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ABSTRACT

Content-associative memories such as Hopfield networks have been studied as a
good mathematical model of the auto-associative features in the CA3 region of
the hippocampal memory system. Modern Hopfield networks (MHN) are gen-
eralizations of the classical Hopfield networks with revised energy functions and
update rules to expand storage to exponential capacity. However, they are not yet
practical due to spurious metastable states even while storing a small number of
input patterns. Further, they have only been able to demonstrate recall of con-
tent by giving partial content in the same stimulus domain and don’t adequately
explain how cross-stimulus associations can be accomplished, as is evidenced in
the Hippocampal formation. In this paper, we revisit Modern Hopfield networks
from both these perspectives to offer new insights and extend the MHN model to
mitigate these limitations. Specifically, we observe that the spurious states relate
to the separability of the input patterns, which can be enhanced by encoding them
before storage and decoding them after recall. We introduce a new kind of Modern
Hopfield network called the Hopfield Encoding Network (HEN) to enable this and
show that such a model can support cross-stimulus associations, particularly be-
tween vision and language, to enable recall of memories with associative encoded
textual patterns.

1 INTRODUCTION

The hippocampal system in the brain is responsible for long-term declarative memory, which in-
volves remembering facts and events (The Human Memory; Wickens & Carswell, 2021). These
‘fragments’ of individualized memories are believed to be linked together during ingestion of new
information for long-term storage and cued recall in the hippocampal circuitry, as proposed in a
seminal paper by (Eichenbaum, 2001). It includes the parahippocampal area that consists of the
perirhinal cortex that encodes the “what” or identity, the parahippocampal cortex which encodes
the “where” or location, and the entorhinal cortex, which acts as the gateway to converge incoming
feeds from multiple sensory stimuli (Strien et al., 2009). For any incoming stimulus, the representa-
tions forming memories are created within the trisynaptic circuit of the hippocampus consisting of
distinct regions, which includes the CA3 region of cells. The existence of recurrent synaptic connec-
tions in CA3 led to the hypothesis that CA3 is an auto-associative network similar to the Hopfield
network formulation of (Hopfield, 1982). Several key ideas have emerged from the theoretical anal-
ysis of Hopfield networks, and these have strongly influenced how neuroscientists analyze memory
networks Almeida et al. (2007).

Classical Hopfield networks are dense associate memory architectures (Krotov & Hopfield, 2016)
that can store a collection of multidimensional vectors, or memories, as fixed point attractor states of
a recurrent dynamical system. Their purpose is to connect the initial or input state to a final state at
a fixed point corresponding to a specific memory. Hopfield networks store content implicitly using
Hebbian recurrent learning by treating the various patterns as stable basins in an energy landscape
and reconstructing them by giving a portion of the content again as a recall cue (Hopfield, 1982). De-
spite their biological plausibility, Hopfield networks have not seen great adoption in content storage
systems due to their limited storage capacity.

The Modern Hopfield Network was introduced as a continuous relaxation of the original Hopfield
network from the 1980s and has been shown theoretically to have exponential storage capacity (Kro-
tov & Hopfield, 2016; Demircigil et al., 2017). However, they are not yet practical because they have
a predilection to enter spurious metastable states, l eading to memorizing bogus patterns even while
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storing a small number of inputs. Further, while there is some evidence of work in cross-stimulus
associations in the context of classical Hopfield network (Shriwas et al., 2019), to our knowledge,
Modern Hopfield networks have only been able to demonstrate recall of content by giving partial
content in the same stimulus domain. Hence, they do not adequately explain how the hippocampal
formation can bind across stimulus domains in their revised formulation (Borders et al., 2017).

In this paper, we revisit Modern Hopfield Networks (MHN) to offer new insights and extend the
MHN model to mitigate some of its limitations. We first investigate the spurious states problem to
put forward the hypothesis that it is related to the separability of the input patterns which can be
mitigated by choosing suitable encoded representations of the stimulus for storing in the network.
We then advance the hypothesis that such encoded representations of stimuli extend the capabili-
ties of Modern Hopfield Networks to store cross-stimulus associations. We demonstrate this using
vision-language associations, choosing both identical and separate encodings of the different stimuli.
We thus demonstrate that either strategy works provided the uniqueness of associations is assured
(which is still key to content-associative memories). These new Modern Hopfield Network design
enhancements could lead to increased adoption of the Hopfield model in practical storage systems.

