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ABSTRACT

Adversarial policies have been shown to exploit vulnerabilities in agents dur-
ing two-player competitive games, significantly undermining their performance.
While existing approaches model the challenge of training robust policies in such
environments as the search for Nash equilibrium points in the policy space, this
often leads to substantial computational overhead. In this work, we propose MM-
FATROL, a novel robust policy training method grounded in the Minimax The-
orem, which significantly reduces computational overhead by efficiently identi-
fying promising policy updates. We provide a formal analysis of the speedup
achieved by our method. Extensive experiments demonstrate that MM-FATROL
not only enhances efficiency but also surpasses the state-of-the-art method in terms
of generalization and robustness. Additionally, we discuss the limitations of our
approach and the challenges that remain in developing robust policies for more
complex game environments.

1 INTRODUCTION

Reinforcement Learning (RL) has long been a prominent area of academic research, with interest
further intensified by its integration with deep learning technologies. Deep Reinforcement Learning
(DRL) combines the decision-making capabilities of RL with the representational power of deep
learning, enabling agents to approximate complex policy update processes through continuous in-
teraction with the environment. As a versatile end-to-end control system, DRL has achieved, and
in many cases surpassed, human expert-level performance in fields like robotic control (van Hasselt
et al., 2016), autonomous driving (Liao et al., 2022), recommendation systems (Huang et al., 2021),
and game AI. Notably, in the realm of game AI, DeepMind’s AlphaGo (Silver et al., 2016) and Al-
phaGo Zero (Silver et al., 2017) have defeated top professional players in the two-player zero-sum
game of Go. In 2019, DeepMind extended these successes with AlphaStar (Vinyals et al., 2019;
2017), outperforming 99.8% of human players in StarCraft II.

Many DRL applications require high levels of security and stability, such as communication flow
control (Liu et al., 2021) and intelligent transportation systems (Haydari & Yilmaz, 2022). However,
recent researches have revealed that DRL models are vulnerable to various attacks. It is known that
deep learning models are susceptible to adversarial samples (Lin et al., 2020; Dong et al., 2018;
Kurakin et al., 2017), where small perturbations to the input can lead to incorrect outputs. In the
DRL setting, similar techniques can be used to influence agents into making poor decisions. Huang
et al. (2017) apply adversarial examples to DRL, demonstrating that noise introduced by the FGSM
method (Goodfellow et al., 2015) can cause DQN (Mnih et al., 2013) and PPO (Schulman et al.,
2017) models to make erroneous decisions. Behzadan & Munir (2017) adopt the idea of transfer-
based attacks , where a surrogate model predicts how input modifications will cause the victim agent
to underperform.

The above adversarial attacks primarily target the deep learning component of DRL through adver-
sarial perturbation or poisoning attacks. On the other hand, Gleave et al. (2020) introduced adver-
sarial policy attacks, which do not directly modify the input but instead train adversarial agents to
force victim agents into suboptimal actions. This approach has proven effective in environments like
Mujoco (Todorov et al., 2012), offering a more realistic attack. Guo et al. (2021) further advanced
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this field by reconstructing the attack objective to maximize the average expectation of the attacker’s
policy while minimizing the victim’s average reward, achieving successful attacks in StarCraft II.

Most defense mechanisms in DRL are derived from traditional adversarial attack and defense strate-
gies, focusing on defense against perturbation-based attacks such as adversarial training and adver-
sary detection. For instance, Kos & Song (2017) apply adversarial training to the A3C algorithm in
the Atari Pong scenario, using random samples and adversarial samples generated by FGSM. Chen
et al. (2018) extended adversarial training on agents to the more complex domain of autonomous
navigation. Lin et al. (2017) focused on detecting adversarial samples through predictive modeling
of future observations. Despite progress in defending against perturbation-based attacks, research
on defending against adversarial policy attacks remains limited. Guo et al. (2023) proposed training
agents in two-player games to reach Nash equilibrium conditions, thereby ensuring a performance
lower bound when under attack.

