
HEADINFER : Memory-Efficient LLM Inference by Head-wise Offloading

Cheng Luo 1 Zefan Cai 2 Hanshi Sun 3 Jinqi Xiao 4 Bo Yuan 4 Wen Xiao 5 Junjie Hu 2 Jiawei Zhao 1

Beidi Chen 3 Anima Anandkumar 1

Abstract
Transformer-based large language models (LLMs)
demonstrate impressive performance in long con-
text generation. Extending the context length has
disproportionately shifted the memory footprint
of LLMs during inference to the key-value cache
(KV cache). In this paper, we propose HEAD-
INFER , which offloads the KV cache to CPU
RAM while avoiding the need to fully store the
KV cache for any transformer layer on the GPU.
HEADINFER employs a fine-grained, head-wise
offloading strategy, maintaining only selective at-
tention heads’ KV cache on the GPU while com-
puting attention output dynamically. Through
roofline analysis, we demonstrate that HEADIN-
FER maintains computational efficiency while sig-
nificantly reducing memory footprint. We evalu-
ate HEADINFER on the Llama-3-8B model with
a 1-million-token sequence, reducing the GPU
memory footprint of the KV cache from 128
GB to 1 GB and the total GPU memory usage
from 207 GB to 17 GB, achieving a 92% reduc-
tion compared to BF16 baseline inference. No-
tably, HEADINFER enables 4-million-token infer-
ence with a Llama3-8B model, and 2.7 million-
token inference with a MAGI-4.5B model on a
single consumer GPU with 24GB memory (e.g.,
NVIDIA RTX 4090) without approximation.

1. Introduction
Modern Large Language Models (LLMs) increasingly sup-
port extremely long inputs: Llama-3 (Dubey et al., 2024)
handles up to 128K tokens, Claude (Anthropic, 2024) sup-
ports up to 1 million tokens, while Gradient AI (Pekelis

*Equal contribution 1California Institute of Technology
2University of Wisconsin-Madison 3Carnegie Mellon Univer-
sity 4Rutgers University 5Microsoft. Correspondence to:
Cheng Luo <chengluo@caltech.edu>, Anima Anandkumar <an-
ima@caltech.edu>.

Proceedings of the 2nd Workshop on Long-Context Foundation
Models, Vancouver, Canada. 2025. Copyright 2025 by the au-
thor(s).

0 50 100 150 200
Memory Footprint(GB)

HeadInfer

4-bit KV-quant

Layer-wise Offload

8-bit KV-quant

Chunked Prefill

Baseline(BF16)

RTX-4090(24GB)

Weight Activation KV-cache

Figure 1. Estimated memory consumption of inference a Llama-3-
8B model with 1 million token.
et al., 2024) extends Llama-3 to 4 million tokens. Video
Generation Model, like MAGI-1 (Sand-AI, 2025), can also
support up to 4 million tokens. These extended context
lengths improve performance on tasks such as book summa-
rization (Pal et al., 2023) and video generation (Liu et al.,
2024a), both of which require millions of tokens.

As context lengths increase, memory usage and latency grow
significantly due to self-attention in transformers. To im-
prove inference efficiency (Zhou et al., 2024), most LLM
inference consists of two phases: prefill for input processing
and decoding for token generation, with key and value states
from attention cached for reuse (KV cache). However, as
the context length increases, the KV cache memory grows
rapidly, posing significant challenges for storage and effi-
ciency. For example, generating 1 million tokens using a
Llama-3-8B model requires 207 GB of memory (15 GB for
pre-trained parameters, 64 GB for activation, and 128 GB
for KV cache 1) as shown in Figure 1. Similarly, generating
a one-minute video using MAGI-1 4.5B (Sand-AI, 2025)
requires 170 GB (17 GB for pre-trained parameters, 5 GB
for activation, and 158 GB for KV cache). This makes long-
context inference unfeasible on consumer-level GPUs such
as the NVIDIA RTX-4090 with 24 GB of memory.

To address this memory challenge, modern LLM serving
systems have introduced offloading strategies that transfer
data to CPU memory, enabling efficient LLM inference
within hardware constraints (Sheng et al., 2023; Lee et al.,
2024; Aminabadi et al., 2022). By moving portions of the

1The calculation is based on standard inference generation
using Hugging Face with BF16 precision and a batch size of 1.
Details of how it is calculated and more model analysis can be
referred to in Appendix A.4.

1

Submission and Formatting Instructions for LCFM 2024

Layer

Head

CPU

Non-offloadKV Cache Sample Layer-offload Proposed: Head-offload

GPU

Figure 2. Demonstrations of KV cache policies in inference. Full KV cache contains two main dimensions: layer and head. Layer-wise
offloads KV cache in the layer’s dimension, with a cache budget of all heads per layer. HEADINFER further reduces GPU memory by
adaptively reallocating cache budgets in the head’s dimension, with a cache budget of one head.

KV cache to the CPU, these methods allow for much longer
context generation than would otherwise fit in GPU memory.
However, these methods can hardly be applied to consumer-
level GPUs such as the RTX-4090, where only 8GB of
memory remain for the KV cache and activations. This is
due to two factors: (1) offloading does not reduce activation
memory usage, and (2) because offloading is applied at a
coarse granularity, the remaining KV cache on the GPU
ends up larger than the rest of the memory usage.

Our approach: We propose head-wise offload
(HEADINFER), an inference framework that drasti-
cally reduces the GPU memory needed for LLM inference
by offloading the KV cache at the level of individual
attention heads. The key idea is to leverage attention head
independence to decompose the attention computation in a
head-wise manner, requiring only one head of the KV cache
on the GPU at a time and offloading the rest to the CPU.
As shown in Figure 2, HEADINFER frees the GPU system
from storing the KV cache of the entire model or layer and
instead stores only a single head at any given time. This fine
granularity drastically reduces the GPU memory footprint
while maintaining exact mathematical equivalence.

Through roofline analysis (Williams et al., 2009) at appendix
, we demonstrate that HEADINFER maintains high compute
efficiency while significantly reducing GPU memory con-
sumption. We implement HEADINFER on the Hugging
Face framework and evaluate it on representative LLMs,
including Llama, Qwen, Mistral, and Gemma, with vary-
ing model sizes and sequence lengths. More than the 1
million token inferences shown in Figure 1, our results on
NVIDIA RTX 4090 demonstrate that HEADINFER extends
the Llama-3-8B model’s context length from 25K (standard
inference) and 45K (standard offload) to 4 million tokens,
achieving around 100x improvement in context length ex-
tension. HEADINFER can also extend the MAGI-1 4.5B
model’s context length from 691K (standard offload) to 2.8
million tokens with a 4x improvement in context length ex-
tension. The code implementation, extension, and generated
videos are available at https://anonymous.4open.
science/r/headinfer-213C.

2. HEADINFER : Head-wise Offload
2.1. Background:Offload KV Cache

When the context length S grows on a million scale, or
the GPU’s on-device High-Bandwidth Memory (HBM, or
MHBM) is small on the consumer GPU, it may become
insufficient to store the entire key-value cache. In such sce-
narios, KV cache offloading provides a practical approach
to handling memory limitations. Offloading can temporarily
move parts of the KV cache to CPU RAM or other external
resources (e.g., NVMe storage and CPU disk). However,
each offloading strategy introduces potential communica-
tion overheads that must be carefully weighed against the
gains in usable context length.

For a batch of size B, a transformer with L layers, and the
KV cache with the bytes per element sizeof(datatype),
the total KV cache size is:

SizeKV cache = 2×B ×L× S ×D× sizeof(datatype)
(1)

If SizeKVcache
> MHBM , the system can offload some

portion of the KV cache to external memory to avoid out-of-
memory errors. Let α(0 ≤ α ≤ 1) be the fraction of the KV
cache that remains on the GPU, and 1− α be the fraction
offloaded to external memory. The memory footprint on the
GPU Sizeon−GPU can be expressed as follows:

Sizeon−GPU = α× SizeKV cache (2)

Therefore, we require:

Sizeon−GPU ≤ MHBM , α ≤ MHBM

SizeKVcache

(3)

Head-wise KV Cache Generation. In transformer architec-
tures, each self-attention layer is split into multiple attention
heads H . Each head has its own set of key-value (KV)
tensors:

K(h) ∈ RS×Dh , V (h) ∈ RS×Dh (4)

where D is divided by H so that each head handles a sub-
dimension Dh = D/H . Therefore, instead of a single

2

https://anonymous.4open.science/r/headinfer-213C
https://anonymous.4open.science/r/headinfer-213C

Submission and Formatting Instructions for LCFM 2024

large KV cache, a head-wise approach organizes cache in H
separate memory spaces. Formally, at time step t, we have:

K
(h)
cache = [K

(h)
1 , ...,K

(h)
t], V

(h)
cache = [V

(h)
1 , ..., V

(h)
t] (5)

As a result, each head stores its keys and values in a contigu-
ous memory space, enabling selective offloading of certain
heads’ cache when memory constraints emerge.

