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Abstract

Human-Oriented Binary Reverse Engineering (HOBRE) lies at the intersection
of binary and source code, aiming to lift binary code to human-readable content
relevant to source code, thereby bridging the binary-source semantic gap. Recent
advancements in uni-modal code model pre-training, particularly in generative
Source Code Foundation Models (SCFMs) and binary understanding models,
have laid the groundwork for transfer learning applicable to HOBRE. However,
existing approaches for HOBRE rely heavily on uni-modal models like SCFMs for
supervised fine-tuning or general LLMs for prompting, resulting in sub-optimal
performance. Inspired by recent progress in large multi-modal models, we propose
that it is possible to harness the strengths of uni-modal code models from both
sides to bridge the semantic gap effectively. In this paper, we introduce a novel
probe-and-recover framework that incorporates a binary-source encoder-decoder
model and black-box LLMs for binary analysis. Our approach leverages the
pre-trained knowledge within SCFMs to synthesize relevant, symbol-rich code
fragments as context. This additional context enables black-box LLMs to enhance
recovery accuracy. We demonstrate significant improvements in zero-shot binary
summarization and binary function name recovery, with a 10.3% relative gain
in CHRF and a 16.7% relative gain in a GPT4-based metric for summarization,
as well as a 6.7% and 7.4% absolute increase in token-level precision and recall
for name recovery, respectively. These results highlight the effectiveness of our
approach in automating and improving binary code analysis.

1 Introduction

In recent years, we see two trends of uni-modal code model pre-training. On one hand, there is a
remarkable surge in the development of generative Source Code Foundation Models (SCFMs) [12, 65,
55, 20, 43], along with advancements in general Large Language Models (LLMs) [4, 60, 46]. Driven
by a growing interest in automating software development, these powerful models are trained on
billions of tokens from diverse codebases, covering a wide spectrum of programming languages [33].
They possess the capability to complete, infill [19], and refine code [67], as well as generate code
from natural language instructions [44]. On the other hand, there is a stream of research focusing on
binary understanding models [61, 58], which target learning nuanced code semantics with structures
of low-level code, which is critical for software security. Both fields are evolving through continuous
pre-training on expansive datasets of uni-modal data, setting new benchmarks in both effectiveness
and complexity.

Human-Oriented Binary Reverse Engineering (HOBRE), which involves automatically lifting bi-
nary to human understandable contents [14, 69], typically source-code related, occupies a unique
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void spla_cumsum(idxint* p, idxint* w, idxint m)
{
    idxint cumsum = 0;
    idxint i;
    for( i=0; i < m; i++ ){ 
        p[i] = cumsum; 
        cumsum += w[i]; 
        w[i] = p[i];
    }
}

__int64 __fastcall sub_40F9CA(...) {
...
    v5 = 0LL;
    for (i = 0LL; ; ++i) {
        result = i;

if (i >= a3)
break;

*(_QWORD*)(a1+8*i) = v5;
v5 += *(_QWORD*)(8*i+a2);
*(_QWORD*)(8*i+a2) = *(_QWORD*)(8*i+a1);

void xor_inplace(unsigned long *x,
unsigned long *y, long long length) 
{
  long long i;
  unsigned long z;
  z = 0;
  for (i = 0; i < length; i++) {
    x[i] = z;
    z ^= y[i];
    y[i] = z;
  }
}

void gen(int64_t *a, int64_t *b, ...) {
    ...
    for (i = 0; i < n; i++) {
        a[i] = c;
        c += b[i];
        b[i] = a[i];
    }

void update_data(....) {
    ...
    oldsums = 0;
    for (i = 0; i < n; i++) {
        sums[i] = oldsums;
        oldsums += data[i];
        data[i] = sums[i];
    }

The purpose of the function seems to be to update the
memory locations pointed to by  and  based on the
iteration count and the values stored at those locations.
It likely performs some form of cumulative
calculation or data manipulation.

Probed Context

The purpose of the function seems to be to manipulate
the memory block by swapping and updating values
based on the index .

Black-Box LLMs

...

ProRec

Direct Prompting

...irrelevant relevant

Binary Function

Oracle Source Function

The purpose of the function is to calculate the
cumulative sum of the elements in the input array 
and store the results in the array , while also updating
the values in the  array.

Source Code Summarization

The potential source function 2 is highly relevant to
the decompiled function as it seems to perform a
similar operation of updating values in two arrays
based on the current iteration count.

similar loops

Figure 1: The ProRec Framework for human-oriented binary reverse engineering. The figure shows
a simple example of lifting a cumsum function from binary to human readable summarization. The
probed contexts synthesized by the cross-modal knowledge prober, while not identical to the oracle
source code of the query binary, exhibit informativeness in terms of symbol names and correct loop
structure. These contexts help the black-box LLMs to successfully recover the high-level functionality
of binary function in the summary that is consistent with the source code summary, moving beyond
merely describing its low-level operations.

intersection between these two fields. Existing decompilers for binary reverse engineering are able
to translate binary code to C-style code that is functionally equivalent to its original source code.
However, a significant semantic gap remains between the decompiled code and its original source,
primarily due to the absence of meaningful symbolic information in binary code. Hence, human
expertise is still indispensable in the reverse engineering process. HOBRE aims to bridge this se-
mantic gap, which traditionally requires substantial human effort, by leveraging cross-modal deep
learning models. Existing approaches either train task-specific small expert models in a supervised
manner [30, 1, 69, 75], which lack generalizability as shown in later evaluations [56], or require
extensive continual pre-training of uni-modal SCFMs [28] which is undesirable considering cost and
the risk of forgetting previously acquired source code knowledge [32, 77]. There are also attempts in
directly prompting LLMs for HOBRE, which, even though demonstrates better generalizability than
small supervised models, also face challenges in understanding stripped decompiled code that lacks
symbolic information [29].

Our insight is that this semantic gap between binary and source code is analogous to the gap between
low-level pixels in images and high-level concepts in natural language, which can be bridged with
sufficient understanding of both. Inspired by the achievements of multi-modal models that seamlessly
integrate vision, audio, or other signals with language to facilitate reasoning [2, 37, 42, 45], we
hypothesize that HOBRE could similarly benefit from leveraging uni-modal models developed for
both source code and binary code. Such integration would enhance our ability to bridge the semantic
gap and enable more effective semantic lifting.

In this paper, we validate this idea by proposing a novel probe-and-recover framework ProRec that
incorporates a binary-source encoder-decoder model and black-box LLMs for HOBRE, featuring a
compute-efficient cross-modal alignment approach of a binary function encoder and a frozen SCFM
for the binary-source model. The workflow of ProRec is shown in Figure 1. The aligned binary-
source model acts as a cross-modal-knowledge-prober that can synthesize symbol-rich, diverse source
code fragments condition on binary input, denoted as probed contexts. The black-box LLM functions
as recoverer that takes as input the binary function together with the probed contexts for tasks such as
binary summarization. Intuitively, the conditional source code synthesis by the aligned binary-source
code model can be viewed as probing the base SCFM as a parametric knowledge base [52] with a
binary function as query, given that the SCFM’s weights remains unchanged before and after the
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alignment. A black-box LLM analyzes and aggregates these knowledgable contexts with the binary
function for recovery. This way, ProRec leverages both cross-modal aligned knowledge and strong
reasoning ability of LLMs and can outperform directly letting the LLM to reason. ProRec is general
and can be applied to different base architectures, continually evolve with base models.