In this work, we focus on robust policy training in two-player game scenarios. Inspired by the
approach of transforming robust policy training into a search for Nash equilibrium in the policy
space, we propose a novel robust policy training method against adversarial policy attacks called
MiniMax based FAst-training defense againsT adversaRial pOLicy (MM-FATROL). Grounded in
the Minimax Theorem (Cheng et al., 2014), MM-FATROL reduces computational overhead while
maintaining strong robustness. Extensive experiments demonstrate that MM-FATROL significantly
reduces computational costs compared to state-of-the-art methods, while also achieving superior
performance across various games. Additionally, MM-FATROL exhibits stronger robustness against
adversarial policy attacks. We also discuss the limitations of our algorithm and the challenges of
achieving the most robust policy in arbitrary game environment.

Our main contributions are as follows:

• We propose MM-FATROL, a novel robust policy training algorithm based on the Minimax The-
orem, and provide a formal analysis of its computational efficiency compared to state-of-the-art
methods.

• We demonstrate through extensive experiments that MM-FATROL reduces computational over-
head while maintaining top-tier performance and stronger robustness against adversarial policy
attacks across various games.

• We analyze the key challenges in robust policy training and identify future directions for enhanc-
ing the defense against adversarial policy attacks.

2 PRELIMINARIES

2.1 DEEP REINFORCEMENT LEARNING

Deep reinforcement learning (DRL) integrates deep learning methods into the core principles of
reinforcement learning (RL). Currently, most DRL algorithms are based on the Actor-Critic frame-
work, where deep neural networks are employed to approximate both the policy and value functions
of the agent, with the former for action selection and the latter for action evaluation. Among these
algorithms, Proximal Policy Optimization (PPO) (Schulman et al., 2017) is widely recognized for
its simplicity and efficiency, making it the preferred choice for most continuous control tasks. As
a policy gradient algorithm, PPO updates the policy πθ′ using data from interactions with the envi-
ronment under the old policy πθ, employing importance sampling. The objective function of PPO is
given by:

Jθ
PPO (θ′) = E[min(clip(rt, 1− ε, 1 + ε)Aθ, rtAθ)].

where rt =
πθ′ (at|st)
πθ(at|st) represents the importance sampling ratio, and Aθ = Qπθ

(st, at)− Vπθ
(st) is

the advantage function. PPO uses a clipping mechanism to limit the magnitude of policy updates,
enhancing sampling efficiency while ensuring algorithm stability. To further improve training per-
formance, the DPPO (Distributed PPO) algorithm (Heess et al., 2017) utilizes a primary network
to compute gradients and update parameters, while several sub-networks collect data, significantly
boosting both training efficiency and policy quality.
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2.2 TWO-PLAYER MARKOV GAME AND NASH EQUILIBRIUM

Multi-agent reinforcement learning is often framed as a Markov game (Littman, 1994), an extension
of the single-agent Markov decision process. A Markov game is typically represented as a sextuple
G = (N ,S, {Ai}ni=1, P, {ri}ni=1, γ), where N = {1, . . . , n} is the set of players, Ai and ri :
S ×

∏n
i=1Ai → R represent the action space and reward function of player i, respectively. In

two-player Markov games, n = 2, and the joint action at time t is at = (ait, a
−i
t ), where a−i

t
represents the opponent’s action. Both players receive an immediate reward rit = ri(st,at) (if
rit + r−i

t = 0 holds for any t, then it is a zero-sum game), and the environment transitions to the
next state st+1 ∼ P (·|st,at). The state value function and the action value function for player i are
given by:

V i
π(s) = Eai

t∼πi,a−i
t ∼π−i

[ ∞∑
t=k

γt−kri(st,at)
∣∣∣sk = s

]
,

Qi
π(s,a) = ri(s,a) + γ · Es′∼P (·|s,a)

[
V i
π(s

′)
]
.

In this setup, a rational player i aims to maximize his cumulative expected reward U i. Given the
opponent’s policy π−i, player i will always select the Best Response (BR) policy πi that maximizes
his reward. This is formalized as BRi(π−i) = {πi ∈ ∆(Ai)|U i

πi,π−i = maxµ∈∆(Ai)U
i
µ,π−i}.

When both players adopt policies that are best responses to one another, the policy combination
forms a Nash equilibrium (NE) (Nash, 1950), formally defined as ∀i ∈ N , πi

∗ ∈ BR(π−i
∗ ), where

π∗ = (πi
∗, π

−i
∗ ) is a Nash equilibrium. The key property of a Nash equilibrium is that neither player

can improve their payoff by unilaterally changing their policy.

