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Abstract

Vision-language models encode images and text in a joint space, mini-
mizing the distance between corresponding image and text pairs. How
are language and images organized in this joint space, and how do the
models encode meaning and modality? To investigate this, we train and
release sparse autoencoders (SAEs) on the embedding spaces of four vision-
language models (CLIP, SigLIP, SigLIP2, and AIMv2). SAEs approximate
model embeddings as sparse linear combinations of learned directions,
or “concepts”. We find that, compared to other methods of linear feature
learning, SAEs are better at reconstructing the real embeddings, while also
able to retain the most sparsity. Retraining SAEs with different seeds or
different data diet leads to two findings: the rare, specific concepts cap-
tured by the SAEs are liable to change drastically, but we also show that
commonly-activating concepts are remarkably stable across runs. Interest-
ingly, while most concepts activate primarily for one modality, we find they
are not merely encoding modality per se. Many are almost orthogonal to
the subspace that defines modality, and the concept directions do not func-
tion as good modality classifiers, suggesting that they encode cross-modal
semantics. To quantify this bridging behavior, we introduce the Bridge
Score, a metric that identifies concept pairs which are both co-activated
across aligned image-text inputs and geometrically aligned in the shared
space. This reveals that even single-modality concepts can collaborate
to support cross-modal integration. We release interactive demos of the
SAEs for all models, allowing researchers to explore the organization of
the concept spaces. Overall, our findings uncover a sparse linear structure
within VLM embedding spaces that is shaped by modality, yet stitched
together through latent bridges—offering new insight into how multimodal
meaning is constructed.

1 Introduction

How do vision-language models (VLMs) organize their internal space in order to relate text
and image inputs? Multimodal models encode images and text in a joint space, enabling
many impressive downstream multimodal applications. In this paper, we explore how
multimodal models encode meaning and modality in order to try and understand how
cross-modal meaning is expressed in the embedding space of vision-language models.

We approach this question through dictionary learning: the class of methods that consists
of finding linear directions (or, “concepts”) in the latent space of the model, that can break
down each embedding into a linear combination of more interpretable directions. We
train multiple dictionary learning methods on top of the four VLMs under consideration
(CLIP (Radford et al., 2021), SigLIP (Zhai et al., 2023) SigLIP2 (Tschannen et al., 2025)
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and AIMv2 (El-Nouby et al., 2024; Fini et al., 2024)), and settle on BatchTopK Sparse
Autoencoders (SAEs) as the method that dominates the frontier of the tradeoff between
remaining faithful to the original embedding space while being maximally sparse. Using
the concepts extracted by BatchTopK SAEs, we run a series of investigations to understand
how vision-language embedding spaces work. Our analysis is grounded in an ambitious
empirical effort: we train and compare SAEs across four distinct vision-language models,
using hundreds of thousands of activations, and carry out a thorough suite of evaluations
that dissect the geometric, statistical, and modality-related structure of their embedding
spaces.

• We show that SAEs trained with different seeds and with different training data mixtures
are stable and robust when we consider the concepts that are commonly used (high-
energy concepts), but very unstable on the concepts that are used very rarely (low-energy
concepts) (Section 4).

• We show that almost all concepts are single-modality concepts: they activate almost
exclusively either for text or for image concepts, and this holds across all models that we
try (Section 5.1)

• However, we also show that this does not mean that the concepts lie within the separate
cones of the image and text activations: across models, a large proportion of concepts are
almost orthogonal (but not totally orthogonal) to the subspace that encodes modality,
and therefore encode largely cross-modal dimensions of meaning (Section 5.2).

• We develop VLM-Explore (https://vlm-concept-visualization.com/), an interactive
visualization tool that lets researchers explore the linear concepts in a model, and how
they connect modalities (Section 6).

Overall, our findings show how the linear structure of vision-language embedding space
can be used to understand the mechanics of joint vision-language space, and we provide the
SAEs and the visualization tools for researchers to further explore these connections. Our
exploration into the workings of VLM spaces reveals an interesting two-sided conclusion:
while the space is organized primarily in terms of modality, single-modality can still be
related through high cosine similarities on the subspace that is orthogonal to modality,
creating cross-modal bridges of meaning.

