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ABSTRACT

Large language models (LLMs) have achieved remarkable success across various
tasks but face deployment challenges due to their massive computational demands.
While post-training pruning methods like SparseGPT and Wanda can effectively
reduce the model size, but struggle to maintain model performance at high sparsity
levels, limiting their utility for downstream tasks. Existing fine-tuning methods,
such as full fine-tuning and LoRA, fail to preserve sparsity as they require up-
dating the whole dense matrices, not well-suited for sparse LLMs. In this paper,
we propose Sparsity Evolution Fine-Tuning (SEFT), a novel method designed
specifically for sparse LLMs. SEFT dynamically evolves the sparse topology of
pruned models during fine-tuning, while preserving the overall sparsity through-
out the process. The strengths of SEFT lie in its ability to perform task-specific
adaptation through a weight drop-and-grow strategy, enabling the pruned model to
self-adapt its sparse connectivity pattern based on the target dataset. Furthermore,
a sensitivity-driven pruning criterion is employed to ensure that the desired sparsity
level is consistently maintained throughout fine-tuning. Our experiments on various
LLMs, including LLaMA families, DeepSeek, and Mistral, across a diverse set of
benchmarks demonstrate that SEFT achieves stronger performance while offering
superior memory and computation efficiency compared to existing baselines. The
code is provided in the supplementary material and will be released publicly.

1 INTRODUCTION

Large language models (LLMs) have recently demonstrated remarkable success in a wide range of
complex tasks, showcasing capabilities that span language understanding (Zhu et al., 2023), reasoning
(Wei et al., 2022), and code generation (Vaithilingam et al., 2022), etc. However, these models,
characterized by their immense number of parameters, pose significant challenges for real-world
deployment due to their computational and memory demands.

To address these challenges, researchers have proposed post-training pruning approaches to reduce the
number of parameters in large language models (LLMs) without incurring the high costs of retraining
from scratch (Ma et al., 2023; Zhu et al., 2024). For example, SparseGPT (Frantar & Alistarh, 2023)
minimizes the discrepancy between pruned and original dense models using a layer-wise Hessian
method. Furthermore, Wanda (Sun et al., 2023) introduces a metric combining output activations
with weight magnitudes to identify unimportant parameters. However, post-hoc pruning methods
often fail to maintain the performance, especially under high sparsity levels (e.g., ≥ 60%) (Lu et al.,
2024a). This performance degradation poses a significant challenge to their practical application,
despite the fact that pruning can substantially improve efficiency.

To maintain efficiency while preserving accuracy, a natural remedy is to fine-tune the pruned model
using parameter-efficient methods (Yin et al., 2023; Lu et al., 2024c; Munoz et al., 2024). Parameter-
efficient fine-tuning (PEFT) has been widely adopted to fine-tune LLMs in a computationally efficient
manner (Mangrulkar et al., 2022; Pfeiffer et al., 2023; Han et al., 2024). Methods such as LoRA
and its variants (Hu et al., 2021; Xu et al., 2023; Dettmers et al., 2024) significantly reduce training
costs and memory footprint compared to full fine-tuning. Nevertheless, when directly applied to
fine-tune sparse LLMs, these methods either incur additional storage overhead to retain the fine-tuned
parameters or result in dense models after merging, which conflict with the sparse model structure
and undermines the efficiency benefits of sparsity, as illustrated in Figure 1 (a).
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(a) LoRA (b) SEFT

Figure 1: Comparison of LoRA and SEFT fine-tuning for sparse LLMs. While LoRA-based methods
require low-rank matrices, SEFT utilizes indices (arrows) and corresponding deltas (green squares)
to update LLM parameters.

More recently, to preserve the efficiency advantages of sparsity, Sparsity-Preserved Parameter-
Efficient Fine-Tuning methods have been proposed (Lu et al., 2024c; Munoz et al., 2024; Hu et al.,
2025). These approaches maintain sparsity after fine-tuning by incorporating specially designed
adaptation mechanisms, but they often introduce additional memory and computation overhead.
Moreover, these methods typically assume that the sparse topology produced by post-training pruning
remains constant across the training of downstream tasks. Given the heavy reliance on calibration data
in state-of-the-art LLM pruning methods, the pruning process may inadvertently remove connections
that are crucial for specific downstream tasks, leading to suboptimal performance.

This raises a fundamental question: Can we efficiently fine-tune sparse LLMs while dynamically
evolving their sparse topology to better adapt to downstream tasks?

To answer this question, we propose Sparsity Evolution Fine-Tuning (SEFT), which enables
the dynamic and efficient evolution of sparse connectivity during fine-tuning. This allows sparse
LLMs recover task-relevant connections that may have been pruned and adapt their sparse topology
throughout fine-tuning, as illustrated in Figure 1 (b).

Unlike LoRA-based approaches that introduce additional adapters, SEFT directly updates LLM
parameters using a set of selected indices and corresponding update values. During fine-tuning, SEFT
operates in two distinct phases: sparse topology evolution and sparsity adaptation. In the sparse
topology evolution phase, parameters with small updates are dropped, while new connections are
grown based on gradient information. Importantly, this allows previously inactive weights to be
reactivated, enabling the sparse topology to dynamically evolve and better align with the target task.
Following this, the sparsity adaptation phase restores the model to the desired sparsity level using a
defined pruning criterion. This step ensures that the model remains within the predefined sparsity
budget by removing excess connections introduced during the topology evolution phase, thereby
maintaining both efficiency and task performance.

We evaluate SEFT on a variety of sparse LLMs from the LLaMA (Touvron et al., 2023a;b; Dubey
et al., 2024) families, as well as DeepSeek (Bi et al., 2024) and Mistral (Jiang et al., 2023), with
sparsity introduced via two state-of-the-art post-training pruning methods: SparseGPT and Wanda.
Our experiments span models of different sizes, including 7B, 8B, and 13B, and demonstrate the
effectiveness of SEFT across a diverse set of fine-tuning benchmarks, including commonsense
reasoning tasks, MMLU, and GSM8K. Our contributions in this work can be summarized as follows:

• We propose SEFT, an efficient fine-tuning approach tailored to sparse LLMs, which dynami-
cally evolves the sparse topology to enable task-specific adaptation and improve downstream
performance.

• We introduce a sparsity adaptation mechanism that maintains the target sparsity level without
degrading performance after topology evolution.

• We demonstrate up to a 2× reduction in memory footprint and a 2.5× speedup at 70%
sparsity, highlighting that SEFT substantially reduces resource consumption.

• We conduct comprehensive experiments across multiple sparse LLM architectures (LLaMA,
DeepSeek, and Mistral) and tasks (commonsense reasoning, MMLU, and GSM8K), validat-
ing SEFT’s generality and effectiveness in both general-purpose and task-specific settings.
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2 BACKGROUND

2.1 PARAMETER-EFFICIENT FINE-TUNING (PEFT)

Parameter-efficient fine-tuning (PEFT) has emerged as a popular approach to adapt LLM to down-
stream tasks, while significantly reducing the computational and memory overhead associated with
traditional dense full fine-tuning (Pfeiffer et al., 2023; Ding et al., 2023; Han et al., 2024). Instead of
updating all parameters of a pre-trained model, PEFT methods introduce a small number of trainable
parameters while keeping most of the base model frozen, significantly reducing the computational
overhead during fine-tuning.

One widely used PEFT method is Low-Rank Adaptation (LoRA) (Hu et al., 2021). In LoRA, low-rank
matrices are introduced into specific layers (e.g., attention or feedforward layers) to capture task-
specific adaptations. Specifically, let W ∈ Rd×d represent a frozen weight matrix in a pre-trained
model. LoRA introduces a low-rank decomposition:

W′ = W +∆W, ∆W = AB (1)
where A ∈ Rd×r and B ∈ Rr×d are low-rank matrices (r ≪ d), and only A and B are trainable.

