-
edge. For example, by capturing number of sales of a specific product during and after promotions, and in different seasons,
the model can determine whether the product will be popular in subsequent months, while many similar products with the
same type have similar sales patterns along with the time line. Existing research, such as the representative baselines
referred to in this article, can obtain better performances on datasets with strong seasonal and cyclical patterns, such as traf-
fic, electronic consuming time series, etc [4,20,37], but when applying those baseline models to the Galanz and Cainiao data-
sets, we found that they performed less well than expected. The main reason is that the time series from the two datasets
have no obvious seasonal and cyclical patterns due to a longer time span. However, patterns were discernable if prior knowl-
edge was applied.

The SLST-PKNet model is also evaluated on two new datasets: Traffic and Exchange-Rate. The two datasets only contain
one type of time series, thus SLST-PKNet only needs to consider one sub-model. In addition, PK component only needs to
consider the cyclical impact in this experiment. The experimental results can be seen in Table 7. Horizon represents different
training windows, which is assigned as 3, 6, 12, 24 respectively for both Traffic and Exchange-Rate. Performances of AR, RNN-
GRU, LSTNet and MTNet are reported in [4] and [20]. Three most competitive baselines MLCNN, StemGNN and ST-Norm are
also selected. 10-folder cross validation is adopted to make evaluations. Different from sales time series, traffic time series
have strong a periodic pattern; time series of different exchange rate have strong correlation patterns, therefore, the effects
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Table 7
Performance of SLST-PKNet on Traffic and Exchange-Rate datasets.

Dataset Traffic Exchange-Rate

Horizon Horizon

Methods Metrics 3 6 12 24 3 6 12 24

ARy RRSE 0.5991 0.6218 0.6252 0.6293 0.0228 0.0279 0.0353 0.0445

CORR 0.7752 0.7568 0.7544 0.7519 0.9734 0.9656 0.9526 0.9357
RNN-GRUy RRSE 0.5358 0.5522 0.5562 0.5633 0.0192 0.0264 0.0408 0.0626

CORR 0.8511 0.8405 0.8345 0.8300 0.9786 0.9712 0.9531 0.9223

LSTNet-Skipy RRSE 0.4777 0.4893 0.4950 0.4973 0.0226 0.0280 0.0356 0.0449
CORR 0.8721 0.8690 0.8614 0.8588 0.9735 0.9658 0.9511 0.9354

LSTNet-Attny RRSE 0.4897 0.4973 0.5173 0.5300 0.0276 0.0321 0.0448 0.0590
CORR 0.8704 0.8669 0.8540 0.8429 0.9717 0.9656 0.9499 0.9339

MTNety RRSE 0.4764 0.4855 0.4877 0.5023 0.0212 0.0258 0.0347 0.0442
CORR 0.8728 0.8681 0.8644 0.8570 0.9767 0.9703 0.9561 0.9388

StemGNN* RRSE – – – – 0.068 ± 0.0012 0.072 ± 0.0016 0.098 ± 0.0004 0.113 ± 0.0004
CORR – – – – 0.853 ± 0.0007 0.842 ± 0.0003 0.652 ± 0.0011 0.557 ± 0.0004

ST-Norm* RRSE 0.987 ± 0.0080 1.032 ± 0.0010 0.946 ± 0.0065 0.977 ± 0.0080 0.071 ± 0.0010 0.062 ± 0.0005 0.048 ± 0.0065 0.058 ± 0.0015
CORR 0.378 ± 0.0605 0.351 ± 0.0175 0.314 ± 0.0130 0.116 ± 0.0120 0.321 ± 0.1450 0.199 ± 0.0010 0.204 ± 0.0070 0.167 ± 0.0265

MLCNN* RRSE 0.472 ± 0.0005 0.480 ± 0.0015 0.485 ± 0.0016 0.512 ± 0.0020 0.021 ± 0.0003 0.028 ± 0.0013 0.042 ± 0.0006 0.052 ± 0.0025