During self-attention at the time step t, we calculate the
attention output for each head h independently, using:

A
(h)
t = Softmax(

Q
(h)
t KT

cache(h)√
dk

)Vcache(h) (6)

Finally, the outputs A(h)
t

H

h=1 are concatenated to form the
final output of attention for that layer.

Head-wise Offload. Since the attention computation has a
head-wise independence, if we can keep the KV cache of
a single head rather than the entire layer, then the memory
consumption can be reduced substantially. This leads to our
proposed head-wise offload (HEADINFER) strategy.

HEADINFER is designed to minimize the fraction of on-
GPU data α (the fraction of the total KV cache stored on
GPU). Using Llama-3-8b as an example, we define Hall as
the total number of attention heads of a given model, which
equals the number of heads per layer times the number of
layers H ×L. Hon is the number of heads h retained on the
GPU, and Hoff is the number of heads offloaded to external
memory (CPU); obviously, we have Hon +Hoff = Hall

Define α as the fraction of the KV cache that remains on
the GPU. We can store all KV cache on the GPU if α = 1
or layer-wise offload if α = 1/L. In our head-wise scheme:

α =
Hon

Hall
=

1

L×H
(7)

Here we keep only a single head on the GPU, and the frac-
tion of the total KV cache that occupies GPU memory is
reduced by α = 1/(L×H), with a total size of:

Son−GPU = 2×B × S ×DH × sizeof(datatype) (8)

By reducing α, we can preserve GPU memory capacity
for extended context inference and make the million-level
inferences on consumer GPUs possible.

2.2. Granularity: Sequences, Layers, and Heads

HEADINFER differs from traditional offload in terms of
granularity. When deploying large language models, each
dimension of the model can become a potential bottleneck
in GPU memory. Naively offloading the entire KV cache or
entire layers can lead to suboptimal memory usage.

HEADINFER addresses this challenge by introducing a
hierarchical set of techniques, including chunked-prefill
(Agrawal et al., 2024), layer-wise offload (Xiong et al.,
2024) , and head-wise offload that operate at increasingly
fine-grained levels of sequence (S), layers (L), and heads
(H).

• Chunked-Prefill (S): Rather than processing all se-
quences of input tokens at once, HEADINFER divides
the sequence into smaller chunks, each processed sepa-
rately during the prefill stage. This partition helps reduce
the activation memory usage.

• Layer-Wise Offload (L): Instead of storing the entire KV
cache on the GPU, HEADINFER offloads it to the CPU
and fetches the KV cache of specific layers on demand.
Consequently, only the relevant portion of the KV cache
resides on the GPU at any given time.

• Head-Wise Offload (H): Within each layer, HEADIN-
FER can selectively offload the KV cache for all attention
heads, fetching certain attention heads on demand. This
offers the finest granularity by focusing on a subset of
heads within each layer.

By combining these techniques, HEADINFER allows precise
control over which parts of the activation and KV cache
remain on the GPU. Because these dimensions nest naturally
as chunks are subsets of the sequence, layers are subsets of
the model, and heads are subsets of the attention layer.

3. Performance Evaluation
3.1. Experimental Setup

We conduct our experiments on RTX-4090 GPUs, which
are configured with 24.5 GB of HBM3, 4× AMD EPYC
7B13 with 64 CPUs each (a total of 256 cores), and 2× Gen4
NVMe of 512 GB each and 1 TB of DDR5 RAM in total.
The GPUs are independently connected to the host with
16 PCIe 4.0 interfaces, providing 25.0 GB/s unidirectional
D2H and H2D throughput for pinned host memory.

3.2. Long-Context Benchmarks

We evaluate HEADINFER using the LongBench v2 (Bai
et al., 2024) benchmarks, and other long-context bench-
mark results such as SCBench (Li et al., 2024), Needle-
in-a-Haystack (NIAH) (Kamradt, 2023) and Ruler (Hsieh
et al., 2024) are shown in the Appendix A.2. We use the
Llama-3-8B-Instruct-Gradient-1024k model with 1 million
context lengths.

LongBench v2 is a comprehensive suite of long-context
datasets designed to assess long-context problems that re-
quire deep understanding and reasoning. It comprises 503

3

Submission and Formatting Instructions for LCFM 2024

Table 1. Performance(benchmark score) of different methods on LongBench v2 on a single RTX-4090 GPU, under different task
difficulties (Easy/Hard) and context lengths (Short/Medium/Long). Overall performance is average scores on all questions.

LongBench V2 Overall Easy Hard Short Medium Long Contex Length
Standard 28.4 30.2 27.3 33.9 25.1 25.9 25K
Chunked Prefill 28.2 27.1 28.9 32.8 25.6 25.9 30K
Layer-wise offload 29.0 29.2 28.9 36.1 24.2 26.9 45K
HEADINFER 30.2 31.2 29.6 33.9 27.0 30.6 1024K

Table 2. Comparison of maximum context length with system optimization methods.
Context Length Llama-3-8B Llama-2-7B Mistral-7B Qwen2-7B Gemma-2-9b

Standard 25K 10K 30K 35K 10K

Chunked Prefill 30K 20K 40K 70K 10K
4-bit KV-quant 45K 30K 40K 50K 20K
Layer-wise offload 45K 60K 45K 50K 35K
HEADINFER 4096K 1024K 4096K 4200K 1300K

Table 3. Long-context video generation on a single RTX-4090.
MAGI-1-4.5B Frames Video Context Generate

Size (tokens) Latency

Non-offload – - OOM –
Layer-offload 768 32s 691200 9h 27m
HEADINFER 768 32s 691200 9h 46m
HEADINFER 3072 2m8s 2764800 43h 9m

difficult multiple-choice questions within two difficulties,
including ”Easy/Hard” and word lengths, including ”Short”
of 0-32k words, ”Medium” of 32k-128k words, and ”Long”
of 128k-2M words. As shown in Table 1, we measure their
overall scores for different task categories. HEADINFER
achieves the highest benchmark score for ”Medium” (27.70)
and ”Long” (30.6). Layer-wise offload performs best on
”Short” (36.1) for truncation side effects.

3.3. Long-Context Video Generation

We evaluated HEADINFER using the MAGI-1 4.5B model
(Sand-AI, 2025) on a single RTX-4090. MAGI-1 generates
videos by autoregressively predicting a sequence of video
chunks, defined as fixed-length segments of consecutive
frames. The generation process is equivalent to chunked
prefill, where each contains 24 raw frames and 21.6K con-
text tokens. The chunk size is larger than 2k; therefore,
offload and HEADINFER can effectively extend the maxi-
mal context length without any slowdown.

We evaluate MAGI-1 (4.5 B) by generating ”good boy”
videos with 720x1280 px, 24 FPS, and 64 denoising steps.
Table 3 reports the maximum video length supported on one
RTX-4090 and the wall-clock time to complete generation.
HEADINFER provides a 4x context length extension with
only a 3% slowdown compared with layer-offload baseline.
More importantly, only HEADINFER breaks the 1 million
token barrier on consumer GPUs, enabling 2-minute videos
generation without approximation methods. The details of
generation can be found in appendix A.3.

3.4. Efficiency Results of Memory and Throughput

We evaluate the maximum context length supported on RTX-
4090, as well as prefill/decoding throughput. Our experi-
ments use the Llama-3-8B, Llama-3-70B, Mistral (Jiang
et al., 2023), Qwen (Bai et al., 2023a), and Gemma-2 (Team
et al., 2024) models. The default number format for weights
and activations is BFloat16, and 4-bit KV-quant is deployed
with KIVI (Liu et al., 2024b). The chunk size is set to 10K
based on our roofline analysis.

LLM Inference on Consumer GPUs with 24G memory.
We measure the GPU memory consumption of Llama3-8B
inference with HEADINFER and 1 million context length.
HEADINFER uses 17GB during prefill and 16.4GB during
decoding; in contrast, other methods are unable to run at
this context scale using 24GB RTX-4090. Accordingly, we
measure the maximum achievable context length to assess
memory efficiency. As shown in Table 2, HEADINFER
outperforms other system optimization approaches, scaling
from thousand-level contexts (10K-70K) to million-level
contexts (1,024K–4,200K). Note that with HEADINFER , the
maximum context lengths for Llama3, Llama2, and Mistral
are constrained by CPU RAM (512GB for KV cache), while
the other methods are limited by GPU memory. This means
we can use larger CPU RAM or offload to disk for a more
extended context. We leave this exploration for future work.

4. Conclusion
In this paper, we introduced HEADINFER , a novel head-
wise KV cache management framework designed to enable
efficient long-context large language model (LLM) infer-
ence on consumer GPUs. HEADINFER dynamically offloads
KV cache components to CPU memory, employing head-
wise and asynchronous offloading strategies. Our Roofline
analysis highlights HEADINFER ’s ability to preserve GPU
computational efficiency while reducing memory footprint,
making long-context inference feasible on consumer-grade
GPUs.

4

Submission and Formatting Instructions for LCFM 2024

Impact Statement
Artificial Intelligence (AI) has the potential to transform in-
dustries, revolutionize education, and empower individuals.
However, the deployment of cutting-edge models, particu-
larly large language models (LLMs), is often hindered by
significant resource requirements, creating barriers to entry
for smaller organizations and underserved communities.