2 Background and related work

Linear Representations in Neural Networks The representation spaces of neural networks
have been often shown to encode many important features (like syntactic or object-category
information) largely linearly (Alain & Bengio, 2016; Hewitt & Manning, 2019; Belinkov,
2022; Li et al., 2016; Conneau et al., 2018; Fel et al., 2024a), since, after all, the operations on
these spaces are largely linear In vision-language models, strong performance on zero-shot
tasks suggests that their embeddings are structured along meaningful directions. Empirical
evidence from probing and representation analyses further supports the idea that semantic
content is linearly organized Muttenthaler et al. (2023; 2024); Nanda et al. (2021); Tamkin
et al. (2023); Bricken et al. (2023).

Sparse Coding and Dictionary Learning Dictionary Learning (Tošić & Frossard, 2011;
Rubinstein et al., 2010; Elad, 2010; Mairal et al., 2014; Dumitrescu & Irofti, 2018) has emerged
as a foundational framework in signal processing and machine learning for uncovering
latent structure in high-dimensional data. It builds upon early theories of Sparse Coding,
developed in computational neuroscience Olshausen & Field (1996; 1997); Foldiak & Endres
(2008), where sensory inputs were modeled as sparse superpositions of overcomplete
basis functions. The core objective is to recover representations where each data point is
approximated as a linear combination of a small number of dictionary atoms Hurley &
Rickard (2009); Eamaz et al. (2022). This sparsity constraint encourages interpretability
by associating individual basis vectors with meaningful latent components. In neural
network interpretability, sparse decompositions have gained traction as tools to extract
interesting features from learned representations (Elhage et al., 2022; Cunningham et al.,
2023; Fel et al., 2023; 2024b; Rajamanoharan et al., 2024; Gorton, 2024; Surkov et al., 2024).
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Figure 1: Selecting a sparse dictionary learning method: the Expressivity-Sparsity trade-
off. Pareto fronts for five dictionary learning methods applied to four vision-language
models (CLIP, SigLIP, SigLIP 2, AIMv2). Each curve shows the trade-off between reconstruc-
tion quality (R2 score) and sparsity level (ℓ0 norm of Z). The three SAEs (TopK, JumpReLU,
and BatchTopK) consistently achieve the best balance, with BatchTopK slightly dominating
other sparse autoencoder variants.

Sparse autoencoders (SAEs) (Makhzani & Frey, 2014) are a scalable instantiation of Sparse
Dictionary Learning implemented by training a small neural network. Recent work has
shown that SAEs extract semantically meaningful concepts (Bricken et al., 2023; Bussmann
et al., 2024; Thasarathan et al., 2025; Paulo & Belrose, 2025; Gao et al., 2025; Bhalla et al.,
2024; Fel et al., 2025), often yielding more interpretable and compositional decompositions
than PCA or ICA (Bussmann et al., 2024; Braun et al., 2024; Chen et al., 2024; Fel et al., 2024b;
Makelov et al., 2023).

Modality and Interpretability in Multimodal Models A growing body of work has
examined how multimodal models encode meaning and modality in their internal repre-
sentations. Despite being trained to align modalities, vision-language models exhibit a
persistent modality gap, where text and image embeddings occupy distinct conical regions in
the joint space (Liang et al., 2022; Shukor & Cord, 2024). However, examining the neurons
(Goh et al., 2021; Shaham et al., 2024), representations (Bhalla et al., 2024; Parekh et al., 2024;
Wu et al., 2024) shows that multimodal models showcase aspects of cross-modal internal
processing.