CORR 0.872 ± 0.0007 0.868 ± 0.0013 0.863 ± 0.0007 0.844 ± 0.0003 0.976 ± 0.0003 0.967 ± 0.0004 0.948 ± 0.0008 0.932 ± 0.0020

SLST-PKNet RRSE 0.461 ± 0.0006 0.475 ± 0.0020 0.485 ± 0.0008 0.500 ± 0.0012 0.018 ± 0.0005 0.025 ± 0.0003 0.034 ± 0.0010 0.043 ± 0.0021
CORR 0.878 ± 0.0010 0.872 ± 0.0011 0.865 ± 0.0006 0.862 ± 0.0008 0.979 ± 0.0003 0.971 ± 0.0005 0.956 ± 0.0008 0.939 ± 0.0015

y: The results are retrieved from [4], [5] and [20]. *: For a fair comparison, we reproduce the results using their released implementation code and configuration on the same datasets.
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Fig. 7. Case studies of 137 samples from Galanz. (a) shows the results of 50 high sales products; (b) shows the results of 87 low sales products.

Fig. 8. Case studies of 155 samples from Cainiao. (a) shows the results of 55 high sales products; (b) shows the results of 100 low sales products.
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of all models are relatively close. However, SLST-PKNet still outperforms all the baselines in terms of all the metrics on both
Traffic and Exchange-Rate. Compared with all the baselines, the average improvements are 18 % and 15 % from Traffic data,
35 % and 28 % from Exchange-Rate data in terms of RRSE and CORR. Compared with the best baselines, the average improve-
ments are 1.3 % and 0.5 % in terms of RRSE and CORR respectively.

Case studies are introduced to further illustrate the performance of the proposed model. Figs. 7 and 8 summarize the per-
formances of SLST-PKNet on 50 high sales products and 87 low sales products from Galanz; 55 high sales products and 100
low sales products from Cainiao. High sales are defined as the average sales is larger than 500 and low sales are defined as
the sales is between 100 and 200.

The experiment shows that the proposed model can obtain better performances on testing samples with different levels
of sales. Two competitive models MLCNN and ST-Norm are taken as baselines for comparison. For most of the cases, the pre-
dictions by SLST-PKNet matched the true number of sales more accurately than predictions by MLCNN and ST-Norm, neither
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of which was able to effectively capture the patterns of sales time series for both high and low sales products. The greater
performance of SLST-PKNet is particularly noticeable with Galanz ID 20 and 14, and with Cainiao ID 36 and 26. When the
true sales are small (Low Sales), MLCNN and ST-Norm often over-predict (ID 44 and 45 in Fig. 7). A possible reason is that
the baselines do not identify different time series types, and so cannot model their respective influences. Another reason is
that the attention mechanism was not able to obtain expected results due to the lack of domain prior knowledge.

Experiments were also conducted on data from different warehouses at the same time t. Here we select GW6 and CW1 as
examples, and ST-Norm, MLCNN, StemGNN and DARNN are selected as baselines. Fig. 9 shows the performance on GW6 and
Fig. 10 relates to CW1.

The results show that the proposed model could identify different sales patterns of similar products in the same ware-
house at the same time t. For example, SLST-PKNet correctly predicted that product ID 36, 40 would have the highest sales
at time t while other methods failed to make correct predictions (Fig. 9). Similarly, the proposed model successfully pre-
dicted peaks for product IDs 286, 505, 640 at time t (Fig. 10). Therefore, the proposed model is better at capturing common
trend patterns from MTS. In most cases, the predicted sales of the proposed model are very close to the true sales, which
leads to a higher CORR. For the other baselines, there exist many cases where the deviations between predicted and true
sales are large, which will significantly reduce the CORR. For example, though the RMAE of ST-Norm are relatively high,
its CORR reduces by 17 % compared with SLST-PKNet.

