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Abstract

Measuring the nonlinear dependence between random vectors and testing for their
statistical independence is a fundamental problem in statistics. One of the most pop-
ular dependence measures is the Hilbert-Schmidt independence criterion (HSIC),
which has attracted increasing attention in recent years. However, most existing
works have focused on either fixed or very high-dimensional covariates. In this
work, we bridge the gap between these two scenarios and provide statistical insights
into the performance of HSIC when the dimensions grow at different rates. We first
show that, under the null hypothesis, the rescaled HSIC converges in distribution to
a standard normal distribution. Then we provide a general condition for the HSIC
based tests to have nontrivial power in high dimensions. By decomposing this
condition, we illustrate how the ability of HSIC to measure nonlinear dependence
changes with increasing dimensions. Moreover, we demonstrate that, depending
on the sample size, the covariate dimensions and the dependence structures within
covariates, the HSIC can capture different types of associations between random
vectors. We also conduct extensive numerical studies to validate our theoretical
results.

1 Introduction

Let x = (X1, . . . , Xp)
T ∈ Rp and y = (Y1, . . . , Yq)

T ∈ Rq be two random vectors. The problems of
measuring nonlinear dependence between x and y and testing for their independence are fundamental
and have a wide range of applications in statistics and machine learning. For example, dependence
measures can be applied in feature screening (Fan et al., 2020b), model checking (Clarke et al., 2018),
graphical models (Maathuis et al., 2018), and causal inference (Imbens & Rubin, 2015).
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Many statistical tools have been developed to measure the dependence between random variables.
Classical measures such as Pearson correlation (Pearson, 1920), Spearman’s ρ (Spearman, 1904) and
Kendall’s τ (Kendall, 1938) can only capture linear or monotonic dependence and may fail to detect
complex associations. For univariate covariates, several rank-based measures have been proposed to
overcome this limitation, such as those by Hoeffding (1948), Blum et al. (1961), Bergsma & Dassios
(2014) and Chatterjee (2021). For multivariate covariates, various nonparametric tests have been
introduced to quantify arbitrary associations, including the distance correlation (Székely et al., 2007),
the projection correlation (Zhu et al., 2017), the mutual information (Berrett & Samworth, 2019),
the kernel canonical correlation (Bach & Jordan, 2002), the constrained covariance (Gretton et al.,
2005), and the Hilbert-Schmidt independence criterion (HSIC, Gretton et al., 2007). Among these
measures, the distance correlation and the HSIC are perhaps the most widely used and studied in
both statistics and machine learning. For instance, Li et al. (2012) applied the distance correlation to
perform feature screening. Fan et al. (2020a) generalized the distance correlation to a conditional
dependence measure under a factor model setting. Albert et al. (2022) developed an adaptive test
of independence by aggregating HSIC measures. Pfister et al. (2018) defined a d-variable HSIC to
characterize the mutual dependence among d random variables. It is worth noting that the distance
correlation is equivalent to HSIC with a specific kernel choice (Sejdinovic et al., 2013).

High-dimensional settings pose new challenges and opportunities for dependence measures. Székely
& Rizzo (2013) suggested to estimate the distance correlation with the U -statistic theory to avoid bias
accumulations when the dimension is high. Ramdas et al. (2015) found that the power of kernel and
distance based independence tests decreases polynomially with increasing dimension against some
fair alternatives. Zhu et al. (2020) proved that, when both p and q grow much faster than the sample
size n, the sample distance correlation and HSIC can only detect componentwise linear dependences.
Gao et al. (2021) established a general condition for the distance correlation based test to have power
approaching 1. They also showed that the distance correlation can capture certain pure nonlinear
relationship when p = q = o(n1/2) under a specific alternative hypothesis.

In this paper, we aim to provide statistical insights into the HSIC in high dimensions, motivated by
the increasing popularity of HSIC and the prevalence of high-dimensional data. We focus on the
asymptotic distributions of HSIC under both null and alternative hypotheses when the dimensionality
grows with the sample size. Under the null hypothesis, we prove that the rescaled HSIC converges
in distribution to a standard normal distribution. We also derive a general condition for the HSIC
based tests to have power asymptotically approaching one. These results extend those of Gao et al.
(2021) on the distance correlation. Moreover, our analysis is more comprehensive than theirs. By
decomposing the general condition, we reveal that HSIC can detect different types of dependences,
depending on the dimensionality and sample orders. This sheds light on the performance of HSIC in
high dimensions, which has been overlooked in the literature. For illustrative purposes, we let x and
y be two random vectors with zero mean and identity covariance matrix. When HSIC is used to test
for statistical independence between them, we obtain the following conditions for nontrivial power:

• If p→∞ and q is fixed as n→∞, and there only exists the conditional mean of x’s s-th
polynomial given y, then p(s−1) must grow slower than n.