3 Methods: Sparse Autoencoders on Vision-Language Models

3.1 Background and Notation.

We denote vectors by lowercase bold letters (e.g., x) and matrices by uppercase bold letters
(e.g., X). We write [n] to denote the index set {1, . . . , n}. The unit ℓ2-ball in Rd is defined
as B = {x ∈ Rd | ∥x∥2 ≤ 1}. We consider a general multimodal representation learning
setting in which a vision-language model maps image or text inputs x ∈ X into a shared
representation space A ⊆ Rd. A collection of n such embeddings is stored in a matrix
A ∈ Rn×d. Dictionary Learning seeks to approximate A as a linear combination of concept
vectors from a dictionary D ∈ Rc×d, using a sparse code matrix Z ∈ Rn×c:

(Z⋆, D⋆) = arg min
Z,D

∥A − ZD∥2
F (1)

where ∥ · ∥F denotes the Frobenius norm, and dictionary atoms are constrained to lie on B.

In the case of Sparse Autoencoders (SAEs), an encoder network ψ, a single-layer MLP, maps
embeddings A to sparse codes Z via a linear transformation and a projection (Hindupur
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et al., 2025) operator Π {·}:
Z = ψ(A) = Π {AW + b} (2)

where W ∈ Rd×c and b ∈ Rc are learnable encoder parameters. In particular, we consider
several SAEs that can be described by their projection operators such as:

Π {x} =


ReLU(x) = max(0, x)

JumpReLU(x) = max(0, x − θ) + θ⊙ H(x − θ)

TopK(x, k) = arg minz∈Rc ∥z − x∥2
2 s.t. ∥z∥0 = k, z ≥ 0

(3)

Where H is the Heaviside step function. We will also explore a simple extension, BatchTopK,
which flexibly shares applies the TopK operation across the entire batch.

3.2 Selecting a sparse dictionary method: Expressivity vs sparsity

An ideal dictionary learning method should produce representations that are both expres-
sive and sparse. In practice, this means that model embeddings should activate only a small
number of meaningful concepts, indicating that the learned dictionary is both specific and
semantically aligned with the data. In our first set of preliminary experiments, we compare
five methods on this trade-off, and present our results in Figure 1.

Dictionary learning methods: We test five different dictionary learning methods: Semi-
Nonnegative Matrix Factorization (Semi-NMF) (Parekh et al., 2025; Lee & Seung, 1999),
Sparse Autoencoders (SAEs), Top-K SAEs (Gao et al., 2025), JumpReLU SAEs (Rajamanoha-
ran et al., 2024), and BatchTopK SAEs (Bussmann et al., 2024), and train using Overcomplete.

Models: We run experiments on four models: CLIP (Radford et al., 2021), SigLIP (Zhai
et al., 2023), and SigLIP2 (Tschannen et al., 2025), which are encoder models, and AIMv2
(El-Nouby et al., 2024; Fini et al., 2024), which is an autoregressive vision-language model

Data: We train all dictionary learning methods on reconstructing the activation matrix A,
consisting of 600,000 normalized embeddings from passing the COCO dataset (Lin et al.,
2014) through the models, with each Ai ∈ B, the unit ℓ2-ball

Results: We evaluate the expressivity and sparsity of all methods, and present our results
in Figure 1. We measure sparsity as the number of non-zero entries in the code vector (i.e.,
the ℓ0 of Z). For different levels of sparsity, we plot the reconstruction quality (expressivity):
the R2 score between the original activations A and their reconstructions ZD. The trade-off
captures how well the learned codes retain information while encouraging interpretability
through sparsity.

Our results indicate that all four SAE variants outperform Semi-NMF at fixed sparsity levels,
with BatchTopK achieving slightly better performance overall. In practice, we also find that
training TopK and BatchTopK SAEs is more stable and requires less hyperparameter tuning.
For these reasons, we use the BatchTopK SAEs for our subsequent analysis experiments.

3.3 Metrics: The geometry and statistics of learned concepts

To assess the interpretability and quality of the learned representations, we introduce four
complementary metrics that go beyond the standard sparsity–reconstruction trade-off:
energy, stability, modality score, and bridge score. Each of these measures captures a
different axis of representational information:

Energy. Energy is a measure of how often each concept is used: its average activation
strength across a dataset. Formally, for a concept i, we define its energy as: Energyi = Ez(zi).
Energy provides a statistical view over the dataset, revealing where attention should be
focused for interpreting the learned representation.

https://github.com/KempnerInstitute/overcomplete
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Figure 2: The concepts that use most of the energy are stable Here we compare the
relationship between energy and stability: (Left) Energy is concentrated on a few concepts,
with 512 concepts getting 99% of the energy, and the other 3,500 concepts only appearing in
1% of the total coefficient weight. (Center) When training with 5 different random seeds, the
stability when we consider all 4,096 concepts is low – 0.16 (Right) When we weight concepts
by energy, we can see that the concepts that are used often in reconstruction are actually
stable, with stability of 0.92 if we take the top 512 energetic concepts from each run. The
instability comes from concepts that are rarely if ever actually used.

