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ABSTRACT

In the unsupervised pre-training for reinforcement learning, the agent aims to learn
a prior policy for downstream tasks without relying on task-specific reward func-
tions. We focus on state entropy maximization (SEM), where the goal is to learn
a policy that maximizes the entropy of the state’s stationary distribution. In this
paper, we introduce SEMDICE, a principled off-policy algorithm that computes
an SEM policy from an arbitrary off-policy dataset, which optimizes the policy di-
rectly within the space of stationary distributions. SEMDICE computes a single,
stationary Markov state-entropy-maximizing policy from an arbitrary off-policy
dataset. Experimental results demonstrate that SEMDICE outperforms baseline
algorithms in maximizing state entropy while achieving the best adaptation ef-
ficiency for downstream tasks among SEM-based unsupervised RL pre-training
methods.

1 INTRODUCTION

The essence of intelligent agents lies in their ability to learn from experiences. Reinforcement learn-
ing (RL) (Sutton & Barto, 1998) provides a framework for autonomously acquiring an intelligent
behavior by interacting with the environment while receiving reward signals, and it has shown great
promise in various domains such as complex games (Mnih et al., 2015; Silver et al., 2017) and
robotic control (Lillicrap et al., 2016; Haarnoja et al., 2018). Still, standard RL algorithms learn
tabula rasa, i.e. learning from scratch for every task to maximize extrinsic rewards without using
previously learned knowledge. Consequently, the learned RL policy tends to be brittle and lacks
generalization capabilities, limiting its widespread adoption to many real-world sequential decision-
making problems (Cobbe et al., 2020; Gleave et al., 2020).

In contrast, in the fields of computer vision (He et al., 2020; Chen et al., 2020) and natural language
processing (Devlin et al., 2019; Brown et al., 2020), large-scale unsupervised pre-training has paved
the way for sample-efficient few-shot adaptation. During unsupervised pre-training, the models are
trained using a large unlabelled dataset, and then the pre-trained models are fine-tuned later for
each specific downstream task with a handful of task-specific labeled datasets. We consider the
analogy setting of the unsupervised pre-training for RL (Laskin et al., 2021). Specifically, during
unsupervised RL pre-training, the agent is allowed to train over long periods without access to the
extrinsic rewards of the environment. This procedure yields a pre-trained policy snapshot, aiming
for data-efficient adaptation in subsequent downstream tasks defined by reward functions that were
inaccessible a priori.

We consider the State-Entropy Maximization (SEM) approach for RL policy pre-training (Hazan
et al., 2019; Liu & Abbeel, 2021b; Yarats et al., 2021), as it is simple yet provides robust pol-
icy initialization for efficient adaptation against the worst-case reward function (Eysenbach et al.,
2022). However, despite its conceptual simplicity and widespread popularity, a principled approach
to sample-efficient off-policy SEM methods remains unexplored. Existing methods are either on-
policy (thus sample-inefficient) (Hazan et al., 2019), or off-policy but biased (Liu & Abbeel, 2021b;
Yarats et al., 2021). They construct the intrinsic reward function based on the particle-based entropy
estimator (Singh et al., 2003), and then optimize the policy in the direction of maximizing the con-
structed intrinsic rewards. For off-policy learning algorithms, state particles from the replay buffer
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are naively used to estimate state entropy (Liu & Abbeel, 2021b; Yarats et al., 2021), resulting in
estimates of the entropy of the state data stored in the replay buffer, rather than the state entropy of
the target policy’s state stationary distribution. Consequently, it remains unclear whether these off-
policy methods can converge to an optimal SEM policy. One can consider importance sampling to
correct the off-policyness (Mutti et al., 2021), but it would suffer from high variance issue due to the
curse of horizon (Liu et al., 2018), significantly limiting the degree of sample reuse. Consequently,
none of the existing methods serves as an unbiased, sample-efficient SEM method.

In this paper, we present a state-entropy maximization method that precisely addresses the afore-
mentioned issues of the existing methods. Our method, State-Entropy-Maximization via stationary
DIstribution Correction Estimation (SEMDICE), essentially optimizes in the space of stationary
distributions, rather than in the space of policies or Q-functions, and it leverages arbitrary off-policy
samples. We show that SEMDICE only requires solving a single convex minimization problem, and
thus it can be optimized stably. To the best of our knowledge, SEMDICE is the first principled and
practical algorithm that computes a SEM policy from arbitrary off-policy dataset. In the exper-
iments, we demonstrate that SEMDICE converges to an optimal SEM policy in the tabular MDP
experiments. Also, regarding RL policy pre-training, SEMDICE adapts to downstream tasks more
efficiently than eixsting data-based (i.e., SEM-based) unsupervised RL methods (Liu & Abbeel,
2021b; Yarats et al., 2021).