We demonstrate the effectiveness of ProRec on two core tasks in reverse engineering [9, 10]:
binary summarization and binary function name recovery. The former aims to generate natural
language descriptions for a binary function, and the later aims to recover the function name of a
decompiled function. We evaluate ProRec on a diversified dataset compiled from GitHub repositories,
demonstrating improvements of 3.1% (10.3% relative gain) in CHRF and 12% (16.7% relative gain)
in a GPT4-based metric that has high correlation with human judgement on the summarization task
over zero-shot baseline. We conduct human study to show the effectiveness of the newly proposed
GPT4-based metric. On name recovery tasks, ProRec significantly improves over zero-shot baseline
by 6.7% and 7.4% for token-level precision and recall, respectively. For both tasks, ProRec also
consistently show advantage over a retrieval-augmented baseline with a strong cross-modal dense
retriever. 2

2 ProRec: Reverse Binary by Probing Source Code Foundation Models

In this section, we first present the ProRec framework in §2.1. Next, we describe the neural
architecture used for the cross-modal knowledge prober and recoverer in §2.2. The training for the
prober in is detailed in §2.3, followed by the comphrehensitve explanation of the knowledge probing
stage in §2.4.

Formulation Given a binary file, we can leverage binary analysis tools 3 to obtain each binary
function x. Specifically, x can either be in its disassembled code form which we denote as xasm, or
its stripped decompiled code form, denoted as xdec. xasm and xdec are semantically equivalent and
similarly unreadable. The goal is to recover human readable information y given xdec and xasm.

2.1 The Probe-and-Recover Framework

ProRec assumes a binary understanding model parameterized by θ, an open-source SCFM parame-
terized by ψ, and a black-box LLMs by ϕ. As illustrated in Figure 1, the binary model together with
the SCFM form the cross-modal knowledge prober. The black-box LLM serves as a recoverer. The
cross-modal prober can synthesize source code fragments given binary input. The recoverer takes in
augmented context with binary code to analyze and perform final recovery.

Conceptually, the ProRec framework decomposes the probability to generate y into three parts, the
probability of a set of k source code fragments Sk = {s1, · · · , sk} being relevant to input P (Sk|x),
the probability of LLM’s relevance analysis of the source code fragments P (A|Sk, x), and the
probability of generating the recovery results conditioned on the analysis and source code fragments.

P (y|x) =
∑

Sk∼Pθ,ψ(·|x),A∼Pϕ(·|Sk,x)

Pϕ
(
y
∣∣A,Sk, x) · Pϕ (A|Sk, x) · P

(
Sk

∣∣x) (1)

The decomposition is similar to that of retrieval-augmented generation [36, 68], where p(y|x) =∑
s∈top-k(S∗) P (y|s, x)P (s|x), given a document pool S∗. However, there are two major differences.

First, the source code fragments Sk are not retrieved from S∗, instead, they are sampled from
the conditional distribution of the prober Pθ,ψ(·|x). Due to the alignment strategy (discussed in
§2.3), source code fragments sampled from the prober’s distribution have more flexibility than those
retrieved a fixed document pool in binary reverse engineering scenario, potentially less noisy. We
empirically demonstrate the superiority of probing over retrieval for augmentation in §4.

Second, we stress the internal analysis from the LLM denoted as Pϕ(A|Sk, x) in the decomposition.
The insight is that, even though high-level recovery requires additional domain information to hint
black-box LLMs for further induction, that doesn’t necessarily mean LLMs totally lacks of such

2Our code and data are available at https://github.com/ziansu/prorec.
3https://hex-rays.com/ida-pro/
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void hsort(void *base, size_t ...

...
mov rdx, rax
mov rax, [rbp+var_38]
lea rcx, [rdx+rax]

mov [rbp+var_58], rcx
mov rax, [rbp+var_40]
shr rax, 1
...

void hsort(void *base, size_t n,...

Node Token
Embeddings

Figure 2: The prober architecture and compute-
efficient alignment with limited trainable parame-
ters.
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Figure 3: Negative log-likelihoods of source
functions estimated by base SCLM and those
conditioned on its binary counterpart esti-
mated by the aligned prober.

knowledge (since proprietary LLMs can be significantly larger than open-source code language
models in size and may have more training data, just different mixtures), it might be some long-tail
knowledge that requires better prompting to exploit [35, 76]. On the other hand, the analysis help
LLMs to be less influenced by the noisy contexts. This is beneficial for both retrieved and probed
contexts.

Note that, in Equation 1, the final probability is marginalized over all possible Sk and A. In practice,
we take the most probable Sk and keep the analysis with in the response before final result, without
heavy sampling. We will discuss the sampling of each s within Sk in §2.4.

2.2 Model Architecture and Instantiation

ProRec is a general framework and is not bounded to existing models and architectures. This section
is our current implementation of the prober and recoverer that provide the best performance in our
experiments.

Cross-Modal Knowledge Prober The core of ProRec is the cross-modal prober, which is an
encoder-decoder model aligned in the token embedding space of the SCFM, as illustrated in Fig-
ure 2. We would like to benefit from both pretrained binary function encoders that possesses binary
domain knowledge and the strong SCFMs for generalizable probing. We choose the state-of-the-art
CODEART [58] as our structure-aware binary function encoder g(·). CODEART is a BERT-like
transformer enccoder that takes as input a disassembled binary function xasm along with its depen-
dency graph Gdep obtained by program analysis, and outputs the embeddings for all assembly code
tokens and graph node tokens (each graph node token corresponds to one instruction, e.g., mov rax,
[rbp+var_40], in the assembly code). We choose the Code-Llama [55] family as our base SCFM 4.

For the final prober architecture, we apply a simple two-layer MLP to project the node token
embeddings Zasm, with indices N_IDX in all token embeddings, to source code token embeddings
space.

Zasm = CODEART
(
xasm, Gdep

)
[N_IDX, :] ∈ Rln×db , Zproj = MLP(Zasm) ∈ Rln×ds (2)

where ln denotes the number of node tokens, db is the dimension of the binary encoder and ds is the
dimension of the SCFM. The projected embeddings are fed into the SCLM as an additional prefix
before regular subtoken embeddings for conditional generation.

4We also tried other SCFMs like DeepSeek-Coder [20] or StarCoder2 [43] in our preliminary study and find
that Code-Llama performs best as a base SCFM for our prober.
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We only use node token embeddings as binary features due to their significantly smaller quantity
compared to all token embeddings (approximately one eighth) since assembly functions tend to be
long. These embeddings also already capture some structural abstraction of binary code which is
meaningful in HOBRE tasks.

Recoverer We leverage proprietary black-box LLMs (GPT3.5, Claude-3, and Gemini-Pro) as our
recoverer, since they have strong reasoning ability and support long contexts. Specifically, the LLMs
are prompted with xdec as zero-shot baseline. For retrieval-augmented baseline and ProRec, we
append the additional context to the original input and instruct LLMs to analyze relevance and then
generate recovery. Detailed prompts can be found in Appendix D.

2.3 Prober Training

The training of prober contains two stages: the pre-alignment of the binary encoder to a source
code encoder, and the binary encoder-SCFM alignment. Both utilize data in the form of paired
binary-source functions. The goal is to gradually align the binary encoder with the base SCFM with
minimum knowledge loss.