While PEFT methods like LoRA have proven effective for dense models, they are inherently not
well-suited for sparse LLMs, as they either require dense updates or fail to preserve sparsity after
fine-tuning.

2.2 SPARSE FINE-TUNING (SFT)

Unlike LoRA-based approaches, Sparse Fine-Tuning (SFT) (Guo et al., 2021; Xu et al., 2021; Ansell
et al., 2022) directly modifies the base model by introducing task-specific updates in the form of a
sparse “delta” vector δ ∈ Rdθ , which is added to pre-trained parameters θ ∈ Rdθ . The resulting
fine-tuned model can be expressed as:

f ′(·;θ) = f(·;θ + δ), (2)
Here, δ contains non-zero updates only at specific locations in θ, allowing for a sparse parameteriza-
tion that enables efficient fine-tuning in practice.

Sparse Parameterization. A sparse delta vector δ with dϕ non-zero entries can be efficiently
represented using two components:

• Indices of non-zero values (η): A vector of unique indices η ∈ {1, 2, . . . , dθ}dϕ , represent-
ing the positions within θ where updates are applied.

• Update values (ϕ): The corresponding update values at these positions, denoted as ϕ ∈ Rdϕ .

Here, dϕ is typically a user-defined hyperparameter that controls the number of parameters updated
during fine-tuning. Since δ modifies only a small subset of the full parameter vector θ, we have dϕ ≪
dθ. This sparsity ensures that the fine-tuning process is computationally efficient and lightweight.

Optimization Objective. Sparse fine-tuning can be formulated as an optimization problem that aims
to identify the optimal indices η and corresponding update values ϕ to improve model performance
on a given task-specific dataset D. The objective is defined as:

η⋆,ϕ⋆ = argmin
η,ϕ

L(D;θ,η,ϕ), (3)

where L denotes the loss function that measures the discrepancy between the model predictions and
the ground-truth labels. This formulation jointly determines which parameters to update (through η)
and how to update them (through ϕ), while maintaining a limited number of updates for efficiency.
Recent studies have scaled and validated this sparse optimization framework in the context of dense
LLMs (Ansell et al., 2024), paving the way for broader exploration in sparsity-aware scenarios.

3 SPARSITY EVOLUTION FINE-TUNING FOR SPARSE LLMS

Building upon the paradigm of sparse fine-tuning, we propose Sparsity Evolution Fine-Tuning
(SEFT), a novel approach that enhances the adaptation of sparse LLMs by allowing the dynamic
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Drop Grow Adapt

Fine-tuned Model

(1) (2) (3) (4) (5)

every k steps

Figure 2: An illustration of SEFT for sparse LLMs. The SEFT process consists of: (1) starting with a
sparse LLM, along with learnable indices (arrows) and corresponding deltas (green squares) applied
to the LLM parameters; (2) dropping obsolete indices (dashed arrows); (3) growing new indices
(green arrows); (4) adapting parameters to the target sparsity level (red squares). These steps are
repeated every k steps. The final output is a sparse LLM after fine-tuning.

evolution of their sparse topologies during task-specific fine-tuning. Given pre-trained model weights
θ ∈ Rdθ , after post-training pruning we obtain a sparse model θ′ = θ ⊙M0, where M0 ∈ {0, 1}dθ

is a binary mask. For each i ∈ {1, . . . , dθ}, M i
0 = 1 indicates that parameter i is active (retained)

and M i
0 = 0 indicates it is inactive (pruned). The sparsity level ρ is defined as the proportion of

pruned (inactive) parameters relative to the total number of parameters in the model. We reformulate
sparse fine-tuning for such models as:

f ′(·;θ′) = f(·;θ′ + δ), (4)

where δ represents the learnable delta that introduces task-specific updates to the sparse model. Note
that, SEFT explicitly allows δ to modify both active (M i

0 = 1) and previously pruned (M i
0 = 0)

weights, enabling the model to recover useful parameters and adapt its sparse structure during
fine-tuning. To support this, SEFT introduces two complementary components: Sparse Topology
Evolution, which explores and activates task-relevant weights, and Sparsity Adaptation, which prunes
less important weights to maintain the target sparsity level.

This allows efficient and direct acquisition of a performant sparse model through fine-tuning, outper-
forming the pipeline of pruning a dense model after fine-tuning (see Appendix D).

3.1 SPARSE TOPOLOGY EVOLUTION

SEFT periodically updates the indices η of non-zero elements in δ through a drop-and-grow mech-
anism to dynamically evolve the sparse topology during sparse LLMs fine-tuning. Building on
empirical evidence from Dynamic Sparse Training (DST) (Mocanu et al., 2018; Evci et al., 2020),
which efficiently evolves sparse connectivity during training and consistently outperforms static
sparse training, we posit that SEFT’s sparse topology evolution enables the recovery and activation of
task-relevant connections, thereby improving performance.

Drop. During each topology evolution cycle, the smallest updates are dropped from the active set (as
in Figure 2 (2)):

ηdrop = argtopkτ(t) (−|ϕi|) , (5)

where |ϕi| denotes the absolute value of the i-th element in δ, and τ(t) determines the number of
indices to drop at step t. The intuition is that smaller updates reflect minimal task-driven adjustments
to the pre-trained model, indicating less contribution and can be safely pruned.

Grow. Simultaneously, τ(t) new weights are added to the active set by selecting those with the
largest gradient magnitudes (as in Figure 2 (3)):

ηgrow = argtopkτ(t) |∇θL(x;θ′
t + δ)| , (6)

where L is the task-specific loss evaluated on the current training batch x. Notably, our implementa-
tion computes and applies gradients for growth sequentially on a layer-by-layer basis, releasing them
immediately afterward. This strategy ensures memory efficiency and avoids the large memory spikes
that typically occur in sparse training.

This approach enables the delta vector δ dynamically explore beyond the fixed mask constraints, i.e.,
activating updates for both active weights (M i

0 = 1) and previously pruned weights (M i
0 = 0). Such
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that, SEFT improves the model’s adaptability, allowing it to recover task-relevant connections and
better align its parameter allocation with downstream objectives.

3.2 SPARSITY ADAPTATION

Algorithm 1 Sparsity Evolution Fine-Tuning (SEFT)
Input: Pruned model θ′ with initial mask M0, target spar-
sity level ρ, delta vector δ initialized as zeros, number of
training steps T , update frequency k.
Output: Sparse fine-tuned model θ′

T + δ.
for t = 1 to T do

Update δ using task-specific loss L.
if t mod k = 0 then

Sparse Topology Evolution
Drop indices ηdrop based on Eq. 5.
Grow indices ηgrow based on Eq. 6.
Update δ with ηdrop and ηgrow.

Sparsity Adaptation
Calculate important score for each weight.
Get new mask Mt followed Eq. 7.
Update sparse weights: θ′

t = θt ⊙Mt.
end if

end for
Return: Sparse fine-tuned model θ′

T + δ.

While the sparse topology evolution pro-
cess enables the model to dynamically
adapt to downstream tasks, it can lead to
a denser model by activating previously
inactive weights (M i

0 = 0), as shown in
Figure 2 (3). To maintain the target sparsity
budget, we introduce a sparsity adaptation
step that prunes low-importance weights
and restores the model to the desired spar-
sity level, ensuring compliance with the
predefined sparsity constraints.

Specifically, low-importance weights are
considered redundant and are pruned with
minimal impact on overall performance. In
this work, we evaluate two importance scor-
ing rules: a magnitude-based score, which
is a commonly used pruning metric, and a
sensitivity-based score, defined as the prod-
uct of weight magnitude and its gradient
(Lee et al., 2019; Nowak et al., 2023). As shown in Appendix E.2 and Figure 5 (a), our comparative
analysis demonstrates that the sensitivity-based score consistently outperforms the magnitude-based
score during the sparsity adaptation phase. Accordingly, we adopt the sensitivity-based score as the
default importance metric throughout this work, unless otherwise specified.