Stability. Stability quantifies how consistent the learned dictionaries are between two
runs. If two independently trained SAEs on the same model produce significantly different
dictionaries, it suggests that the learned concepts are not robust, which weakens their
interpretability. Following Fel et al. (2025) and Spielman et al. (2012), we compute the
stability between two dictionaries D, D′ ∈ Rc×d by optimally aligning their rows using the
Hungarian algorithm, which solves for a permutation matrix P ∈ P(c) that maximizes the
total similarity between matched concept vectors:

Stability(D, D′) = max
P∈P(c)

1
c

Tr(D⊤PD′). (4)

A higher stability score indicates that concept representations are reproducible across
training runs, reinforcing their semantic reliability.

Modality Score. In the context of VLMs, a central question is whether a concept is
modality-specific or shared across modalities. To probe this, we introduce the modal-
ity score, which quantifies how much a concept contributes to reconstructing image versus
text inputs. Let ι and τ be the empirical distributions of sparse codes z from image (ι) and
text (τ) inputs, respectively. We define the modality score of a concept i as the fraction of
expected activation energy assigned to image-based inputs:

ModalityScorei =
Ez∼ι(zi)

Ez∼ι(zi) + Ez∼τ(zi)
. (5)

A modality score near 1 indicates that the concept fires only image inputs, while a score
near 0 suggests text dominance. A value around 1

2 indicates a multi-modal concept.

Bridge Score. While the modality score offers a per-concept perspective, many vi-
sion–language tasks rely on coordinated interactions between concepts across modalities.
To capture these interactions, we introduce the bridge matrix B ∈ Rc×c, which quantifies
how pairs of concepts contribute to the alignment of modalities. Let (zι, zτ) ∼ γ be a pair of
sparse codes obtained from a matching image–text input pair, drawn from a joint empirical
distribution γ over aligned data points. Let D ∈ Rc×d denote the shared dictionary. The
bridge matrix is defined as:

B = E(zι ,zτ)∼γ(z
⊤
ι zτ)︸ ︷︷ ︸

co-activation

⊙ (DD⊤),︸ ︷︷ ︸
alignment

(6)

5



Published as a conference paper at COLM 2025

Figure 3: The geometry of high-energy concepts is stable across data mixtures. Top: each
concept has equal size, Bottom: size is dependent on energy. UMAP visualization of the SAE
concept spaces under different image–text data mixtures. Color indicates the modality score
of each concept. While the dominant modality in the training data strongly influences how
many concepts are recovered per modality (top row), the most energetic concepts (bottom row)
remain relatively stable across mixtures. The set of high-energy text and image concepts
remains relatively consistent regardless of the input distribution. Additional results for the
other three models are provided in Appendix A, Figure 9.

with ⊙ being the Hadamard product. The first term captures statistical co-activation between
concepts: how frequently concept i in the image code and concept j in the text code are
simultaneously active for semantically aligned inputs. The second term reflects the geometric
alignment between the corresponding dictionary atoms, computed as the cosine similarity
between dictionary atoms The elementwise product combines both aspects—activation and
alignment—into a single interpretable structure.

The resulting matrix B reveals how concepts jointly operate across modalities. In this sense,
the bridge matrix provides insight into why the model succeeds at cross-modal alignment.
It highlights not just which concepts are shared, but how they collaborate structurally and
statistically to support the model’s semantic integration of vision and language.