In this work, we introduce HEADINFER , a memory-efficient
inference framework designed to bridge this gap. By lever-
aging head-wise offloading strategies, HEADINFER enables
resource-constrained devices to process unprecedentedly
long contexts, achieving capabilities typically reserved for
high-performance systems. For instance, HEADINFER al-
lows a consumer-grade GPU to handle over 1 million con-
text tokens, democratizing access to advanced LLM func-
tionalities.

References
Agrawal, A., Kedia, N., Panwar, A., Mohan, J., Kwatra,

N., Gulavani, B., Tumanov, A., and Ramjee, R. Taming
throughput-latency tradeoff in llm inference with sarathi-
serve. In 18th USENIX Symposium on Operating Sys-
tems Design and Implementation (OSDI 24), pp. 117–134,
2024.

Ainslie, J., Lee-Thorp, J., de Jong, M., Zemlyanskiy, Y.,
Lebron, F., and Sanghai, S. Gqa: Training generalized
multi-query transformer models from multi-head check-
points. In The 2023 Conference on Empirical Methods in
Natural Language Processing, 2023.

Aminabadi, R. Y., Rajbhandari, S., Awan, A. A., Li, C.,
Li, D., Zheng, E., Ruwase, O., Smith, S., Zhang, M.,
Rasley, J., et al. Deepspeed-inference: enabling efficient
inference of transformer models at unprecedented scale.
In SC22: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–15.
IEEE, 2022.

Anthropic, A. The claude 3 model family: Opus, sonnet,
haiku. Claude-3 Model Card, 1, 2024.

Bai, J., Bai, S., Chu, Y., Cui, Z., Dang, K., Deng, X., Fan,
Y., Ge, W., Han, Y., Huang, F., et al. Qwen technical
report. arXiv preprint arXiv:2309.16609, 2023a.

Bai, Y., Lv, X., Zhang, J., Lyu, H., Tang, J., Huang, Z.,
Du, Z., Liu, X., Zeng, A., Hou, L., et al. Longbench: A
bilingual, multitask benchmark for long context under-
standing. arXiv preprint arXiv:2308.14508, 2023b.

Bai, Y., Tu, S., Zhang, J., Peng, H., Wang, X., Lv, X.,
Cao, S., Xu, J., Hou, L., Dong, Y., Tang, J., and Li,
J. Longbench v2: Towards deeper understanding and

reasoning on realistic long-context multitasks. arXiv
preprint arXiv:2412.15204, 2024.

Beltagy, I., Peters, M. E., and Cohan, A. Long-
former: The long-document transformer. arXiv preprint
arXiv:2004.05150, 2020.

Dao, T. Flashattention-2: Faster attention with bet-
ter parallelism and work partitioning. arXiv preprint
arXiv:2307.08691, 2023.

Dao, T., Fu, D., Ermon, S., Rudra, A., and Ré, C. Flashat-
tention: Fast and memory-efficient exact attention with
io-awareness. Advances in Neural Information Process-
ing Systems, 35:16344–16359, 2022.

Ding, J., Ma, S., Dong, L., Zhang, X., Huang, S., Wang, W.,
Zheng, N., and Wei, F. Longnet: Scaling transformers to
1,000,000,000 tokens. arXiv preprint arXiv:2307.02486,
2023.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Fu, Y., Cai, Z., Asi, A., Xiong, W., Dong, Y., and Xiao, W.
Not all heads matter: A head-level kv cache compression
method with integrated retrieval and reasoning. arXiv
preprint arXiv:2410.19258, 2024.

Gu, A. and Dao, T. Mamba: Linear-time sequence
modeling with selective state spaces. arXiv preprint
arXiv:2312.00752, 2023.

Hooper, C., Kim, S., Mohammadzadeh, H., Mahoney,
M. W., Shao, Y. S., Keutzer, K., and Gholami, A.
Kvquant: Towards 10 million context length llm in-
ference with kv cache quantization. arXiv preprint
arXiv:2401.18079, 2024.

Hsieh, C.-P., Sun, S., Kriman, S., Acharya, S., Rekesh, D.,
Jia, F., Zhang, Y., and Ginsburg, B. Ruler: What’s the
real context size of your long-context language models?
arXiv preprint arXiv:2404.06654, 2024.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C.,
Chaplot, D. S., Casas, D. d. l., Bressand, F., Lengyel, G.,
Lample, G., Saulnier, L., et al. Mistral 7b. arXiv preprint
arXiv:2310.06825, 2023.

Jiang, H., LI, Y., Zhang, C., Wu, Q., Luo, X., Ahn, S., Han,
Z., Abdi, A. H., Li, D., Lin, C.-Y., et al. Minference 1.0:

5

Submission and Formatting Instructions for LCFM 2024

Accelerating pre-filling for long-context llms via dynamic
sparse attention. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Kamradt, G. Needle in a haystack-pressure testing llms.
Github Repository, pp. 28, 2023.

Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F.
Transformers are rnns: Fast autoregressive transformers
with linear attention. In International conference on ma-
chine learning, pp. 5156–5165. PMLR, 2020.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Lee, W., Lee, J., Seo, J., and Sim, J. Infinigen: Efficient gen-
erative inference of large language models with dynamic
kv cache management. In 18th USENIX Symposium on
Operating Systems Design and Implementation (OSDI
24), pp. 155–172, 2024.

Li, Y., Jiang, H., Wu, Q., Luo, X., Ahn, S., Zhang, C., Abdi,
A. H., Li, D., Gao, J., Yang, Y., et al. Scbench: A kv
cache-centric analysis of long-context methods. arXiv
preprint arXiv:2412.10319, 2024.

Liu, H., Yan, W., Zaharia, M., and Abbeel, P. World model
on million-length video and language with blockwise
ringattention. CoRR, 2024a.

Liu, Z., Yuan, J., Jin, H., Zhong, S., Xu, Z., Braverman, V.,
Chen, B., and Hu, X. Kivi: A tuning-free asymmetric
2bit quantization for kv cache. In Forty-first International
Conference on Machine Learning, 2024b.

Loeschcke, S. B., Toftrup, M., Kastoryano, M., Belongie, S.,
and Snæbjarnarson, V. Loqt: Low-rank adapters for quan-
tized pretraining. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Luo, C., Zhao, J., Chen, Z., Chen, B., and Anandkumar,
A. Mini-sequence transformers: Optimizing intermediate
memory for long sequences training. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Pal, A., Karkhanis, D., Roberts, M., Dooley, S., Sundarara-
jan, A., and Naidu, S. Giraffe: Adventures in expanding
context lengths in llms. arXiv preprint arXiv:2308.10882,
2023.

Pekelis, L., Feil, M., Moret, F., Huang, M., and Peng, T.
Llama 3 gradient: A series of long context models, 2024.

Peng, B., Alcaide, E., Anthony, Q., Albalak, A., Arcadinho,
S., Biderman, S., Cao, H., Cheng, X., Chung, M., Grella,
M., et al. Rwkv: Reinventing rnns for the transformer era.
arXiv preprint arXiv:2305.13048, 2023.

Sand-AI. Magi-1: Autoregressive video generation at
scale, 2025. URL https://static.magi.world/
static/files/MAGI_1.pdf.

Shah, J., Bikshandi, G., Zhang, Y., Thakkar, V., Ramani, P.,
and Dao, T. Flashattention-3: Fast and accurate attention
with asynchrony and low-precision. In The Thirty-eighth
Annual Conference on Neural Information Processing
Systems, 2024.

Sheng, Y., Zheng, L., Yuan, B., Li, Z., Ryabinin, M., Chen,
B., Liang, P., Ré, C., Stoica, I., and Zhang, C. Flexgen:
High-throughput generative inference of large language
models with a single gpu. In International Conference
on Machine Learning, pp. 31094–31116. PMLR, 2023.

Su, J., Ahmed, M., Lu, Y., Pan, S., Bo, W., and Liu, Y.
Roformer: Enhanced transformer with rotary position
embedding. Neurocomputing, 568:127063, 2024.

Tang, H., Lin, Y., Lin, J., Han, Q., Hong, S., Yao, Y., and
Wang, G. Razorattention: Efficient kv cache compression
through retrieval heads. arXiv preprint arXiv:2407.15891,
2024.

Team, G., Mesnard, T., Hardin, C., Dadashi, R., Bhupatiraju,
S., Pathak, S., Sifre, L., Rivière, M., Kale, M. S., Love,
J., et al. Gemma: Open models based on gemini research
and technology. arXiv preprint arXiv:2403.08295, 2024.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Williams, S., Waterman, A., and Patterson, D. Roofline:
an insightful visual performance model for multicore
architectures. Communications of the ACM, 52(4):65–76,
2009.

Wu, W., Wang, Y., Xiao, G., Peng, H., and Fu, Y. Re-
trieval head mechanistically explains long-context factu-
ality. arXiv preprint arXiv:2404.15574, 2024.