2 PRELIMINARIES

2.1 MARKOV DECISION PROCESS (MDP)

We assume the environment modeled as an infinite-horizon1 Markov Decision Process (MDP) M =
⟨S,A, T, r, γ, p0⟩, where S is the set of states s, A is the set of actions a, T : S ×A→ ∆(S) is the
transition probability, r : S → R is the reward function, γ ∈ [0, 1] is the discount factor, p0 ∈ ∆(S)
is the initial state distribution. The policy π : S → ∆(A) is a mapping from state distribution
over actions2. For a given policy, its state stationary distribution d̄π(s) and state-action stationary
distribution dπ(s, a) are defined as follows:

d̄π(s) :=


(1− γ)

∞∑
t=0

γt Pr(st = s) if γ < 1,

lim
T→∞

1
T+1

T∑
t=0

Pr(st = s) if γ = 1,
(1)

dπ(s, a) :=


(1− γ)

∞∑
t=0

γt Pr(st = s, at = a) if γ < 1,

lim
T→∞

1
T+1

T∑
t=0

Pr(st = s, at = a) if γ = 1,
(2)

where s0 ∼ p0, at ∼ π(s), and st+1 ∼ T (st, at) for each timestep t ≥ 0. dπ and d̄π can be un-
derstood as normalized (discounted) occupancy measures of (s, a) and s respectively. For brevity,
we focus on discounted MDPs (γ < 1) in the main text, but our formulation can be easily general-
ized to undiscounted (γ = 1) settings (see Appendix K). We will use the bar notation (̄·) to denote
the distributions for state s, e.g., d̄π(s). The goal of standard RL is to learn a policy that maxi-
mizes the expected rewards by interacting with the environment: maxπ(1− γ)Eπ[

∑∞
t=0 γ

tr(st)] =
Es∼d̄π [r(s)] = ⟨d̄π, r⟩.

2.2 UNSUPERVISED RL VIA STATE ENTROPY MAXIMIZATION (SEM)

In the unsupervised pre-training of RL (Laskin et al., 2021), the agent is trained by interacting with
a reward-free MDP ⟨S,A, T, γ, p0⟩ over long periods, where the goal is to learn a policy that can
quickly adapt to downstream tasks defined by reward functions that are unknown a priori. In this
work, we are particularly interested in the approach of maximizing the entropy of state stationary

1We consider infinite-horizon MDPs in the paper for simplicity, but our formulation can be extended to
finite-horizon MDPs (Appendix L).

2We call π Makovian policy if π depends only on the last state and call it stationary policy if π does not
depend on timestep.
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distribution (Jain et al., 2023; Mutti et al., 2021; 2022; Liu & Abbeel, 2021b; Yarats et al., 2021) as
an objective for unsupervised pre-training RL:

π∗ := argmax
π

H[d̄π(s)] = −
∑
s

d̄π(s) log d̄π(s) (3)

In other words, we aim to pre-train a policy whose state visitations cover the entire state space
equally well. Intuitively, having such an SEM policy would allow agents to efficiently receive reward
signals even for arbitrarily sparse reward functions, facilitating fast adaptation for downstream tasks.
More discussions on why learning an SEM policy can be useful for RL pre-training can be found in
Appendix A.

2.3 EXISTING SEM METHODS FOR RL PRE-TRAINING

Existing methods for SEM (Lee et al., 2020; Mutti et al., 2021; Liu & Abbeel, 2021b; Yarats
et al., 2021) commonly follow the following procedures: (1) construct intrinsic reward functions
r̂(s) ≈ − log d̄π(s), e.g., by particle-based state-entropy estimation: r̂(si) ≈ − log d̄π(si) ≈
log

(
∥si− sk-NN

i ∥2
)

where sk-NN
i denotes k-nearest neighbor of si, and (2) update the policy param-

eters via policy gradients in the direction of maximizing r̂. However, this procedure, in principle,
requires on-policy state particles {si}Ni=1 when estimating the state entropy of the current policy
d̄π(s), implying that the past experiences cannot be reused naively. Still, for off-policy learning to
improve sample-efficiency, existing methods for SEM pre-training (Liu & Abbeel, 2021b; Yarats
et al., 2021) naively use (off-policy) state particles in the replay buffer for entropy estimation to
construct reward functions, combined with an off-policy RL algorithm. This may not be guaran-
teed to converge to an SEM policy as they estimate the replay buffer’s state entropy, rather than the
entropy of the target policy’s state stationary distribution. Importance sampling can be adopted for
off-policy corrections (Mutti et al., 2021) of policy gradients, but it suffers from high variance issue
with the curse of horizon (Liu et al., 2018). Consequently, existing methods for SEM pre-training
are either biased (off-policy) or sample-inefficient (on-policy). The key challenge in devising a
sample-efficient SEM algorithm lies in estimating the entropy of the target policy’s stationary state
distribution using an arbitrary off-policy dataset.