• If both p and q → ∞ as n → ∞, and there only exists the covariance between x’s s1-th
polynomial and y’s s2-th polynomial, then p(s1−1)q(s2−1) must grow slower than n.

These two conditions reveal significant statistical insights and have important implications in practice.
For example, when the data dimension q is small and p is larger than the sample size n, according to
the first condition, to ensure p(s−1) smaller than n, s can only be 1. In other words, the HSIC can
only measure the conditional mean of x given y. When both p and q are larger than n, according to
the second condition, to ensure p(s1−1)q(s2−1) smaller than n, both s1 and s2 must be 1. That is, the
HSIC can only measure the covariance between x and y. In summary, our main contributions are:

1. We generalize the results of Gao et al. (2021) for distance correlation to HSIC, which is a
more flexible and widely used measure of dependence.

2. We show that HSIC can capture different types of dependences, depending on the dimen-
sionality and sample orders, which has rarely been realized in the literature before.

3. In contrast to Zhu et al. (2020), who only focused on the case when both p and q grow much
faster than n, our results characterize a full picture of the performance of HSIC based test in
high dimensions.
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The rest of the paper is organized as follows. We give some preliminaries about the HSIC in Section 2.
Then we present the asymptotic null distribution as well as the power analysis for high-dimensional
HSIC in Section 3. In Section 4, we provide statistical insights into the HSIC through connecting the
association type with the sample size, the high dimensionality, and the dependence structures within
covariates. We conduct comprehensive numerical studies in Sections 5 and conclude this paper with
a brief discussion in Section 6. All technical details are relegated to the Supplement.

2 Preliminaries

In this section, we give a brief review on HSIC measures proposed by Gretton et al. (2007), which is
derived from the notion of cross-covariance operator Baker (1973). We assume that X ∈ X ⊆ Rp
and Y ∈ Y ⊆ Rq are random vectors taking values in Euclidean spaces respectively. Let F and G
be the reproducing kernel Hilbert spaces (RKHSs) on X and Y , with associated kernels K(·, ·) and
L(·, ·), respectively. Then the cross-covariance operator Cxy associated to F and G is defined as the
operator mapping from G to F , such that for all f ∈ F and g ∈ G, 〈f, Cxyg〉F = cov{f(x), g(y)}.
Instead of using the largest singular value of this operator, Gretton et al. (2007) suggested to adopt
the squared Hilbert-Schmidt norm, which admits a closed form expression

HSIC(x,y) = E{K(x1,x2)L(y1,y2)}+ E{K(x1,x2)}E{L(y1,y2)}
−2E [E{K(x1,x2) | x1}E{L(y1,y2) | y1}] ,

where (x1,y1) and (x2,y2) are independent copies of (x, y). When the RKHSs, F and G, are well
chosen, (e.g., characteristic, Sriperumbudur et al., 2010), the HSIC can be served as an independence
criterion in the sense that it is nonnegative and equals zero if and only if x and y are independent.
To normalize the HSIC to range from zero to one, we follow Zhu et al. (2020) to define the squared
Hilbert-Schmidt correlation as

hCorr2(x,y)
def
= HSIC(x,y)HSIC−1/2(x,x)HSIC−1/2(y,y). (1)

In addition, similar to Zhu et al. (2020) and Albert et al. (2022), we focus on the kernels that can be
written in the form of K(x1,x2) = k(‖x1−x2‖/γx) and L(y1,y2) = l(‖y1−y2‖/γy), where k(·)
and l(·) are some real-valued functions defined in [0,∞), γx and γy are the bandwidth parameters.
This kind of kernel is very commonly used in the literature and includes many positive-definite
kernel such as the Gaussian kernel, the Laplacian kernel, the rational quadratic kernel, and the Kernel
generating Sobolev spaces, etc. For example, when k(x) = exp(−x2), it corresponds to the Gaussian
kernel, and when k(x) = exp(−x), it corresponds to the Laplacian kernel. One may refer to Genton
(2001) for more examples and discussions about isotropic kernels.

3 Asymptotic Properties in High Dimensions

At the sample level, with the random sample {(xi,yi), i = 1, ..., n}, we estimate the HSIC with
U -statistics,

HSICn(x,y)
def
=

∑
(i1,i2)

K(xi1 ,xi2)L(yi1 ,yi2)

n(n− 1)
−

2
∑

(i1,i2,i3)
K(xi1 ,xi2)L(yi1 ,yi3)

n(n− 1)(n− 2)

+

∑
(i1,i2,i3,i4)

K(xi1 ,xi2)L(yi3 ,yi4)

n(n− 1)(n− 2)(n− 3)
, (2)

where the indexes in the summands, i.e., (i1, i2), (i1, i2, i3) and (i1, i2, i3, i4), are all distinctive from
each other. Then the squared Hilbert-Schmidt correlation hCorr2(x,y) can be estimated as

hCorr2n(x,y)
def
= HSICn(x,y)HSIC−1/2n (x,x)HSIC−1/2n (y,y).