For finite two-player zero-sum games, von Neumann’s Minimax Theorem guarantees the existence
of a Nash equilibrium. Specifically, for any player i, the following holds:

max
πi

min
π−i

U i
πi,π−i = min

π−i
max
πi

U i
πi,π−i .

Shapley (1953) extended this result to Markov games, proving that for finite state and action space,
there exists a pair of stationary policies that satisfy the Nash equilibrium property.

2.3 THE PATROL METHOD

Guo et al. (2023) discovered that in two-player zero-sum games, training robust policies for both
players can be framed as the search for a Nash equilibrium in the policy space. From a game-
theoretic perspective, the policy pair at the Nash equilibrium represents a set of robust policies
capable of maintaining a performance lower bound under any adversarial policy attack. Since neither
player can improve their payoff by unilaterally altering their policy at the Nash equilibrium, even
if one player’s policy is replaced with an adversarial policy, the attacker cannot achieve a better
outcome, thereby ensuring the victim’s performance does not degrade.

Based on that insight, the PATROL method was designed to train robust policies. It initializes a
policy pool for both players, consisting of K pairs of policies (π1

k, π
2
k)k=1:K . In each iteration,

all policies are updated. For player i in the j-th iteration, the strongest opponent policy π−i
j,v that

minimizes the payoff of πi
j,k is selected from the opponent’s policy pool {π−i

j,k̃
}k̃=1:K . DPPO is

then used to update πi
j,k against this opponent. After multiple iterations, the optimal policy is chosen

based on the highest average winning rate from the final payoff matrix.

3 THE PROPOSED METHOD

3.1 PROBLEM SETUP

Adversarial Policy Attack. In this context, adversarial attacks target agents that have already been
trained within a two-player competitive environment. The attacker selects one of the player agents
as the victim, fixing the victim’s policy, πi, which effectively transforms the original Markov game
process into a Markov decision process (MDP). The attacker’s goal is to find an optimal attack
policy, πα, within this MDP that minimizes the victim’s cumulative reward. During training, the
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attacker can observe the victim’s actions but does not have access to any white-box information about
the victim’s model, such as its structure or parameters. Additionally, the attacker cannot manipulate
the game environment or interfere with the feedback provided by the environment to the agent.
This scenario models real-world adversarial attacks on policies trained using deep reinforcement
learning, such as attacks on autonomous vehicles that degrade their performance in navigation or
obstacle avoidance, posing serious safety risks.

Assumptions for Defenders. Similar to the attacker, the defender is also unable to manipulate the
game environment. Furthermore, the defender cannot interfere with the attacker’s training process
or predict the attacker’s policy in advance. This restriction means that, without disrupting the at-
tacker’s intentions, the defender cannot engage in numerous confrontations with adversarial policies
to gather training data. Therefore, the defender cannot perform specific defenses through adversarial
retraining (Guo et al., 2023).

Objective of Our Method. The goal of this work is to develop robust policy pairs for both players
in the game, ensuring that each party’s policy maintains a certain lower bound of performance even
in the presence of adversarial policy attacks. Additionally, the trained policies should possess gen-
eralization capabilities, performing well not only under attack but also in standard, non-adversarial
scenarios.

3.2 THE PROPOSED ALGORITHM

In this work, we integrate the Minimax Theorem into the framework of PATROL to further enhance
the performance. The procedure is outlined in Algorithm 1, with three key improvements detailed
below:

Select Promising Policies for Updates. The core idea of the PATROL algorithm is to search for
a Nash equilibrium in the policy space, ensuring the victim agent’s performance be above a lower
bound under adversarial policy attacks. Traditionally, this involves updating all policies against their
strongest opponents in each iteration, gradually converging toward the Nash equilibrium. However,
this approach can lead to significant increase on computational overhead. Instead of that, we identify
the most promising policy combinations for training in each iteration, without expending substantial
resources on unnecessary computations.