Pruning Decision: Weights with the smallest importance score si are pruned to meet the target
sparsity level ρ. The new mask Mt is then updated accordingly (as in Figure 2 (4)):

M i
t =

{
0, if si is among the smallest ρ fraction of all s,
1, otherwise.

(7)

The resulting sparse model is then represented as θ′
t = θt ⊙Mt.

This two-stage mechanism, sparse topology evolution followed by sparsity adaptation, enables SEFT
to maintain a task-adaptive sparse structure while strictly adhering to the sparsity budget. In practice,
SEFT employs accumulated gradient estimates instead of instantaneous gradients, which aims to
improve training stability during fine-tuning. An overview of SEFT is provided in Algorithm 1.

4 EXPERIMENTS AND RESULTS

Sparse LLMs. We evaluate on several widely-used open-source LLMs, including the LLaMA
family, DeepSeek, and Mistral. These models are pruned using state-of-the-art post-training pruning
methods, such as SparseGPT and Wanda, to achieve the desired sparsity levels. Our focus is primarily
on unstructured and N:M sparsity as it allows for fine-grained control over the parameters and
has shown strong empirical results in prior works (Frantar & Alistarh, 2023; Sun et al., 2023; Yin
et al., 2023). We target highly sparse models (e.g., sparsity ≥ 0.6), where performance degradation
becomes more pronounced, necessitating fine-tuning. Moreover, high sparsity levels are generally
more hardware-friendly for practical speedup (Gale et al., 2020), as demonstrated in Section 4.1.3.

Fine-tuning Tasks. To comprehensively evaluate the effectiveness of SEFT, we conduct experiments
across two categories of fine-tuning tasks:

(1) Performance recovery: This setting assesses the ability of fine-tuning methods to recover perfor-
mance lost due to pruning. Specifically, models are fine-tuned on a general pretraining dataset, using
30k randomly selected samples from the C4 corpus (Raffel et al., 2020), and evaluated using Wikitext
perplexity (PPL) (Merity et al., 2016) and Commonsense Reasoning benchmark (Gao et al., 2021).
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(2) Supervised fine-tuning: This setting evaluates the models’ ability to learn task-specific information
through supervised data: (i) Commonsense Reasoning: Models are fine-tuned on a 170k-sample
commonsense reasoning dataset and evaluated on zero-shot performance across seven commonsense
reasoning tasks: BoolQ, RTE, HellaSwag, WinoGrande, ARC-e, ARC-c, and OBQA, following the
evaluation protocol in (Hu et al., 2023). (ii) MMLU: The Massive Multitask Language Understanding
benchmark (Hendrycks et al., 2020) includes 57 tasks spanning diverse domains, such as elementary
mathematics, US history, computer science, and law. We adopt a zero-shot evaluation protocol,
where models are fine-tuned on an auxiliary training dataset and evaluated on MMLU. (iii) GSM8K
(Cobbe et al., 2021): This benchmark consists of grade-school-level math word problems. Models
are fine-tuned on the training split of GSM8K and evaluated in a zero-shot setting.

Baselines. To evaluate SEFT, we fine-tune the sparse LLMs and compare them with the following
sparsity-preserving baselines:

(1) LoRA*: After LoRA fine-tuning, we apply the corresponding post-hoc pruning to restore the
desired sparsity level and retain computational efficiency.

(2) SPP: This method fine-tunes sparse models using designed sparsity-preserving adapter, allowing
the final model to maintain the target sparsity level after merging (Lu et al., 2024c).

(3) SQFT: We use a sparsity-preserving version from (Munoz et al., 2024) that excludes quantization
of the base model. It maintains the target sparsity during fine-tuning by applying a binary mask.

This enables efficient and direct training of performant sparse models, outperforming the prune-after-
dense finetuning pipeline (see Appendix D). For fair comparison, all fine-tuned LLMs are restored to
the target sparsity, and all methods use the same number of trainable parameters, matching to that of
LoRA under the corresponding rank configuration. We adopt a fixed rank of 32 as the default setting.
Additional experimental details are provided in Appendix J.

4.1 OVERALL PERFORMANCE

In this section, we present a comprehensive evaluation of SEFT across a range of fine-tuning
scenarios. We begin by analyzing its ability to recover performance after pruning, followed by results
on supervised fine-tuning tasks. Finally, we assess its efficiency in terms of memory cost, training
speed, and inference latency.

4.1.1 PERFORMANCE RECOVERY Table 1: Performance comparison of different methods
with and without fine-tuning applied to sparse LLaMA
models at a sparsity level of ρ = 0.7.

LLaMA Method PPL (↓) LM-eval (↑)

V2-7B

Wanda 75.19 34.83
Wanda+LoRA∗ 11.71 44.29
Wanda+SPP 11.53 44.46
Wanda+SQFT 11.94 44.73
Wanda+SEFT 11.19 45.61
SparseGPT 27.31 41.51
SparseGPT+LoRA∗ 12.86 45.42
SparseGPT+SPP 11.58 47.27
SparseGPT+SQFT 11.71 47.09
SparseGPT+SEFT 11.00 47.95

V3-8B

Wanda 120.20 34.92
Wanda+LoRA∗ 18.28 43.32
Wanda+SPP 16.73 43.68
Wanda+SQFT 17.16 43.56
Wanda+SEFT 16.17 44.55
SparseGPT 43.25 41.70
SparseGPT+LoRA∗ 17.81 46.11
SparseGPT+SPP 15.25 48.33
SparseGPT+SQFT 16.14 47.70
SparseGPT+SEFT 15.09 48.89

We validate the effectiveness of SEFT for
performance recovery by fine-tuning sparse
LLMs on a pretraining dataset, using 30k
randomly sampled examples from C4 (Raf-
fel et al., 2020). To obtain sparse models,
we first apply post-training pruning meth-
ods including Wanda and SparseGPT to
reach a 70% sparsity level.

We use two evaluation metrics: LM-eval,
which reports zero-shot accuracy across
seven tasks from the EleutherAI LM Har-
ness (Gao et al., 2021), and PPL, which
denotes the perplexity on Wikitext-2 (Mer-
ity et al., 2016). As shown in Table 1,
fine-tuning significantly improves the per-
formance of sparse LLMs, as indicated by
lower perplexity and higher LM-eval scores
compared to their unfinetuned counterparts.
Notably, SEFT demonstrates strong per-
formance recovery across various settings.
It generally achieves competitive or better
performance compared to existing baselines, particularly LoRA* and SQFT, across both evaluation
metrics. These gains are observed across different model scales and under both pruning strategies.
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Table 2: Comparison of fine-tuning methods on sparse LLaMA models at sparsity level ρ = 0.6.
Results report average and per-task zero-shot accuracy on seven commonsense reasoning tasks.
Higher values indicate better performance.