Contrastive Assembly-Source Code Pre-Alignment Since CODEART is exclusively pre-
trained on binary code corpus [58], we first align it with a pre-trained source code encoder
codet5p-embedding-110m [64] in the function-level embedding space as a pre-alignment stage in
order to facilitate the later encoder-decoder alignment. To achieve this, we add a projection head
for each encoder to project their [CLS] token embeddings to the same dimension denc, forming a
standard dual-encoder [27]. This dual-encoder can encode (xasm, Gdep) into hasm ∈ Rdenc and xsrc
into hsrc ∈ Rdenc . We train the dual-encoder in a CLIP-like symmetric contrastive fashion [54]. Since
the implementation is relatively standard, we refer readers to Appendix A for details.

The dual-encoder can function as a dense retriever to score and retrieve the top-k source functions
for a query binary function from the source function pool of the training set, based on the similarity
measure sim(xasm, xsrc) = cos (hasm,hsrc). It achieves 84% recall@1 on the validation set with a
pool of 10k examples, demonstrating strong performance as a retriever. We utilize this dual-encoder
to set up a retrieval-augmented HOBRE baseline to compare with ProRec in §4.

Compute-Efficient Cross-Modal Prober Alignment For encoder-decoder alignment, we freeze all
the parameters within the SCFM because we intend to explore the extreme end of probing knowledge
from it. We freeze CODEART from the first stage except for the last layer which is a transformer block
for fast convergence and avoid too much change in the representation. The MLP is fully trainable.
The objective of the alignment is to maximize

P (xsrc|xasm, Gdep) =

|xsrc|∏
i

Pθ,ψ(xi|Zproj, x<i) (3)

The limited amount of trainable parameters results in efficient training. For memory efficiency, we
apply quantization (4bit or 8bit) [17, 18] to the base SCFM during alignment.

One evidence that the knowledge of the aligned prober is mainly from the SCFM pre-training instead
of learned during alignment is shown in Figure 3. We sampled 500 (xasm, xsrc) pairs from the
validation set and find that the negative log-likelihood − logPψ(xsrc) for xsrc provided by the base
SCFM and − logPθ,ψ(xsrc|xasm, Gdep) for xsrc conditioned on the xasm provided by the aligned
prober are highly correlated, indicating that the prober’s ability is consistent with the base SCFM.
Another interesting observation is that, instruction-tuned SCFMs typically show higher losses during
alignment than their original models, which also implies the significance of pre-trained knowledge of
source code for cross-modal ability as instruction-tuning may cause forgetting.

2.4 Cross-Modal Knowledge Probing

For the probing process, i.e., sampling Sk with the aligned Pθ,ψ(·|xasm, Gdep), we want to cover a
diverse yet relevant set of candidates. We leverage nucleus sampling [24] to first let the prober generate
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a relatively large set of source function signatures with high randonmess (top-p = 0.75). We use idea
similar to retrieval by training a binary-signature dual-encoder to rank generated signatures and filter
out the noisy ones. Ultimately, we use the prober to further complete the remaining signatures with
smaller randomness (top-p = 0.5). Since signature is short and important for HOBRE, our strategy
achieves both better relevance compared to using a fixed small p for full function generation and
better efficiency compared to sampling a large set of functions with a large p.

3 Experiment Setup

We evaluate ProRec on two binary reverse engineering tasks: summarizing function semantics from
decompiled code (§3.1), and recovering function names from decompiled code (§3.2). In this section,
we first introduce our dataset, and the setups of each task.

Dataset The training and evaluation of ProRec requires pair-wise data between a binary function
and its corresponding source code. To the best of our knowledge, there is no publicly available dataset
that contains matched source code with the binary program. Therefore, we follow a widely adapted
practice in the reverse engineering domain [13, 34, 7], using GHCC 5 to automatically clone and
compile repositories from GitHub. After the compilation, we map the resulting binary programs with
the corresponding source code functions leveraging the debug information in binary programs. In
total, our data consists of 270k pairs of binary and source code functions. We split 260k data samples
for training and 10k data samples for test. We use 5% of the training data as the validation dataset. To
make the evaluation cost tractable, we randomly sample 1k samples from the test dataset. For details
in data processing and quality assurance, please see Appendix B.1.

3.1 Binary Summarization

A binary summarization tool takes as input a snippet of decompiled code, and outputs natural language
descriptions. It facilitates two key processes in the reverse engineering practice [9]: understanding
the purpose and domain of a program (referred to as context relevance), and understanding the
functionality of a program (functionality). Please see Appendix F for a detailed example.

Setup We instruct an LLM to summarize decompiled code with three setups: (1) providing the
model with only the decompiled code; (2) additionally providing the relevant source code snippets
retrieved from the datastore consisting of all source functions in prober’s training set by the cross-
modal retriever; (3) additionally providing and the source code snippets generated by ProRec. The
first two setups are considered baseline approaches for comparison. We further instruct each LLM to
summarize the source code corresponding to the test samples as reference summaries.

Metrics Given the reverse engineering nature of binary summarization, the automatic evaluation
metrics should reflect context relevance and functionality of the summary, different from text summa-
rization. For final results, we report CHRF [53], which our meta-evaluation (described next) identified
as the most aligned with human preferences among popular existing metrics such as BLEU [48].
Additionally, we introduce and report two GPT4-based metrics for context relevance and functionality
judgement respectively, following LLM as a Judge [78], which demonstrate strong correlation with
human judgments. The GPT4-based metrics range from 1 (worst) to 5 (best) based on corresponding
criteria. Further details (e.g., prompts and rationale) about the GPT4-based metrics can be found in
Appendix B.2 and Appendix D.

User Study We conduct a user study 6 to gather human judgments on the quality of binary
summarization, which serves as the gold standard for this task. The study aims to (1) perform a meta-
evaluation of automatic metrics and (2) accurately assess the performance of different summarization
approaches. Participants are asked to score a summary based on decompiled code, corresponding
source code, and the reference summary. The scoring is done on two criteria—context relevance and
functionality—on a scale from 1 (worst) to 5 (best). The method used to generate each summary
is not disclosed to the participants. For the meta-evaluation of automatic metrics, we calculate the

5https://github.com/huzecong/ghcc
6We obtained an IRB for the study (IRB-2024-799).
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Table 1: Main results of binary summarization and binary function name recovery. “G4-F” and
“G4-C” denote GPT4Evaluator for functionality and context relevance, respectively. PSymLM, RSymLM,
FSymLM denote token-level precision, recall, F-1 score as in SymLM [30]. “cBLEU”, “cRoL”, and
“cMETEOR” stands for character-level BLEU, ROUGE-L, and METEOR scores.

Summarization Function Name Recovery

CHRF G4-F G4-C PSymLM RSymLM FSymLM cBLEU cRoL cMETEOR

GPT-3.5-turbo - 30.4 3.6 3.8 16.3 20.9 17.2 11.9 45.1 38.1
GPT-3.5-turbo +retrieval 31.7 3.7 3.9 15.5 21.3 17.0 10.8 45.5 38.3
GPT-3.5-turbo +ProRec 33.5 4.2 4.0 22.2 28.3 23.5 14.4 47.6 41.1

Gemini-Pro - 27.1 3.7 3.5 25.3 28.7 25.3 16.8 48.1 39.5
Gemini-Pro +retrieval 26.4 3.4 3.2 22.7 23.3 21.6 16.2 45.8 36.5
Gemini-Pro +ProRec 27.6 3.8 3.6 32.6 30.5 29.9 22.4 50.9 40.9

Claude-3 - 33.5 3.7 3.9 16.5 22.3 17.9 13.2 40.7 33.9
Claude-3 +retrieval 33.9 3.8 3.9 19.9 23.9 20.5 14.0 43.3 36.0
Claude-3 +ProRec 34.9 4.0 4.1 25.9 29.4 26.0 17.8 47.7 40.1

Spearman correlation between human judgments and automatic metric scores. For more details, we
refer readers to Appendix E.