Using the Minimax Theorem, we can identify these target policies. For instance, player i’s max-
imin value is given by µ = maxπi minπ−i U i

πi,π−i , with the corresponding policy combination
(πi

µ, π
−i
µ ) = argmaxπiargminπ−iU i

πi,π−i . This ensures that πi
µ is the most robust policy in player

i’s pool, guaranteeing a payoff of at least µ when facing an unknown opponent. Simultaneously,
π−i
µ is the strongest adversarial policy for player i, as it leads to the lowest payoff µ for player i.

Similarly, the minimax value ν = minπ−i maxπi U i
πi,π−i corresponds to the policy combination

(πi
ν , π

−i
ν ) = argminπ−iargmaxπiU i

πi,π−i , where π−i
ν is the most adversarial policy for player i,

and πi
ν is its strongest counter.

Thus, in each iteration of MM-FATROL, we select πi
µ from player i’s pool as the most worthwhile

policy for training, and π−iµ as the opponent’s policy to assist in updating πi
µ. For player −i, we

use πi
ν as the fixed opponent policy while updating π−i

ν using DPPO. This approach offers a more
efficient and targeted strategy for policy updates.

Design Update Windows. In each iteration, only one policy from each policy pool is selected for
updating , which may introduce some bias in the search direction and limit exploration. To address
this, we propose the concept of update windows to correct the update direction. We distinguish
between two types of updates: “minimax updates” (updating only the selected promising policy)
and “full updates” (updating all policies in the pool). Specifically, we define c iterations as one
update window. During each window, we perform one full update followed by j minimax updates
in a cyclic manner. As we enter the next update window, the number of minimax updates, j, is
incremented by a parameter a (referred to as “acceleration”), with the condition that j ∈ [0,m],
where m is the “speed limit”. By interspersing full updates between minimax updates, we strike a
balance between expanding the search range in the policy space and refining the update direction,
reducing the risk of suboptimal outcomes.
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Algorithm 1 MM-FATROL

Input: Number of iterations I , size of policy pool K, size of window c, acceleration a, limiting-
velocity m.

1: Initialize K pairs of policies (π1
k, π

2
k)k=1:K .

2: Initialize iteration i = 1 and speed s = 0.
3: for w ← 1, ..., I/c do
4: for p← 1, ..., c/(1 + s) do
5: Do a full update.
6: for q ← 1, ..., s do
7: Find (π1

µi, π
2
µi) = argmaxπ1argminπ2U1

π1,π2

and (π1
νi, π

2
νi) = argmaxπ2argminπ1U2

π1,π2 .
8: Update π1

µi against π2
µi using DPPO.

9: Update π2
νi against π1

νi using DPPO.
10: i← i+ 1
11: end for
12: s← min(s+ a,m).
13: end for
14: end for
Output: (π1

µI , π
2
νI).

Select the Optimal Policies. In PATROL, once all iterative updates of the policy pool are completed,
the policies with the highest mean payoff from both parties’ policy pools are selected as the optimal
output. However, in the final stage of MM-FATROL, following the Minimax Theorem, we select
policies corresponding to the maximin values for both players as the optimal outcomes. A detailed
analysis of this approach is provided in Section 5.1.

3.3 THEORETICAL GUARANTEE

Convergence to NE. The convergence of PATROL to a Nash Equilibrium was established by Guo
et al. (2023), demonstrating that all policy combinations ultimately converge to an NE. Our method,
MM-FATROL, builds on this foundation by iteratively updating the policy pairs, thereby theoreti-
cally ensuring convergence to the NE as well.

Reduction Ratio of Computational Overhead. We derive a lower bound on the computational
overhead reduction ratio of MM-FATROL compared to PATROL, as stated in Theorem 1. The proof
for this theorem is included in Appendix A.
Theorem 1. Let o denote the computational overhead required for a single parameter update of any
policy π. MM-FATROL guarantees a lower bound on the reduction ratio of computational overhead
over PATROL as follows:

η > 1− c(m+ a)((K + 2)m+ 2K) + 2(ar −mc)(m+K)

2Kan(m+ 1)
,

where c, a,m, k are algorithm parameters, while r and n represent the number of iterations required
for MM-FATROL and PATROL to converge to the NE, respectively.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Environment setup. We select two types of game environments to showcase the advantages of
MM-FATROL over baseline methods.