In help understand why the proposed model gave better predictions, we visualized the time series of ID 7 and its related
products in GW4. The results are shown in Fig. 11 and Fig. 12. Fig. 11 visualizes the prediction results of the proposed model
on four selected product IDs: 7, 65, 82 and 122 at the same time t. ST-norm and MLCNN are taken as baselines. Experimental
results show that the prediction results of SLST-PKNet are significantly closer to the true sales of all the selected products.
Fig. 9. Case Studies of 115 products from warehouse GW6 of Galanz.

Fig. 10. Case Studies of 961 products from warehouse CW1 of Cainiao.
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Fig. 12 visualizes the correlations between the four selected products in GW4. Given the target predicting sales of product
ID 7 at time t, it is difficult to directly identify sales patterns of ID 7 without prior knowledge. Existing DNNs could not find
evidence to support their predictions why there is a significant increase in ID 70s sales at time t. By incorporating prior
knowledge of SI and PI, we find that similar products have common patterns (eg, ID 7, 65 and 82 in Fig. 12) during Nov,
Feb and Jun.

As shown in the last subfigure of Fig. 12, if only SI is considered, there will be large errors because there are no strong
seasonal patterns in sales of product ID 122. In Nov 2019, for example, sales were extremely high: by contrast, in Nov
2020, they were low. Various possible reasons could account for such fluctuations. The product may have been less popular
than expected; or rival products might have emerged on the market. The information needed to support such suggestions
was not available in the databases, but we could observe the sales patterns of similar products stored in the warehouses.
For each selected product there were significant sales improvements during Feb-Mar 2020 and Jun-Jul 2020. Feb and Jun
are usually-two important months for promotions in Chinese e-business companies. This is captured in the PI factors. Unlike
the baselines, the proposed model was able to predict sales of ID 7 in Nov 2020 by additionally using LT-TSLSTM to analyze
sales during those two time periods.

In order to test whether the model is over-fitting on the two sales datasets, a new experiment is conducted to analyze the
performance of SLST-PKNet on the validation dataset (Fig. 13).

Fig. 13(a and c) show the convergence curves on validation data from both Galanz and Cainiao. As the number of itera-
tions increases, the LOSS reduces rapidly. When the number of iterations reaches 60, the validation LOSS begins to converge.
SI PI PI

t

t

t

t

Fig. 12. Examples of SI and PI patterns of ID 7, 65, 82 and 122 in Warehouse GW4.

Fig. 11. Case Studies of 4 selected products from warehouse GW4 of Galanz.
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Fig. 13. Convergence and over-fitting analysis of SLST-PKNet.
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Fig. 13(b and d) show the training and validation curves of both Galanz and Cainiao along with the increasing number of
training samples in terms of CORR. In Fig. 13(b), when the number of training samples reaches up to 8,000, the validation
CORR of SLST-PKNet is very close to the training CORR. With the further increase of training samples, the CORR can reach
0.9, which indicates a quite small bias. The small deviations between training and validation CORR also indicates small vari-
ances. Fig. 13(d) shows similar results. These results indicate that the probability of over-fitting is small. The reason is that
adopting dropout could effectively control the amount of training parameters. On the other hand, TLCNN + TSLSTM can gen-
erate dynamic weights that provide more choices for the model to learn different patterns, reducing the chance of fitting
incorrect patterns. Finally, the PK component could help the model to avoid learning noisy information.

6.6. Ablation study

An ablation study was conducted to further verify the contribution of each component of the proposed model. Variations
of the proposed SLST-PKNet were tested, in which without specific components were removed. These are as follows:

� SLST-PK w/o eY : SLST-PKNet removed time series eY of all related products.