3 SEMDICE

In this section, we derive our SEM method, State-Entropy-Maximization via stationary DIstribution
Correction Estimation (SEMDICE), which computes an SEM policy from arbitrary off-policy
dataset. Our derivation starts by formulating the regularized SEM problem via concave program-
ming that directly optimizes stationary distributions, rather than optimizing policy. All the proofs
can be found in Appendix C.

3.1 CONCAVE PROGRAMMING FOR SEM

Some careful readers may wonder which policy set should be considered to obtain an optimal SEM
policy, as it may not be immediately evident that searching for an optimal SEM policy within sta-
tionary Markov policies (instead of richer non-Markovian policies) is sufficient. Fortunately, the
following proposition addresses this concern.

Proposition 3.1. (Hazan et al., 2019) There always exists a stationary Markovian policy that max-
imizes the entropy of state stationary distribution (i.e., solution of (3)). Such an optimal stationary
Markovian policy is generally stochastic.

By Proposition 3.1, it is sufficient to consider the stationary distribution induced by stationary
Markovian policies to obtain an optimal SEM policy. We then begin our derivation with the fol-
lowing concave programming problem that optimizes the stationary distributions to solve a (regu-
larized) SEM problem, where the primary objective is to maximize the entropy of state stationary
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distribution of some target policy while adopting f -divergence regularization.
max
d,d̄≥0

−∑
s
d̄(s) log d̄(s)︸ ︷︷ ︸

state entropy H[d̄(s)]

−αDf
(
d(s, a)||dD(s, a)

)︸ ︷︷ ︸
concave regularizer

(4)

s.t.
∑
a′
d(s′, a′) = (1− γ)p0(s′) + γ

∑
s,a
d(s, a)T (s′|s, a) ∀s′ (5)∑

a
d(s, a) = d̄(s) ∀s (6)

The Bellman flow constraint (5) guarantees that d(s, a) is a valid state-action stationary distribution
for some policy, where d(s, a) can be understood as a normalized occupancy measure of (s, a). The
marginalization constraint (6) ensures that d̄(s) is the state stationary distribution directly induced by
d(s, a). In (4), Df (d(s, a)||dD(s, a)) := E(s,a)∼dD

[
f
( d(s,a)
dD(s,a)

)]
denotes the f -divergence between

d and dD, D = {(s, a, s′)i}Ni=1 denotes any off-policy dataset of interest (e.g., replay buffer of the
agent), and dD is its corresponding distributions. We assume f is a strictly convex function and
continuously differentiable. For brevity, we will abuse the notation dD to represent (s, a) ∼ dD,
(s, a, s′) ∼ dD. The regularization hyperparameter α > 0 balances between maximizing state
entropy and preventing distribution shift from past experiences.

The regularization term Df (d||dD) in (4) can be understood as imposing trust-region updates Schul-
man et al. (2015b) by constraining the solution to the vicinity of previous state-action visitations.
Technically, the regularization term ensures strict concavity of the objective function with respect
to d, thereby guaranteeing the uniqueness of the optimal solution for the concave programming (4-
6). In contrast to existing DICE-based RL methods (Lee et al., 2021; 2022; Nachum & Dai, 2020)
that formulate optimization problems only for state-action stationary distribution, we define the
optimization problem that jointly optimizes state stationary distribution with the marginalization
constraint (6) to deal with state entropy.

To sum up, we seek state-action stationary distribution d (and its corresponding state stationary dis-
tribution d̄) whose state entropy is being maximized. Once we have computed the optimal solution
(d∗, d̄∗) of the concave programming (4-6), its corresponding optimal policy can be obtained by
normalized d∗ for each state (Puterman, 2014): π∗(a|s) = d∗(s,a)

d̄∗(s)
.

3.2 LAGRANGE DUAL FORMULATION

Still, solving (4-6) directly requires a white-box model of the environment, which is inaccessible in
many practical applications of RL. To derive an algorithm that can be fully optimized in a model-free
manner, we consider the Lagrangian for the constrained optimization problem (4-6)

max
d̄,d≥0

min
ν,µ
−∑

s
d̄(s) log d̄(s)− αDf (d||dD) +

∑
s
µ(s)

(∑
s,a d(s, a)− d̄(s)

)
(7)

+
∑
s
ν(s)

(
(1− γ)p0(s) + γ

∑
s,a d(s, a)T (s

′|s, a)−∑
a d(s, a)

)
where ν(s) ∈ R are the Lagrange multipliers for the Bellman flow constraints (5), and µ(s) ∈ R
are the Lagrange multipliers for the marginalization constraints (6). Then, we rearrange the terms in
(7):

max
d̄,d≥0

min
ν,µ

(1− γ)Es0∼p0 [ν(s0)]− αEdD

[
f
( d(s,a)

dD(s,a)

)]
(8)

+
∑
s,a

d(s, a)
(
µ(s) + γEs′ [ν(s

′)]− ν(s)︸ ︷︷ ︸
=:eν,µ(s,a)

)
−

∑
s

d̄(s)
(
µ(s) + log d̄(s)

)
=min

ν,µ
max
d̄,d≥0

(1− γ)Es0∼p0 [ν(s0)]− αEdD

[
f
( d(s,a)

dD(s,a)

)]
+

∑
s,a

d(s, a)eν,µ(s, a)−
∑
s

d̄(s)
(
µ(s) + log d̄(s)

)
(9)

In (9), we could reorder maximin to minimax thanks to strong duality (Boyd et al., 2004). Finally,
using the Fenchel conjugate, we can eliminate the inner maximization problem and end up with a
single convex minimization problem3.