Xiao, G., Tang, J., Zuo, J., Guo, J., Yang, S., Tang, H.,
Fu, Y., and Han, S. Duoattention: Efficient long-context
llm inference with retrieval and streaming heads. arXiv
preprint arXiv:2410.10819, 2024a.

6

https://static.magi.world/static/files/MAGI_1.pdf
https://static.magi.world/static/files/MAGI_1.pdf

Submission and Formatting Instructions for LCFM 2024

Xiao, G., Tian, Y., Chen, B., Han, S., and Lewis, M. Ef-
ficient streaming language models with attention sinks.
In The Twelfth International Conference on Learning
Representations, 2024b.

Xiong, Y., Wu, H., Shao, C., Wang, Z., Zhang, R., Guo, Y.,
Zhao, J., Zhang, K., and Pan, Z. Layerkv: Optimizing
large language model serving with layer-wise kv cache
management. arXiv preprint arXiv:2410.00428, 2024.

Ye, Z., Chen, L., Lai, R., Lin, W., Zhang, Y., Wang, S., Chen,
T., Kasikci, B., Grover, V., Krishnamurthy, A., et al. Flash-
infer: Efficient and customizable attention engine for
llm inference serving. arXiv preprint arXiv:2501.01005,
2025.

Zhang, Z., Sheng, Y., Zhou, T., Chen, T., Zheng, L., Cai,
R., Song, Z., Tian, Y., Ré, C., Barrett, C., et al. H2o:
Heavy-hitter oracle for efficient generative inference of
large language models. Advances in Neural Information
Processing Systems, 36:34661–34710, 2023.

Zhao, J., Zhang, Z., Chen, B., Wang, Z., Anandkumar, A.,
and Tian, Y. Galore: Memory-efficient llm training by
gradient low-rank projection. In Forty-first International
Conference on Machine Learning, 2024.

Zhou, Z., Ning, X., Hong, K., Fu, T., Xu, J., Li, S., Lou,
Y., Wang, L., Yuan, Z., Li, X., et al. A survey on effi-
cient inference for large language models. arXiv preprint
arXiv:2404.14294, 2024.

7

Submission and Formatting Instructions for LCFM 2024

A. Experiment Details
A.1. Prefill and Decoding Overhead of HEADINFER

We evaluate the computational overhead of HEADINFER compared to baseline approaches across different context lengths
using the Llama-3-8B model. Our analysis focuses on two key phases: prefill and decoding. Here we provide additional
experiments between vllm (Kwon et al., 2023) and HEADINFER +flashinfer(Ye et al., 2025).

Table 4. Prefill speed (tokens / s) of Llama3-8B under different context lengths.
Prefill Latency(s) 10K 20K 40K 100K 200K 400K 1M 2M 4M

VLLM 9151 7847 - - - - - - -
HEADINFER group=1 8982 7781 6060 3476 2121 1196 - - -
HEADINFER group=2 8910 7646 5784 3455 2100 1190 516 - -
HEADINFER group=4 8910 7516 5570 3442 2100 1180 516 264 -
HEADINFER group=8 8700 7221 5405 3365 2079 1176 511 263 155
HEADINFER Adaptive 8982 7781 5906 3476 2121 1196 516 264 155

Table 5. Decoding speed (tokens / s) of Llama3-8B under different context sizes.
Decoding Latency(s) 10K 20K 40K 100K 200K 400K 1M 2M 4M

VLLM 52 49 - - - - - - -
HEADINFER group=1 12 7 3.7 1.6 0.79 0.40 - - -
HEADINFER group=2 11 6 3.7 1.5 0.78 0.40 0.16 - -
HEADINFER group=4 10 6 3.4 1.5 0.78 0.40 0.16 0.07 -
HEADINFER group=8 8 5 3.1 1.4 0.77 0.39 0.16 0.07 0.04
HEADINFER Adaptive 12 7 3.7 1.6 0.79 0.40 0.16 0.07 0.04

For prefill operations, HEADINFER demonstrates similar performance to standard approaches for shorter context lengths (up
to 20K tokens). Beyond this range, HEADINFER scales efficiently with longer contexts, outperforming Layer-offload due to
its fine-grained head-wise KV cache management. Notably, HEADINFER enables inference for 4M tokens on a single GPU,
which is otherwise infeasible.

In decoding, HEADINFER maintains low latency at short and medium context lengths. For extended contexts (e.g., 1M
and beyond), HEADINFER introduces manageable latency while supporting unprecedented context lengths, with adaptive
configurations optimizing performance further.

The performance of HEADINFER relies on its ability to dynamically adapt to varying hardware constraints and workload
requirements by controlling the granularity of offloading. Specifically, HEADINFER Adaptive achieves optimal performance
by selectively choosing the most suitable head group size based on the context length and memory limitations.

HEADINFER (Head = 8 / Group = 1). This configuration aggregates all attention heads within a layer into a single group
for offloading, effectively making the KV cache management layer-wise. As such, HEADINFER (Head Group = 8) is
functionally equivalent to Layer-Offload, where all KV cache for a layer is stored on either the GPU or offloaded to the
CPU in a single operation. However, HEADINFER provides the flexibility to adjust the granularity of KV cache management
beyond this layer-wise approach.

HEADINFER (Head = 1 / Group = 8). At the other extreme, this configuration offloads each attention head individually,
offering the finest level of granularity for KV cache control. While this achieves the highest memory savings, frequent PCIe
transfers and kernel launches introduce overhead, especially for shorter context lengths, which can impact throughput.

HEADINFER Adaptive dynamically selects the optimal head group size (h) to balance memory efficiency and computational
throughput. This adaptability allows it to achieve superior performance across diverse hardware and context length
requirements:

This adaptability positions HEADINFER Adaptive as an essential method for large-scale language model inference in
memory-constrained environments.

8

Submission and Formatting Instructions for LCFM 2024

Figure 3. HEADINFER provides equal accuracy as standard inference on the Needle-in-a-Haystack benchmark

A.2. Long-Context Benchmarks Details

SCBench (Li et al., 2024) is a comprehensive suite of datasets encompassing multiple tasks, designed to assess long-context
understanding capabilities. It contains subsets with different prompt lengths up to 500K tokens and 227K on average. As
shown in Table 6, we measure their overall scores for different task categories. HEADINFER outperforms all other methods
on all 9 tasks, with superior 1M context length.

Table 6. Performance(benchmark score) of different methods on SCBench on a single RTX-4090 GPU. kv and ps are string retrieval in
key-value and prefix-suffix scenarios. vt is variable tracking. qa-chn, qa-eng are English/Chinese question answering. mf is finding the
math answer. many-shot is finding multiple shots in context. summary is document summarization.

SCBench kv ps vt qa-chn qa-eng mf many-shot summary
Standard 25K 15.8 9.6 4.6 9.4 13.3 2.6 16.3 32.3
Chunked Prefill 30K 21.4 10.4 6.9 9.4 15.5 2.2 25.2 33.5
Layer-wise offload 45K 22.6 12.8 8.4 10.4 15.7 2.2 25.9 33.6
HEADINFER 1024K 28 17.2 42 11.9 23.0 9.4 25.9 37.1

Needle-in-a-Haystack (Kamradt, 2023) is a challenging pressure test designed to assess the ability of models to accurately
identify and retrieve relevant information from a lengthy context. Figure 3 presents the results on Needle In A Haystack. We
use 1024K for Llama-3-8B-Instruct-Gradient-1024k. HEADINFER can accurately recall the information queried within the
context in question.

Ruler (Hsieh et al., 2024). Designed for a comprehensive evaluation of long context, the Ruler benchmark is a recent
synthetic benchmark suite that includes 13 complex tasks in four main categories. Each context length variation includes
2,600 examples, with tests conducted at 4K, 8K, 16K, 32K, 64K, and 128K tokens. The benchmark comprises four key
categories. The retrieval category includes various Needle-in-a-Haystack tasks: Single (S-NIAH) for finding individual
key-value pairs in noisy text, Multi-keys (MK-NIAH) for retrieving specific values among hard distractors, Multi-values
(MV-NIAH) for finding all values linked to a single key, and Multi-queries (MQ-NIAH) for retrieving values across multiple
keys. The Multi-hop Tracing category features Variable Tracking (VT), requiring models to trace and return all variable
names pointing to the same value through variable bindings. For aggregation, the benchmark includes Common Words
Extraction (CWE) for identifying top-K common words from mixed sets and Frequent Words Extraction (FWE) for finding
the most frequent words from a Zeta distribution. The Question Answering category extends traditional QA datasets by
adding distracting paragraphs, testing models’ ability to locate and utilize relevant information amid distractors.

Table 7. Maximum achievable sequence lengths for different inference methods

Method Supported Sequence Length within Ruler

Standard Inference 16K
Chunked-Prefill 32K
Layer-wise Offload 32K
HEADINFER 128K

Table 7 demonstrates the maximum achievable sequence lengths for different inference methods on the Ruler benchmark.
Standard inference, while straightforward, is limited to 16K tokens due to memory constraints. Both Chunked-Prefill and
Layer-wise Offload methods double this capacity to 32K tokens through their respective optimization strategies. HEADINFER
shows a significant advancement by enabling processing of sequences up to 128K tokens - a 4x improvement over other

9

Submission and Formatting Instructions for LCFM 2024

offloading methods and a 8x improvement over standard inference. This extension in sequence length is achieved through
HEADINFER ’s novel head-wise offloading strategy, which more efficiently manages GPU memory utilization.