� SLST-PK w/o XeY : SLST-PKNet removed all XeY combinations.
� SLST-PK w/o X: SLST-PKNet removed all features’ time series X.
� SLST-PK w/o PK: SLST-PKNet removed prior knowledge from LT-TSLSTM.
� SLST-PK w/o DCI: SLST-PKNet removed dynamic co-integration component.
� SLST-PK w/o ST: SLST-PKNet removed ST-TSLSTM.
� SLST-PK w/o LT: SLST-PKNet removed LT-TSLSTM (PK is also removed).
� SLST-PK: The complete SLST-PKNet model.
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Fig. 14. Results of SLST-PKNet ablation test on Galanz and Cainiao.
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The test results were evaluated using RMAE, RRSE and CORR, and are shown in Fig. 14. DCI makes the highest contribution
towards predicting sales, because it can make up for the limitations of DNN-based methods. Although a DNN can obtain a
good performance at capturing complex non-linear correlations from a set of time series, it is still hard for them to identify
the pseudo regression phenomenon in the sales time series. The model may learn lots of irrelevant correlations from the time
series of different products. The use of DCI can help to find smooth and stable correlations from MTS.

The sub-model Y ; eYn o
contributes about 8.7 %, 7.6 % and 5.2 % improvements in RMAE, RRSE and CORR respectively. The

sub-model Y;Xf g contributes about 7.9 %, 6.7 % and 4.6 % improvements in RMAE, RRSE and CORR respectively. The combi-

nations of Y ; eY ;Xn o
, which consider interactions between X and Y, produce a 3.7 % improvement in RMAE, a 2.5 % improve-

ment in RRSE and a 2.2 % improvement in CORR. Y ; eYn o
produces the best performances. This indicates that the sales of

target product are significantly influenced by the sales trends of other products of the same type. Y ;Xf g also makes a positive

contribution, though the improvement is not as great as that of Y ; eYn o
. The main reason is that the feature time series in X

are only related with target time series Y , and do not properly reflect the external changes of the marketing environment.

The improvement of Y ; eY ;Xn o
is limited compared with Y ; eYn o

and Y ;Xf g. One reason is that most of the contributions

of Y; eY ;Xn o
can be explained by Y; eYn o

and Y ;Xf g. Another reason is that concurrently considering the influences of eY
and X on Y will produce some interference information. For example, when the sales of most products with the same type
reduce, promotional activities may produce information which misleads the model, because the model could not identify

different types (products or marketing features) of MTS in Y; eY ;Xn o
.

Although Prior Knowledge (PK) is only effective on a small number of samples, those samples often have strong sales pat-
terns and a high number of sales. So incorporation of PK can lead to the average of 2.6 %, 3.2 %, 2.3 % improvements in RMAE,
RRSE and CORR. In another aspect, the performances of SLST-PKNet w/o PK on Galanz GWN are 0.628, 0.554 and 0.836 in
terms of RMAE, RRSE and CORR. These values on Cainiao CWN are 0.665, 0.703 and 0.779 respectively. Compared with
the best state-of-the-art baselines on each indicator (For Galanz GWN: the best baselines on RMAE, RRSE and CORR are
MLCNN and ST-NORM respectively. For Cainiao CWN: the best baselines are all ST-NORM), the average improvements of
SLST-PKNet w/o PK on Galanz are 3.4 %, 13.4 % and 7.2 %, and the corresponding values on Cainiao are 15.7 %, 3.9 % and
2.5 %. Experimental results show that SLST-PKNet can still obtain optimal results without the PK component, and the
improvement is still significant compared with the best baselines. This further indicates that when PK is removed, the con-
sideration of different time series types, the two-layer and two-stage designs of TLCNN and TSLSTM, and the design of the
DCI component, still have their unique advantages compared with state-of-the-art baselines.

Due to the information sharing design of both ST-TSLSTM and LT-TSLSTM, the two components will learn a lot of similar
knowledge during the training process, thus removing one component will not cause big influence towards model perfor-
mances. ST-TSLSTM provides the average of 4.5 %, 4.1 % and 3.7 % improvements on both Galanz and Cainiao datasets in
terms of RMAE, RRSE and CORR; while the average improvements of LT-TSLSTM are 3.2 %, 3.6 % and 2.9 % respectively.