3This simplification from min-max to min was made possible by introducing the optimization variable d̄
along with the marginalization constraint (6) (see Appendix B).
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Theorem 3.2. The minimax optimization problem (9) is equivalent to solving the following uncon-
strained minimization problem:

min
ν,µ

(1− γ)Ep0 [ν(s0)] + EdD
[
αf∗+

(
1
αeν,µ(s, a)

)]
+

∑
s
exp(−µ(s)− 1) =: L(ν, µ) (10)

where f∗+(y) = maxx≥0 xy − f(x). The objective function L(ν, µ) is convex for ν and µ. Fur-
thermore, given the optimal solution (ν∗, µ∗) = argminν,µ L(ν, µ), the stationary distribution
corrections of the optimal SEM policy are given by:

d∗(s, a)

dD(s, a)
= (f ′)−1

(
1
α

(
µ∗(s) + γEs′ [ν∗(s′)]− ν∗(s)︸ ︷︷ ︸

=eν∗,µ∗ (s,a)

))
+
=: w∗

ν∗,µ∗(s, a) (11)

where x+ := max(0, x).

In short, by operating in the space of stationary distributions, computing a stationary Markovian
SEM policy can, in principle, be addressed by solving a convex minimization problem. The resulting

policy can be obtained by π∗(a|s) = d∗(s,a)∑
a′ d∗(s,a′)

=
w∗

ν∗,µ∗ (s,a)d
D(s,a)∑

a′ w∗
ν∗,µ∗ (s,a)dD(s,a)

in the case of finite
MDPs.

3.3 PRACTICAL ALGORITHM

Still, one practical issue in (10) is that optimizing it is unstable due to its inclusion of exp(·)
term, often causing exploding gradient problems. To remedy this issue, we consider the follow-
ing numerically stable alternative objective function L̃ that replaces

∑
s exp(−µ(s) − 1) with

log
∑
s exp(−µ(s)).

Theorem 3.3. Define the objective functions L̃(ν, µ) as

L̃(ν, µ) := (1− γ)Es0

[
ν(s0)

]
+ E(s,a)∼dD

[
αf∗

+

(
1
α
eν,µ(s, a)

)]
+ log

∑
s

exp(−µ(s)) (12)

Then, for any optimal solutions (ν∗, µ∗) = argminν,µ L(ν, µ) and (ν̃∗, µ̃∗) = argminν,µ L̃(ν, µ),
the following holds:

L(ν∗, µ∗) = L̃(ν̃∗, µ̃∗) (13)

Also, there exists a constant C such that the following holds:

µ∗ = µ̃∗ + C and ν∗ = ν̃∗ + C
1−γ (14)

Note that the gradient ∇s
∑
s log

∑
s exp(−µ(s)) = − exp(−µ(s))∑

s′ exp(−µ(s′))
∇sµ(s) normalizes exp(·)

by softmax, thus L̃ no longer suffer from numerical instability by large gradients. At first glance,
it seems that optimizing (12) could yield a solution that is completely different from that of (10).
However, Theorem 3.3 shows that their optimal objective function values are the same and their
optimal solutions only differ in a constant shift. Furthermore, despite its constant shift, it does not
change anything for w∗ computation in (11), as can be seen as follows:

eν̃∗,µ̃∗(s, a) =
(
µ∗(s)− C

)
+ γ

(
E[ν∗(s′)]− C

1−γ

)
−
(
ν∗(s)− C

1−γ

)
= µ∗(s) + γE[ν∗(s′)]− ν∗(s) = eν∗,µ∗(s, a)

∴ w∗
ν∗,µ∗(s, a) = w∗

ν̃∗,µ̃∗(s, a)

Still, (12) requires summing up (or integrating) every possible state, which is intractable for large (or
continuous) state space. Therefore, we approximate the log

∑
exp(−µ(s)) term via Monte-Carlo

integration with an arbitrary distribution q: log
∑

exp(−µ(s)) = logEq[exp(−µ(s) − log q(s))].
Finally, we optimize the following objective function with q(s) = d̄D(s):

min
ν,µ

(1− γ)Es0
[
ν(s0)

]
+ E(s,a)∼dD

[
αf∗+

(
1
αeν,µ(s, a)