1.1 PRELIMINARIES

We review the basic framework of MHN and encoder-decoder architectures below to motivate the
proposed enhancements to MHN using encodings. Further, all our insights are derived from our
experiments on the MS-COCO dataset of 110,000 images (Lin et al., 2015). We chose this dataset
to base our study as it contained unique associative captions that will be helpful to illustrate the
cross-stimuli associations in the Modern Hopfield network.

1.2 MODERN HOPFIELD NETWORKS

The mathematical framework of a dense associative memory for a modern continuous Hopfield
network can be described in terms of the energy function and the attractor dynamics. Let N be the
number of memories and K be the data dimensionality. Defining a similarity metric between the
memories {ξn ∈ RK×1}Nn=1 and the state vector v ∈ RK×1 the generalized formulation is written
as:

E = − log
(∑

n

exp(fsim(ξn,v;β)
)

(1)

Essentially, the function fsim(ξn,v;β) is a measure of similarity between the state vector and each
memory in the bank. The log of the sum of exponential (LSE) metric is designed to select the most
relevant memory across the bank (i.e. term with the maximal similarity value), with the parameter
β controlling the tightness of this approximation. β is often referred to as the weighted inverse
temperature term and is a hyperparameter for this model.

Modern continuous Hopfield networks (Ramsauer et al., 2020; Krotov & Hopfield, 2020) use a dot
product-based similarity, which can be expressed as fsim(ξn,v;β) = β < ξn,v >. Alternatively,
(Saha et al., 2023) use the negative ℓ2 distance fsim(ξn,v;β) = −β||ξn − v||22 as a measure of
similarity. The general form of the state vector updates can be expressed as the following recurrence:

v(t+1) = v(t) +
(∂t
τf

) ∂E

∂v(t)
(2)

Where τf is the time constant weighting i.e learning rate, which can be set according to (Krotov
& Hopfield, 2020). The LSE formulation in Eq. (1) can be expressed as a Lagrangian form in the
state of the memory and feature neurons, such that the update dynamics in Eq.( 2) are guaranteed
to decrease the energy monotonically (Millidge et al., 2022). Furthermore, theoretical convergence
guarantees on the individual update steps have been developed by (Ramsauer et al., 2020).

Given a partial state vector v(0) as a query (initialization), upon convergence, the Hopfield updates
produce a completed pattern v(T ) that should correspond to one of the stored memories ξk. The
number of time steps T is a hyperparameter that is set beforehand.

2



Under review as a conference paper at ICLR 2024

1.2.1 ENCODER-DECODER ARCHITECTURES:

From the perspective of artificial neural networks, a bulk of modern representation learning algo-
rithms rely on encoder-decoder architectures for efficient information processing. A number of
encoder-decoder architectures have emerged recently that aim to project the input pattern into a rep-
resentation space with better separability to allow accurate reconstruction. Essentially, such frame-
works learn a mapping back and forth from the input data into a latent space with desirable statis-
tical and geometric properties. A bottleneck layer at the encoder stage forces the representation to
be compact and retain salient information that the decoder can then use to faithfully reconstruct the
input data. Popular examples of such architectures in active use include Variational Autoencoders
(VAEs) (Kingma et al., 2019), Vector Quantized VAEs (Van Den Oord et al., 2017), Generative Ad-
versarial Networks (GANs) (Creswell et al., 2018), VQ GANs (Kumar et al., 2019), and sequence
to sequence diffusion models (Croitoru et al., 2023) which have been adopted for a wide-variety
tasks such as image denoising and in-painting, text to image generation such as with Discrete VAE
(D-VAE) (Ramesh et al., 2021), and natural language processing (Yuan et al., 2022).

2 HOPFIELD ENCODING NETWORKS

Although the results of modern Hopfield networks indicate that the network has theoretically ex-
ponential capacity to store memories, the system of updates is known to be highly sensitive to the
choice of β, which may vary widely across different data representations and can lead to spurious at-
tractor basins (Bruck & Roychowdhury, 1990; Ramsauer et al., 2020; Barra et al., 2018). As alluded
to in (Krotov & Hopfield, 2020), a sufficiently high temperature encourages the energy landscape
to follow a peaky distribution around the attractors (memories). On the other hand, a lower value
results in a wider spread across the candidate exemplar memories. Regardless of the choice of beta,
the Hopfield networks are known to enter spurious attractors states, leading to memorizing bogus
patterns due to a combination of similar looking patterns (Ramsauer et al., 2020). Since Hopfield
networks rely on evaluated similarity between queries and stored memories for accurate associative
memory retrieval, poor direct image similarity assessments tend to produce weak basins of attraction
in the Hopfield energy landscape space, leading to meta-stable formulations, particularly for larger
image collections. This happens even when storing a small number of patterns with a good choice of
β (β = 150) as shown in Fig. 1. Only a small number of memories are recalled accurately, while the
rest are resolved to an average image. The spurious attractor states problem has been well-studied,
and it was shown as early as in (Hopfield, 1982) that the spurious memories are correlated to the
memories being stored in the Hopfield Network, indicating that this may be due to the inherent lack
of separability in the input patterns.