We also tried to integrate the prior knowledge into ST-TSLSTM, which is named as ST-TSLSTM-PK. Assume at time t, we
want to predict sales at time t + 1, then the fixed annual promotional activities between Rmin and t are taken as PI. For SI
assignment, we set the cycle of short-term to 2, which is used to investigate the correlations between a time period of
the current month and the corresponding time period of the previous month. Experiments are conducted on both Galanz
and Cainiao, and the results in Table 8 show that the short-term PI and SI also obtain a small improvement. The method
is similar to the idea of using different windows for combined feature design. However, the improvement is limited. One
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Table 8
Experimental results of adding prior knowledge to ST-TSLSTM.

Metrics Galanz (GWN) Cainiao (CWN)

ST-TSLSTM-PK RMAE 0.6369 ± 0.013 0.6558 ± 0.006
RRSE 0.5501 ± 0.004 0.6885 ± 0.012
CORR 0.8467 ± 0.007 0.7876 ± 0.010

ST-TSLSTM RMAE 0.6470 ± 0.005 0.6571 ± 0.005
RRSE 0.5532 ± 0.013 0.6910 ± 0.008
CORR 0.8436 ± 0.001 0.7913 ± 0.007
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reason is that the time range of short-term is small, and the influence weight of key time points can be effectively learned
without assigning prior knowledge in advance. In addition, the probability of noise interference in the learning process will
also be quite small.

6.7. Running efficiency

We conducted additional experiments to evaluate the running efficiency of the proposed model. Running efficiency is
determined by three factors: learning of the three sub-models, calculation of DCI, and calculation of TLCNN-TSLSTM. For
the first factor, we used the strategy of Distributed Data Parallel (DDP) to train the three sub-models in parallel. For the sec-
ond factor, we constrained the number of each MTS to no bigger than 20, which can accelerate the calculation speeds of DCI.
For the third factor, we designed a multi-dimensional tensor to store and update all the parameters in each iteration by
directly making tensor calculation. This operation is different from earlier research (such as DARNN), which updates the
parameters of each time series in MTS by traversal. We took MLCNN, DARNN and StemGNN as baselines, and ran experi-
ments on both the Galanz and Cainiao datasets.

The results in Fig. 15 show that SLST-PKNet is slower than MLCNN, because SLST-PKNet considers a greater number of
linear and non-linear correlations from the perspective of long short-term. However, its running efficiency is significantly
better than that of DARNN and StemGNN. The structure of StemGNN contains two blocks, each of which has four-layer
encoding and decoding operations based on time and frequency domains. So it has more parameters than SLST-PKNet.
7. Discussion

7.1. TSLSTM for modeling future vision

One more important innovation that should be further discussed, is the design of TSLSTM for modeling future vision. In
designing a TSLSTM component, our target was to apply it to realistic sales prediction task, i.e., to predict sales of a product at

time period t. In reality, we usually do not know its newest promotional strategies (X) and sales of other related products (eY )
at t. TSLSTM firstly predicts X(t) and eY tð Þ, then uses its predictions to predict sales of a target product Y(t). We compared the
component with two traditional methods: ‘‘Multivariate time series forecasting” (Multi-TSF) and ‘‘Univariate time series
Fig. 15. Running efficiency of the proposed SLST-PKNet.
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Table 9
Performance of two-Stage LSTM for Future Vision Modeling.

Metrics Galanz (GWN) Cainiao (CWN)

LST-PK-Uni-TSF RMAE 0.7116 0.6672
RRSE 0.6015 0.6943
CORR 0.8091 0.7351

LST-PK-Multi-TSF RMAE 0.6965 0.6787

RRSE 0.5836 0.7092

CORR 0.8234 0.7523

SLST-PKNet RMAE 0.6130 0.6420
RRSE 0.5322 0.6821
CORR 0.8534 0.7991
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forecasting” (Uni-TSF). Multi-TSF is similar to DARNN [28] and LSTNet [20], which could predict all the time series’ values at

time t. Uni-TSF uses an auto-regression model to predict the value at t of each time series in X and eY separately, then uses the
predicted value to forecast Y(t). We replaced the TSLSTM with Multi-TSF (LST-PK-Multi-TSF) and Unit-TSF (LST-PK-Unit-TSF)
respectively, and conducted new experiments. Experimental results can be seen in Table 9.