)]
(15)

+ logEs∼d̄D(s)

[
exp(−µ(s)− log d̄D(s))

]

5
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The last remaining challenge is that (15) still cannot be naively optimized in a fully model-free
manner in continuous domains, as it contains computing expectations w.r.t. the transition model
inside the non-linear function f∗+(·). For a practical implementation, we use the following objective
that can be easily optimized via sampling only from dD:

min
ν,µ

(1− γ)Ep0 [ν(s0)] + E(s,a,s′)∼dD
[
αf∗+

(
1
α êν,µ(s, a, s

′)
)]

(16)

+ logEs∼d̄D(s)

[
exp(−µ(s)− log d̄D(s))

]
=: L̂(ν, µ)

where ê(s, a, s′) := µ(s) + γν(s′) − ν(s) is a single-sample estimate of e(s, a). Note that every
term in (16) can now be evaluated only using the (s, a, s′) samples from D, thus we can optimize ν
and µ easily. Although (16) is a biased estimate of (15), one can easily show that L̂(ν, µ) is an upper
bound of L(ν, µ), i.e. L(ν, µ) ≤ L̂(ν, µ) always holds, where the equality holds when the MDP is
deterministic, by Jensen’s inequality and the convexity of f∗+(·). Once we get the optimal solution
(ν̂∗, µ̂∗) = argminν,µ L̂(ν, µ), we end up with the stationary distribution corrections of the optimal

SEM policy: dπ
∗
(s,a)

dD(s,a)
= wν̂∗,µ̂∗(s, a) by (11). In practice, to deal with continuous state space, we

parameterize νθ : S → R and µω : S → R using simple MLPs, which take the state s as an input
and output a scalar value, and optimize the network parameters.

Policy Extraction The final remaining question is how to obtain an explicit policy, as our method
computes the distribution correction ratios w∗ in (11) instead of the policy itself directly. We follow
the i-projection used in (Lee et al., 2021).

min
π

KL
(
dD(s)π(a|s)||dD(s)π∗(a|s)

)
(17)

= Es∼dD
a∼π

− [logw∗(s, a)−DKL(π(ā|s)||πD(ā|s))] + C (18)

Essentially, minimizing (18) corresponds to computing a policy π(·|s) that mimics the optimal SEM
policy π∗(·|s) for each state s ∈ D. In summary, SEMDICE computes the SEM policy as follows:
First, minimize (16), and Second, extract the policy using the obtained wν∗,µ∗ by i-projection (18).
In practice, rather than training until convergence at each iteration, we perform a single gradient
update for ν, µ, and π. We outline the details of policy extraction (Appendix F) and the full learning
procedure with pseudo-code in Algorithm 1 (Appendix G).
Remark 3.4. Minimizing L̃(ν, µ) in (15) is equivalent to solving the original (regularized) state-
entropy-maximization problem (4-6), demonstrating that computing a (regularized) SEM policy
can, in principle, be achieved by arbitrary off-policy dataset D. Note that this approach directly
optimizes the state entropy of a target policy, rather than optimizing the state entropy of the replay
buffer as in (Yarats et al., 2021; Liu & Abbeel, 2021b). To the best of our knowledge, SEMDICE is
the first principled and practical off-policy SEM algorithm that can learn from arbitrary off-policy
experiences. Also, (Hazan et al., 2019) showed that state entropy is not concave for policy param-
eters, whereas state entropy is concave for the stationary distribution space d̄(s). That being said,
our method, which directly optimizes stationary distributions, may offer better convergence prop-
erties compared to existing policy-based algorithms. However, providing a formal analysis for the
convergence guarantee remains as future work.

4 RELATED WORK

Unsupervised RL and State Entropy Maximization Our work falls within the realm of unsu-
pervised reinforcement learning, specifically addressing the challenge of task-agnostic exploration.
The reward-free exploration framework has gained significant attention in recent years (Jin et al.,
2020; Tarbouriech et al., 2020; Kaufmann et al., 2020). While these methods share a similar context
to our work, they pursue largely orthogonal objectives.

State entropy maximization is a particular instance of reward-free exploration objective, where the
agent aims to estimate the density of states and maximize entropy (Hazan et al., 2019; Lee et al.,
2020; Liu & Abbeel, 2021b; Yarats et al., 2021; Mutti et al., 2022; Tiapkin et al., 2023; Kim et al.,
2023; Yang & Spaan, 2023). However, these methods mostly rely on policy gradients with the
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Figure 1: Performance of SEMDICE and baselines in randomly generated tabular MDPs. The first
column indicates normalized policy entropy (0: state entropy of uniform policy, 1: state entropy
of optimal SEM policy), the second column indicates normalized entropy of the cumulative experi-
ences. We observe that only SEMDICE converges to an optimal SEM policy, whereas baselines do
not directly maximize the state entropy.

reward function for the estimated state entropy, and they are either sample inefficient due to their
requirements of on-policy samples (Hazan et al., 2019; Mutti et al., 2022), or optimize the biased
objective due to estimating the state entropy of the replay buffer (Liu & Abbeel, 2021b; Yarats et al.,
2021). In contrast, our method operates directly in the space of stationary distributions and serves
as the first principled off-policy SEM method.