LLaMA Method WG RTE OBQA HS BoolQ ARC-e ARC-c Avg

V2-7B

Wanda+LoRA∗ 73.48 54.51 29.00 51.49 70.98 72.81 39.07 55.91
Wanda+SPP 73.79 54.15 27.40 51.97 71.80 70.54 37.63 55.32
Wanda+SQFT 75.61 54.87 29.00 52.86 70.46 72.51 39.07 56.34
Wanda+SEFT 75.85 56.32 29.80 52.34 67.65 72.60 41.21 56.54
SparseGPT+LoRA∗ 73.16 53.79 28.60 51.13 77.73 72.34 38.48 56.46
SparseGPT+SPP 72.69 58.48 28.80 52.63 70.55 69.91 39.16 56.03
SparseGPT+SQFT 75.37 53.43 30.00 52.38 74.95 72.89 41.38 57.20
SparseGPT+SEFT 75.53 55.23 30.80 52.99 77.98 72.64 41.13 58.04

V3-8B

Wanda+LoRA∗ 73.87 56.68 27.20 50.69 69.91 71.08 39.51 55.56
Wanda+SPP 73.32 54.51 27.40 50.37 70.46 70.75 37.97 54.97
Wanda+SQFT 75.84 60.26 26.40 50.85 77.61 70.24 40.01 57.32
Wanda+SEFT 76.87 57.76 28.60 52.20 80.83 71.46 41.38 58.44
SparseGPT+LoRA∗ 79.48 57.04 29.40 53.78 83.30 74.20 43.34 60.07
SparseGPT+SPP 76.87 57.76 31.20 53.45 80.67 74.12 43.09 59.60
SparseGPT+SQFT 79.43 63.17 31.40 53.83 82.09 73.19 41.97 60.73
SparseGPT+SEFT 78.37 62.82 31.20 53.99 83.00 73.40 43.69 60.92

V1-13B

Wanda+LoRA∗ 77.11 59.93 33.60 56.37 82.38 76.56 44.88 61.54
Wanda+SPP 80.03 62.09 32.60 57.08 76.73 75.88 44.71 61.30
Wanda+SQFT 79.48 58.84 32.40 56.84 82.54 76.05 46.42 61.79
Wanda+SEFT 79.32 59.20 33.00 56.58 83.58 77.02 47.44 62.31
SparseGPT+LoRA∗ 78.37 59.93 31.20 55.23 79.60 76.01 43.26 60.51
SparseGPT+SPP 80.66 56.68 35.00 57.53 79.78 75.76 45.22 61.52
SparseGPT+SQFT 79.63 57.28 34.20 57.50 83.45 76.01 44.79 61.84
SparseGPT+SEFT 80.19 57.40 33.20 56.81 83.52 77.02 45.90 62.01

4.1.2 SUPERVISED FINE-TUNING

In this section, we evaluate the effectiveness of SEFT on a widely used supervised fine-tuning
tasks-Commonsense Reasoning. Table 2 presents the zero-shot accuracy on seven tasks from the
commonsense reasoning benchmark. To begin, the evaluation is performed on post-training sparse
models generated by Wanda and SparseGPT at a sparsity level of 60%, which provides a balanced
trade-off between efficiency and decent performance comparison on this benchmark. The sparse
models are then fine-tuned using SEFT and other sparsity-preserving baselines. We include results
for three model sizes: LLaMA2-7B, LLaMA3-8B, and LLaMA1-13B, reporting both per task and
average performance.

The results show that SEFT consistently outperforms existing sparsity-preserved fine-tuning methods
such as SPP and SQFT across all evaluated models and tasks. Compared to LoRA*, SEFT improves
the average accuracy by approximately 1–2%, demonstrating its ability to better adapt sparse models
to downstream reasoning tasks. In particular, SEFT achieves strong results in OBQA and ARC-c
over other baselines. Overall, these findings highlight SEFT’s effectiveness in enhancing the overall
performance across commonsense reasoning tasks and model sizes.

4.1.3 MEMORY AND COMPUTATION EFFICIENCY

Memory Efficiency. In this section, we evaluate the memory overhead of different sparsity-preserving
fine-tuning methods using the LLaMA-7B model. Experiments were conducted with sequence lengths
ranging from 512 to 2048 at a rank of 32. Figure 3 presents the memory usage of the different methods
across various sequence lengths. We find that as the sequence length increases, all methods exhibit a
higher memory consumption, which is expected. In particular, SEFT consistently uses less memory
than other methods in all settings, and in some cases, SEFT requires approximately half the memory
of SQFT.
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Figure 3: (a) GPU memory usage (in GB) for SEFT and
baseline methods on a Commonsense Reasoning task
using an H100 GPU. All results are reported without
activation checkpointing.

Compared with LoRA methods, SEFT ex-
hibits substantially lower memory usage
as sequence length increases. As shown
in the memory consumption breakdown
in Appendix C, the majority of SEFT’s
memory savings comes from reduced acti-
vation memory during fine-tuning. While
LoRA-style adapters introduce additional
activation tensors for their adapter path-
ways, SEFT performs in-place parameter
updates without requiring any auxiliary ac-
tivations. These results highlight SEFT’s
favorable memory–efficiency profile, offer-
ing a stronger balance between resource
usage and performance when fine-tuning
sparse LLMs.

Computation Efficiency. We analyze the
inference speedup of the sparse LLM achieved after SEFT fine-tuning, as presented in Table 6 in
Appendix B. To assess practical gains, we report end-to-end decoding latency using the LLaMA-V2-
7B model running in the DeepSparse inference engine (DeepSparse, 2021) on an Intel Xeon Platinum
8360Y CPU with 36 cores. The results show that fine-tuned sparse LLMs yield substantial inference
speedups compared to their dense counterparts, achieving up to 2.5× improvement at 70% sparsity.
Moreover, the speedup becomes even more pronounced at higher sparsity levels, demonstrating the
potential of SEFT to enable both performance and practical deployment benefits.

4.2 EFFECT ON OTHER TASKS AND ARCHITECTURES

Table 3: Performance evaluation of DeepSeek-7B-chat
and Mistral-7B-v0.1 models on MMLU and GSM8K
benchmark at a sparsity level of 60% by Wanda pruning
method. Higher values indicate better performance.

Method MMLU GSM8K

DeepSeek-7B-chat

LoRA* 45.57 31.46
SPP 45.74 31.45
SQFT 44.23 31.97
SEFT 46.14 32.52

Mistral-7B-v0.1

LoRA* 53.52 37.83
SPP 53.78 39.73
SQFT 53.57 40.86
SEFT 53.97 42.91

To further evaluate the generality of
SEFT beyond standard benchmarks and
the LLaMA-based architectures discussed
above, we perform experiments on two
challenging benchmarks, MMLU and
GSM8K, and extend our evaluation to al-
ternative model architectures, including
DeepSeek-7B-chat (Bi et al., 2024) and
Mistral-7B-v0.1 (Jiang et al., 2023). The
MMLU benchmark spans a wide range of
academic and professional subjects, testing
both factual knowledge and reasoning abil-
ity, while GSM8K focuses on grade-school
math word problems.

Specifically, we apply the Wanda pruning method to compress DeepSeek-7B-chat and Mistral-
7B-v0.1 to a sparsity level of 60%, which offers a balanced setting for meaningful performance
comparisons. The pruned LLMs are subsequently fine-tuned using SEFT, LoRA*, SPP, and SQFT,
and their performance is evaluated on both the MMLU and GSM8K benchmarks. The results show
that SEFT consistently outperforms other methods across both tasks and architectures. For instance,
on MMLU, SEFT yields competitive performance, while on GSM8K, it achieves up to around 2%
gain on Mistral-7B. These findings underscore the robustness of SEFT in handling diverse tasks and
its ability to generalize across different model backbones beyond the LLaMA family. This highlights
its potential as a general-purpose sparse fine-tuning method that is both task- and model-agnostic,
making it well-suited for real-world deployment scenarios.

4.3 EFFECT ON N:M SPARSITY

In addition to demonstrating the effectiveness of SEFT under unstructured pruning in previous
sections, we further evaluate its applicability to N:M sparsity patterns, which are increasingly
supported by modern hardware (e.g., NVIDIA Ampere and Hopper architectures (NVIDIA, 2021)).
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Table 4: Performance evaluation of LLaMA1-7B
and LLaMA3-8B models on LM-eval under differ-
ent N:M sparsity patterns. Higher values indicate
better performance.