3.2 Binary Function Name Recovery

Different from generating summary for a decompiled function, recovering function name requires
more accurate understanding about program contexts and more concise abstraction for program
semantics. This assists reverse engineers in efficiently navigating numerous functions in a real world
binary program. A detailed example is provided in Appendix F.

Setup We use the source code function names as ground truth for name recovery. Similar to the
binary summarization task, we conduct experiments with three setups: prompting recoverers with
only the decompiled code, with decompiled code and source code snippets obtained by a retriever,
with decompiled code and source code snippets generated by ProRec. The first two setups are
considered baselines for comparison.

Metrics We evaluate the performance of a tool for the binary function name recovery task at
different levels of granularity.

Token-level Metrics. In line with existing work in reverse engineering [30], we tokenize both the
predicted function name and the corresponding ground truth, then compute precision, recall, and F1
score at the token level. For each metric, we first calculate the scores for individual function name
predictions and then average them across all functions.

Character-level Metrics. We adapt BLEU [48], METEOR [8], ROUGE-L [39] for the function
name by tokenizing function names into characters and computing these metrics on character level,
similar to [40, 57]. They provide a fine-grained evaluation of the function names and can avoid some
limitations of tokenization.

4 Results

In all the following experiments, we report ProRec results based on CodeLlama-34b (4bit quantized).
For both the retrieval-augmented baseline (+retrieval) and ProRec (+ProRec), we use their top-5
contexts as augmentation. The versions of the black-box LLM recoverers are gpt-3.5-turbo-1106
for GPT3.5-turbo, claude-3-haiku-20240307 for Claude-3, gemini-1.0-pro for Gemini-Pro,
and gpt-4-turbo-2024-04-09 for GPT4 Evaluator.
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Figure 4: Scores from our proposed GPT4 evaluator for summaries generated basd on GPT3.5-turbo.
The x-axes denote context relevance (left) and functionality (right), respectively. Larger scores are
better. Bars denote the number of summaries with the corresponding score, and dashed lines denote
the number of summaries with at least the corresponding score.

4.1 Binary Summarization Results

We show the results for binary summarization in Table 1. Observe that ProRec helps all models
generate better summary in terms of CHRF. A retriever, on the other hand, may introduce noise
(irrelevant source functions) to a model and even makes the results worse (e.g., for the Gemini-
Pro model). Moreover, we can see that ProRec achieves higher scores when evaluated with the
GPT4Evaluator on functionality (G4-F) and context relevance (G4-C), indicating the summary of
ProRec is more helpful to a human reverse engineer.

We further analyze the results of GPT4Evaluator to illustrate the advantage of ProRec. The results
for summaries generated by GPT-3.5 are visualized in Figure 4. It is worth-noting that we define the
score 3 as a “neutral” score, meaning that a summary does not contain specific context (for the context
relevance question) or contains only correct but low-level operations without high-level abstractions
(for functionality question). We can see that for most cases, GPT-3.5 achieves a score with at least 3.
That indicates the LLM can largely understand the low-level behaviors of decompiled code. That is
because decompiled code is in the C-syntax. Table 2: Human evaluation of

binary summarization results
w.r.t. context relevance and
functionality.

Cont. Rel. Func.

- 4.29 4.22
+retrieval 4.49 4.43
+ProRec 4.76 4.62

On the other hand, we can see that for the context relevance ques-
tion, both retrieval-augmented baseline and ProRec introduces more
useful context information to the model, and thus the resulting sum-
maries have closer relevance to the ground truth source code. Espe-
cially, queries with the code snippets generated by ProRec achieve
more scores 4 and 5 than queries enhanced with a retriever’s results.
That illustrates ProRec indeed generates code snippets with better
context relevance than a retriever.

For the functionality question, we can observe similar patterns. That
indicates better contexts introduced by ProRec help the LLM to understand code functionality. We
show a detailed example in Appendix F.

Human Evaluation Table 2 presents the human evaluation results from our user study for 50
randomly sampled summaries of each method (using GPT-3.5-turbo as the recoverer). The human
evaluation aligns with the automatic metrics: ProRec consistently outperforms the other approaches
in terms of both context relevance and functionality, according to human judgment.

4.2 Binary Function Name Recovery Results

We show results for binary function name recovery in Table 1. We can see that the code snippets
generated by ProRec helps all three LLMs predict better names in terms of token-level precision,
recall, and F-1 score designed for reverse engineering task [30]. Especially, ProRec outperforms a
retriever by a large margin, indicating that ProRec generates more relevant code than a retriever. For
character-level metrics, ProRec shows similar improvements, not biasing towards certain metrics.
Note that different LLM recoverers can have different performance on the two tasks, e.g., Gemini-Pro
is better at binary function name recovery than summarization compared to other two models, yet
this does not influence the improvement ProRec brings to both tasks and all recoverers.
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Figure 5: Binary function name recovery results with and without LLM’s internal analysis by using
top-k additional contexts on 100 examples.

Table 3: Statistics of prober with different base SCFM sizes.
Base SCFM Trainable Params Ratio (%) Eval Loss N-gram Recall (1-4) CHRF

CodeLlama-7b 27M 0.393 0.6756 27.22 / 13.69 / 8.21 / 5.14 31.52 (±0.642)
CodeLlama-13b 37M 0.283 0.6387 27.51 / 13.88 / 8.40 / 5.32 32.01 (±0.886)
CodeLlama-34b 80M 0.237 0.5786 27.58 / 14.06 / 8.55 / 5.45 31.54 (±0.163)

5 Analysis

How does black-box LLM’s internal analysis A help robust recovery? We study the influence
of LLM’s internal analysis by evaluating retrieval-augmented recovery and ProRec with different
number of additional contexts, since we believe this kind of internal analysis is crucial for LLM-based
recoverers to perform robust binary recovery with additional contexts, especially when the provided
contexts are noisy. We run binary function name recovery for 100 randomly sampled examples, 3
times, for zero-shot recovery (dec-only), retrieval-augmented recovery (recovery), and ProRec.
As shown in Figure 5, the internal analysis consistently reduce the variance of function name recovery
performance of both retrieval-augmented recovery and ProRec. This is particularly true for retrieval
when k gets large. We deem that it may due to a lack of function-level similar source code in the data
store. On the other hand, we observe sometimes LLM tend to be too conservative without leveraging
the extra contexts with the internal analysis, potentially because of our not specifically optimized
prompts which can be fixed by making some adjustments. Moreover, we argue that misleading is
worse than not informative, and reverse engineers can further interact with LLMs for more aggressive
induction after obtaining a conservative response.

Ablation Study on Base Source Code Foundation Model Size ProRec’s performance relies on
the ability of the base SCFM, where size is a crucial indicator since knowledge is represented by
model parameters. Therefore, we study the influence of base SCFM size. We train three probers based
on CodeLlama-7b, CodeLlama-13b, and CodeLlama-34b, all in 4bit quantization for fair comparison.
We report statistics of these three probers in Table 3. As shown in the table, with growing number
of base model size, the prober achieve a lower loss on validation set, which leads to an increase in
average n-gram overlap of probed source code fragments and the oracle source function, which we run
3 times on 100 examples for each row. However, n-gram overlap with oracle source function seems
not to significantly influence downstream task performance like CHRF for binary summarization. We
hypothesize that this is potentially due to the tasks like binary summarization is not very sensitive to
subtle symbolic difference, which means we can leverage modest size SCFM for probing instead of
large ones, being economic in real practice.