Besides state entropy maximization, various self-supervised objectives have been explored for unsu-
pervised RL pre-training (Laskin et al., 2021). The goal of pre-training in this context is to compute
a policy without relying on task-specific reward functions, enabling rapid adaptation to future, un-
known downstream tasks defined by reward functions. Unsupervised RL pre-training algorithms are
categorized in three main ways (Laskin et al., 2021). Knowledge-based methods aim to increase
knowledge about the environment by maximizing prediction error (Pathak et al., 2017; Burda et al.,
2019; Pathak et al., 2019). Competence-based methods (Lee et al., 2020; Eysenbach et al., 2019;
Liu & Abbeel, 2021a; Laskin et al., 2022) aim to learn explicit skill representations by maximizing
the mutual information between encoded observation and skill. Lastly, data-based methods (Liu &
Abbeel, 2021b; Yarats et al., 2021) aim to achieve data diversity via particle-based entropy maxi-
mization. Our SEMDICE is categorized into the data-based method when considering unsupervised
RL pre-training.

Stationary DIstribution Correction Estimation (DICE) DICE-family algorithms perform sta-
tionary distribution estimation and have demonstrated significant promise in various off-policy learn-
ing scenarios in reinforcement learning (RL), such as off-policy evaluation (Nachum et al., 2019a;
Zhang* et al., 2020; Zhang et al., 2020; Yang et al., 2020), reinforcement learning (Lee et al., 2021;
Kim et al., 2024; Mao et al., 2024), constrained RL (Lee et al., 2022), imitation learning (Kim et al.,
2022b; Ma et al., 2022; Kim et al., 2022a; Sikchi et al., 2024), and more. However, to the best of our
knowledge, no DICE-based algorithms have been proposed to address state entropy maximization.

5 EXPERIMENTS

In this section, we empirically evaluate our SEMDICE and baselines: to demonstrate (1) SEMDICE
converge to an optimal SEM policy, (2) visualization of SEMDICE’s state visitation, (3) how effi-
ciently SEMDICE pre-trained policy can adapt to downstream tasks on URL benchmarks (Laskin
et al., 2021). Ablation experiments on the choice of f and α for SEMDICE can be found in Ap-
pendix.

5.1 STATE ENTROPY MAXIMIZATION IN FINITE MDPS

We first evaluate SEMDICE and baseline algorithms on randomly generated finite MDPs with 20
states and 4 actions to show how effectively SEMDICE maximizes the state entropy, compared
to baselines, when optimized using the off-policy dataset (the entire replay buffer). We conduct
repeated experiments with different seeds for 100 runs.
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Baselines Baselines are policy-gradient-based methods, with different (non-stationary) intrinsic
reward functions r̂. We consider the following baselines, and they can be thought of as analogies
to existing unsupervised RL approaches. (1) CB-SA: it constructs the state-action-count-based ex-
ploration rewards by r̂(s, a) = 1√

N(s,a)
, where N(s, a) is the cumulative (s, a)-visitation counts

by the agent. This baseline can be understood as an analogy to the existing count-based methods
or RND (Burda et al., 2019). (2) CB-S: it constructs state-count-based rewards r̂(s) = N(s)−0.5,
where N(s) is the s-visitation counts. It is similar to CB-SA but only considers state visitation
frequencies, thus it is expected to be closer to state-entropy maximization. (3) PB-S: it constructs
entropy-based rewards r̂(s) = − log dD(s), where dD is the empirical state distribution of the cu-
mulative experiences (which is not direct estimate of − log dπ(s)). This baseline can be understood
as an analogy to existing SEM methods performing off-policy updates (Liu & Abbeel, 2021b; Yarats
et al., 2021). (4) Uniform: sample actions uniformly at random.

For all baselines, we first collect trajectories using the current policies and then construct the
non-stationary rewards function based on visitation counts/data-state-entropy measures accordingly.
Lastly, we perform policy gradient ascents along the direction of maximizing the constructed reward
function.

Evalution For each run, we (1) generate a random MDP and initialize all policies with the uniform
policy; (2) For each method, use the current policy π to collect 10 episodes and add to replay buffer
D; (3) UsingD, compute the MLE transition matrix T̂ , the intrinsic reward function r̂, and the value
function Qπr̂ with respect to the intrinsic reward function; (4) Perform off-policy policy gradients
based on the estimated Qπr̂ ; (5) Go back to step (2) and repeat these procedures until we have 1000
episodes of data in D. Throughout the process, we compute the state entropy of the current policy
d̄π(s) as well as the entropy of the replay buffer d̄D(s).