Method LLaMA1-7B LLaMA3-8B
2:4 4:8 2:4 4:8

LoRA* 57.35 57.71 58.25 60.04
SPP 55.16 56.77 56.55 57.81
SQFT 56.85 57.87 56.99 58.28
SEFT 58.17 58.65 59.63 60.35

To enforce these sparsity pattern constraints, the
sparse topology evolution phase in SEFT is re-
stricted to exploring and activating updates only
within the set of currently active weights (M0 =
1), preserving the required pattern. Table 4 re-
ports the performance of SEFT under 2:4 and
4:8 sparsity configurations on both LLaMA1-
7B and LLaMA3-8B models after fine-tuning
pruned models using the Wanda method. The
results show that SEFT maintains or even im-
proves performance under N:M sparsity settings,
outperforming other sparsity-preserving base-
lines. These findings extend the applicability of
SEFT beyond unstructured pruning, highlighting its versatility in both algorithmic efficiency and
hardware-friendly support.

4.4 IMPACT OF DIFFERENT SPARSITY LEVELS AND RANKS

Table 5: Performance comparison of LLaMA2-7B
on LM-eval under different sparsity levels (ρ).

Method ρ=0.5 ρ=0.6 ρ=0.7 ρ=0.8

LoRA* 60.19 56.98 49.07 39.02
SPP 59.92 56.56 49.63 40.40
SQFT 60.37 57.84 51.58 40.70
SEFT 60.94 58.50 52.74 42.06

Table 5 reports LM-eval performance of
LLaMA2-7B with sparsity levels ρ ∈
{0.5, 0.6, 0.7, 0.8}. SEFT achieves the best re-
sults at these sparsity levels, and its advantage
grows as ρ increases. At ρ = 0.8, for instance,
SEFT outperforms the strongest baseline by 1.36
points. This pattern holds across additional tasks
and model scales (see Appendix F.1, Table 9).
These results suggest that adapting the sparse
topology during fine-tuning is particularly ef-
fective in high-sparsity regimes compared with
fixing a sparsity pattern obtained via post-hoc pruning after fine-tuning.

In Appendix F.2, Table 10 illustrates the impact of the number of fine-tuning parameters on the
performance of SEFT. As expected, as the number of trainable parameters increases, SEFT shows
potential to improve performance. However, SEFT seems to exhibit a stronger upward trend compared
to LoRA base method. For instance, while baseline method shows only marginal improvements at
high ranks, SEFT demonstrates consistent performance gains, reaching a much higher accuracy at
Rank=64 on commonsense reasoning benchmark.

We further explore the impact of various SEFT configurations, including the drop/grow ratio relative
to τ(t) as defined in Eq.5 and Eq.6 (see Appendix F.3), as well as the frequency of sparse topology
evolution (Appendix F.4). An ablation study analyzing the contribution of each SEFT component,
such as mask constraints during topology evolution (Appendix E.1) and the role of sparsity adaptation
(Appendix E.2), is also provided. In addition, we include a sensitivity analysis of different learning
rates in Appendix F.5.

5 CONCLUSION

In this work, we propose Sparsity Evolution Fine-Tuning (SEFT), a novel method that dynamically
evolves the sparse topology of large language models (LLMs) to better adapt to downstream tasks. By
introducing a drop-and-grow mechanism and enabling the reactivation of previously pruned weights,
SEFT supports task-specific adaptation while preserving target sparsity constraints. Extensive
experiments across a range of benchmarks demonstrate SEFT’s effectiveness in both performance
recovery and supervised fine-tuning scenarios. Moreover, SEFT achieves these improvements with
significantly lower memory and computational costs. These results underscore its potential as a
scalable and efficient solution for fine-tuning sparse LLMs in practical applications.

We provide a discussion of related work in Appendix A and present limitations and future directions
in Appendix I.
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6 ETHICS STATEMENT

This paper contributes to the development of efficient fine-tuning methods for large language models
(LLMs), addressing the challenges posed by their substantial computational and performance demands
and enhancing their feasibility for real-world deployment. While our contributions do not inherently
lead to negative societal impacts, we encourage the community to remain mindful of potential ethical
and practical implications when extending or applying our research.

7 REPRODUCIBILITY STATEMENT

To ensure reproducibility, we include our source code in the Supplementary Material and will release
it publicly at camera-ready. The implementation details of our method are described in Section 3.1
and Algorithm 1. Comprehensive information on training configurations, hyperparameters, and
datasets is provided in Appendix J.
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A RELATED WORK

A.1 LLM PRUNING

In the era of large language models (LLMs), their enormous sizes pose significant challenges for
real-world deployment, including increased computational and memory demands. To address these
challenges, recent research has increasingly focused on post-training pruning methods, which start
from pre-trained networks and remove redundant parameters to reduce model size and complexity
(Ma et al., 2023; Naveed et al., 2023; Zhu et al., 2024). For instance, SparseGPT utilizes second-order
information to solve a layer-wise reconstruction problem, enabling the effective pruning of large
models (Frantar & Alistarh, 2023). Similarly, Wanda introduces a pruning metric that considers
both weight magnitude and corresponding activations (Sun et al., 2023). More recently, layer-wise
prunability has been introduced as a technique to enhance traditional pruning methods by adaptively
allocating sparsity across layers based on their individual importance (Yin et al., 2023; Lu et al.,
2024b). However, these methods often struggle to maintain satisfactory performance, particularly in
high sparsity regimes. To address this limitation, we propose a novel fine-tuning method for sparse
LLMs, enabling the recovery of performance and effective adaptation to downstream tasks.

A.2 PARAMETER-EFFICIENT FINE-TUNING

Parameter-Efficient Fine-Tuning (PEFT) has gained significant attention for its ability to adapt
large language models (LLMs) to downstream tasks while significantly reducing computational
and memory costs (Mangrulkar et al., 2022; Ding et al., 2023; Han et al., 2024). A notable PEFT
approach, Low-Rank Adaptation (LoRA) (Hu et al., 2021), and its variants introduce trainable
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layer-wise low-rank decomposition matrices into network, allowing efficient parameter updates
with minimal overhead (Xu et al., 2023; Zhao et al., 2024; Dettmers et al., 2024). However, when
fine-tuning sparse LLMs, a challenge that arises is that merging dense adapters with sparse weights
leads to the overall loss of sparsity, which negates the efficiency benefits of sparse models. Recent
studies such as SPP (Lu et al., 2024c) and SQFT (Munoz et al., 2024) have extended LoRA to support
sparse LLMs by incorporating masking mechanisms, thereby preserving sparsity during fine-tuning.
However, a major limitation of these methods is their reliance on a fixed sparse topology, which
restricts their adaptability to diverse downstream tasks.

A.3 DYNAMIC SPARSE TRAINING

Dynamic Sparse Training (DST) is a paradigm that maintains a small fraction of active parameters
throughout training by starting with a sparse neural network and dynamically evolving its sparse
connectivity using a prune-and-regrow strategy (Mocanu et al., 2018; Evci et al., 2020; Liu et al.,
2023; Wu et al., 2025). It was first well established by (Mocanu et al., 2018) through the Sparse
Evolutionary Training (SET) algorithm, which demonstrated superior performance compared to
static sparse neural networks by dynamically evolving sparse connectivity during training. Recent
advancements have explored diverse pruning criteria, such as magnitude-based (Evci et al., 2020;
Liu et al., 2021), weight-balanced (Mocanu et al., 2018), and gradient-based pruning (Yuan et al.,
2021), alongside regrowth strategies guided by randomness (Mostafa & Wang, 2019; Xiao et al.,
2022), momentum (Dettmers & Zettlemoyer, 2020), and gradient information (Evci et al., 2020).
DST has been effectively applied and widely adopted in various domains, including reinforcement
learning (Graesser et al., 2022), features selection (Sokar et al., 2022; Atashgahi et al., 2022), and
image segmentation (Wu et al., 2024). Building on this foundation, recent work (Ansell et al.,
2024) was the first to scale DST to fine-tuning LLMs. Our work extends this further to sparse
LLMs by introducing dynamic topology evolution and adaptation, enabling efficient and task-specific
fine-tuning for downstream applications.