Table 8. Performance on Ruler benchmark tasks across different context lengths
Context NIAH MK-2 MK-3 VT CWE FWE QA-1 QA-2
Length (%) (%) (%) (%) (%) (%) (%) (%)

4K 100.0 99.6 100.0 99.20 99.38 94.53 84.6 59.8
8K 100.0 99.8 99.6 99.08 94.68 84.93 79.2 56.2
16K 100.0 100.0 99.4 98.72 56.90 90.60 79.6 53.2
32K 100.0 99.6 99.8 97.32 2.78 93.20 77.2 50.4
64K 100.0 97.4 97.8 92.48 0.10 84.27 76.0 49.4
128K 100.0 75.2 56.6 54.68 0.10 74.8 71.8 41.2
HEADINFER only

Table 8 presents a comprehensive analysis of performance across different tasks and context lengths. Since the ruler designs
different tasks for different context lengths, the ruler’s Multi-hop Tracing, Aggregation, and Question Answering become
more difficult to complete in long sequence scenarios. This is different from scbench, which directly truncates long sequence
tasks. However, even in this case, HEADINFER can still show the same performance as standard inference, which confirms
its mathematical consistency.

A.3. Long-Context Video Generation Details

The video generation process with MAGI-1 4.5B follows an autoregressive approach where each video chunk is predicted
sequentially. Our configuration includes:

• Resolution: 720x1280 pixels

• Frame Rate: 24 FPS

• Denoising Steps: 64 steps per frame for time experiment of sec 3.3.

• Prompt: ”good boy” (consistent across all experiments)

• Hardware: Single NVIDIA RTX 4090 (24GB VRAM)

(a) time=0, frame=0 (b) time=10, frame=240 (c) time=20, frame=480 (d) time=30, frame=720Figure 4. Generating 768 frames using MAGI-4.5B. The step of denoising is set as 64.

(a) time=0s, frame=0 (b) time=32s, frame=768 (c) time=1min4s, frame=1536 (d) time=2min8s, frame=3072Figure 5. Generating 3072 frames using MAGI-4.5B. The step of denoising is set as 64.

Figures 4 and 5 showcase sample frames from our generated videos at different timestamps. Figure 4 displays frames from a
32-second video (768 frames), while Figure 5 demonstrates our extended generation capability with a 2-minute 8-second
video (3072 frames). All videos are generated by HEADINFER implementation of MAGI-1 4.5B. We observe from Figures
4 the visual quality remains consistent throughout the generation process, with no noticeable degradation in later frames of
768 frames. However, with longer context up to 2.7 millions and 3072 frame, noticeable degradation is observed (good boy
out of screen and transition exposure). It shows that HEADINFER provides a 4× context length extension. This enables the
generation of videos exceeding 2 minutes in length (2,764,800 tokens) on a single consumer-grade RTX-4090 GPU.

10

Submission and Formatting Instructions for LCFM 2024

A.4. Inference Memory Analysis

In this work, we compare several inference configurations, each targeting different trade-offs between memory efficiency
and inference speed. While Figure 1 gives the theoretical benefit of HEADINFER compared to other methods in terms of
memory usage, we also give how the theoretical memory is calculated here. Table 9 provides a comparative breakdown of
memory usage across different inference strategies of Llama3-8B. Table 10 summarizes the memory usage comparison on
the MAGI-4.5B model under various inference strategies. Larger models (e.g. Llama2-13B, Qwen2.5-32B) on larger GPU
(e.g. A100 40B/8B) are presented on Table 11 and Table 12. These methods balance GPU memory consumption for weights,
KV-cache, and activations while addressing the challenges of scaling to long-context inputs. Each strategy is outlined below:

Table 9. Memory usage comparison for Llama3-8B with 1 million context length

Method Weight KV-cache Activation Total Total KV cache ∗

Standard 15.08 128 64 207 128
Chunked Prefill 15.08 128 0.625 143 128
4bit-KV-quant 15.08 32 64 111 32
layer-wise-offload 15.08 8 64 87 128
HEADINFER 15.08 1 0.625 16.7 128
∗Total KV cache includes both GPU and CPU memory for offloading methods

Table 10. Memory usage comparison for Magi-4.5B with 1-min video and 1.4 million context length

Method Weight KV-cache Activation Total Total KV-cache ∗

Standard 16.73 158.20 4.94 179.88 158.20
layer wise-offload 16.73 9,89 4.94 31.56 158.20
HEADINFER 16.73 1.24 4.94 22.91 158.20
∗Total KV cache includes both GPU and CPU memory for offloading methods

• Standard: The standard inference method keeps all weights, KV-cache, and activations entirely in GPU memory. With
a context length of S, the KV-cache scales as S × L × Dh × H , where L is the number of layers, Dh is the hidden
dimension per head, and H is the number of attention heads. Activations require additional memory of S×D+2×S× I ,
where I is the intermediate MLP dimension. While this approach achieves baseline performance, it is constrained by GPU
memory limits (e.g., 128 GB for the KV-cache and 207GB for toal).

• Chunked-Prefill: By dividing the input into smaller chunks of size chunk, this method reduces activation memory
from S to chunk. The memory footprint for activations is chunk×D + 2×chunk×I , where only part of the sequence
resides in GPU memory during processing. Although the KV-cache size remains S × L × Dh × H , this technique
significantly lowers activation memory requirements, reduce total memory from 207GB to 143GB.

• 4-bit KV-Quant: This method compresses the KV-cache from fp16/bf16 (16-bit floating point) to a 4-bit representation,
reducing its size by a factor of 4. The memory usage becomes S×L×Dh×H/4, while activations remain S×D+2×S×I .

• Layer-wise Offload: This strategy offloads the KV-cache for entire layers to CPU memory as soon as computation for
that layer is complete. On GPU, the memory required for KV-cache is reduced to S ×Dh ×H × 2, the final 2 due to
the ping-pong memory mechanism. However, offloading incurs communication overhead, making this approach more
suitable for scenarios with sufficient PCIe bandwidth.

• HEADINFER : Our proposed approach achieves fine-grained control over memory by offloading KV-cache at the attention
head level. With a ping-pong memory mechanism, the on-GPU KV-cache is reduced to S × Dh × 2, significantly
lowering memory requirements. Activations are further minimized by combining chunked prefill with selective offloading.
HEADINFER enables unprecedented scaling to 1M tokens and beyond, allowing context lengths of up to 4 million tokens
with minimal GPU memory usage. Also, we observe the total estimated memory of 16.7 GB is close to the real measured
memory of 17.0 GB, demonstrating the effectiveness of our estimation.

11

Submission and Formatting Instructions for LCFM 2024

Table 11. Memory usage comparison for Llama2-13B with 1 million context length

Method Weight KV-cache Activation Total A100-40GB

Standard 24.37 800 128 952.37 40
chunk-prefill 24.37 800 1.25 825.62 40
4bit-KV-quant 24.37 200 128 352.37 40
layer wise-offload 24.37 40 128 192.37 40
HEADINFER 24.37 1 1.25 26.62 40

Table 12. Memory usage comparison for Qwen2.5-32B with 1 million context length

Method Weight KV-cache Activation Total A100-80GB

Standard 61.03 256 236 553.03 80
chunk-prefill 61.03 256 2.33 319.36 80
4bit-KV-quant 61.03 64 236 361.03 80
layer wise-offload 61.03 8 236 305.03 80
HEADINFER 61.03 1 2.33 64.36 80

Table 13 summarizes the GPU memory usage for weights, KV cache, and activations, as well as the total usage for in-device
experiment. A detailed inference setting for each model and a comprehensive memory estimation of each method (including
key hyperparameters, chunk sizes, and offloading policies) are provided here. As shown in table 13, we focus on five
representative strategies for Llama-3-8B inference under varying context lengths:

Table 13. Memory consumption analysis for different inference methods (in GB) on Llama-3-8B

Method Weights KV cache Activation Total Total KV cache ∗

Standard-25K 15.08 3.13 1.56 19.77 3.13
Chunked-Prefill-30K 15.08 3.75 0.63 19.46 3.75
4bit-KV-Quant-45K 15.08 1.41 2.81 19.30 1.41
Layer-Wise-Offload-45K 15.08 0.35 2.81 18.25 5.63
HEADINFER -4000K 15.08 3.91 0.63 19.61 500
∗Total KV cache includes both GPU and CPU memory for offloading methods

• Standard-25K: Baseline approach with unmodified inference. All model weights, activations, and the entire KV cache
stay on the GPU. Context length is limited by GPU memory.

• Chunked-Prefill-30K: Splits the prompt into sequential chunks to reduce activation overhead. KV cache remains on
GPU. We use a chunk size (e.g., 4K or 8K tokens) such that each partial forward pass does not exceed GPU capacity.