We now discuss how to use the sample squared Hilbert-Schmidt correlation to distinguish between the
null hypothesis H0 : x is independent of y, and the alternative hypothesis H1 : x is not independent
of y. To implement the HSIC based test, it is required to study the asymptotic distributions for
hCorr2n(x,y) under the null hypothesis. When the dimensions are fixed, Gretton et al. (2007) showed
that n hCorr2n(x,y) converges in distribution to a weighted sum of independent chi-squared random
variables as long as x is independent of y. We now study its asymptotic null distribution in high
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dimensions. Before that, we define the two quantities Hx(x1,x2) and Hy(y1,y2) as

Hx(x1,x2)
def
= K(x1,x2)− E{K(x1,x2) | x1} − E{K(x1,x2) | x2}+ E{K(x1,x2)},

Hy(y1,y2)
def
= L(y1,y2)− E{L(y1,y2) | y1} − E{L(y1,y2) | y2}+ E{L(y1,y2)}. (3)

We further define another two quantities Gx(x1,x2) and Gy(y1,y2) as

Gx(x1,x2)
def
= E{Hx(x1,x3)Hx(x2,x3) | x1,x2},

Gy(y1,y2)
def
= E{Hy(y1,y3)Hy(y2,y3) | y1,y2}.

Then we summarize the asymptotic null distribution for hCorr2n(x,y) in the following Theorem.
Theorem 1. Assume the kernels are symmetric with finite fourth moment, i.e., K(x1,x2) =
K(x2,x1), L(y1,y2) = L(y2,y1), E{K4(x1,x2)} < ∞ and E{L4(y1,y2)} < ∞. Further
assume that p+ q →∞,

E{H4
x(x1,x2)}E{H4

y(y1,y2)}
n{HSIC(x,x)HSIC(y,y)}2

→ 0, and
E{G2

x(x1,x2)}E{G2
y(y1,y2)}

{HSIC(x,x)HSIC(y,y)}2
→ 0, (4)

as n→∞. Then under the null hypothesis, we have 2−1/2n hCorr2n(x,y)
d→ N(0, 1).

Different from that when the dimensions are fixed, Theorem 1 reveals that, under certain conditions,
n hCorr2n(x,y) is asymptotically normal in high dimensions. The asymptotic normality makes the
limiting null distribution tractable in practice. It greatly expedites the implementation of HSIC based
tests because no additional permutations are required to decide critical values. We remark here that
the assumptions imposed in Theorem 1 to ensure the asymptotic normality are generally very mild.
For the restrictions on the kernels, many commonly used kernels, including Gaussian and Laplacian
kernels, are symmetric with finite fourth moment. For the assumption in (4), it is used to restrict the
weak dependence within covariates in x and y. It holds true when x and y follow the multivariate
normal distributions with bounded eigenvalues. It also holds true when x and y are m-dependent
random sequences (Definition 9.1 of DasGupta, 2008). One may refer to Gao et al. (2021) for more
discussions about this assumption.

Next, we explore the power performance of the HSIC based test in high dimensions. As discussed in
Section 2, we restrict our attentions to the isotropic kernels. Specifically, in the remaining of this paper,
we consider K(x1,x2) and L(y1,y2) to be in the form of k(‖x1 − x2‖/γx) and l(‖y1 − y2‖/γy),
respectively. Because of the kernel form, we assume without loss of generality that Ex = 0 and
Ey = 0. We denote by z∗

def
= z/γz, where z ∈ Rd can be either x or y. We say that f(n) � g(n) if

f(n) = O{g(n)} and g(n) = O{f(n)}. Before summarizing the asymptotic power performance,
we make the following assumptions:

(A1) There exists some κz > 0 such that E{‖z∗‖2 − E(‖z∗‖2)}2k � E(z∗1
Tz∗2)2k � d−kκz for

all k ∈ N+.
(A2) Let k0(x) = k(x1/2) and l0(y) = l(y1/2). The first and second derivatives of k0(·) and l0(·)

are uniformly bounded away from zero to infinity around E‖x∗1 − x∗2‖2 and E‖y∗1 − y∗2‖2,
respectively.