B INFERENCE SPEEDUP ON CPU

While support for unstructured sparsity on modern GPUs remains relatively limited, there is growing
attention toward enabling such capabilities. For example, Cerebras has developed specialized
hardware designed to support unstructured sparsity at scale (Lie, 2023; Thangarasa et al., 2024).
Additionally, NVIDIA’s Ampere and Hopper architectures have introduced hardware-level support
for structured sparsity (e.g., 2:4 patterns), enabling modest acceleration through sparse tensor cores
(NVIDIA, 2021). These efforts reflect a broader trend toward making sparsity-aware training and
inference feasible on GPU hardware.

Despite these advancements, unstructured sparsity has shown immediate and practical benefits on non-
GPU platforms such as CPUs and custom accelerators. For instance, FPGA-based accelerators for
sparse RNNs have achieved notable gains in speed and energy efficiency by fully utilizing embedded
multipliers. A particularly prominent example is DeepSparse 1, which efficiently deploys large-scale
sparse models like BERT on modern Intel CPUs. DeepSparse reports up to 10× model compression
with less than 1% accuracy loss, 10× CPU inference speedup with under 2% drop, and as much as
29× speedup with under 7.5% accuracy degradation.

Table 6: End-to-end speedup of LLaMA-V2-7B under different sparsity levels with the DeepSparse
inference engine.

Sparsity Dense 40% 50% 60% 70% 80%
Latency(ms ) 206.36 179.22 113.69 95.18 82.29 63.52
Throughput 4.84 5.58 8.79 10.50 12.15 15.74
Speedup 1.0× 1.2× 1.8× 2.2× 2.5× 3.3×

Motivated by these developments, we evaluate actual inference speedup using the DeepSparse
engine (DeepSparse, 2021). Specifically, we measure end-to-end decoding latency for the LLaMA-

1https://github.com/neuralmagic/deepsparse
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V2-7B model running on an Intel Xeon Platinum 8360Y CPU with 36 cores. Results show that sparse
LLMs fine-tuned with SEFT achieve substantial speedups over their dense counterparts, reaching up
to 2.5× improvement at 70% sparsity. Furthermore, the benefit becomes even more pronounced at
higher sparsity levels, achieving approximately 4× speedup at 90% sparsity, highlighting the promise
of extreme sparsity for efficient inference. These findings underscore the importance of maintaining
sparsity throughout the fine-tuning process and point toward the potential of leveraging sparsity-aware
GPU operations in future deployment scenarios.

Figure 4: (a) Breakdown of memory consumption for different methods when fine-tuning the LLaMA-
2 7B model. (b) LM-eval performance of LLaMA-2 7B under varying sparsity levels, comparing
SEFT with baseline approaches.

C MEMORY USAGE COMPARISON

We measure end-to-end GPU memory consumption and its component-wise breakdown (parameters,
activations, gradients, and optimizer states) on fine-tuning the LLaMA-2 7B model. Unless otherwise
noted, we use batch size = 1, input sequence length = 1024, and disable gradient checkpointing. For
the compared methods (LoRA, SPP, and SQFT), we apply the same settings. The results are shown
in Figure 4 (a).

SEFT exhibits substantially lower activation memory than the baselines, whereas its gradient and
optimizer memory are slightly higher. The latter is attributable to temporary buffers used during the
sparse topology evolution step. Overall, SEFT achieves the lowest total memory footprint. Moreover,
because activation memory scales roughly linearly with sequence length, SEFT’s advantage increases
at longer contexts; hence we expect even larger savings as the sequence length grows.

D COMPARISON WITH POST-HOC PRUNING

Figure 4 (b) reports LM-eval performance of fine-tuning LLaMA-2 7B model across sparsity lev-
els, comparing the standard pipeline—LoRA fine-tuning on a dense model followed by post-hoc
pruning—with SEFT, which fine-tunes an already sparse model. SEFT consistently outperforms the
prune after dense fine-tuning pipeline, with particularly large gains at higher sparsity (e.g., >10%
LM-eval points at 70% sparsity).

These results indicate that SEFT is not only more efficient, by maintaining a sparse base model
throughout fine-tuning, but also more effective at aligning the sparse topology with downstream tasks.
This provides a clear motivation for adopting pruning and sparse fine-tuning as an integrated strategy,
rather than fine-tuning densely and pruning afterward.

E ABLATION STUDY

We conduct a series of ablation studies to better understand the impact of key components in SEFT.
Specifically, we analyze (1) the effect of removing the mask constraint during sparse topology
evolution, (2) the role of sparsity adaptation in maintaining the target sparsity level, and (3) the benefit
of using a sensitivity-based pruning criterion over a magnitude-based one.
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Table 7: Performance comparison of LLaMA2-7B and LLaMA3-8B models with and without mask
constraints for SEFT during sparse topology evolution at different sparsity levels (ρ).

Method LLaMA2-7B LLaMA3-8B
ρ = 0.6 ρ = 0.7 ρ = 0.6 ρ = 0.7

LM-eval w. constraint 55.98 48.36 58.17 47.12
w/o. constraint 56.54 48.87 58.44 47.44

MMLU w. constraint 45.74 31.18 50.03 39.59
w/o. constraint 45.95 33.51 50.33 39.87

E.1 EFFECT ON MASK CONSTRAINTS

In Section 3.1, we introduced how SEFT dynamically evolves the sparse topology during fine-tuning
through a drop-grow strategy. Specifically, SEFT enables the delta vector η to explore and activate
updates for both active weights (M0 = 1) and inactive weights (M0 = 0) in sparse LLMs, enabling
dynamic sparse topology evolution. To assess the necessity of reactivating inactive weights, we
compare SEFT against a constrained version where the delta vector η is restricted to updating only the
active weights (M0 = 1) in sparse LLMs. We refer to SEFT as w/o. constraint and the constrained
version as w. constraint.

The results, presented in Table 8, show that for both LLaMA2-7B and LLaMA3-8B models pruned
to 60% and 70% sparsity levels using Wanda, SEFT with sparse topology evolution (w/o. constraint)
consistently outperforms the constrained version on both the commonsense reasoning and MMLU
benchmarks. These findings demonstrate that removing the mask constraint, which allows updates
to inactive weights, facilitates sparse topology evolution in sparse LLMs. This evolution aligns the
model more effectively with task-specific demands, resulting in improved overall performance and
mitigating the degradation introduced by pruning methods.

Table 8: Performance comparison of LLaMA1-7B, LLaMA2-7B, and LLaMA3-8B models with and
without sparsity adaptation for SEFT during sparse topology evolution at a sparsity level of 60%.

Method LM-eval Final sparsity

LLaMA1-7B w/o. adapt 58.85 0.596
w. adapt 58.84 0.600

LLaMA2-7B w/o. adapt 56.45 0.596
w. adapt 56.54 0.600

LLaMA3-8B w/o. adapt 58.60 0.597
w. adapt 58.44 0.600

E.2 EFFECT ON SPARSITY ADAPTION

In Section 3.2, we proposed a sparsity adaptation process to restore the model to the desired sparsity
level, as sparse topology evolution in SEFT without a mask constraint may result in a denser model by
reactivating previously inactive weights. We conducted experiments to evaluate the effectiveness of
sparsity adaptation on LLaMA1-7B, LLaMA2-7B, and LLaMA3-8B models pruned to 60% sparsity
using Wanda, comparing SEFT with and without sparsity adaptation. As shown in Table 8, the results
indicate that without sparsity adaptation, the sparse LLMs become slightly denser after fine-tuning,
with a sparsity level of approximately 59.6%. In contrast, with sparsity adaptation, the models
maintain their original sparsity levels while achieving comparable performance.