4 Analysis 1: Are We Finding Consistent Model Features?

Before analyzing the geometry and semantic content of the concepts extracted by our SAEs
(Section 5), we first examine whether these concepts are consistent and stable: do we get
similar concepts across different conditions? We study stability across: (i) random seeds—to
test sensitivity to training stochasticity, and (ii) data modality mixtures—to test dependence
on the distribution of input activations.

4.1 The concepts that use most of the energy are stable

We train five SAEs with different random seeds on the same SigLIP2 activations, each using
4096 concepts, and compute the average pairwise stability (Equation 4) between them.
As shown in Figure 2 (center), at first glance, overall stability is low: the mean similarity
between dictionaries is just 0.16, suggesting high sensitivity to random initialization. How-
ever, this apparent instability is misleading. On the left, see that reconstruction energy
is heavily concentrated in a small subset of concepts: the top 512 concepts account for
approximately 99% of the total activation mass. To isolate the functionally relevant features,
we recompute stability using only the top-k most energetic concepts from each run. We
find that high-energy concepts are remarkably stable, with near-perfect alignment across
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Figure 4: Most concepts are single-modality Histograms of the modality scores (top) and
the modality scores weighted by energy (bottom) of every concept in the SAEs. On every
model, the modes are the two extremes: concepts either activated only by text or only by
image. Weighting by energy makes this much more prominent, showcasing that almost all
of the reconstruction coefficients go to concepts that are single-modality.

seeds (Figure 2, right). The instability arises almost entirely from the low-energy tail of
the dictionary—concepts that contribute little to the reconstruction objective. We conclude
that SAEs trained with different seeds reliably recover a core set of functional, high-usage
concepts.

4.2 The geometry of high-energy concepts is stable across data mixtures

Though we have seen that the high-use concepts retrieved by the SAE are stable across
random initializations, there is still the question of how much the recovered concepts are
influenced by the data used to train the SAEs. Do our SAE dictionaries reflect the structure
in the model or simply the statistics of the dataset used to train the SAE? To test this, we
train SAEs varying the modality mixture of the training data: how many of the activations
we use to train the SAE come from image inputs vs. text inputs. We train SAEs on seven
data compositions, ranging from heavily image-dominant (5:1 image:text) to heavily text-
dominant (1:5). Results are shown in Figure 3, where we contrast the UMAP geometry of
the learned concepts concepts (top) with the geometry of the concepts when the size of each
point is weighted by the concept’s energy. As expected, changing the data mixture shifts
the overall modality distribution of the learned concepts: the text-heavy SAEs learn more
text concepts (blue points) and the image-heavy SAEs learn more image concepts. However,
when weighting by energy (bottom row), the geometry of the most energetic concepts
remain stable across all mixtures: the visualizations look remarkably consistent across data
mixtures. High-energy directions consistently appear regardless of the training distribution,
and exhibit similar activation patterns.

Discussion: Why low-energy concepts? Our evaluations show that different SAEs dis-
cover widely different low-energy features. Does Does this mean that low-energy concepts
are useless? Not necessarily. Leveraging VLM-Explore (Section 6) we observe that many
low-energy concepts correspond to coherent but rare patterns, such as “yaks” or “valen-
tines day hearts.” These concepts may be semantically meaningful, but their contribution
to reconstruction is small, and thus SAEs do not consistently recover them. By contrast,
high-energy concepts typically capture more concepts like “red” or “two women” and are
consistently recovered because they support a wide range of reconstructions. We provide
some illustrative examples of concepts in Appendix B.
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Figure 5: Image and text activations lie in separate cones. We plot the distribution of cosine
similarities between model activations. Image–image and text–text pairs (blue/green) are
close, while image-text pairs (orange) are much farther, indicating that embeddings occupy
separate modality-specific cones.

These analyses show that while SAE dictionaries may appear unstable, this instability is
concentrated in low-energy concepts. The high-energy subset—responsible for nearly all
reconstruction—is both robust to random initialization and is also not simply a reflection of
the data. These findings guide the rest of this paper. They suggest that SAEs can be used as
reliable tools for interpreting VLM embeddings—but only when conditioned on energy.
Concepts with high energy form a stable and informative basis; concepts with low energy
may still be meaningful, but should be treated with caution due to their instability.