Results of the experiment show significant reduction in errors (RMAE and RRSE). These findings suggest that TSLSTM has
the potential to better model future correlations of different variables.
7.2. Temporal attention weight distributions of SLST-PKNet

To help understand why the model improves predictions, we draw temporal attention weight distributions of the pro-
posed SLST-PKNet (Fig. 16). The first subfigure of Fig. 16 shows the sales time series of product ID 7 in GW4. The red rect-
angle indicates that we would like to predict real sales Y(t) = 1676 at time t. The second subfigure indicates the weight
distributions of baseline DARNN. We find it hard to identify patterns from the temporal attention sequences of DARNN,
because the information in the sales time series is noisy, with long sequences of low or zeros sales. The predicted value
of DARNN at time period t is 273, deviates from the real Y(t) by 1403.
Y t

Fig. 16. Temporal attention weight distributions of SLST-PKNet.
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Unlike previous studies, SLST-PKNet does not calculate the attention weights of the whole time series. Instead, it focuses
on long short-term modeling, and captures local information by using prior knowledge. The third subfigure of Fig. 16 shows
attention weight distributions of short-term time series by adopting ST-TSLSTM. Temporal attention of short-term time ser-
ies only considers 4 time periods (t � 4 – t � 1), which concentrates on the influence of the nearest sequence to Y(t). The
predicted value of ST-TSLSTM is 353, which indicates that the inclusion of longer time series may lead to deviations due
to the noisy information in the added time series.

The fourth subfigure in Fig. 16 shows attention weight distributions of long-term series by adopting LT-TSLSTM. Unlike
DARNN, LT-TSLSTM analyzes a set of sub time series based on prior knowledge. For example, the target Y(t) is at time period
2020.11.01 – 15, so the sub time series of its SI is from 2019.10.16 – 31 to 2019.11.16 – 30. The assignment of Promotional
Influence (PI) is mainly based on important promotional time periods of e-business companies, mostly associated with major
festivals and holidays. SI and PI help to analyze the performance of the target product at the key time, and reduce the influ-
ence of noisy time series segments. The predicted value of LT-TSLSTM at time period t is 695. This is a significant improve-
ment on results obtained using DARNN and ST-TSLSTM.
8. Conclusion

In this research, we propose a novel SLST-PKNet model to overcome the limitations of applying traditional DNN based
MTS prediction model to sales time series. First, SLST-PKNet contains three sub-models to take different types of MTS into
consideration. Second, the design of TLCNN-TSLSTM combinations can model the future vision based dependent correlations
in a more effective way, and capture dynamic changing patterns from sales time series, which traditional methods may fail.
Third, A DCI component is designed to capture stable linear correlations between sales time series. Fourth, the excessive
influence of noisy information was dealt with by using PK component, which provide supervised information to guide the
model training, and reduce the influence of noise information.

The performance of SLST-PKNet was tested in a series of experiments, the findings of which support the view that the
innovations incorporated in the model made a significant contribution to sales prediction based on data from two industrial
datasets: Galanz and Cainiao, and two public datasets: Traffic and Exchange-Rate. The proposed model has also been verified
in Galanz online test. It was applied to three months of new data from 2021 and improved MAE by an average of 10 % com-
pared to existing prediction methods with human operator strategies.

There are still some limitations of the research that will be the focus of future research. The running speed of the proposed
model is not high. Sparsity of sales time series is an issue, and may result in noisy information continuing to have excessive
influence on the results. In the future, we will adopt new structures to accelerate the training speed. Meta-learning, and data
argument will also be taken into consideration to capture more sales patterns. This, we anticipate, will further improve
predictions.
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