Importance metrics. In our work, we compare two scoring metrics: (i) magnitude-based, si = |θi|,
which is task-agnostic and inexpensive to compute; and (ii) sensitivity-based, si =

∣∣θi ∇θiL
∣∣, which

accounts for both parameter size and its contribution to the loss (Lee et al., 2019; Wu et al., 2023;
Nowak et al., 2023).
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 LLaMA2-7B LLaMA1-7B  LLaMA3-8B
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1e-33e-4 2e-3
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Figure 5: (a) LM-eval comparison of LLaMA1-7B, LLaMA2-7B, and LLaMA3-8B models with
sensitivity-based and magnitude-based sparsity adaptation in SEFT fine-tuning at 60% sparsity using
Wanda pruning. (b) LM-eval comparison of LLaMA1-7B models at 60% sparsity using Wanda
pruning for LoRA* and SEFT fine-tuning across different learning rates.

In Figure 5 (a), we evaluate the effectiveness of sensitivity-based criterion by comparing it to the
commonly used magnitude-based criterion for pruning back to the target sparsity. Magnitude-based
criterion are widely used in dynamic sparse training (DST) scenarios. Our results demonstrate that
sensitivity-based criterion consistently outperform magnitude-based criterion. This advantage is
likely due to the sensitivity-based approach accounting not only for the magnitude of the weights but
also for gradient information, which reflects their future importance during training.

F SENSITIVITY ANALYSIS

We conduct a detailed sensitivity analysis to examine how SEFT responds to different hyperparameter
choices. Specifically, we study (1) the impact of sparsity levels on fine-tuning performance, (2)
the effect of the number of trainable parameters, (3) the influence of drop rate and (4) evolution
frequency in sparse topology evolution, and (5) the sensitivity to learning rate configurations. These
analyses offer insights into SEFT’s robustness and adaptability across settings, and help guide optimal
hyperparameter choices for various deployment scenarios.

F.1 IMPACT ON SPARSITY LEVEL

Table 9 presents the performance evaluation of LLaMA2-7B and LLaMA3-8B models using Wanda
pruning under varying sparsity levels. The results show that as the sparsity level increases, SEFT
consistently outperforms LoRA* by larger margins. For instance, at a sparsity level of 70%, SEFT
achieves significant improvements in both LM-eval and MMLU scores compared to LoRA*. Notably,
on LLaMA3-8B, the relative gain in MMLU reaches approximately 8.69 points (39.87 vs. 31.18).
This trend highlights that SEFT’s ability to dynamically adapt the sparse topology during fine-tuning
is particularly effective in high-sparsity scenarios. The primary reason for this is that post-training
pruning methods like Wanda tend to degrade more significantly at higher sparsity levels, resulting in
greater performance gaps. By leveraging sensitivity-based criterion, SEFT is able to better identify and
optimize critical parameters, maintaining strong performance even under extreme sparsity conditions
where LoRA* struggles to achieve comparable results.

Table 9: Performance comparison of LLaMA2-7B and LLaMA3-8B models on LM-eval and MMLU
under different sparsity levels (ρ).

Method LLaMA2-7B LLaMA3-8B
ρ=0.5 ρ=0.6 ρ=0.7 ρ=0.5 ρ=0.6 ρ=0.7

LM-eval LoRA* 60.12 56.19 46.36 62.90 55.56 44.82
SEFT 59.30 56.54 48.87 63.04 58.44 47.44

MMLU LoRA* 48.21 42.29 25.37 57.40 49.18 31.18
SEFT 48.90 45.95 33.51 57.51 50.33 39.87
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Table 10: Performance comparison of LLaMA1-7B fine-tuned on the commonsense reasoning dataset
at a sparsity level of 60%. The results compare different numbers of fine-tuning parameters and report
the average zero-shot accuracy across seven tasks from the commonsense reasoning benchmark.

Method Rank=8 Rank=16 Rank=32 Rank=64

LoRA* 56.81 57.13 57.32 57.17
SEFT 57.74 57.61 58.84 59.69

F.2 IMPACT ON NUMBER OF FINE-TUNING PARAMETERS

In this section, we analyze how the number of fine-tuning parameters impacts the performance of
SEFT and LoRA* methods. The comparison is based on different numbers of fine-tuning parameters,
determined by the ranks in LoRA. For SEFT, the number of fine-tuning parameters is aligned with
the corresponding parameter count of LoRA ranks to ensure a fair comparison.

As shown in Table 10, the performance of both LoRA* and SEFT improves as the number of fine-
tuning parameters increases, which is expected. However, SEFT exhibits a significantly stronger
upward trend compared to LoRA*. For instance, while LoRA* shows only marginal improvements
at higher ranks (e.g., from 57.32 at Rank=32 to 57.17 at Rank=64), SEFT demonstrates consistent
performance gains, reaching a much higher accuracy of 59.69 at Rank=64.

This trend indicates that SEFT is better equipped to utilize the additional fine-tuning capacity to adapt
sparse LLMs to downstream tasks. By dynamically evolving the sparse topology during fine-tuning,
SEFT effectively redistributes its parameter budget toward critical updates, enabling it to achieve
more substantial improvements as the number of parameters increases. Overall, SEFT consistently
outperforms LoRA* across all ranks, with the performance gap widening at higher parameter counts.
These results highlight SEFT’s scalability and its ability to efficiently leverage additional fine-tuning
parameters for enhanced task-specific performance.

Frequency
(c)

20 40 60 80 5 10 20 300.05 0.1 0.2 0.3 0.05 0.1 0.2 0.3

FrequencyDrop Rate Drop Rate
(d)(a) (b)

Figure 6: Impact of drop rate during sparse topology evolution on LM-eval evaluation of LLaMA1-7B
fine-tuning for (a) C4 and (b) commonsense reasoning datasets. Furthermore, the impact of update
frequency during sparse topology evolution is evaluated on LM-eval for LLaMA1-7B fine-tuning on
(c) C4 and (d) commonsense reasoning datasets.

F.3 IMPACT ON DROP RATE

To investigate the effect of varying drop rates, which determine the fraction of weights pruned during
each update, we conducted experiments using different initial drop rates for SEFT fine-tuning on the
C4 and Commonsense Reasoning datasets. Drop rates of 0.05, 0.1, 0.2, 0.3 were evaluated, along
with a cosine schedule decay for the drop/grow ratio, as proposed in (Evci et al., 2020).

As shown in Figure 6 (a) (b), the results demonstrate that a drop rate of 0.2 consistently achieves the
best performance across these tasks. Lower drop rates, such as 0.05, fail to sufficiently adapt the
sparse topology, limiting performance improvements, while higher drop rates, such as 0.3, can overly
perturb the model, disrupting training convergence. The balanced drop rate of 0.2 was adopted as
the default setting for all subsequent experiments, as it effectively balances adaptation and stability
during sparse topology evolution.
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F.4 IMPACT ON UPDATE FREQUENCY k

The frequency of sparse topology evolution, which determines how often the sparse topology is
updated during training, is another critical factor. We evaluated different drop/grow frequencies for
fine-tuning on the C4 dataset (10, 20, 40, 80 steps) and the Commonsense Reasoning dataset (5, 10,
20, 30 steps).

As shown in Figure 6 (c) (d), the optimal frequency varies by task, reflecting differences in training
dynamics and the rate at which sparse topology adaptation benefits performance. For example, on
the C4 dataset, the best performance was achieved with an update frequency of 60 steps, while for
the Commonsense Reasoning dataset, the optimal frequency was 10 steps. These frequencies were
adopted as the default settings in our main experiments.

The results also reveal that overly frequent updates can introduce excessive instability, preventing
the model from converging effectively. Conversely, infrequent updates reduce the model’s ability to
adapt its sparse topology, thereby limiting the benefits of sparsity. Striking the right balance in the
frequency of topology evolution is crucial for maximizing SEFT’s performance across diverse tasks.

Table 11: Performance comparison of different methods with and without fine-tuning applied to
sparse LLaMA models at a sparsity level of (ρ = 0.7). We provide average accuracies of 7 zero-shot
tasks together with PPL (lower is better).