• 4bit-KV-Quant-45K: Applies a 4-bit quantization technique to KV cache, shrinking cache size by approximately 4×
compared to FP16/BF16. However, the method can introduce additional on-GPU overhead in activation or conversion
operations. In our tests, we adopt a standard quantization library (Hooper et al., 2024) for uniform 4-bit KV representation.

• Layer-Wise-Offload-45K: Offloads each layer’s KV cache to CPU memory as soon as possible. During inference, only
the KV cache for the currently processing layer is kept on the GPU. Once attention computation for that layer completes,
its KV cache is swapped out to the CPU. This approach significantly lowers on-GPU KV cache usage but may incur
additional offload overhead at each layer boundary.

• HEADINFER -4000K: Our proposed head-wise offloading approach (HEADINFER) that partitions the KV cache by
attention heads. While some heads remain fully on GPU, the cache for other heads (or tokens) are immediately offloaded
to CPU memory. Despite a very large total KV cache (reported as “500 GB” in Table 13), only a small fraction resides on
the GPU at any time. This enables context lengths in the order of millions of tokens if sufficient CPU RAM is available.

12

Submission and Formatting Instructions for LCFM 2024

Input Context(This is a very long story book):
…[repeating of long paragraph]…

HeadInfer’s favorite number is 42
…[repeating of long paragraph]...

 Question: What is HeadInfer’s favorite number?
 Original model: HeadInfer’s favorite number is 42
 StreamLLM: HeadInfer’s favorite number is not provided
 H2O: zzz…(repeating meaningless sign)
 HeadInfer: HeadInfer’s favorite number is 42
 HeadInfer + 50% Sparsity: HeadInfer’s favorite number is 42

J

L

J

J

L

Figure 6. Token eviction methods cannot work when querying the less relevant information to the main theme. Here, we use a 10K
document from LongBench (Bai et al., 2023b) and add one sentence that is not relevant to the main theme. In this case, H2O discards
tokens less relevant to the main theme, leading to error generation. StreamingLLM discards tokens based on the query but remaining
question tokens, making it Hallucinations. HEADINFER can successfully output the exact information from the lengthy input, even when
we compress 75% of the KV cache

For total memory we define:

Mtotal; =;Mweights +MKV cache +Mactivation.

Weights (e.g., 15.08GB in Llama-3-8B) remain constant for all methods. The KV cache size grows with the number of
tokens processed (sequence length) but can be reduced or offloaded depending on the method. Activation memory arises
from forward-pass intermediate tensors (attention blocks, MLP layers, etc.) and is partially minimized by chunking or
parallelization strategies.

In Table 13, KV cache and Activation columns refer to the approximate GPU memory usage during inference; any data
offloaded to CPU memory (or disk) is not included in these columns but is counted in Total KV cache if applicable. For
instance, HEADINFER has a GPU-side KV cache usage of about 3.9GB at any instant, whereas the overall KV cache
across CPU and GPU is up to 500GB, enabling very long context windows.

B. Motivation and Related Work
In this section, we first explain that the KV cache size becomes a critical issue for long-text generation in LLM inference,
and it becomes more problematic when deploying modern offloading-based inference systems. We then discuss why the
existing KV cache management methods cannot fundamentally address the problem in an offloading-based system.

B.1. Memory Requirements for Inference

This section characterizes the memory requirements for transformer inference. It can be categorized into two components:
i) Model Parameters and ii) Activation memory primarily referring to KV cache. The memory requirement for model
parameters primarily depends on the hidden dimension D, the number of attention heads, and the number of Transformer
layers L. Nearly all the parameters in a Transformer block come from linear layers within L attention blocks, L multilayer
perceptron (MLP) blocks, and one language modeling head (LM-head) block. Take Llama-3-8B as an example; the total
parameters in a transformer-based model can be approximated as 14 × L ×HD2 with 15GB of memory. The memory
required for activation memory primarily consists of the KV cache, which depends on the model architecture, batch size B,
and sequence length S, and it can be pretty significant. The memory can be estimated as 2×B × S ×H ×D. For instance,
in the Llama-3-8B (Dubey et al., 2024) model architecture, serving with FP16 KV cache for 1 million tokens would require
at least 207 GB of memory—exceeding the capacity of a single 80GB GPU.

13

Submission and Formatting Instructions for LCFM 2024

B.2. KV Cache in LLM Inference Systems

As discussed in the previous section, today’s LLM serving systems exploit KV caching to avoid redundant computation of
key and value projections during the chunked-prefill decoding stage. While this is an effective solution for short sequence
generation with a single client request, the KV cache quickly becomes a key memory consumer when we generate long
sequences or employ modern request batching techniques (Sheng et al., 2023).

In the Llama-3-8B (Dubey et al., 2024) model architecture, serving with FP16 KV cache for 1 million tokens would require
at least 256 GB of memory—exceeding the capacity of a single 80GB GPU. Additionally, the latencies of pre-filling and
decoding with such large contexts are significant, posing substantial challenges to the effective use of LLMs in long-context
scenarios.

The rapidly expanding KV cache leads to an urgent need and numerous efforts for KV cache compression, particularly
in scenarios with limited GPU memory. Architectural modifications, such as Grouped-Query Attention (Ainslie et al.,
2023), Rope (Su et al., 2024), LongNet (Ding et al., 2023), MST (Luo et al., 2024), LoQT (Loeschcke et al., 2024), Lora
(Hu et al., 2021) and Galore (Zhao et al., 2024) require expensive model pre-training. One direction is non-Transformer
architecture design, such as Mamba (Gu & Dao, 2023), Linear Attention (Katharopoulos et al., 2020), RWKV (Peng et al.,
2023). However, the transformer is still the most widely used model structure, and in this paper, we focus on KV cache
reduction for typical transformers. One direction is to identify and retain only the most ’valuable’ tokens within the KV
cache. Representative methods include Sliding Window Attention (Beltagy et al., 2020), Heavy Hitter (Zhang et al., 2023),
and StreamingLLM (Xiao et al., 2024b). Another direction is to identify and retain the attention heads. Wu et al. (Wu
et al., 2024) find a way to evaluate the importance of attention heads. Head-wise sparsity such as duo-attention (Xiao et al.,
2024a), HeadKV (Fu et al., 2024), and Razorattention (Tang et al., 2024) start to divide up KV cache budgets based on the
importance of each head, which is usually determined by the need for retrieval or reasoning. Minference (Jiang et al., 2024)
takes this idea further by applying distinct sparse patterns to different heads.

LLM Inference Systems with Offloading. In modern GPU systems, there is a significant disparity between CPU and GPU
memory capacities and costs. CPU RAM typically offers much larger capacity at a lower cost than GPU memory. For
example, modern server-grade systems can easily accommodate 1-2TB of CPU RAM, while even high-end GPU cards like
the NVIDIA A100 are limited to 80GB of memory. The cost difference is also substantial—server-grade DDR4/DDR5
RAM typically costs a fraction per gigabyte compared to specialized GPU memory.

This observation is supported by several prominent works offloading the KV cache to the CPU memory: FlexGen (Sheng
et al., 2023) leverages this hardware characteristic by utilizing CPU memory as an extension of GPU memory, allowing for
efficient LLM inference even with limited GPU resources. DeepSpeed (Aminabadi et al., 2022) implements sophisticated
offloading strategies that take advantage of the larger CPU memory capacity to handle model weights and KV cache that
would not fit in GPU memory alone. Infinitigen (Lee et al., 2024) builds on these foundations by introducing dynamic KV
cache management that works synergistically with offloading systems, but its efficiency is highly related to token eviction.

However, this memory hierarchy presents a trade-off: while CPU memory provides larger capacity at lower cost, data
transfer between CPU and GPU over PCIe becomes a potential bottleneck due to limited bandwidth compared to GPU
memory access speeds. This necessitates careful data movement management and strategic offloading decisions to maintain
efficient inference performance.

B.3. Challenges in KV Cache Management

In this context, several recent works propose reducing the KV cache size through retrieval head evictions. However, all the
prior works assume the persistence of attention patterns across layers, that is, if a head is deemed a retrieval head.

KV token eviction affects long-context performance. Figure 6 shows significant performance degradation since the actual
information required by the query might be discarded if considered unimportant, which uses the KV cache of all prior tokens
for computing attention results, and the KV cache management method of H2O with a KV cache budget of 2000 tokens.
H2O (Zhang et al., 2023) is a state-of-the-art technique that retains only a small percentage of important tokens in the KV
cache to reduce its size. It assesses the importance of each token in every iteration and removes unimportant ones before the
next iteration to keep the KV cache size in check.

The figure indicates that this is not the practice case, despite H2O-like approaches assuming that the attention pattern does
not change across heads. The tokens deemed unimportant in the one-head iteration could become important in other heads.