We remark here that Assumption (A1) is used to restrict the dependence structures within the
coordinates of z. Because z∗ = z/γz and Ez = 0, we have Ez∗ = 0 as well. Hence, both ‖z∗‖2 −
E(‖z∗‖2) and z∗1

Tz∗2 are sums of d random variables with mean zero. Their standardized versions
may converge in distribution to standard normal distributions under mild conditions (e.g., mixing
conditions) by applying the central limit theorem (CLT). For instance, Volnỳ (1989) established
a CLT for non-stationary mixing processes. Alternatively, there exists some κz > 0 such that
dκz/2{‖z∗‖2−E(‖z∗‖2)} and dκz/2z∗1

Tz∗2 both converge in distribution to normal random variables.
Then Condition (A1) is satisfied. Assumption (A2) imposes some conditions on the kernels, which
covers the Gaussian and Laplacian kernels. Moreover, it also makes several requirements on the
bandwidth parameters as well. For example, suppose the Gaussian kernel is used, i.e., k0(z) =
exp(−z), when γz is small enough such thatE‖z∗1−z∗2‖2 →∞, then we have k′0(E‖z∗1−z∗2‖2)→ 0,
which violates Assumption (A2). Theoretically, the bandwidth parameter γz can be chosen from
a wide range of values, as long as it satisfies condition (A2). In practice, we use the median of
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‖z1 − z2‖ as a default value for γz. When it has the same magnitude with E‖z1 − z2‖, Assumption
(A2) can be easily satisfied for many commonly used kernels. Moreover, as demonstrated in the
simulated examples in the Supplementary Material, our method exhibits robustness across various
selections of γz.

With these two assumptions, we are ready to provide the asymptotic power performance of the HSIC
based test in high dimensions.
Theorem 2. Assume (A1) and (A2) hold true. Then under the alternative hypothesis, if
n1/2hCorr2(x,y)→∞ as n→∞, we have n hCorr2n(x,y)→∞ in probability.

Theorem 2 reveals that, as long as the dependence measured by hCorr2(x,y) is not too small,
n hCorr2n(x,y) converges to infinity in probability. This, together with Theorem 1, guarantee that
the HSIC based test can have nontrivial power in high dimensions. However, as the dimension
increases, the signal measured by hCorr2(x,y) may decay to zero, which makes the test lose power
in high dimensions. To gain more insights about how the power is influenced by the dimensions, it is
desired to connect hCorr2(x,y) with the dimensionality, as well as the association types between x
and y.

4 Statistical Insights in High Dimensions

We have discussed the asymptotic properties of HSIC based tests in high dimensions, and demon-
strated that it can detect the alternative hypothesis as long as the signal strength measured by
hCorr2(x,y) does not decay to zero too fast. However, it is still unclear that how hCorr2(x,y) is
influenced by the dimensions. To gain more insights into the performance in high dimensions, in this
section, we study what kind of association types the HSIC can detect under different relationships
between the sample size and the covariate dimensions. To this end, we expand hCorr2(x,y) defined
in (1) to gain some insights. Because HSIC(x,y) characterizes the dependence between x and y,
while HSIC(x,x) and HSIC(y,y) are the normalizing factors, we expand HSIC(x,y) and calculate
the orders for HSIC(x,x) and HSIC(y,y).

We first calculate the orders for HSIC(x,x) and HSIC(y,y) at the population level as the dimensions
diverge to infinity. The results are summarized in the following Proposition.
Proposition 1. Under Assumptions (A1) and (A2), HSIC(z, z) � d−κz if d→∞.

According to Proposition 1, the condition n1/2hCorr2(x,y) → ∞, which guarantees the
HSIC based test would have power approaching 1 in high dimensions, will boil down to
n1/2pκx/2qκy/2HSIC(x,y)→∞.

Next, we expand HSIC(x,y) at the population level. Before that, we introduce some additional
notations. Similar to Shao & Zhang (2014), we define MD2(x | y) as

MD2(x | y)
def
= E{(x1 − Ex)T(x2 − Ex)L(y1,y2)},

where (x1,y1) and (x2,y2) are independent copies of (x,y). We show in Lemma 1 that, MD2(x |
y) = 0 if and only if E(x | y) = 0. That is, MD2(x | y) measures the degree of conditional mean
of x given y, which quantifies the difference between E(x | y) and Ex.
Lemma 1. Assume the kernel L(y1,y2) = l(‖y1−y2‖/γy) is a characteristic, bounded continuous,
and real-valued positive definite function, then MD2(x | y) = 0 if and only if E(x | y) = 0 almost
surely.