Results Figure 1 presents the results. We observe that CB-S baseline generates a slightly better
SEM policy than CB-SA, which is natural as it focuses on the exploration of the unvisited states
while ignoring action uncertainty. PB-S baseline could obtain nearly maximal state-entropy for the
dataset in the dataset d̄D(s), but it is not directly optimizing the target policy’s state entropy d̄π(s).
SEMDICE is the only algorithm that could converge to an optimal SEM policy efficiently. It also
achieves much better sample efficiency in terms of the state entropy of dataset that PB-S. Although
we didn’t include the result, we also tested on-policy policy-gradient approach for SEM. It could
converge to an optimal SEM policy with a carefully chosen learning rate, but it required ×100 more
samples to reach near-optimal entropy maximization. This results confirm that SEMDICE is capable
of computing an optimal SEM policy even from the arbitrary off-policy dataset. In Appendix H, we
further show that SEMDICE still converges to the optimal SEM policy even when the dataset is
collected by a purely off-policy agent (i.e. uniform random policy).

5.1.1 STATE ENTROPY MAXIMIZATION: VISUALIZATION

This section aims to visualize the behavior of SEMDICE and baselines for their state visitations
during policy learning. To this end, we use MountainCar(Continuous), a low-dimensional continu-
ous state and action space domain from Gymnasium (Towers et al., 2023). MountainCar is a classic
control task under a deterministic MDP consisting of a car and a sinusoidal valley. The observation
space is 2D with Position ∈ [−1.2, 0.6] and Velocity ∈ [−0.07, 0.07]. Action consists of directional
forces ∈ [−1, 1]. The low dimension enables clear state visitation visualization in 2D plane and
establishes straightforward comparison across the agents.

Baselines We compare SEMDICE to baselines from three different categories of unsupervised RL.
Knowledge-based baselines include RND (Burda et al., 2019); Data-based baselines tries to maxi-
mize the state entropy, which can be our direct interest and include ProtoRL (Yarats et al., 2021),
APT (Liu & Abbeel, 2021b), and MEPOL (Mutti et al., 2021); and Competence-based baselines
include DIAYN (Eysenbach et al., 2019), CIC (Laskin et al., 2022), which aims to learn skill by
maximizing the mutual information between skills and observations.

Evaluation and Results We evaluated the methods based on their overall state coverage and en-
tropy during the reward-free pretraining process. Specifically, during pretraining with pure intrinsic
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Figure 2: Mountaincar state coverage: Visualization of agent pretraining results across SEMDICE
and baselines. During the reward free pretraining stage, we keep 10K, 100K, and 200K snapshots,
and later draw 30k samples from each model through environment interactions for visualizations.
We discretized the sample space to uniform 51× 51 bins, and normalized the empirical distribution
to compute the entropy printed at the bottom of each subplot. Existing methods learns a deter-
ministic policy using non-stationary reward functions, and hence didn’t converge to a state entropy
maximizing policy. SEMDICE, on the other hand, uses a stationary reward function and learns a
stochastic policy. It is hence able to converge to a state-entropy maximizing policy.
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Figure 3: Particle-based entropy estimations of pretrained SEMDICE and baselines in URLB (Laskin et al.,
2021). We follow the setup from URLB and pretrain each agent with 2M environment interactions. We save
policy snapshots at [0.1M, 0.3M, 0.5M, 1M, 2M] steps, and report the change of entropy index along the train-
ing process. We observe that SEMDICE achieves maximum state entropy in both Walker and Jaco Arm do-
main, and close to maximum state entropy in Quadruped domain. It is also the most sample efficient approach
amongst all agents: with as few as 100K environment interactions, SEMDICE learns a proper state entropy
maximizing policy. For example, in Walker domain, multiple agents like RND, Disagreement, and PROTO
managed to achieve similar state entropy as SEMDICE. However, they are much less sample efficient, and only
converged to maximum state entropy policy after close to 2M environment interactions.

rewards, snapshots are taken at 10K, 100K, and 200K. For each corresponding policy checkpoint,
we gathered 30000 sample points through environment interactions with the fixed policy snapshot.
Then, we visualize its state evistations. Finally, we discretize the 2D continuous observation space
into a 51 x 51 grid and determine the visitation count for each grid in order to accurately compute
the state entropy of the learned policy’s state stationary distribution. Note that each baseline deal
with continuous state/action spaces directly, and the discretization was only for entropy evaluation.

Figure 2 shows that the existing state-entropy maximization methods (PROTO, APT, MEPOL) do
not converge to a single state-entropy maximization policy. Rather, their learned policies are non-
stationary during training procedures, due to their reliance on the non-stationary estimated reward
function. In contrast, SEMDICE shows the behavior that gradually increases the state visitation cov-
erage, and it converged to a single SEM policy (instead of oscillating behavior as in the baselines).