The key idea we put forward here is to see if we can increase the separability of the input patterns
before they enter the Modern Hopfield network so as to reduce the spurious attractor states problem.

Hypothesis 1: The spurious attractor states can be reduced by encoding input patterns prior to
storing them in the Modern Hopfield network and decoding them after recall.

Our proposed Hopfield Encoding Network (HEN), therefore, combines an encoder-decoder with
the Modern Hopfield network. Instead of storing the raw content, the encodings are generated
by a pre-trained auto-encoder and stored in the modern Hopfield network. The raw content can
be regenerated through chaining with the decoder portion of the auto-encoder. We hypothesize
that encodings produced by a learned auto-encoder for the incoming content contain discriminative
information that is not only compact but improves the separability in the energy landscape to prevent
metastable states. That is, by leveraging a well-trained auto-encoder for feature extraction, we posit
that the most significant and discernible features between images can be easily identified, leading to
less spurious patterns emerging during recall.

2.1 CHOICE OF ENCODERS

To evaluate this hypothesis, we examine the effectiveness of various pre-trained encoder-decoder
architectures to produce encoded representations that can lead to successful recall of dense asso-
ciative memories. Further, we also analyzed the parameter choices for the energy formulation of
dense associative memories in affecting the identity of the recalled memory items when using their
encoded representations.
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Figure 1: The figure illustrates the progression of the (Top Row) Modern Hopfield Network (MHN)
run on image inputs and the (Bottom Row) Hopfield encoding network at different intermediate
steps. The sequence from left to right is as follows: the original image, the query image with half of
it occluded, an intermediate update at iteration 11, and the final reconstruction at iteration 150. We
use an ℓ2 similarity and discrete Variational Autoencoder (D-VAE) encoder for the encoded Hopfield
network. For both experiments, we set β = 150

Specifically, we evaluated various pre-trained encoder-decoder architectures known for their state-
of-the-art performance in deep learning-based image encoding and decoding. In particular, we uti-
lized the Discrete Variational Autoencoder (D-VAE) from (Ramesh et al., 2021) and other architec-
tures from (Rombach et al., 2021). We also explored two variants from the diffusion library: one
trained with codebook-based criteria and the other using Kullback-Leibler (KL) divergence-based
criteria. Our empirical analysis, detailed in a later section, revealed that Vector Quantized VAE (VQ-
VAE) methods outperformed others in our setup. Consequently, we selected D-VAE and variants of

Figure 2: Memory recall performance of various encoder methods and the image-based Modern
Hopfield network, each color-coded differently. The (Left) figure plots the MSE metric while the
(Right) depicts the 1-SSIM metric as a function of the temperature β. The encoder-based methods
outperform the raw image-based method over a very large range of choices of hyperparameters. A
6000-image subset of the COCO dataset was used for this experiment.
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Table 1: All encoder-based methods can recover image representations without quality loss, even as
more images are stored in {ξn}.

NUM IMAGES
1-SSIM, MSE vqf8 vqf16 Image D-VAE

6000 0.021, 0.000 0.019, 0.004 0.836, 0.064 0.000, 0.000
8000 0.019, 0.000 0.046, 0.004 0.835, 0.067 0.000, 0.000

10000 0.019, 0.000 0.047, 0.004 0.835, 0.064 0.000, 0.000
15000 0.019, 0.000 0.048, 0.004 0.836, 0.066 0.000, 0.000

VQ-K8 and VQ-F16 from (Rombach et al., 2021) for further analysis. To maintain consistency in
representation, we downsampled the images to a resolution of 28× 28× 3.