• Euclidean Games. In this setting, both players control the x- and y-coordinates, aiming to achieve
opposing values of the function f(x, y). Player 1 controls x, with the objective of minimizing
f(x, y), resulting in a value function of −f(x, y). Conversely, player 2 controls y, aiming to
maximize f(x, y), with a value function of f(x, y). For our experiments, we adopt benchmarks

5
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from Guo et al. (2023) and evaluate six different Euclidean games with varying properties: two
with convex-concave value functions (ID: 1, 2), two with asymmetric action spaces (ID: 3, 4), and
two with non-convex non-concave value functions (ID: 5, 6). Each type includes a simple game
with a smaller domain and a more complex game with a larger domain.

• MuJoCo Games. We also select four games from the MuJoCo platform: YouShallNotPass and
KickAndDefend (with asymmetric action spaces), as well as SumoHumans and SumoAnts (with
symmetric action spaces). These environments feature continuous state/action spaces and com-
plex DRL training environments with non-concave and non-convex value functions. Among these
games, only YouShallNotPass is a zero-sum game, while the other three are general-sum games.

YouShallNotPass KickAndDefend

SumoAnts

MM- -FATROL PATROL SP SP A3C

SumoHumans

Figure 1: Robustness comparison between MM-FATROL and three baselines against adversarial
policy attacks. The x-axis represents the training time steps of the adversarial policy, while the
y-axis indicates its winning rate. The darker solid lines show the average winning rates of the
adversarial policies during training, and the lighter bands reflect the variations between the maximal
and minimal winning rates. The dotted line represents the winning rate of the victim’s original
opponent trained against the current victim policy.

Hyper-parameters of MM-FATROL. MM-FATROL has four key hyper-parameters: policy pool
size K, window size c, acceleration a, and speed limit m. In all experiments, K is set to 4. For
acceleration, a is set to 1 in the Euclidean games and 3 in the MuJoCo environments. The speed
limit m is unrestricted in Euclidean games with concave-convex value functions, but it is set to 10
in other environments. For window size c, it is set to 10 for Euclidean games with concave-convex
value functions, while for non-concave non-convex Euclidean games, c is set to 100 for the simple
one and 150 for the other. In MuJoCo environments, c set to 300.

Baselines. To evaluate the performance of MM-FATROL, we compare it against PATROL, the
current state-of-the-art method for this problem. Additionally, we introduce two other baseline
methods in the MuJoCo experiments to assess the generalization and robustness of our approach:
self-play (SP) and self-play-A3C (SP-A3C). The SP and PATROL baselines use the same settings
as in the original papers, except for the policy pool size K, which is set to 4 for PATROL. The
SP-A3C algorithm is a variant of SP, using A3C instead of PPO for policy updates, with other
hyper-parameters remaining unchanged. We will discuss the rationale behind the selection of K in
Section 4.2.

4.2 EXPERIMENT RESULTS

Reduction of Computational Overhead. Tables 1 and 2 compare the runtime of MM-FATROL
and PATROL in both Euclidean games and MuJoCo environments. It is evident that MM-FATROL
consistently requires significantly less training time than PATROL across all game settings. Notably,
in Euclidean game (3), the reduction in computational overhead achieved by MM-FATROL reaches
up to 55.6%. Across all Euclidean games, reductions are substantial, with the smallest reduction
observed at 37.3%. For games featuring concave-convex value functions, the reduction is even more
pronounced, typically exceeding 10% compared to those without such functions. In the MuJoCo
environments, however, the complexity of the policy space is much greater than that of Euclidean
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games, resulting in a declined overall improvement. Nevertheless, the reductions generally exceed
10%, with the highest being 25.5% in the SumoAnts scenario. These results demonstrates that our
method effectively reduces the computational overhead associated with searching for NE points in
the policy space, particularly in simpler game environments.

Table 1: The runtime comparison between MM-FATROL and PATROL in Euclidean games. Each
setup was executed 5 times, with the average runtime reported.