We remark here that characteristic condition in Lemma 1 is used to guarantee that the HSIC is
nonnegative and equals zero if and only if x and y are independent. One may refer to (Sriperumbudur
et al., 2010) for more details about this condition. Furthermore, we let k(i)0 be the i-th derivative of
k0(·) evaluated at E‖x∗1 − x∗2‖2, and l(j)0 is the j-th derivative of l0(·) evaluated at E‖y∗1 − y∗2‖2.
Let x⊗n be the n-th kronecker power of x, which is defined as x⊗n = x⊗ x⊗(n−1), x⊗1 = x, and
⊗ denotes the Kronecker product. In addition, we use ‖ · ‖F to represent the Frobenius norm of a
matrix. Then we expand HSIC(x,y) in the following Theorem.
Theorem 3. Assume (A1) and (A2) hold true. Then under the alternative hypothesis,
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1. when p → ∞ and q remains fixed as n → ∞, if E(x⊗t | y) = E(x⊗t) hold true for all
t < s for some s ∈ N+, then HSIC(x,y) = O(p−sκx/2), and

HSIC(x,y) = k
(s)
0

∑
2a+c=s

(−2)c

a!a!c!
MD2(x∗⊗c‖x∗‖2a | y) + o(p−sκx/2),

2. when p → ∞ and q → ∞ as n → ∞, if cov(x⊗t1 ,y⊗t2) 6= 0 only when t1 ≥ s1 and
t2 ≥ s2 for some s1, s2 ∈ N+, then HSIC(x,y) = O(p−s1κx/2q−s2κy/2), and

HSIC(x,y) =
∑

2a1+c1=s1

∑
2a2+c2=s2

k
(s1)
0 (−2)c1
a1!a1!c1!

l
(s2)
0 (−2)c2
a2!a2!c2!

∥∥∥∥cov{‖x∗‖2a1x∗⊗c1 , ‖y∗‖2a2y∗⊗c2 T}
∥∥∥∥2
F

+o(p−s1κx/2q−s2κy/2).

Theorem 3 enables us to gain some insights into the HSIC in high dimensions. First of all, because
when 2a+ c = s, x∗⊗c‖x∗‖2a is the s-th polynomial for x, and MD2(x∗⊗c‖x∗‖2a | y) measures
the departure from the conditional mean independence of x given y. Then the first part of Theorem
3 implies that when p → ∞ and q remains fixed as n → ∞, if E(x⊗t | y) = E(x⊗t) hold true
for all t < s for some s ∈ N+, the HSIC quantifies the departure from E(x⊗s | y) = E(x⊗s). In
other words, when only one dimension of the covariates diverges to infinity, the HSIC first measures
the conditional mean of x given y. If there is no such mean dependence, it turns to measure the
conditional mean of x⊗2 given y, etc. Similarly, when p→∞ and q →∞ as n→∞, the second
part of Theorem 3 reveals that, the HSIC may first search for the covariance between x given y. If
such covariance equals zero, it then turns to search for the covariance between x⊗2 and y, or the
covariance between x and y⊗2, etc. Therefore, Theorem 3 characterizes the changing process of
the ability to measure nonlinear dependence in high dimensions for HSIC. As a comparison, Zhu
et al. (2020) only showed that, when both dimensions diverge much faster than the sample size,
the HSIC can only capture the marginal linear dependence. From this point of view, our result is a
generalization of theirs.

When the HSIC is used to test for statistical independence, Theorem 2 and Proposition 1 ensure
that, when n1/2pκx/2qκy/2HSIC(x,y) → ∞, the HSIC based test would have asymptotic power
1. To make this condition hold true, the first part of Theorem 3 implies that when p → ∞ and q
remains fixed as n → ∞, if there only exists the conditional mean of x⊗s given y, it is required
that p(s−1)κx = o(n) because HSIC(x,y) is of order O(p−sκx/2) in this case. In other words, when
n = O{p(s−1)κx}, the HSIC based test can have nontrivial power only when there exists the i-th
polynomial mean dependence of x given y for some i < s. Similarly, when both p and q diverges as
n→∞, the second part of Theorem 3, when there only exists the covariance between x⊗s1 and y⊗s2 ,
the test based on HSIC can have nontrivial power only when p(s1−1)κxq(s2−1)κy = o(n). Because
κx represents the degree of dependence within covariates, Theorem 3 successfully connects the
association type between x and y, with the sample size, the high dimensionality, and the dependence
structures within covariates. We remark here that Gao et al. (2021) only justified that the test based
on distance correlation can have power approaching 1 when p = q = o(n1/2) if there exist a pure
nonlinear dependence between x and y. Therefore, their result is in spirit a special case of ours.

5 Numerical Studies

5.1 Simulations

In this subsection, we conduct some simulation studies to validate our theoretical conclusions on
the HSIC based test in high dimensions. In particular, in Example 1, we show that, as long as the
dimensions are not very small, the normal approximation can approximate the null distribution quite
well, although it requires the dimension to diverge to infinity in theory. In Example 2, we fix the
dimension of y and increase the dimension of x, and investigate the finite sample power performance
of the HSIC based tests under various mean dependence types. In Example 3, we increase the
dimensions of x and y simultaneously, and inspect how the empirical power is influenced by the
covariate dimensions under different relationships.