Case Study We examine three specific cases to illustrate the performance and limitation of ProRec
in Appendix F.

6 Related Work

Large Multimodal Models Recent advancements in vision-language models have demonstrated
their efficacy across a range of practical applications such as image captioning [70], visual question
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answering [5, 16, 3], and image-text matching [38]. While the limited availability of datasets that
align different modalities was perceived as a major impediment to scalability, recent works leverage
the knowledge embedded within pre-trained large language models [2, 6, 37, 15, 41, 80]. Beyond
their capacity to interpret diverse information modalities such as images [63] and audio [25], LLMs
have increasingly been aligned with graph structures [11, 59] and gained widespread attention. In
particular, there have been successful attempts that leverage LLMs for graph data involves the
Graph2Text strategy, which transforms graph data into textual representations. This technique has
been effectively utilized in several studies [62, 21, 74]. The designs in the prober of ProRec share
some similarity with recent LMMs, with a modality-specific encoder, and a SCFM decoder. However,
we tackle the binary-source code multi-modality which is largely unexplored compared to popular
modalities. Also, the multi-modal prober is used in a larger probe-and-recover framework instead of
end-to-end training.

Retrieval-Augmented Generation Retrieval-augmented generation is widely applied in knowledge-
intensive scenarios, such as question answering [22, 26, 31], molecule generation [66], and source
code generation [79]. By leveraging a non-parametric datastore, retrieval-augmented approaches
decompose knowledge and LMs, can complement some long-tail knowledge or keep the knowledge
up-to-date without heavy tuning the model which is costly. ProRec, on the other head, tries to
exploit knowledge within a parametric SCLM for black-box LLM-based binary recovery. A closely
related work is GENREAD [76] that prompts InstructGPT to generate context instead of retrieval
for knowledge intensive tasks. ProRec differs from this work in that binary recovery requires cross-
modal understanding and informative contexts cannot be obtained by directly prompting LLMs We
introduce specially designed cross-modal alignment to allow informative context generation.

Binary Reverse Engineering Advances in machine learning models have been widely used to solve
challenging tasks in binary program analysis [51, 49, 61, 71, 58, 50]. However, most work focuses on
reasoning binary program, and is not human-oriented. Another stream of work trained smaller end-
to-end models for individual human oriented tasks, such as variable name prediction [47, 13, 72, 73],
and function name recovery [30]. Nonetheless, these models are not benefiting from pretraining
efforts and thus have sub-optimal performance [56]. Preliminary study shows HOBRE remains a
challenge for state-of-the-art LLMs [29, 56]. Our efforts attempt to address this challenge, leveraging
pretraining knowledge of SCFMs to help HOBRE.

7 Conclusion

In this paper, we introduced a novel probe-and-recover framework, ProRec, designed to bridge the
semantic gap between binary code and human-understandable source code. By integrating an aligned
binary-source encoder-decoder model with black-box large language models, our approach effectively
synthesizes symbol-rich code fragments from binary input, providing valuable context for improving
binary analysis tasks. Our extensive evaluations demonstrate that ProRec significantly enhances
performance in both binary summarization and binary function name recovery tasks.

Limitations & Future Work We experiment with a simple achitecture and straightforward align-
ment of the binary-source prober in this paper, which might not be optimal for ProRec. Future work
can explore better prober architecture and alignment objectives. Moreover, currently we only focus on
intra-procedure analysis, similar to most existing work. In practice, HOBRE needs to deal with full
binary with multiple functions. An important direction will be extending ProRec to inter-procedure
scenarios, where additional information from the whole program such as call-graph can be leveraged,
building program-level binary reverse engineering agents.
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A Details for Training Assembly-Source Code Dual-Encoder

We discuss details of the contrastive training of the assembly-source code dual-encoder in this section.
Given a mini-batch B = {(xai , xsi )}Ni=1 with batch size N , where xai represents the i-th tuple of
assembly code and its dependency graph, xsi represents the corresponding i-th source code, we train
the dual-encoder, g(·) for binary encoder, and h(·) for source encoder, with the following objective

Ldual-enc =
1

2
(La2s + Ls2a) (4)

where

La2s =
N∑
i=1

− log
exp(sim(g(xai ), h(x

s
i )))∑N

j=1 exp(sim(g(xai ), h(x
s
j)))

(5)

and

Ls2a =

N∑
i=1

− log
exp(sim(g(xai ), h(x

s
i )))∑N

j=1 exp(sim(g(xaj ), h(x
s
i )))

(6)

Here, we use cosine similarity for sim(·, ·). In order to have more negative samples, we use momentum
encoders [23] for both modality with a queue size 4096 and momentum 0.999. We train the model
with learning rate 5e-5, a batch size of 16, 1k warmup steps, and 17k total steps.

The aligned dual-encoder as a cross-modal dense retriever achieves 84% recall@1 on the validation
set with pool size 10k, which demonstrates that it has reasonable retrieval performance.

B Details in Experiment Setup

B.1 Dataset Quality Assurance and Preprocessing

We ensure data quality by (1) selecting projects with no less than 20 stars, (2) including only
executable binary programs that can be fully stripped, and (3) deduplicating our dataset by checking
the source code string.

Initially, we obtained 18k projects from Github. We tried to compile all of them in x86-64 with O0,
and discarded not compilable ones. It generates 106k executable binaries. We then match binary
functions with source code functions by their function names, and deduplicate data samples by their
source code strings (e.g., some utility functions may be used in multiple programs). Our final dataset
containing 270k pairs of binary and source code functions.

B.2 Evaluation Aspects and Rationale for Human Study and GPT4Evaluator

We provide GPT4 with the decompiled code, the corresponding source code, and the reference
summary to evaluate. For each question, we adapt the Likert scale 7 and instruct GPT4 to output a
score from 1 (worst) to 5 (best). The users in our human study are provided with similar information
as questionnaires to perform human judgment of summaries.

We derive our evaluator prompts from a thorough survey on reverse engineer [9]. The survey
summarizes 8 sub-goals of human reverse engineers. We list them in Table 4 and categorize the goals
into four scopes. We highlight ones that binary summarization can help.

Specifically, for goal (7), a reverse engineer aims to reason about the high-level abstraction of the
program, e.g., what the program does, and how the program works [9]. We use the prompt in Figure 6
to evaluate how helpful a summary is to obtain the high-level picture of a program.

7https://en.wikipedia.org/wiki/Likert_scale
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Table 4: Goals in reverse engineering. We construct the table from a thorough study for human
reverse engineers [9](Table 12).

Scope Goal

Related to specific analyses (1) Understand the purpose of analysis
(2) Finish the analysis quickly

Easy to access (3) Discover general properties of the program
(e.g., size of the program)

Addressed by the decompiler
(4) Understand how the program uses the system interface
(5) Understand, abstract, and label instruction-level information
(6) Understand how the program uses data

Can be enhanced by summarization (7) Construct a complete “picture” of the program
(8) Understand, abstract, and label the program’s functions

A. Does the summary reflect relevant context (domain)? Answer the question in range 5(best) to
1(worst). Domain/context describes the purpose of a function. It is more of the general high-level
domain (e.g., network, memory, CPS, physics, GUI, etc) rather than specific functionalities (e.g.,
sort, string comparison, memory allocation).

• For 5, the summary and the reference should describe the same domain/context.

• For 4, the domain of the summary and the reference should be similar and relevant, although
may not be exactly the same. The summary domain may be a superset or subset of the
reference. The summary domain may be closely related to the reference domain. The
summary and reference may be two different perspectives of a same specific domain.