2.1.1 REDUCTION OF METASTABLE STATES DUE TO USE OF ENCODINGS

This study tested the image-based dense associative memories against pre-trained Discrete
VAE (Ramesh et al., 2021) and VQ-VAEs encoding equipped Hopfield encoding network (Rom-
bach et al., 2021). The test was conducted on a memory bank ({ξn ∈ R1×K}) and query size
(N ) of 6000 images from the MS-COCO dataset. Both dot product and ℓ2 based similarity mea-
sures were attempted. The performance of different encoder-decoder architectures was evaluated
(see Fig. 2). by varying the dimensionality K. The Mean Squared Error (MSE) and Structural
Similarity Index (1 − SSIM ) metrics were used to compute the similarities between the encoder
reconstructions stored in the {ξn} memory bank and the reconstructed ones.

Note that as this evaluation was conducted to assess the performance on metastable states, the
focus was on recovering the correct identity rather than the quality of reconstruction. Hence a
MSE = 1 − SSIM = 0 indicated that the dense associative memory could retrieve the full en-
coded representation of the image from which the pre-trained decoder could reconstruct the image.
The results in Figure 2 show that using the encoded representations of input patterns to store in the
Hopfield network results in fewer metastable states. Further, the more separable the embedding, the
larger the dataset over which Hopfield networks can avoid getting into metastable states.

Fig. 1 shows the result of using D-VAE encoding for perfect memory recall for the same set of
images for which raw image storage in the Hopfield network failed. While the quality of the recon-
struction is not as clear as the original, the identity of the images recovered is preserved one-to-one.
In comparison, the recall using the raw images for the same dataset using the Modern Hopfield net-
work shows the metastable states. Further, we studied the performance of the HEN on an increasing
number of images in the memory bank. Table 1 shows the performance metrics across different
encoder approaches with an increasing number of images. All encoder-based approaches robustly
recover the encoder image representations without seeing a drop in the quality of the reconstruction
with an increasing number of images stored in {ξn}.

2.1.2 SEPARABILITY ACHIEVED IN ENCODINGS

To study the extent of separability achieved in various encodings, we examine the strength of asso-
ciation patterns in the memory bank of the Hopfield encoding network. Extending the notation in
Section 1.2, let V(0)

i ∈ R1×K denote the encoded query for example i in the dataset. This encoding
is generated by occluding a portion of the image fed through the encoder (or just the occluded image
for the raw image MHN). Specifically, we expect that the major contributor to poor recovery perfor-
mance is the lack of separation between the attractor basins in the energy landscape in Eq. (1), due to
which the dynamics governing the evolution of V(0)

i in Eq. (2) default to meta-stable configurations.
This is also alluded to in (Hopfield, 1982).

To quantify this separation, we compute the cosine similarity between pairs of query and memory
vectors, i.e. cij = cos(V(0)

i , ξj) = V
(0)
i ξTj /||V

(0)
i ||2||ξj ||2. If the patterns of association are well

separated, each query Vi as projected in the encoding space (or in the native space for raw images)
is close to its own memory ξi but is far apart from other memories ξj ,∀j ̸= i. We test this hypothesis
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Figure 3: Illustrating separability in various embeddings used for the experiment in Subsection 2.1.1.
In each figure, we plot the histogram of the distribution of cosine similarity values between the
queries and memories, i.e. cos(V(0)

i , ξj). Distributions colored in red indicate self-similarity (i.e.
i = j) across paired examples, while distributions colored in blue indicate cross similarities (i.e.
i ̸= j). We generate these distributions for (a) Raw Images in the Black Box, (b) Diffusion models
trained on KL Divergence in the Orange Box, (c) Diffusion Models trained using Vector Quanti-
zation in the Brown Box, and (d) Discrete-VAE (D-VAE) in the Red Box. We observe that the
separability in cross and self-similarity measures is particularly poor in the case of raw images.

in Fig. 3 by plotting the distribution of values cij∀j ̸= i as a histogram colored in blue and cii as a
histogram colored in red, for all choices of encoders Φenc(·) in the Hopfield Encoding Network. As
can be seen in Fig. 3, this separation is poor for the raw image case, with the two histograms having
a high overlap in values. This overlap substantially reduces across the encoder-based models, with
the Vector Quantized variants providing improved separability and a relatively higher magnitude of
self-similarity values compared to their KL counterparts. Finally, we notice that the D-VAE encoder,
besides providing separable encodings, also results in the tightest fit around the mean for the self
and cross-similarity value distributions. This is also the reason why the D-VAE encoder gave the
best performance in avoiding metastable states as shown in Fig. 2 and Table 1.