5 Analysis 2: Are We Finding Features With Cross-Modal Meaning?

Having established that SAEs recover stable and consistent high-energy features, we now
ask whether these features capture structure that spans both modalities. Specifically, we
analyze whether the learned concepts reveal aspects of the geometry of the joint vision-
language embedding space, and whether they support cross-modal alignment.

5.1 Most concepts are single-modality

Our first observation is that the majority of concepts activate predominantly on a single
modality—either text or image. As defined in Equation 5, the modality score of a concept
measures the fraction of its total activation energy that comes from image inputs. A score
near 1 indicates image-specific usage; a score near 0 indicates text-specific usage. In Figure 4,
we plot the modality score distribution across all concepts for SAEs trained on each model.
The top row shows raw counts: while some concepts cluster around 0.5, the distributions are
clearly bimodal, with dominant modes at 0 and 1. This pattern becomes more pronounced
when we weight each concept by its energy (bottom): almost all of the energy across all
models is concentrated on concepts that are nearly exclusive to one modality.

We conclude that the most influential directions in the SAE dictionary — those responsible
for the bulk of reconstruction — are overwhelmingly single-modality, despite the shared
embedding space.

5.2 Image and text activations lie in separate cones — but many concepts are orthogonal
to this difference

In all models that we analyze, we find that the activations of image and text inputs lie
in separate, narrow cones. To measure this, we compare the cosine distance between
activations of different modalities to the distance between activations of the same modality.
If the average cosine similarity between a set of points is significantly different from zero,
this means that the points lie in a narrow cone (with respect to the origin), rather than being
distributed around the unit ball evenly. Following findings by Tyshchuk et al. (2023) (as well
as Mimno & Thompson (2017) and Ethayarajh (2019) in the language-only context), we find
that image and text activations lie on separate, narrow cones. We present our results in
Figure 5: embeddings of the same modality (green, blue) are significantly closer than those
of different modalities (orange), which are on average almost orthogonal. This suggests that
image and text activations reside in distinct conical regions of the embedding space.
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Figure 6: Many concepts are not aligned with the modality directions. Histogram of the
accuracies of concepts used as classifiers (on the bottom each concept is weighted by its
energy). An accuracy of 0.5 means that the concept is orthogonal to every linear direction
that defines modality (and therefore likely encodes some aspect of meaning independent
from modality), and an accuracy of 1 means that the concept is aligned with a modality
direction. We see that, especially in CLIP and AIMv2, there is a significant proportion
of concepts that are almost orthogonal to the modality subspace. When we weight by
energy, we see that accuracy-1 concepts are high-energy, but that concepts less aligned with
modality still receive a significant amount of energy.

Do the concept vectors align with the modality structure? If they follow the geometry of
the modality cones that separate image from text, they likely encode little cross-modal
content. But if many lie near directions orthogonal to the modality subspace, they may
instead reflect shared meaning. We test this by testing how well each concept performs
as a linear modality classifier. To do this, we project input activations onto the direction
defined by the concept, and measure how well it separates image from text. High accu-
racy implies alignment with modality; near-chance performance suggests the concept is
modality-agnostic and may encode cross-modal structure. Figure 6 presents the distribution
of classification accuracies for all concepts (left) and weighted by energy (right). While many
concepts—particularly high-energy ones – are highly predictive of modality, a substantial
number achieve near-random accuracy. These findings suggest that many concepts geometri-
cally close to a modality-agnostic subspace, even though they activate for a specific modality
This points to the existence of sparse linear directions that support semantic alignment
across modalities while remaining sensitive to modality itself.

5.3 Proposal: Cross-modal alignment in VLM linear concepts

Our results lead us to a proposal of how the linear directions found by SAEs in multimodal
space function, of which we provide a schematic in Figure 7

1. The image and text activations in the VLMs we study lie in separate, narrow cones
(Figure 5), and SAE concepts tend to activate primarily for one modality (Figure 4).