Throughout the simulations, we choose two kinds of commonly used kernels to implement the
HSIC based tests, i.e., Gaussian and Laplacian. For the Gaussian kernel, we set K(x1,x2) =
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exp{−‖x1 − x2‖2/(2γ2x)} and L(y1,y2) = exp{−‖y1 − y2‖2/(2γ2y)}. While for the Laplacian
kernel, we set L(x1,x2) = exp(−‖x1−x2‖/γx) and L(y1,y2) = exp(−‖y1−y2‖/γy). For both
choices of kernels, we set the bandwidth parameters to be γx = c0γ

m
x and γy = c0γ

m
y and vary

c0 from 0.5 to 2. Here, γmz represents the median of {‖zi − zj‖}1≤i<j≤n, and z is either x or y.
Due to space constraints, we present results specifically for the case when γx = γmx and γy = γmy .
The remaining results are summarized in the Supplementary Material. Notably, our findings remain
consistent across different values of γx and γy, showing the stability and reliability of our approach.

Example 1. In this example, we examine the normal approximation accuracy under the null hypoth-
esis. Towards this goal, we simply generate x = (X1, . . . , Xp)

T ∈ Rp from a multivariate normal
distribution with mean zero and covariance matrix Σx = Ip×p. Then we independently generate
y = (Y1, . . . , Yq)

T ∈ Rq from another a multivariate normal distribution whose coordinates follow
iid standard normal distributions. We fix the sample size to be 100 and consider two scenarios for the
covariate dimensions. In the first scenario, we fix q = 1 and vary p from {5, 25, 100}. In the second
scenario, we set p = q = d and vary d from {2, 5, 10}. For each setting, we repeat the experiments
5000 times and compare the empirical null distributions of the test statistics, {2−1/2n hCorr2n(x,y)},
with the standard normal distribution. Specifically, we display the kernel density curves of the test
statistics for the two scenarios in Figures 1 and 2, respectively.
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Figure 1: The kernel densities of the test statistics under the null hypothesis computed from 5000
simulations. We fix q = 1 and vary p from {5, 25, 100}. The horizontal axes represent the observed
values of the test statistics, and the vertical axes represent the kernel densities of those values. We
choose two different kernels to implement the tests, i.e., Gaussian (dashed line) and Laplacian (dotted
line). The solid line is the reference curve, which is the density of the standard normal distribution.

According to Figures 1 and 2, we can see that, when the dimensions are small, the normal distribution
cannot approximate the null distribution well. For example, when p = q = 2, the empirical null
distributions for the tests with both Gaussian and Laplacian kernels are quite distinct from the
reference curve in Figure 2 (A). However, as the dimensions increase, the accuracy of the normal
approximation for the null distribution becomes quite precise, regardless of the choice of the kernels.
For example, in both Figures 1 and 2, the empirical null distributions are almost the same as the
reference curve as long as pq are not smaller than 25.

Example 2. In this example, we investigate how the empirical power is influenced by the dimension
when only one of the covariate dimensions increases. For simplicity, we fix the sample size to be
n = 100, as that in Example 1. As for the covariate dimensions, we fix q = 1 and vary p from
{30, 50, 100, 200, 500, 1000}. We consider three models to inspect the power performances. For
Models (I) and (II), we generate x from a multivariate normal distribution with mean zero and
covariance matrix Σx = (0.5|i−j|)p×p. Then we generate an independent error term ε that follows
standard normal distribution. The univariate response Y is generated through

Model (I) : Y = X1 + . . .+Xp + ε;

Model (II) : Y = X2
1 + . . .+X2

p + ε.

For Model (III), we first generate Y ∼ N(0, 1). Conditional on Y , we generate x through

Model (III) : {(X2k−1, X2k)T | Y } ∼ N{0, (ρ|i−j|k,Y )2×2}, k = 1, . . . , p/2,
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Figure 2: The kernel densities of the test statistics under the null hypothesis computed from 5000
simulations. We set p = q = d and vary d from {2, 5, 10}. The horizontal axes represent the observed
values of the test statistics, and the vertical axes represent the kernel densities of those values. We
choose two different kernels to implement the tests, i.e., Gaussian (dashed line) and Laplacian (dotted
line). The solid line is the reference curve, which is the density of the standard normal distribution.

Table 1: The empirical powers of different tests for Models (I)-(III) in Example 2. The significance
level is 0.05. We fix q = 1 and vary p from {30, 50, 100, 200, 500, 1000}.