• For 3, the summary does not explicitly mention a specific context. It only contains low level
operations. From the summary, one cannot deduce the high-level purpose of the decompiled
function.

• For 2, the summary is slightly misleading. The summary domain is different and not relevant
to the reference domain. However, it is implied by the choice of words in the summary, and is
not explicitly mentioned.

• For 1, the summary is completely misleading. The summary domain is irrelevant to the
reference domain, and it is explicitly mentioned in the summary.

Your output should first briefly comment the summary from the aforementioned perspectives. Do not
allow the length of the responses to influence your evaluation. Be as objective as possible.

Figure 6: Prompts for GPT4-Evaluator for asking context relevance.

For goal (8), a reverse engineer reasons specific behavior individual functions to form the mental
models [9] of the program logic. We use the prompt in Figure 7 to illustrate how accurate a summary
is to describe the functionality of a program.

For other goals in Table 4, goals (1–2) are associated with specific analyses, instead of programs.
Goal (3) aims to capture the general properties of a program (e.g., the size of a program, the sections
in a binary executable file). These properties are easily accessible. The following three goals (4–6)
are achieved by a decompiler. The decompiler recovers call to the system APIs (goal 4), reasons
instructions and lifts them to a C-like syntax (goal 5), and recovers data dependences by introducing
variables (goal 6). Therefore, the focus of binary summarization is on the last two goals, requiring
understanding and reasoning of program semantics.

B.3 Importance and Use Scenarios of Function Name Recovery

Function name recovery is important to the reverse engineering task because a human typically starts
the reverse engineering task by achieving a rough understanding about all functions, as suggested by
studies on human reverse engineers [9, 10]. For example, a malware sample to analyze may contain
hundreds of binary functions. A reverse engineer will need to first locate functions with suspicious
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B. Does the summary reflect relevant functionality? Answer the question in range 5(best) to
1(worst). Functionality means the specific high-level behaviors performed in a function (e.g., sort,
string comparison, decoding package, printing error messages).

• For 5, the functionality in the summary should be almost exactly the same to the reference.

• For 4, the functionalities in the summary are similar to the reference. It may be vague in
details, but the overall functionality and purpose is correct.

• For 3, the summary does not specify functionality. It only repeats some low-level operations
without high level abstractions.

• For 2, the summary specify relevant but inaccurate functionality. The functionality specified in
the summary may be relevant to the reference summary, but they have significant differences.

• For 1, the summary contains irrelevant functionality. It is contains a totally different behavior
with the reference.

Your output should first briefly comment the summary from the aforementioned perspectives. Do not
allow the length of the responses to influence your evaluation. Be as objective as possible.

Figure 7: Prompts for GPT4-Evaluator for asking functionality.

behaviors (e.g., executing commands received from a remote server) before analyzing the function in
detail. The workload would be huge even if all functions have natural language summaries. On the
other hand, if all the decompiled functions have names as in the source code, a human developer can
efficiently go through the list of function names and identify functions requiring further inspection.

B.4 Formal Definition of Precision, Recall, and F1 Used by the SymLM Metrics

Formally, the token-level precision (P ), recall (R), and F1 are defined as follows:

P (i) =

∣∣T (i)
g ∩ T (i)

p

∣∣∣∣T (i)
p

∣∣ R(i) =

∣∣T (i)
g ∩ T (i)

p

∣∣∣∣T (i)
g

∣∣ F1(i) =
2× P (i)×R(i)

P (i) +R(i)
,

where T (i)
g is the token set of the ground truth name for the i-th test case, and T (i)

p the token set of
the i-th predicted name.

The precision, recall, and F1 scores for the entire test set are the average scores of individual scores
across all test cases. Formally,

P =
1

N

N∑
i=1

P (i) R =
1

N

N∑
i=1

R(i) F1 =
1

N

N∑
i=1

F1(i),

where N is the number of test cases.

C More Experiment Results and Analysis

C.1 Comparison with Supervised Binary Summarization Methods

Different from existing work CP-BCS [75] that supervisedly train a model for binary function
summarization, ProRec does not require any superivsed training data for summarization and directly
rely on LLM’s summarization ability. More importantly, CP-BCS’s summarization target is the
docstring/comment of a function parsed from source code, which is not identical as the summarization
targets in our experiments which are LLM summarizations from source code. For a fair comparison,
we prepend the comments summarized by CP-BCS to the decompiled code as additional context for
LLMs (gpt3.5-turbo-1106) to revise it into their own summarization styles, so that the final candidate
summaries can be properly compared with reference source code summaries. Here, “+CP-BCS
comment” means we augment the decompiled code with the comment for LLM to summarize. If we
only evaluate the comments generated by CP-BCS, the CHRF drops to 5.44.
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System: You are an experienced C/C++ software developer.
User: You are provided with the following function:
{}
First generate a brief step-by-step description of its functionality in the format:
Description: ...
Then generate a high-level summary of its functionality in the format:
Summary: The function ...
After that, generate a brief description of its general purpose in the format:
Purpose: The purpose of the function is to ...

Figure 8: Prompts for source code summarization.

Table 5: CP-BCS generated comment-
augmented binary summarization results.

CHRF G4-C G4-F

decompiled-only 30.4 3.6 3.8
+CP-BCS comment 29.0 3.0 2.8

We can see in Table 5 that CP-BCS comments have
negative impacts on binary summarization results
(based on gpt3.5-turbo-1106) on our test set, po-
tentially due to the distribution difference between
training and test data. In fact, we cannot easily adapt
CP-BCS to this distribution since the training requires
comments within the source code which do not exist
in many functions in our training data. It is possible
to distill summarization from LLMs, but the cost is high given the large amount of data. On the
contrary, for ProRec data is less of a problem since all the compilable projects can be used to produce
binary-source pairs that can be used for alignment.

C.2 Comparison with Black-box LLM as Prober

Leveraging black-box LLMs as probers is challenging because they are not heavily pre-trained on
binary code and have limited understanding of it. ProRec addresses this through alignment training.

Table 6: Binary function name recovery re-
sults with self-probing on 100 examples.

PSymLM RSymLM FSymLM

decompiled-only 16.47 19.40 16.79
+retrieval 17.75 22.05 18.72
+ProRec 20.38 26.72 21.84
+self-probing 16.02 20.52 17.01

To demonstrate this empirically, we conduct exper-
iments on binary function name recovery. We first
prompt a black-box LLM (gpt3.5-turbo-1106) to
translate decompiled functions into readable ones,
sampling multiple results as diverse probed contexts.
Using the same prompt as ProRec and the same LLM,
we perform function name recovery with additional
context. We call this method “self-probing”.

Table 6 shows the performance of self-probing (based
on gpt3.5-turbo-1106) compared to other meth-
ods on 100 randomly sampled test data. We can see
that self-probing performs slightly better than direct-
prompting but is not comparable to retrieval-augmented recovery or ProRec.

D Prompts Used

We show our prompts to generate source code summarization in Figure 8, the prompts to generate
decompiled code summarization in Figure 10, and the prompts to recovery function names in
Figure 10. Note that the prompts for GPT4Evaluator are discussed in the previous section, shown in
Figure 6 and Figure 7.