3 HOPFIELD ENCODING NETWORK SUPPORTS CROSS-STIMULI
ASSOCIATIONS

So far, Hopfield networks have been used to recover given stimuli using partial cues coming from
the same stimuli type, even if the ultimate form in which they are stored is in encoded representa-
tions. As the hippocampal system can do cross-associations between stimuli, we explore next if the
Hopfield encoding network (HEN) framework can also support this type of recall. We note here that
the cross-associative features have been previously demonstrated for the classical Hopfield networks
model, which required the binarization of patterns (Shriwas et al., 2019), limiting both the scalabil-
ity and reliability at retrieval as well as a direct application to the continuous representations such
as encodings. Specifically, we explore the use of cross-stimuli coming from language and vision, as
language-based queries are easier to use as cues for recall in practical storage systems.

Hypothesis 2: Hopfield encoding networks serve as content-addressable memories even with cross-
stimuli associations as long as they are unique associations.

To validate this hypothesis, we conducted three separate experiments. First, we stay within the
paradigm of similar stimuli type as a cue and render the language cue into the familiar image form
to allow for content-based access. In the second, we use a native textual embedding for the language
cue and associate it with the content to be stored. Finally, we show that if the uniqueness of asso-
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Figure 4: Hopfield Encoded Network (HEN) architecture. Orange Box: At ingestion, paired text
and image inputs are fed to text (ΦT

enc(·)) and image (ΦI
enc(·)) encoders respectively to generate

the memories of the HEN memory bank. Grey Box: At query time, a partial query v(0) is gener-
ated by feeding the query text into ΦT

enc(·). After (T ) iterations of Eq. (2), the image encoding is
extracted from v(T ), and decoded through the Image decoder (ΦI

dec(·)) to retrieve the correspond-
ing image. Using full image representations instead of image encodings is equivalent to setting
ΦI

enc(·) = ΦI
dec(·) = I, the identity transformation. In the experiment where the text captions are

pixelized as input, ΦT
enc(·) = ΦI

enc(·)

ciation is lost, spurious memory states could again emerge even if the inputs are encoded. Fig. 4
illustrates the overall methodology for the Hopfield Encoding Network (HEN). Here, the memory
bank vectors are formed by concatenating image and text embeddings ξn = [ΦI

enc(In);Φ
T
enc(Tn)].

During retrieval, we construct a query vector v(0) = [0;vT ] constructed using the encoded text
vector vT = ΦT

enc(Tn) and zeros in the location of the image encodings. Finally, after convergence
v(T ) = [v

(T )
I ;v

(T )
T ], we decode the image embedding ΦI

dec(v
(T )
I ) to retrieve the image content.

A. HANDLING CROSS-STIMULI USING PIXELIZED LANGUAGE-IMAGE ASSOCIATION

To test language-image associations, we utilized the unique set of captions associated with each
image in the COCO dataset. Specifically, we employed Python’s hashlib.sha256(.) function
to hash the captions generating a unique ID text string to associate with the image. Initially, we
created a memory bank {ξn} by converting the hashed captions into pixelized text representations
using a generic text-to-pixel function. Subsequently, both the pixelized text and the corresponding
images were processed through the same encoder. The resulting vectors were concatenated to form
the elements of the memory bank {ξn}.

During the query phase, we supplied only the pixelized text part of the encoded vector, setting the
image component to zero. The Hopfield network iteratively updated the image encoding vector,
which was passed through the corresponding decoder to reconstruct the image. Fig. 5 illustrates the
network’s progression in reconstructing the image based on the pixelized text input. The recurrent
updates in the Hopfield network iteratively reconstructed the full image.

As illustrated in Figs. 5, the HEN network is able to recall perfectly using pixelized cross-stimuli
associations. Table 2 reveals that all HEN variants with different encodings still outperformed tradi-
tional image-based Hopfield networks even as the number of image patterns to store increased.

B. NECESSITY OF UNIQUE TEXT-IMAGE ASSOCIATIONS FOR ACCURATE RECOVERY

While the HEN can recall accurately based on cross-stimuli associations, we expect such associa-
tions to be unique as in the case of stimuli from the same domain/modality.

Hypothesis 3: Cross-stimuli associations must be unique in order to avoid metastable states during
recall.

To validate this hypothesis, we designed an experiment in which two different images to be stored
in HEN were selected at random and associated with the same textual pattern. Subsequently, we
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Table 2: The table displays the performance of various encoded cross-modal Hopfield encoding net-
works compared to image-based Modern Hopfield networks as the memory bank {ξn} increases. All
of the different encoders performed well. The first line shows the CLIP-encoded cross-modal rep-
resentations, while the following lines present pixelized text-encoded representations for increasing
image sizes.