14

Submission and Formatting Instructions for LCFM 2024

10
3

10
3

10
-3

10
-3

P
e

rf
o

rm
an

ce
[T

FL
O

P
/s

]

Arithmetic Intensity[FLOP/Byte]

Roofline Analysis with RTX-4090

10
2

10
2

10
1

10
1

10
0

10
0

10
-1

10
-1

10
-2

10
-2

10
-2

10
-2

10
-1

10
-1

10
0

10
0

10
1

10
1

10
2

10
2

Decode

Prefill 1k Prefill 10k
Prefill 1k

HeadInfer/Offload

Prefill 10k
HeadInfer/Offlload

Saturation: BF16 Tensor Core(165.2 GFLOPs)

Decode HeadInfer(Overlapped with Decode Offload)
Offload

BaselineBaseline

HeadInferHeadInfer

10
3

10
-3

P
e

rf
o

rm
an

ce
[T

FL
O

P
/s

]

Arithmetic Intensity[FLOP/Byte]

Roofline Analysis with RTX-4090

10
2

10
1

10
0

10
-1

10
-2

10
-2

10
-1

10
0

10
1

10
2

Decode

Prefill 1k Prefill 10k
Prefill 1k

HeadInfer/Offload

Prefill 10k
HeadInfer/Offlload

Saturation: BF16 Tensor Core(165.2 GFLOPs)

Decode HeadInfer(Overlapped with Decode Offload)
Offload

Baseline

HeadInfer

Figure 7. Flashattention in the roofline plot analysis using the RTX-4090 device setting.

Consequently, H2O exhibits high similarity until around 200 iterations (i.e., within the KV cache budget). However, as the
sequence length extends beyond the KV cache budget, it struggles with the attention pattern’s dynamic nature, resulting in
more error generation than the optimal case. Note that while we only show the scenario of a KV cache budget of 2000 out
of a total sequence length of 10000 tokens for brevity, this issue would become more pronounced as the sequence length
surpasses it.

Prior works aiming to reduce the KV cache size through token eviction inherently have some challenges. Given the dynamic
attention pattern across iterations, permanently excluding evicted tokens from retinal head token generation can result in a
non-negligible drop in accuracy. Instead, we must keep the full attention tokens from the retrieval head while selectively
evicting less important heads. Furthermore, prior works’ iterative allocation of KV cache memory leads to inefficient KV
cache management. The number of key/value tokens required increases during chunked-prefill, and each extended context
inference demands effective memory management. Failing to account for this allocation may result in ineffective KV cache
management. Thus, we need to adjust the memory of key/value token pre-allocation while considering the variances between
retrieval and full head.

C. Roofline Model for head-wise flash attention
Although KV cache offload is proposed to reduce memory usage, it remains an open question whether offloading harms
overall performance, especially when the context length S is large and works with chunked-prefill. This section analyzes the
theoretical peak performance for a given GPU under constrained high-bandwidth memory (HBM) and peripheral component
interconnect express (PCIe).

Performance Model. We consider a GPU characterized by HBM capacity MHBM , memory bandwidth Bmem, and compute
throughput FGPU (measured in FLOPS). We also incorporate the slower PCIe bandwidth Bpcie into the performance model
to account for the offload.

Memory Bound vs. Compute Bound. GPU operators can be classified as compute bound or memory bound, which is
determined by the time spent in arithmetic operations and the time spent accessing HBM. Two primary bottlenecks define
the system’s performance regime:

• Memory-Bound: When Bmem (memory bandwidth) is insufficient to transfer the KV cache quickly enough, inference
operates below the GPU’s peak FLOPS capacity.

• Compute-Bound: When Bmem is sufficient, high compute efficiency is achieved and the throughput is determined by the
GPU’s peak computation rate FGPU .

Roofline Model. The roofline plot typically displays a kernel’s computation throughput and arithmetic intensity, providing a
visual representation of its hardware performance. We present the roofline analysis for the FlashAttention kernel (Dao et al.,
2022; Dao, 2023; Shah et al., 2024) executed on an RTX-4090 (Figure 7), with details in Appendix C. We believe that the
roofline model can analyze both GPU and heterogeneous systems performance.

15

Submission and Formatting Instructions for LCFM 2024

Our key observations from roofline analysis are:

• Prefill (compute-bound behavior). ”Prefill HEADINFER /Offload” has higher arithmetic intensity than ”Prefill” as it only
offloads KV cache, and the arithmetic intensity grows as context length increases. For context lengths S ≥ 10k, prefill
remains compute-bound, even when offloading via slower PCIe bandwidth. In contrast, for short context lengths (S ≤ 1k),
“HEADINFER /Offload” shifts to the memory-bound regime, leading to offload-induced slowdowns. The turning point is
achieved at 2K, and 10K can ensure high computational efficiency.

• Decoding (memory-bound behavior). Decoding performance is primarily memory-bound. Consequently, relying on
PCIe bandwidth during offloading substantially degrades overall throughput.

• HEADINFER (unchanged behavior). HEADINFER ’s head-wise offloading during both chunked-prefill and decoding
does not alter the position of the roofline plot due to the independence of the attention heads. Although head-wise
computation impacts GPU utilization, the adaptive head strategy can preserve performance.

The Roofline model (Williams et al., 2009) serves as an effective theoretical framework to assess the potential performance
of deploying a model on particular hardware. Here we evaluate hardware performance of memory access and processing
unit capabilities.

Table 14. Performance comparison of different attention mechanisms under RTX-4090 setting

Operator Regular Offload

Memory Arithmetic
Intensity FLOP Bound Memory Arithmetic

Intensity FLOP Bound

Prefill
flash-attn (1k) 21M 820 165T comp 4.2M 4100 102T mem
flash-attn (10k) 209M 8200 165T comp 42M 41000 165T comp
flash-attn (100k) 2.1G 82000 165T comp 419M 410000 165T comp
head-wise (1k) 2.6M 820 165T comp 0.5M 4100 102T mem
head-wise (10k) 26M 8200 165T comp 5.2M 41000 312T comp
head-wise (100k) 262M 82000 165T comp 52M 410000 312T comp
Decode
flash-attn (1k) 17M 1 1T mem 17M 1 13G mem
flash-attn (10k) 168M 1 1T mem 168M 1 13G mem
flash-attn (100k) 1.7G 1 1T mem 1.7G 1 13G mem
head-wise (1k) 2.1M 1 1T mem 2.1M 1 13G mem
head-wise (10k 21M 1 1T mem 21M 1 13G mem
head-wise (100k) 210M 1 1T mem 210M 1 13G mem

Table 14 presents the analysis of layers in Llama-3-8b. From the table, we observe that during the prefill stage, the majority
of computations are compute-bound, leading to high performance. Conversely, in the decode stage, all computations are
memory-bound, resulting in performance significantly below the computational capacity of the GPU’s computation units.
Moreover, offload would make small context prefill memory-bound. Head-wise, the roofline model performs the same
arithmetic intensity and peak performance as standard FlashAttention.

We also show the roofline analysis on other GPUs, such as the A100, to demonstrate the generality of this analysis. Figure 8
shows that the prefill 1K offload is also positioned on memory-bound while the prefill 10K offload is on the compute-bound.
The details data is listed on table 15.

D. Extension: HEADINFER Implementation with Head-wise Sparsity
Figure 9 shows our memory management framework. HEADINFER , which enables offloading the head-wise KV cache with
head-wise sparsity. The key design principle behind HEADINFER is to exploit the redundancy of CPU memory capacity
to increase the context size after identifying the important heads in the KV cache. As such, most of the heads for the KV
cache are kept in the CPU memory as we generate new tokens, not discarding them like previous work. However, we do not
bring the entire KV cache to the GPU for attention but load and compute only the retrieval head of keys and values, leaving
other non-retrieval ones staying on the GPU without offloading. To do so, we maintain the head-wise cache pool in the CPU
memory and iteratively load the necessary data.

16

Submission and Formatting Instructions for LCFM 2024

Table 15. Performance comparison of different attention mechanisms under A100 setting

Operator Regular Offload

Memory Arithmetic
Intensity FLOP Bound Memory Arithmetic

Intensity FLOP Bound

Prefill
flash-attn (1k) 21M 820 312T comp 4.2M 4100 102T mem
flash-attn (10k) 209M 8200 312T comp 42M 41000 312T comp
flash-attn (100k) 2.1G 82000 312T comp 419M 410000 312T comp
head-wise (1k) 2.6M 820 312T comp 0.5M 4100 102T mem
head-wise (10k) 26M 8200 312T comp 5.2M 41000 312T comp
head-wise (100k) 262M 82000 312T comp 52M 410000 312T comp
Decode
flash-attn (1k) 17M 1 1.4T mem 17M 1 23G mem
flash-attn (10k) 168M 1 1.4T mem 168M 1 23G mem
flash-attn (100k) 1.7G 1 1.4T mem 1.7G 1 23G mem
head-wise (1k) 2.1M 1 1.4T mem 2.1M 1 23G mem
head-wise (10k) 21M 1 1.4T mem 21M 1 23G mem
head-wise (100k) 210M 1 1.4T mem 210M 1 23G mem

10
3

10
3

10
-3

10
-3

P
e

rf
o

rm
an

ce
[T

FL
O

P
/s

]

Arithmetic Intensity[FLOP/Byte]

Roofline Analysis with A100

10
2

10
2

10
1

10
1

10
0

10
0

10
-1

10
-1

10
-2

10
-2

10
-2

10
-2

10
-1

10
-1

10
0

10
0

10
1

10
1

10
2

10
2

Prefill 1k Prefill 10k

Prefill 1k
HeadInfer/Offload

Prefill 10k
HeadInfer/Offlload

Saturation: BF16 Tensor Core(312 GFLOPs)

Decode HeadInfer(Overlapped with Decode Offload)
Offload

BaselineBaseline

HeadInferHeadInfer

Decode

Figure 8. Flashattention in the roofline plot analysis using A100 device setting.