E User Study for Binary Summarization

The user study involved 12 participants. The participants are PhDs / PhD students that either have
some background in reverse engineering or are experienced in C/C++/Rust programming. We ensured
each summary is scored by at least 3 users, and use the median scores as the results. The questions in
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System: You are an experienced binary reverse engineer to understand decompiled C code that lacks
symbol information.
User (Default):
You are provided with the following decompiled function that is hardly human readable:
{}
First generate a brief step-by-step description of its functionality in the format:
Description: ...
Then try to generate a summary of it that can help human understand / inspect its original high-level
source code functionality in the format:
Summary: The function ...
After that, inspect and generate a brief description of its general purpose in the format:
Purpose: The purpose of the function seems to ...
User (Augmented):
You are provided with the following decompiled function that is not human readable:
{}
First generate a brief step-by-step description of the functionality of the decompiled code in the format:
Description: ...
Then try to generate a summary of it that can help human understand / inspect its original high-level
source code functionality in the format:
Summary: The function ...
After that, consider the following source functions (if any) that are potentially relevant to this decompiled
function.
{source functions}
Analyze whether they are relevant to the decompiled function in the format:
Analysis: ...
Finally, based on the analysis, try to inspect and generate the general purpose of the decompiled function
in the format:
Purpose: The purpose of the function seems to ...

Figure 9: Prompts for decompiled code summarization. User (Default) denotes directly prompting,
while User (Augmented) denotes prompting with relevant source code snippets obtained by a tool.

System: You are an experienced binary reverse engineer to understand decompiled C code that lacks
symbol information.
User (Default):
You have decompiled a function from an executable, which currently has a generic name like sub_xxx.
The decompiled function code is as follows:
{}
Generate a more human-understandable function name for the decompiled code to replace the original
sub_xxx in the format:
Function Name: function_name_goes_here
User (Augmented):
You have decompiled a function from an executable, which currently has a generic name like sub_xxx.
The decompiled function code is as follows:
{}
Consider the following source functions (if any) that are potentially relevant to this decompiled function.
{source functions}
Analyze whether these source functions are relevant to the decompiled function in the format:
Analysis: ...
Then, based on the analysis, generate a more human-understandable function name for the decompiled
code to replace the original sub_xxx in the format:
Function Name: function_name_goes_here

Figure 10: Prompts for function name recovery. User (Default) denotes directly prompting, while
User (Augmented) denotes prompting with relevant source code snippets obtained by a tool.
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our user study were sampled from summaries generated by all three techniques (i.e., ProRec, the
retrieval-augmented baseline, and direct prompting baseline).

The study leverages the same prompts used in the GPT4Evaluator (details in Appendix B.2) as
the questionnaires, asking users to evaluate a piece of summary in terms of context relevance and
functionality. As we already show the results of human judgment of different approaches in the main
text, here we only show the results of Spearman correlation between human judgment and automatic
metrics in Table 7. We can see that both CHRF and GPT4Evaluator are consistent with human
preference, with GPT4Evaluator the most consistent metric with regard to human scores. Therefore,
we use CHRF and GPT4Evaluator to evaluate the quality of binary summarizations.

Table 7: Spearman correlation between human preference and auto-metrics. Columns 2–3 and 4–5
are for the context relevance questions and functionality questions, respectively. For each question,
we report both the correlation and the p-value. A higher correlation value and a smaller p-value
indicate a statistically stronger correlation. Bold and underlined text indicate the best and second-best
values, respectively, in each column.

Metric Context Relevance Functionality

Correlation p-value Correlation p-value

METEOR 0.51 5.4e-5 0.39 2.5e-3
BLEU 0.28 0.05 0.21 0.11
ROUGE-L 0.49 1.1e-4 0.40 1.9e-3
CHRF 0.56 4.7e-6 0.48 1.5e-4
GPT4Eval. 0.58 2.7e-6 0.58 2.6e-6

F Case Study

In Figure 11, we show a function that initializes a key for encryption. Without any context information,
GPT-3.5 summarizes the function with generic descriptions (e.g., “maniplate and transform the input
data”). On the other hand, ProRec generates code snippets (only one of them is shown here) related
to encryption keys. Provided with these code snippets, GPT-3.5 correctly summarizes the function as
“perform cryptography operations”, and mentions several operations related to “key”. Although the
summarization does not perfectly reflect the “initialization” purpose of this function, the description
is clearer and more relevant to the context (i.e., key operations). We can see that retrieval results
helps LLM generate a more context-relevant yet not functionally correct summary. That is because
the datastore contains code snippets that are very similar to the query function (e.g., the function
sp_256_ecc_recode in Figure 11-(d) is a crypto-related function that performs bit-wise operations).
However, the retrieved function does not explicitly mention anything like “key”, which prevents the
LLM recoverer to further guess the purpose of the function.

Figure 12 shows a more extreme case when RAG is less helpful than ProRec with no relevant function
similar to the query function in the datastore. The query function pops an element from a queue. The
retriever retrieves two snippets of code that have similar syntactic features (e.g., null pointer checks at
the beginning; pointer accesses in the loop condition). By contrast, ProRec recognizes local semantic
information such as getting an element from a queue, and atomic memory operations. Therefore, the
probed code snippets are more relevant to program contexts even if the entire query function is not in
the datastore.

We study a failure case of ProRec for the function name recovery task. The example is shown in
Figure 13. The function reads data from a temperature sensor and convert the temperature from raw
sensor data to human-readable temperature unit. We show two code snippets generated by ProRec.
We can see that ProRec successfully recognizes the function is relevant to read and parse data from a
sensor. However, it does not accurately associate it with the temperature sensor. Therefore, although
the generated summary is of better quality, the recovered function name is still different from the
source code.
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__int64 __fastcall sub_4022B2(__int64 a1, _QWORD 
*a2){ 
  j = 0;
  for (i = 15; i >= 0; --i){
    *((_BYTE *)v4 + i) = *(_BYTE *)(i + a1);
    j ^= *(unsigned __int8 *)(i + a1);
  }
  v5 = j; result = v4[0]; v3 = v4[1]; 
  *a2 = v4[0]; a2[1] = v3;
  for (i = 1; i <= 16; ++i){
    for (j = 16; j >= 0; --j)
      *((_BYTE *)v4 + j) = 
       (8 * *(v4 + j))|(*(v4 + j) >> 5);
  result = (unsigned int)i;
  v8 = i;
  for (j = 0; j <= 15; ++j){
    result = (__int64)&a2[2 * i] + j;
    *result = *(v4 + byte_405440[v8++]) 
                       +byte_405120[16 * i - 16 + j];
}}}

(a) Decompiled Code

void BTSaferpInit(const unsigned char*key, symmetric_key *skey){ 
  // ...
  static const unsigned char mod_table[] = {/* ... */};
  y = 0;
  for (x = 15; x >= 0; x--) { 
    t[x] = key[x]; 
    y ^= key[x]; 
  }
  t[16] = y; memcpy(skey->saferp.K[0], t, 16);
  for (x = 1; x < 17; x++) {
    for (y = 16; y >= 0; y--) {
      /* ROL */
      t[y] = ((t[y]<<3)|(t[y]>>5)) & 255;
    }
  z = x;
  for (y = 0; y < 16; y++) {
    skey->saferp.K[x][y] = 
          (t[mod_table[z]] + safer_bias[x-1][y]) & 255;
    z++;
}}}

(b) Source Code

static void aes_key_expansion
  (unsigned char *key, unsigned char *w){
  int i, j;
  unsigned char temp[4];

  for (i = 0; i < 16; i++)
    w[i] = key[i];

  for (i = 16; i < 176; i++) {
    for (j = 0; j < 4; j++)
      temp[j] = w[i - 1 + j];
...