NUM IMAGES
1-SSIM, MSE vqf8 vqf16 Image D-VAE

6000-CLIP 0.016, 0.000 0.024, 0.000 0.681, 0.118 0.000, 0.000
6000 0.016, 0.000 0.024, 0.000 0.952, 0.214 0.000, 0.000
8000 0.016, 0.000 0.023, 0.000 0.952, 0.215 0.000, 0.000

10000 0.015, 0.000 0.024, 0.000 0.952, 0.215 0.000, 0.000
15000 0.015, 0.000 0.024, 0.000 0.952, 0.215 0.000, 0.000

Figure 5: Step-by-step progression of a cross-modal query using only text input. Top Row: The
companion text is pixelized and encoded (using D-VAE in this example). This encoded represen-
tation is used to reconstruct the complete image. Bottom Row: The reconstruction process for the
experiment in Subsection 3. (L-R) Ground Truth, Iteration t = 0 starting with a blank canvas with
the provided pixelized text inputs as query prompts, an intermediate update, and finally the fully
reconstructed image. This visualization effectively demonstrates the network’s ability to accurately
reconstruct the image from a text-only input modified into an image-based representation

queried the system using the pixelized text to observe the type of images that would be reconstructed.
Our findings shown in Fig. 6 validate our hypothesis. Violating the uniqueness constrain led to
spurious recall where the reconstructed image appeared to be a mixture of two different images.
Thus HEN supports cross-stimuli associations and the recall is accurate if the associative text pattern
is distinct per image to be stored.

C. HANDLING CROSS-STIMULI USING SEPARATELY ENCODED LANGUAGE-IMAGE
ASSOCIATIONS

Next, we explored if it was necessary to have the cross-stimulus be rendered in the same form as the
memory patterns for HEN. Specifically, we conducted an experiment in which different encodings
were used to represent images and text. We retained the best performing encoder (D-VAE) for
image encoding (See Table. 5) but the textual associative stimulus was encoded using the CLIP
foundational model (Radford et al., 2021). Our hypothesis posited that if the norm spaces of these
encodings are similar, the unique association should still hold.

To create a more meaningful embedding, we concatenated the set of caption sentences per image
into a single long sentence. This sentence was then encoded using the pre-trained CLIP model. The
resulting text and image encodings were then ingested into HEN, as illustrated in Fig.7 (Top). The
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Figure 6: The figure illustrates the consequences of breaking unique text-image associations via two
separate examples. In each example, (Left) the upper and lower image cases depict the disruption
of unique associations in the {ξn} memory bank. (Right) A single text input corresponding to these
disrupted associations is used during the query phase. The top blue image represents an empty
image as a zero-encoded vector at initialization. The resulting reconstruction appears to be a meta-
stable state. Neither of the original images is accurately recovered, validating our hypothesis on the
importance of unique text-image associations.

experiment yielded promising results. The performance of the 6,000 images tested was on par with
that of the discrete VAE in the same embedding space. This is a significant finding, suggesting that
text and image encoders can operate in disjoint spaces while still achieving accurate reconstructions,
provided the Hopfield energy landscapes can be normalized. Further, the top row of Table. 2 shows
robust performance across all CLIP combinations and other image-encoded representations.

Figure 7: Step-by-step progression of a cross-modal query using two different encodings for asso-
ciated visual and language cues. Top Row: The text stimulus is encoded via the CLIP (Radford
et al., 2021) text encoder and associated with the image represented by a D-VAE encoded vector.
Bottom Row: The reconstruction process for the experiment in Subsection 3. (L-R) Ground Truth,
Iteration t = 0 starting with a blank canvas with the provided CLIP Encoded text inputs as query
prompts, an intermediate update, and finally the fully reconstructed image. This visualization effec-
tively demonstrates the network’s ability to accurately reconstruct the image from a text-only input
from a completely different stimulus space as the image content.

4 CONCLUSIONS

In this paper, we extend the Modern Hopfield Network formulation with two key enhancements,
namely, introducing pattern encoders and decoders in combination with the Modern Hopfield net-
work to improve the separability of patterns and the reduction of metastable states. We also show
how such a network is capable of cross-stimuli associations using differing encodings for different
stimuli as long as the uniqueness of association criteria is met. These new enhancements can make
Modern Hopfield networks one day practical for content storage systems.
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