LLaMA Method PPL (↓) LM-eval (↑)

V2-7B

Wanda+LoRA 10.82 45.08
Wanda+SEFT 11.19 45.61

SparseGPT+LoRA 10.53 47.80
SparseGPT+SEFT 11.00 47.95

V3-8B

Wanda+LoRA 16.12 44.76
Wanda+SEFT 16.17 44.55

SparseGPT+LoRA 17.88 47.19
SparseGPT+SEFT 15.09 48.89

F.5 IMPACT ON LEARNING RATE

In this section, we analyze how the learning rate affects the performance of the sparse fine-tuning
method SEFT and the LoRA-based fine-tuning method LoRA*. As shown in Figure 5 (b), we
conduct experiments on LLaMA1-7B under a sparsity level of 0.6, using the commonsense reasoning
dataset. The results report the zero-shot accuracy across seven tasks from the commonsense reasoning
benchmark. From the figure, we observe that LoRA* generally performs better with a larger learning
rate, achieving the best performance at a learning rate of 2e-3. In contrast, SEFT performs best at a
slightly smaller learning rate of 1e-3. Interestingly, under smaller learning rates, SEFT achieves more
significant improvements compared to LoRA*.

This phenomenon may be attributed to the fundamental differences in how the two methods update
sparse LLMs. SEFT directly updates the original weights of the sparse LLMs, enabling more precise
control and better adaptation, especially under smaller updates at lower learning rates. This behavior
is similar to dense full fine-tuning, where the original model weights are explicitly updated to reflect
task-specific requirements. In contrast, LoRA-based fine-tuning approximates updates through low-
rank matrices, indirectly influencing the original weights of the sparse LLMs. This indirect update
mechanism allows for more flexible and larger updates, as the original weights remain intact and act
as a safeguard against errors introduced by the approximation.

These results highlight the critical role of learning rate selection in optimizing the performance
of sparse fine-tuning methods. To ensure a fair comparison, we performed a grid search for both
fine-tuning approaches.

G COMPARISON WITH ORIGINAL LORA
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Table 12: Performance comparison of different
fine-tuning methods applied to various sparse
LLaMA models at a sparsity level of (ρ = 0.6).
Results include the average accuracy of zero-shot
evaluation across seven tasks from the common-
sense reasoning benchmark.

LLaMA Method LM-eval

V2-7B

Wanda+LoRA 56.66
Wanda+SEFT 56.54

SparseGPT+LoRA 58.24
SparseGPT+SEFT 58.04

V3-8B

Wanda+LoRA 59.51
Wanda+SEFT 58.44

SparseGPT+LoRA 60.66
SparseGPT+SEFT 60.92

V1-13B

Wanda+LoRA 61.09
Wanda+SEFT 62.31

SparseGPT+LoRA 61.99
SparseGPT+SEFT 62.01

In the main paper, to ensure a fair comparison,
all fine-tuned LLMs were restored to the same
target sparsity level after fine-tuning. In this
section, we present the original results for LoRA,
which do not include sparsity restoration. In
other words, the fine-tuned LLMs remain dense
after merging the low-rank matrices with the
original model weights.

Tables 11 and 12 provide a detailed compar-
ison between SEFT and LoRA across three
datasets: C4, Commonsense Reasoning. The
results demonstrate that SEFT achieves compa-
rable performance to LoRA, even when the latter
uses dense connections in the LLMs. However,
SEFT maintains the sparse topology at the orig-
inal sparsity level, preserving the efficiency of
the sparse model.

These findings underscore the effectiveness and
efficiency of SEFT, as it not only matches the
performance of LoRA fine-tuning with dense
models but also retains the computational ad-
vantages of sparsity, making it a more practical
solution for sparse fine-tuning of large language
models, , as discussed in detail in Section B.

H DISCUSSION

Preserving sparsity during and after the fine-tuning of sparse LLMs is essential for maintaining com-
putational efficiency, particularly in resource-constrained scenarios. Methods like LoRA, originally
designed for resource-efficient fine-tuning of dense pre-trained models, fail to preserve sparsity after
merging, limiting their effectiveness for sparse LLMs finetuning. Recent approaches, such as SPP
(Lu et al., 2024c), extend LoRA to support sparse LLMs by incorporating masking mechanisms to
preserve sparsity. However, SPP enforces a fixed sparse topology across all tasks, which limits its
adaptability to the specific requirements of downstream applications.

Sparse fine-tuning was first scaled to dense LLM fine-tuning in SpIEL (Ansell et al., 2024). Unlike
LoRA-based methods, which use trainable low-rank matrices to parameterize adaptations, fine-tuning
directly updates a small fraction of model weights through updates and their corresponding index
vectors. In this paper, we extend this concept to sparse LLMs fine-tuning by enabling the updates to
dynamically evolve and adapt in sparse LLMs. While SEFT builds upon the core concept of sparse
fine-tuning, it introduces several key innovations tailored to sparse LLMs:

(1) Sparse setting. Unlike SpIEL, which operates on dense models, SEFT is designed for fine-tuning
already-pruned sparse LLMs. This setting imposes strict sparsity constraints that require careful
management during training.

(2) Update flexibility sparsity adaptation. SEFT allows updates to zero-valued (previously pruned)
weights, enabling recovery of important connections for downstream tasks. It also incorporates a
sparsity adaptation step to ensure the model maintains its target sparsity after each update cycle—both
of which are absent in SpIEL.

These distinctions make SEFT a more tailored solution for fine-tuning sparse LLMs across varying
sparsity levels.

I LIMITATIONS AND FUTURE WORK

While our work highlights the effectiveness of SEFT in fine-tuning sparse LLMs and enhancing their
performance on downstream tasks, there are certain limitations that warrant further investigation.
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One key limitation of SEFT lies in the need to compute full dense gradients during the sparse
topology evolution phase, from which sparse delta updates are subsequently extracted. Although our
implementation mitigates memory pressure by computing and applying gradients sequentially on a
layer-by-layer basis and releasing them immediately afterward—thereby ensuring memory efficiency
and avoiding large spikes—this design still limits computational efficiency. In particular, it does not
fully leverage the potential speed and resource benefits of sparsity on GPUs, since the dense gradient
matrix must first be calculated before isolating the sparse updates.

Writing an efficient CUDA kernel tailored for dynamic sparse training operations is an area of ongoing
work. Such a kernel would enable direct computation of sparse updates without requiring operations
on the full gradient matrix, significantly reducing memory usage and computational overhead. Once
optimized, this approach could fully unlock the potential of SEFT and dynamic sparse training
paradigms, making them more practical and efficient for large-scale federated and distributed learning
scenarios.

J EXPERIMENTAL SETTINGS

For training 7B models, we use a learning rate of 1e-3, except for Mistral-7B, where we use 5e-5.
For 8B models, we adopt a learning rate of 3e-4. Gradient accumulation steps are set to 128, and we
apply cosine learning rate decay throughout training. We use the AdamW optimizer with the default
settings provided by the Transformers library, and no weight decay is applied. For baseline methods,
we primarily build upon the official implementations of SPP2 and SQFT3.

All models are fine-tuned using post-training pruned LLMs obtained via SparseGPT and Wanda
under various sparsity patterns and levels. We use fixed hyperparameters across experiments and do
not perform tuning for specific sparsity configurations. We follow the dataset configurations in (Li
et al., 2025), with details summarized in Table 13.

Table 13: Hyperparamters used of SEFT for fine-tuning on various benchmarks.
Benchmarks Commonsense Reasoning MMLU GSM8K

Train Samples 170K 99.8K 7.4K
Test Samples 22.4K 14K 1.3K
Max Length 512 512 512

Training Epoch 1 1 5
Drop Rate 0.2 0.2 0.2
Frequency 10 60 10

2https://github.com/Lucky-Lance/SPP
3https://github.com/IntelLabs/Hardware-Aware-Automated-Machine-Learning
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