(c) Probed Code

Summary w/ only decompiled code: The purpose of the function seems to be to manipulate and transform the input data located at memory 
address `a1` and store the result in the memory locations pointed to by `a2`. …

Summary w/ probed code: The purpose of the function seems to be to perform cryptographic operations. It likely involves key expansion, 
substitution, permutation, and other cryptographic operations to transform the input data into an encrypted or decrypted form. …

(d) Retrieved Code

(e) Generated Summaries

void sp_256_ecc_recode (...){
 // ...
 for (i=0; i<43; i++) {
  y = (int8_t)n;
  if (o + 6 < 29) {
    y &= 0x3f;
    n >>= 6;
    o += 6;
  }
 // ...

Summary w/ retrieved code: The purpose of the function seems to involve processing input elements iteratively, performing bitwise 
operations, and memory manipulations to produce a new output array. It likely implements specific algorithms for data transformation and 
manipulation.

Figure 11: ProRec helps to generate a summary that is more relevant to the source code context.
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__int64 __fastcall sub_401696(volatile signed
                    __int32 *a1, void *a2){
  // ...
  if (!a1 || !a2) return -2;
  do{
    v4 = *((_DWORD *)a1 + 2);
    v3 = (signed __int32 *)((char *)a1 + 
            (v4 + 1) * (*a1 + 8) + 28);
  } while (v4 !=
  _InterlockedCompareExchange(a1+2, *v3, v4));

  memcpy(a2, (char *)a1 + (*v3 + 1) * 
 (*a1 + 8) + 36, *a1);
  *((char *)a1 + (*v3+1) * (*a1+8)+32)= 0;
  return 0;
}

(a) Decompiled Code

int lf_queue_pop(lf_queue queue, void *unit){
  // ...
  if (!queue || !unit) return -2; 
  /* read the top element */
  do{
    p_head = head->p_head;
    u_head = UNIT_HEAD(queue, p_head);
  } while (!__sync_bool_compare_and_swap(
          &head->p_head, p_head, u_head->next));

  /* read */
  memcpy(unit, UNIT_DATA(queue, u_head->next), 
                         head->unit_size);
  /* update the queue */
  UNIT_HEAD(queue, u_head->next)->use_flag = false; 
  return 0;
}

(b) Source Code

int queue_get(Queue* q, void* data) {
  if (!q || !data) return -2;
  struct queue_s* queue = (struct queue_s*)q;
  ...

(c) Probed Code (Top 2)

Summary w/ decompiled code only: The purpose of the function seems to involve managing and transferring data in a thread-safe manner, 
likely for inter-process communication or synchronization.
Func name w/ decompiled code only: process_and_sync_memory_operation

Summary w/ probed code: The purpose of the function seems to be to extract a data element from a queue-like data structure and copy it to 
a provided memory location while ensuring thread safety through the use of atomic operations.
Func name w/ probed code: queue_dequeue

(e) HOBRE Results

int rwlock_read_unlock(...) {
  if (!rwlock || !rdlock) return -2;
  struct rwlock_s* rwlock_s 
    = (struct rwlock_s*)rwlock;
  ...

reg_errcode_t re_node_set_merge (...){
 if (src == NULL || src->nelem == 0)return REG_NOERROR;
 if (dest->alloc < 2 * src->nelem + dest->nelem)
 ...

(d) Retrieved Code (Top 2)

int mpi_copy( mpi *X, mpi *Y ){
if( X == Y ) return 0;
for( i = Y->n - 1; i > 0; i-- )
  if( Y->p[i] != 0 )
   break;
...

Summary w/ retrieved code: The purpose of the function seems to involve atomic memory operations for manipulation and copying of data. 
It may be part of a larger system that deals with concurrent access and modification of shared memory.
Func name w/ retrieved code: memory_manipulation_and_atomic_operations

Figure 12: ProRec can be more helpful than RAG in HOBRE tasks when no relevant function can be
retrieved from the datastore.
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__int64 __fastcall sub_401A39(__int64 a1,
                       _WORD *a2, float *a3){
  if (!a1)
    return 2LL;

  if (*(_BYTE *)(a1 + 72)){
    v5 = -13;
    v10 = sub_401202(a1, (__int64)&v5, 1u);
    //...
    *a2 = v9;
  }
  *a3 = (175.72 * ((float)*a2 / 65536.0)) 
                               - 46.849998;
  return 0LL;
}

(a) Decompiled Code

uint8_t htu21d_read_temperature(htu21d_handle_t *handle, 
       uint16_t *temperature_raw, float *temperature_s){
  if (handle == NULL){ /* check handle */
    return 2;
  } 
  if (handle->mode == HTU21D_MODE_HOLD_MASTER){
    res = a_htu21d_read(...); /* read temperature */
    // ...
    *temperature_raw = data;
  }
  /* convert raw temperature */
  *temperature_s = (float)(*temperature_raw)/65536.0f 
                           * 175.72f - 46.85f;
  return 0;
} 

(b) Source Code

uint8_t sht4x_get_humidity(sht4x_handle_t *handle, 
                   uint16_t *raw, float *h){
  if (handle == NULL){ /* check handle */
    return 2;
  }
  if (handle->inited != ...

(c) Probed Code (2 Snippets)

Summary w/ probed code: The purpose of the function seems to be to 
process data based on specific conditions and input parameters, possibly 
related to environmental sensor reading.

(d) Generated Summary

uint8_t sgp30_get_tvoc(sgp30_handle_t *handle, 
                      uint16_t *tvoc, float *ppb){
if (handle == NULL){ /* check handle */
  return 2;
}
if (handle->in ... sensor_data_processing

(e) Recovered Function Name (different with source code)

Figure 13: ProRec helps to generate a summary that is more relevant to the source code context.
However, the recovered function name is different from source code.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Please refer to Abstract and Section 1.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Please refer to Section 7.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: The paper contains no theoretical result. The approach is evaluated empirically.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the information needed to reproduce the main experiment
results.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our code and data are available at https://github.com/ziansu/prorec.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have provided the detailed experimental setups.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We draw confidence intervals in our plots, report p-values for user study. All
other experiments are conducted on a relatively large dataset.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We use LLMs that are public available. Our training is conducted using 4
NVIDIA A100s.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have read the code of ethics and confirmed that we do not violate the code
of ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: No. Our work focuses on a specific domain of reverse engineering.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: This paper does not introduce particular safety risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have described the data and tools used for the evaluation in Section ??,
which are open-sourced and granted by the authors.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [Yes]
Justification: We conduct user study and obtained IRB approvals.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32


	Introduction
	ProRec: Reverse Binary by Probing Source Code Foundation Models
	The Probe-and-Recover Framework
	Model Architecture and Instantiation
	Prober Training
	Cross-Modal Knowledge Probing

	Experiment Setup
	Binary Summarization
	Binary Function Name Recovery

	Results
	Binary Summarization Results
	Binary Function Name Recovery Results

	Analysis
	Related Work
	Conclusion
	Acknowledgement
	Details for Training Assembly-Source Code Dual-Encoder
	Details in Experiment Setup
	Dataset Quality Assurance and Preprocessing
	Evaluation Aspects and Rationale for Human Study and GPT4Evaluator
	Importance and Use Scenarios of Function Name Recovery
	Formal Definition of Precision, Recall, and F1 Used by the SymLM Metrics

	More Experiment Results and Analysis
	Comparison with Supervised Binary Summarization Methods
	Comparison with Black-box LLM as Prober

	Prompts Used
	User Study for Binary Summarization
	Case Study