Model Test p
30 50 100 200 500 1000

(I)
Gaussian 1.000 1.000 1.000 1.000 0.998 0.954
Laplacian 1.000 1.000 1.000 1.000 0.994 0.916

DC 1.000 1.000 1.000 1.000 1.000 0.998

(II)
Gaussian 0.934 0.774 0.484 0.318 0.184 0.132
Laplacian 0.998 0.978 0.834 0.596 0.314 0.234

DC 0.974 0.894 0.650 0.412 0.226 0.176

(III)
Gaussian 0.044 0.050 0.060 0.046 0.060 0.068
Laplacian 0.050 0.046 0.054 0.048 0.054 0.060

DC 0.050 0.050 0.052 0.034 0.064 0.044

where ρk,Y = (2δk−1)Φ(Y ), δks are iid Bernoulli(0.5) random variables, and Φ(·) is the cumulative
distribution function of a standard normal distribution. In addition, (X2k−1, X2k)Ts are mutually
independent conditional on Y . We remark here that in Model (III), Xk is marginally independent
of Y for all k = 1, . . . , p. It can be verified that there exist linear, quadratic and quartic conditional
means of x given Y in Models (I), (II) and (III), respectively.

As we have demonstrated in Example 1, when q = 1, the standard normal distribution can approximate
the null distribution pretty well as long as p is no less than 25, we use the standard normal distribution
to obtain p-values. We repeat each experiment 500 times and report the empirical powers in Table 1.
As a comparison, we also include the results for the distance correlation in Table 1. We can observe
that all the empirical powers for Model (I) can still approach one, implying that the linear mean
dependence can be easily detected, even when the dimension is much higher than the sample size.
For example, when p = 1000, the power for Model (I) when the Gaussian kernel is used is still as
high as 0.954. However, when there only exists some higher order of mean dependence, the empirical
powers drop significantly. In addition, the performances deteriorate as the order of mean dependence
increase. For example, when p = 100 and we choose the Gaussian kernel to implement the test, the
empirical power for Model (III) is only 0.060, which is smaller than 0.484, the empirical power for
Model (II).

Example 3. In this example, we study how the dimensionality can effect the empirical power when
both of the covariate dimensions increase simultaneously. We also fix the sample size to be n = 100.
We set p = q = d and vary d from {6, 10, 20, 50, 100, 200}. Similar to Example 2, we consider three
models in this example. For Models (IV) and (V), we generate x the same as that in Models (I) and
(II), i.e., x ∼ N{0, (0.5|i−j|)p×p}. The independent error terms ε1, . . . , εd are generated from d
independent standard normal distributions. Then we generate y = (Y1, . . . , Yd)

T through

Model (IV) : Yj = Xj + εj , j = 1, . . . , d;
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Table 2: The empirical powers of different tests for Models (IV)-(VI) in Example 3. The significance
level is 0.05. We set p = q = d and vary d from {6, 10, 20, 50, 100, 200}.

Model Test d
6 10 20 50 100 200

(IV)
Gaussian 1.000 1.000 1.000 1.000 1.000 1.000
Laplacian 1.000 1.000 1.000 1.000 1.000 1.000

DC 1.000 1.000 1.000 1.000 1.000 1.000

(V)
Gaussian 1.000 1.000 0.944 0.440 0.242 0.140
Laplacian 1.000 1.000 1.000 0.904 0.578 0.282

DC 1.000 0.986 0.844 0.400 0.232 0.136

(VI)
Gaussian 0.056 0.064 0.046 0.078 0.038 0.072
Laplacian 0.058 0.064 0.044 0.074 0.040 0.072

DC 0.060 0.066 0.046 0.078 0.040 0.072

Model (V) : Yj = X2
j + εj , j = 1, . . . , d.

For Model (VI), we first generate all coordinates of y independently from standard normal distribu-
tions. Then given y, we generate x through

Model (VI) : {(X2k−1, X2k)T | y} ∼ N{0, (ρ|i−j|k,y )2×2}, k = 1, . . . , d/2,

where ρk,y = (2δk − 1)Φ(Y2k) and δks are iid Bernoulli(0.5) random variables. Meanwhile, we
generate (X2k−1, X2k)Ts independently conditional on y. Similar to Models (I), (II) and (III), there
exist covariances between y and linear, quadratic and quartic polynomials of x in Models (IV), (V)
and (VI), respectively.

Following that in Example 2, we use the standard normal distribution to obtain p-values and repeat
each experiment 500 times to report the empirical powers. The corresponding results are summarized
in Table 2, from which we observe a similar phenomenon. That is, the empirical powers decay as the
dimensions increase, and the decay rates increase when there only exist higher orders of covariances
between x and y. In addition, according to both Tables 1 and 2, the conclusions for the HSIC
with Gaussian and Laplacian kernels also apply to the distance correlation. This is in line with our
anticipation because the distance correlation is equivalent to the HSIC with some particular kernel.