2. However, SAE concepts largely do not lie along the linear subspace that separates
the image and text cones (Figure 6), and in practice they can express semantics
bridge between modalities. The Bridge Score (Equation 6) shows how there are

9



Published as a conference paper at COLM 2025

many-to-many relationships between related concepts in text and image space (see
Appendix B, Figure 16 for an illustrative example)

3. How can we resolve this tension? The resolution lies in considering the SAE
projection effect (Figure 8): due to the sparsity constraints (like TopK), SAE concepts
only activate for a tiny number of the input activations that they are well-aligned
with. If an SAE concept is almost orthogonal to the modality-separating subspace,
but leans slightly towards text, it is very unlikely to ever be in the top-K concepts
for an image input. Though the concept will seem like a text-only concept, it is in
fact aligned with many image outputs.

Text

Images

On average, almost 
orthogonal cones

“giraffe”

Multimodal 
semantic directions

Figure 7: A schematic of our proposal in a toy 3D
space. Though images and text can lie in separate
orthogonal cones with respect to some subspace
(in this case the x-y plane), cross-modal directions
can emerge (in this case, the z direction coming
towards us represents the cross-modal semantics
of “giraffe”). In large latent spaces, many dimen-
sions can form a complex multimodal space that
the z-axis is standing in for here.

Figure 8: The SAE projection ef-
fect: We plot the dot product of
a set of text (blue) and image (or-
ange) activations with an SAE con-
cept. Even though the concept di-
rection does not separate modality,
the TopK thresholding step (dotted
line) may consistently select only one
modality

6 VLM-Explore: An interactive, functional concept explorer

Lastly, we present VLM-Explore (https://vlm-concept-visualization.com), an interactive
visualization tool designed to facilitate the exploration and analysis of our SAE concept
representations. VLM-Explore offers an intuitive visualization that combines into one
interactive figure four important aspects that help us interpret and debug VLMs. These are:
1) the UMAP structure shows how the linear directions of the latent space relate to each
other 2) the maximally activating examples panel shows what each linear feature actually
represents 3) Each feature is colored according to its Modality Score (Equation 5) showing
how the two modalities share the space, and 4) the Bridge Score connections show what
what semantics connect the two modalities.

7 Discussion and Conclusion

We study the linear structure of vision-language embedding spaces using SAEs trained on
four VLMs. While concept dictionaries vary across seeds and data mixtures, the high-energy
subset is consistently recovered and accounts for nearly all reconstruction. Most concepts
are single-modality in usage but often lie near the modality-agnostic subspace, suggesting
shared structure and a modality score shaped by SAE thresholding rather than direction.
To analyze cross-modal alignment, we introduce the Bridge Score, identifying concept
pairs that are both geometrically aligned and co-activated. We release VLM-Explore, an
interactive tool to visualize these structures across models.

These insights lay a foundation for building more interpretable and controllable multimodal
models, and open the door to future research into structured alignment mechanisms.
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A Additional Figures and Expanded Discussion

A.1 UMAP Visualizations Across Data Mixtures for all models

Figure 9 shows UMAP projections of the learned SAE concept dictionaries across different
training data mixtures. Each subfigure corresponds to a different VLM (SigLIP2, SigLIP,
CLIP), with UMAP applied to the learned dictionary atoms. These visualizations comple-
ment the main Figure 3, now extended to multiple models.

The top rows present concepts with uniform dot size, providing an unweighted view of
the dictionary’s structure. Here, modality is encoded by color reflecting the modality score
(as defined in Eq. 5 of the main paper). The bottom rows rescale each concept’s dot size
according to its energy score, revealing the relative contribution of each concept to the
reconstruction task.

Our key observations include:

• Across all models, when data mixtures are skewed (e.g., more image than text inputs),
the distribution of concepts by modality shifts accordingly. This confirms the sensitivity
of low-energy, rarely-used concepts to training data statistics.

• However, the bottom rows show that energy-dominant (i.e., frequently activated) con-
cepts remain consistently placed in similar areas of the space, regardless of training
mixture. These concepts represent a stable semantic core that is robust to dataset compo-
sition.

This supports our conclusion from Section 4 that the SAE models recover a stable, high-
energy subspace, even under strong shifts in input distributions.