ID Value function Domains NE Runtime (h) ReductionPATROL MM-FATROL
1 x2 − y2 − 2x [-2,2] (1,0) 1.9 1 47.4%
2 x2 + 2xy − 4y2 + 10x [-50,50] (-4,-1) 15 7 53.3%
3 x2 − 2y2 − 2xy − 6x [-5,5],[-4,4] (2,-1) 4.5 2 55.6%
4 x2 + 4xy − 2y2 + 24x [0,50], [-50,0] (-4,-4) 9.2 4.5 51.1%
5 x2y2 − xy [-2,2] (0,0) 13.3 8 39.8%
6 x3 − 9x2 − 2y2x3 [-50,50] (6,0) 8.3 5.2 37.3%

Robustness of MM-FATROL. Figure 1 illustrates the winning rates of the adversarial policy in
four MuJoCo game environments when hacking the policies trained by MM-FATROL and three
other methods. In every game, our proposed method achieves the lowest winning rate for adver-
sarial policy attacks. This is especially notable in the three general-sum games, where our method
significantly outperforms the baselines in terms of robustness. Particularly in the KickAndDefend
game, after training with MM-FATROL, player 2’s agent can nearly completely defend against ad-
versarial policy attacks, demonstrating robustness that is far superior to the other three methods.
Further investigation reveals that because KickAndDefend is a general-sum game, there are sce-
narios where the game can end in a draw. The policy trained with MM-FATROL can, at worst,
force a draw against adversarial attacks, ensuring that adversarial policies cannot defeat our trained
agent. However, it is important to note that player 1’s agent in KickAndDefend does not guarantee
a winning rate against adversarial policy attacks that is lower than that of its origional opponent,
as indicated by the higher winning rate of adversarial attack shown in Figure 1. Nevertheless, even
without guaranteeing an ideal lower bound of performance against attacks, our method still exhibits
stronger robustness compared to the baselines.

Generalization of MM-FATROL. Table 3 presents the winning rates of policies obtained from the
four training methods. A comparison of the data within each row shows that in the KickAndDefend
game, MM-FATROL clearly outperforms the other three baseline methods. In the other three games,
both MM-FATROL and PATROL have their share of victories, and both significantly outperform the
performance of SP and SP-A3C algorithms. These results indicate that our method exhibits high
generalizability, maintaining the highest level of winning rates even when faced with agents trained
through non-adversarial methods.
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Figure 2: Reduction ratio of computational over-
head achieved by MM-FATROL compared to
PATROL across various K values in Euclidean
games.

Analysis on Pool Size K. In PATROL, the
researchers set K = 2 based on their tests
of PATROL against self-play in YouShallNot-
Pass game with K values in {1, 2, 3}, where
they found that the winning rates for K = 2
and K = 3 were similar but both were notice-
ably higher than for K = 1. However, when
we tested the PATROL’s sensitivity to K, we
observed instability, even in the simple non-
convex and non-concave Euclidean game when
K = 2. In the complex non-convex and non-
concave Euclidean game, convergence to NE
points was often unattainable. This issue was
significantly alleviated when we increased the
pool size to K = 4, resulting in more stable
convergence and reduced fluctuations in the re-
sults. We believe that training robust policies
essentially involves searching for NE points within the policy space, and both PATROL and MM-
FATROL provide accurate guidance for this search. However, the effectiveness of the search is
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influenced by the initial policies and especially the pool size. When the pool is too small, the search
tends to fall into suboptimal or unstable states, leading to fluctuating outcomes.

We also conducted sensitivity experiments on the value of K for MM-FATROL in Euclidean games,
and the results are shown in Figure 2. It’s evident from the figure that within the same game, the
larger the value of K, the higher the proportion of computational overhead that our method can
reduce.

Table 2: Comparison of the runtimes between MM-FATROL and PATROL in MuJoCo games. Each
setup was executed 5 times and the average runtime is reported.

MuJoco game Runtime (h) ReductionPATROL MM-FATROL
YouShallNotPass 470 385 18.1%
KickAndDefend 620 491 20.8%
SumoHumans 242 212 12.4%

SumoAnts 400 298 25.5%

Table 3: The winning rates of policies trained by MM-FATROL and other baseline methods in
MuJoCo games. Method i represents the policy of player i trained using the respective method.
Each battle was run 1200 times and the average runtime is reported. MM refers to MM-FATROL
and A3C denotes SP-A3C.