5.2 Real Data Application

The prices of gasoline and many other fuels may have important impacts on raw materials and
related companies. For example, the petroleum is widely used as upstream raw materials by many
chemical industries. We are interested in whether there is any dependency between stock prices
of the energy sector and the raw material sector in the U.S. stock market. To see this, we extract
the monthly mean stock prices of energy companies as well as raw material companies starting
from January 2021 to December 2022 from https://finance.yahoo.com/. According to the Global
Industry Classification Standard, we get 345 and 294 companies from raw material and energy
sectors, respectively. We remove those stocks whose data are not complete in this period, yielding
224 companies from the raw material sector and 214 companies from the energy sector, respectively.
At each month t, 1 ≤ t ≤ 24, we denote the monthly mean stock prices of these companies
from the two sectors by xt = (Xt1, . . . , Xtp)

T and yt = (Yt1, . . . , Ytq)
T, where p = 224 and

q = 214. Let Sx
ti = log(Xti/Xt−1,i) and Sy

tj = log(Ytj/Yt−1,j) be the stock returns at month t
for the i-th company in the raw material sector, and j-th company in the energy sector, respectively.
We test whether the stock returns in these two sectors are independent using {(sxt , s

y
t )}24t=2, where

sxt = (Sx
t1, . . . , S

x
tp)

T and syt = (Sy
t1, . . . , S

y
tq)

T. We implement the test using HSIC with Gaussian
and Laplacian kernels. The resulting p-values are 2.031 × 10−10 and 2.749 × 10−9, respectively.
Then we can conclude that there exists dependences between the monthly mean stock prices of the
energy sector and the raw material sector.

We also compare the RV coefficient with our proposed method in this dataset. The RV coefficient
yields a p-value of 2.02× 10−4, which indicates the presence of linear dependences in this dataset.
We remark that, in this data set, both covariates dimensions p and q are much larger than sample size
n. According to the second part of Theorem 3 and the discussions at the end of Section 4, the HSIC
can only have nontrivial power if p(s1−1)κxq(s2−1)κy = o(n). In the context of our dataset, this
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condition is satisfied exclusively when s1 = s2 = 1, signifying a covariance relationship between
x and y. This together with the fact that the test based on HSIC rejected the null hypothesis, we
conclude that there exists a linear dependence relationship between x and y. This is consistent with
the RV coefficient result. Moreover, we identify that there is a strong linear relationship between
stock returns for two pairs of companies: Denison Mines Corp. and Energy Fuels Inc., and Uranium
Energy Corp. and Energy Fuels Inc. The R2s for the corresponding linear models are 0.8779 and
0.8718, respectively. This means that the models fit the data very well and that the stock returns move
together in a predictable way.

6 Conclusion and Discussion

This paper aims to investigate the performance of HSIC in high dimensions from a theoretical
perspective. We first prove that the asymptotic null distribution of a rescaled HSIC is a standard
normal in the high dimensional setting. Then we derive a general condition for the HSIC based tests
to have power asymptotically approaching one. To gain more insights, we decompose this condition
and show that it depends on the sample size, the covariate dimensions, the dependence structures
within covariates, and the association types between x and y. We also show that the ability of HSIC
to detect nonlinear dependence deteriorates as the dimensions increase. Most existing works focused
on either fixed dimensions or dimensions that diverge much faster than the sample size. We fill this
gap in the literature and provide a comprehensive picture of the performance of HSIC based tests.

Our theory also reveals how the ability of HSIC to capture nonlinear dependence diminishes in high
dimensions. To improve the power performance, Zhu et al. (2020) proposed to aggregate marginal
sample HSIC as the test statistic instead of using HSIC over the whole features. However, this
approach only measures marginal dependences, and it is well known that marginal independence does
not imply joint independence. Moreover, because it sums over all pairs of marginal HSIC, it may suffer
from a significant power loss when the alternative is sparse. Developing an independence test that
has nontrivial power against all kinds of dependences remains an open question. Therefore, it would
be interesting to explore new methods that can enhance power performances in high dimensions.
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Volnỳ, D. A central limit theorem for non stationary mixing processes. Commentationes Mathemati-
cae Universitatis Carolinae, 30(2):405–407, 1989.

Zhu, C., Zhang, X., Yao, S., and Shao, X. Distance-based and rkhs-based dependence metrics in high
dimension. The Annals of Statistics, 48(6):3366–3394, 2020.

Zhu, L., Xu, K., Li, R., and Zhong, W. Projection correlation between two random vectors. Biometrika,
104(4):829–843, 2017.

12


	Introduction
	Preliminaries
	Asymptotic Properties in High Dimensions
	Statistical Insights in High Dimensions
	Numerical Studies
	Simulations
	Real Data Application

	Conclusion and Discussion