In detail, we use the pre-trained attention input head to speculate the important retrieval head. The speculation is done by
processing a customized dataset and analyzing the output. This reduces the waste of PCIe bandwidth by only transferring
retrieval heads critical for attention computation. In addition, although the data is offloaded to CPU memory, which is much
cheaper and larger than GPU memory, we manage the KV cache pool size so as not to fully utilize the CPU memory.

D.1. Design Principles

Interleaved KV cache Updates Across GPU and CPU. The uneven memory consumption and low PCIe link utilization
(studied in section 3) during different attention head generation provide an opportunity to exploit the idle GPU memory
and PCIe link during the KV cache update phase. To exploit this opportunity, during the attention processing, a head of
the attention KV cache can be dynamically fetched on the GPU to compute the attention weight output in parallel while
the CPU prefetches the next head. A key requirement to generate the attention output for a given attention head is to stage
its parameters (p), query (q), key (k), and value (v), and the attention weight generation is scheduled for each head. In
case the key (k) and value (v) of the head are not present on the GPU, the generation operation will trigger a prefetch read
from the CPU memory where the head is offloaded, causing I/O operations in the critical execution path of updates. By
leveraging the fact that multiple head attention, such as MHA (Vaswani et al., 2017) and GQA (Ainslie et al., 2023), are
embarrassingly parallel, and HEADINFER partitions the attention into smaller subgroups, we can perform fine-grained
attention generation scheduling across both GPU and CPU without impacting the consistency of generation or introducing
computational dependencies between different subgroups. Furthermore, interleaving does not incur memory allocation and
deallocation overheads because on the GPU, memory allocation is handled by PyTorch through lightweight memory pools,
and on the host, the memory for all subgroups (except static GPU subgroups) is already pre-allocated and pre-pinned (if

17

Submission and Formatting Instructions for LCFM 2024

time

......

...

Full Head KV-cache Sliding Window KV-cache

H0

Full-head

H0

Full-head

H1

Sliding

H1

Sliding
GPU

HeadInfer + 50% Sparsity example:
#Only offload Full-head KV-cache

CPU Load H2Load H2

H2

Full-head

H2

Full-head

H3

Sliding

H3

Sliding

Load H4Load H4 ...

Figure 9. Demonstrations of KV cache policies in inference from the head-wise view. Upper plots illustrate symbolic plots of an attention
map deploying different policies in LLM generation. Lower: the overview of HEADINFER .

Time

...

H2D

D2H

H0,2H0,2 H0,3H0,3 H1,0H1,0H0,0H0,0 H0,1H0,1

CPU(Memory)

H0,2

H0,2H0,2

H0,3

H0,3H0,3

H1,0

H1,0H1,0

H0,1H0,1H0,0H0,0 H0,2H0,2 H0,3H0,3 H1,0H1,0

H0,0H0,0

H0,1H0,1

H0,1

H0,1H0,1

H0,2H0,2

H0,3

H1,0

GPU
(2 head size
one time)

GPU Memory

GPU Compute

...

...

...

...

...

...

...

...

H2D: Host(CPU) to Device(GPU) Transfer D2H: Device(GPU) to Host(CPU) Transfer

...

Prefetch Next
layer’s First Head

Figure 10. Workflow of HEADINFER generating a model with (n+1) layers and (j+1) attention heads.

enabled) during initialization.

As illustrated in Figure 10, the attention is partitioned into 4 sub-heads, out of which the first head is statically placed on
the GPU for the entire inference lifetime; the KV cache corresponding to the head resides in the GPU memory. Therefore,
the interleaved offloading adopted by HEADINFER scheduled all the heads to be updated on the GPU, i.e., for every head
updated on the GPU, the host-to-device transform for the next head and the device-to-host transform for the previous head
would occur in a non-blocking fashion. This interleaved offloading makes sure that only two heads are maintained on the
GPU while most KV cache are offloaded on the CPU. This interleave-centric design allows for efficient overlap between
GPU computations and asynchronous head-wise KV cache movement across the PCIe link, which we will detail next.

Overlapping Head-wise KV cache Movement and GPU Compute The data movement observed when the state-of-the-art
framework enabling layer-wise KV cache offload (e.g., Flexgen(Sheng et al., 2023) and Deepspeed(Aminabadi et al., 2022))
runs an inference process. We observe that after the updates to the KV cache generation to a given layer i are computed on
the GPU, the updated KV cache is H2D transferred to the CPU to continue inference in the subsequent chunked-prefill and
decoding. Only when all the KV cache of next later are transferred to the GPU can the subsequent iteration begin. Given the
parallel nature of attention, the sub-heads can be updated and transferred out of order and do not impact the accuracy of the
inference. On contract, using the existing offloading solutions can be slow with head-wise sparsity attributed to (a) the KV

18

Submission and Formatting Instructions for LCFM 2024

Layer

Head

KV Cache Sample 1-Head Group4-Head Group 2-Head Group

Figure 11. Demonstrations of adaptive head-wise offloading.

cache of all heads within one layer staying on the GPU, which would occupy large memory for long context, and (b) not all
attention layers are discretized uniformly, which causes blocking H2D transfer of KV cache.

To mitigate the aforementioned challenges, we propose a head-centric design illustrated in Figure 10 for efficient offloading
interleaving of H2D transfor and GPU compute. It works as follows: while the GPU computes the generation of the initial
head (H1), the KV cache corresponding to the next head (H2), including key (k) and value (v), are being prefetched using
asynchronous H2D transfers, thereby overlapping GPU computations with next-head prefetching. Meanwhile, the CPU
update for previous H0 is being uploaded using asynchronous D2H transfers. After this, three operations happen in parallel:
(1) H2D transfer of the next head and prefetching of the next KV cache to be updated on the GPU (2) Updating of the
previous head with KV cache from GPU; and (3) GPU generation of current head outputs, thereby exploiting full-duplex
D2H and H2D transfers and parallel GPU computations.

The attention phase is executed in a parallel fashion by multiple heads of the mechisan. Consequently, our proposed
overlapping of GPU computations and PCIe transfers does not incur any blocking overheads, as the computation speed
on the GPU is slower than the PCIe throughput to transfer subheads back and forth between the GPU and CPU using
high-throughput PCIe.

Efficient Management of KV cache State-of-the-art hybrid KV cache offloading solutions (e.g., FlexFLow) by default
retain the layer-wise KV cache corresponding to the statically GPU-resident head (h1 to h4) on the GPU during the attention
computation, and for the remainder of the layer, KV cache are offloaded to the host memory. We extend this design with
head-wise KV cache management to incorporate head-wise sparsity. Head-wise sparsity divides attention heads into two
categories: important retrieval heads retain all tokens, while unimportant The streaming head only retains the most recent
token. Since the memory usage of the retrieval head will be much larger than that of the streaming head, especially under
long context inference, HEADINFER will selectively offload the retrieval head to the CPU and keep the streaming head in
the GPU.

Adaptive selecting head-wise granularity. In transformer-based architectures, attention heads often operate in parallel.
However, processing these heads individually—or in small groups—can incur repeated kernel launches and excessive PCIe
transfers, particularly if the context size for each head is small. This overhead can quickly dominate total inference time,
undermining the benefits of parallelism. Adaptive head-wise offloading addresses these inefficiencies by merging multiple
heads into a single “HeadGroup.” As shown on Figure 11, with a reduced number of HeadGroups (e.g., 2-HeadGroup
or 4-HeadGroup), fewer offloading operations are required, lowering both the latency and the bandwidth usage on the
CPU–GPU boundary. Conceptually, this “batching” of heads takes advantage of the fact that many computations within
attention heads are structurally similar, thus allowing shared memory transfers and kernel calls. Layer-offload can be viewed
as the extreme case of adaptive head-wise offloading. Instead of grouping only a fraction of heads at a time, layer-offload
groups every head in a given layer into one offload operation. While it can drastically reduce overhead further, the trade-off
is less granularity and potentially higher intermediate memory requirements. In practice, the decision to use 2-head, 4-head,
or full-layer offloading depends on available hardware resources, batch size, and the typical context length being processed.

By carefully tuning the grouping strategy—ranging from small, flexible head groups to large, layer-wide groups—adaptive
head-wise offloading makes it possible to significantly optimize inference time in transformer-based models, particularly in
latency-sensitive scenarios involving small context.

19