Mujoco game MM 1 vs. MM 2 vs.
MM 2 PATROL 2 SP 2 A3C 2 MM 1 PATROL 1 SP 1 A3C 1

YouShallNotPass 20% 19% 28% 35% 80% 81% 83% 90%
KickAndDefend 49% 57% 94% 88% 42% 49% 50% 95%
SumoHumans 27% 29% 36% 35% 45% 45% 69% 61%

SumoAnts 44% 45% 52% 46% 39% 38% 49% 43%

Mujoco game PATROL 1 vs. PATROL 2 vs.
MM 2 PATROL 2 SP 2 A3C 2 MM 1 PATROL 1 SP 1 A3C 1

YouShallNotPass 19% 20% 26% 34% 81% 80% 82% 87%
KickAndDefend 47% 56% 90% 91% 42% 41% 48% 93%
SumoHumans 28% 30% 32% 30% 49% 47% 73% 66%

SumoAnts 46% 48% 52% 47% 40% 41% 46% 41%

Mujoco game SP 1 vs. SP 2 vs.
MM 2 PATROL 2 SP 2 A3C 2 MM 1 PATROL 1 SP 1 A3C 1

YouShallNotPass 17% 18% 24% 35% 72% 74% 76% 81%
KickAndDefend 47% 50% 54% 71% 6% 7% 44% 88%
SumoHumans 14% 17% 17% 18% 26% 30% 49% 43%

SumoAnts 36% 36% 42% 38% 32% 32% 38% 36%

Mujoco game A3C 1 vs. A3C 2 vs.
MM 2 PATROL 2 SP 2 A3C 2 MM 1 PATROL 1 SP 1 A3C 1

YouShallNotPass 10% 13% 19% 23% 65% 66% 65% 77%
KickAndDefend 0% 1% 1% 0% 12% 9% 29% 100%
SumoHumans 19% 22% 24% 27% 33% 34% 57% 46%

SumoAnts 42% 43% 46% 44% 40% 39% 43% 40%

5 DISCUSSION

5.1 THE ESSENCE OF ROBUST POLICIES

The convergence proof of PATROL for NE is predicated on the assumption that an NE exists within
the policy space, a condition met in finite two-player zero-sum games. However, in many game
environments, particularly those with continuous state and action spaces, the existence of NE is
not guaranteed. According to the Minimax Theorem, an NE is a special case where the minimax
and maximin values coincide. Thus, for the majority of two-player games operating in continuous
spaces, the robust policy training process modeled by PATROL requires extension.

Addressing the core question, in a two-player competitive game, the most robust policy is to max-
imize their minimum achievable payoff against any opponent’s policy. This aligns with the policy
that yields the maximin values within their payoff space. For instance, consider the value func-
tion f(x, y) = (x2 − 1)2 − (y − x)2 in an Euclidean game, where the action space is defined as
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x, y ∈ [−2, 2], as shown in Figure 3a, this game does not possess a global NE. However, as illus-
trated in Figure 3c, the value function for player 2 identifies point C as its maximin point. Thus, if
player 2 adopts the policy y = 0, they can guarantee a payoff corresponding to point C, regardless
of player 1’s chosen policy x = x̃. For any alternative policy of player 2 ỹ ̸= 0, player 1 can always
ensure that player 2 receives a lower payoff than that from policy y = 0. In other words, y = 0 is
the most robust policy for player 2. Similarly, as shown in Figure 3b, since player 1’s value function
is −f(x, y), the most robust policies for player 1 corresponds to the minimax points (A and B),
specifically x = ±1.

(a) The value function (b) The minimax value of player 1 (c) The maximin value of player 2

Figure 3: Illustration of a policy space lacking a global Nash equilibrium.

5.2 LIMITATIONS AND CHALLENGES

As discussed in Section 5.1, in complex game environments with continuous state and action spaces
where the existence of NE cannot be guaranteed, the true update direction towards a robust pol-
icy corresponds to the maximin value for each player. However, in the absence of NE points, the
strongest opponent of any player’s robust policy may not be the other player’s robust policy. This
can result in a scenario where one player’s policy converges to the optimal solution while the other
player does not, leading to continuous updates in the latter’s policy pool without the chance to con-
front their theoretical strongest opponent, and thus unable to converge to the robust policy forever.