14



Published as a conference paper at COLM 2025

Figure 9: UMAP projections of SAE concept dictionaries across various image-text training
mixtures for SigLIP2, SigLIP, and CLIP. Top row: equal dot size. Bottom row: dot size
scaled by energy. Related to Figure 3.
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B Illustrative Examples from the Interactive Demo

B.1 Examples of concepts

We present some qualitative examples of what kinds of concepts the SAEs that we train in
the paper fire for, showing concepts from all 4 models. We showcase concepts of different
abstractions, starting from more surface-level concepts and going to more abstract concepts.
These concepts can all be accessed by putting their number into the Specific ID field in
https://vlm-concept-visualization.com/ after selecting the correct VLM from the drop-
down.

Figure 10: Coherent concept, with similar visual profile. Concept #2261 in SigLIP2 fires for
pictures of pasta and broccoli, which is an interpretable concept, where all of the images
look pretty similar in terms of color, texture, and shape composition

Figure 11: Coherent concept, with different visual profiles. Concept #5114 in AIMv2
fires for pictures of people getting haircuts. Though these pictures have fewer surface-level
elements that are consistent between them, they all depict the same higher-level interpretable
event.
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Figure 12: Similar visual profiles, different semantics. Concept #1033 in CLIP fires for
pictures that have vintage film coloring, rounded edges, and are outdoors. Though the
surface-level visual profiles of the top activating examples for this concepts are related, there
aren’t discernible higher-level semantics that connect them.

Figure 13: Higher-level abstract semantic concept. Concept #5812 in SigLIP fires for pictures
of many disorganized things. The concepts which are most related to it by BridgeScore are
text concepts detailing the idea of many things, rather than any other more surface-level
semantics of the images (like, “toys”), hinting that the model has learned a cross-modal
representation of the abstract notion of “several”
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Figure 14: Text concept that is surface-level and visually-directed. Concept #2826 in SigLIP
fires for text that describes blue objects. This is a surface-level text feature, describable by
the identity of one token. It is also a feature of the text that relates directly to the visual
modality.

Figure 15: Abstract linguistic text concept. Concept #1926 in SigLIP fires for text that
contains uncertainty and/or modal verbs like “would” or “should”. This concept is picking
up on abstract linguistic features about hypothetical. There is no clear relationship in the
visual modality between these captions (unlike the “blue” text), and instead there is a
language feature that connects them.
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B.2 Illustration of the BridgeScore

Figure 16: Bridge score identifies semantically aligned concept pairs across modalities.
Even though most concepts are unimodal in activation, many form meaningful connections
across modalities via the bridge score. Edges connect concept pairs that are both geometri-
cally aligned and co-activated on paired examples. These links often reflect many-to-many
relationships between clusters of related concepts, enabling cross-modal alignment despite
sparse unimodal structure.

C Training Details for SAEs

We report the full training configuration used for the sparse autoencoders (SAEs) in this
work. All SAEs were trained on frozen activations from the COCO dataset, consisting of
600,000 image and text embeddings per model. Each SAE was trained for 30 epochs, with
a batch size of 1024, totaling approximately 18 million training examples. The encoder
consists of a single linear projection without hidden layers, mapping input activations to a
4096-dimensional concept space. Unless specified, we used sparsity k = 5, enforcing exactly
five non-zero, non-negative coefficients per input.

Optimization was performed using the AdamW optimizer with a cosine learning rate
schedule. The learning rate warmed up from 1 × 10−6 to a peak of 5 × 10−4, then decayed
back to 1 × 10−6. We used weight decay of 1 × 10−5 and applied gradient clipping with a
maximum global norm of 1.0. All model embeddings were ℓ2-normalized prior to encoding.
For image inputs, the original images were resized to 256 pixels on the shorter side and
center-cropped to 224× 224 before encoding by the VLMs. Text inputs were processed using
the default tokenizer for each model.

We observed consistent convergence of the reconstruction loss around epoch 10, but trained
for 30 epochs to ensure full stability of the learned dictionaries. We used the Overcomplete
toolbox for training.

https://github.com/KempnerInstitute/overcomplete
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