Taking the Euclidean game illustrated in Figure 3 as an example, player 1’s minimax policy com-

binations are (1, 1) and (−1,−1), while player 2’s optimal policy is (
√

3
2 , 0). Given that player

2’s value function is a fourth-degree polynomial in x and a second-degree polynomial in y, player
2’s policy pool converges to its robust policy, specifically y = 0, more rapidly than player 1’s.
Consequently, player 1 loses the opportunity to train against the strongest opponent y = ±1 cor-
responding to their robust policy. As a result, player 1’s policies can only train against a fixed

opponent of y = 0 during subsequent updates, ultimately leading to convergence at x =
√

3
2 , which

is not actually player 1’s most robust policy. Therefore, a critical challenge for enhancing robustness
in future work will be ensuring that policies have the opportunity to train against their theoretical
strongest opponents within the global policy space.

6 CONCLUSION

In this work, guided by the Minimax Theorem, we proposed MM-FATROL, a robust policy training
method built on the PATROL framework. Extensive experiments demonstrated that MM-FATROL
not only significantly reduces computational overhead but also maintains strong policy general-
ization and exhibits greater robustness compared to the state-of-the-art method. Additionally, we
analyzed the limitations of existing robust policy training methods in the face of adversarial policy
attacks, and outlined key challenges that must be addressed to further enhance robustness. For fu-
ture work, we aim to tackle these challenges by exploring adaptive adjustments to the size of each
party’s policy pool based on game environment characteristics or by maintaining separate pools for
the strongest opponents of each player. These directions will drive further advancements in robust
policy training.
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oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P. Agapiou,
Max Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard,
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A PROOF OF THEOREM 1

Theorem 1. Let o denote the computational overhead required for a single parameter update of any
policy π. MM-FATROL guarantees a lower bound on the reduction ratio of computational overhead
over PATROL as follows:

η > 1− c(m+ a)((K + 2)m+ 2K) + 2(ar −mc)(m+K)

2Kan(m+ 1)
,

where c, a,m, k are algorithm parameters, while r and n represent the number of iterations required
for MM-FATROL and PATROL to converge to the NE, respectively.
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Proof. For PATROL, executing n iterations implys that all policies of both players are updated n
times, resulting in a total cost of OF = 2Kon. In the case of MM-FATROL, during the r iterations
of the algorithm, both ”full update” and “minimax update” are present simultaneously, and the
cost for one iteration of the former is 2Ko while the latter incurs a cost of 2o. The algorithm
begins with an “acceleration phase” comprising (ma +1)c iterations, of which

∑m/a
i=0

c
1+ia iterations

perform a “full update”. Since the function f(x) = 1
x is a convex function for x > 0, for any

0 < x1 < x2 < x3 < x4 satisfying x1 + x4 = x2 + x3, we have f(x1) + f(x4) > f(x2) + f(x3).
Using Gaussian Summation to handle the summation term above yields

m/a∑
i=0

c

1 + ia
<

1

2
(
m

a
+ 1)(1 +

1

m+ 1
)c. (1)

Then, by substituting inequality 1, we get the total computational overhead for the “acceleration
phase” as

O1 = 2Ko

m/a∑
i=0

c

1 + ia
+ 2o((

m

a
+ 1)c−

m/a∑
i=0

c

1 + ia
)

<
oc(m+ a)(K(m+ 2) +m)

a(m+ 1)
.

The latter part of the algorithm constitutes a “stable phase” involving r − m
ac iterations, where the

proportion of “full update” is 1
m+1 , and the remainder consists of “minimax update”. Hence, we

gain the total computational overhead for the “stable phase” as

O2 = 2Ko
r − m

a c

m+ 1
+ 2o

m(r − m
a c)

m+ 1
=

2o(ar −mc)(m+K)

a(m+ 1)
.

Combining the two phases, the total computational overhead of MM-FATROL satisfies

OM = O1 +O2 <
co(m+ a)((K + 2)m+ 2K) + 2o(ar −mc)(m+K)

a(m+ 1)
.

Finally, we can conclude that the reduction ratio has the following lower bound

η =
OF −OM

OF
> 1− c(m+ a)((K + 2)m+ 2K) + 2(ar −mc)(m+K)

2Kan(m+ 1)
.
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