5.2 URL BENCHMARK

Finally, we evaluate the state-entropy maximization and fine-tuning RL performance using tasks
from URLB (Laskin et al., 2021). URLB consists of twelve tasks across three different domains:
Walker, Quadruped, and Jaco Arm. During the pre-training phase, SEMDICE and baselines com-
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Figure 4: We apply the 12 tasks listed in URLB (Laskin et al., 2021), covering three different
domains: Walker (stand, walk, flip, run) and Quad (stand, walk, run, jump) are locomotion tasks
that require balance and strategic control of the body; Jaco Arm (reach bottom left, reach bottom
right, reach Top Left, reach Top Right) involves control tasks that require careful manipulation of a
6-DOF robotic arm with a three-finger gripper without locking towards specified target directions.
To ensure statistically unbiased evaluation of the methods, we use rliable (Agarwal et al., 2021)
to report the aggregate statistics over runs across multiple seeds and tasks with stratified bootstrap
confidence intervals. For each agent, the plot is generated by 120 = 3 Domains ∗4 Tasks/Domain
∗10 Seeds.

putes the pre-trained policy without task-specific reward, solely relying on their intrinsic objective
functions. Once the policy pre-training is done after 2M steps, a small amount of environment in-
teractions are allowed with the task-specific rewards (100K steps). We then evaluate how efficiently
each method adapts to the given downstream tasks, specifically examining how well the pre-trained
policies serve as a good initialization for rapid adaptation. We compared SEMDICE with the base-
lines provided by URLB. We follow the experimental protocoal of URLB: we ran 10 seeds per task,
and used the same hyperparameters for baselines, except for using the smaller MLP hidden size
1024→ 256 for fast training/evaluation.

Results In Figure 3, we report the state entropy of the policy checkpoints during pre-training per
method, and SEMDICE shows the highest state entropy estimates across all domains. In Figure 4,
we present the fine-tuning performance. Overall, SEMDICE significantly outperforms all data-based
(i.e. SEM-based) and knowledge-based baselines in terms of rapid adaptation performance during
fine-tuning phase. This highlights that state entropy maximization is a desirable objective for RL
pre-training, as illustrated in Appendix A. Although SEMDICE underperforms CIC, a competence-
based URL method, we believe its performance can be further enhanced by integrating representa-
tion learning techniques (e.g., those used in CIC). It is important to emphasize that our results were
achieved solely through the SEM objective without additional mechanisms. Moreover, SEMDICE’s
(potentaiily more unbiased) and efficient SEM optimization could have resulted in good policy ini-
tialization for fine-tuning. Qualitatively, we observed that even the data-based baselines sometimes
exhibit static behavior, while SEMDICE’s learned policy consistently showed actively moving be-
havior across different domains.

6 CONCLUSION

We presented SEMDICE, a new state-entropy-maximization (SEMDICE) algorithm for RL pre-
training. Existing SEM methods rely on policy gradients, and they either require on-policy samples
or perform (off-policy) biased optimization due to its estimation of state entropy of replay buffer.
In contrast, SEMDICE directly optimizes in the space of stationary distributions, and our derivation
shows that computing an optimal SEM policy can be achieved by solving a single convex minimiza-
tion problem with arbitrary off-policy dataset. To the bast of our knowledge, SEMDICE is the first
principled off-policy SEM algorithm. Through various tabular and continuous domain experiments,
we demonstrated that SEMDICE converges to a single stationary Markov SEM policy, and outper-
forms baselines in terms of maximizing state entropy. As for future work, we plan to incorporate
representation learning components into SEMDICE so that it enables faster meaningful feature de-
tection and better navigation in high-dimensional domains such as pixel-based domains. Another
promising future direction is to devise a DICE-based method for competence-based unsupervised
RL algorithms (e.g. maximizing the mutual information), which can serve as a principled off-policy
algorithm for it.
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A WHY STATE-ENTROPY MAXIMIZATION FOR RL PRE-TRAINING

In this section, we illustrate why state-entropy maximization can be a good choice for RL pre-
training. Consider the following information-theoretic regularized regret objective defined by (Ey-
senbach et al., 2022).

ADAPTATIONOBJECTIVE
(
d̄pre(s), r(s)

)
:= min

d̄∗(s)
max
d̄+(s)

Ed̄+(s)[r(s)]− Ed̄∗(s)[r(s)]︸ ︷︷ ︸
regret

+DKL(d̄
∗(s)||d̄pre(s))

(19)

In the ADAPTATIONOBJECTIVE, for a given pre-trained policy’s stationary distribution d̄pre and a
downstream reward function r, it measures the regret of the policy (d̄∗) after adaptation from the
pre-trained policy (d̄pre) with the information cost, where optimal d̄+(s) denotes the state stationary
distribution of the optimal policy for the reward r (introduced to define regret). Then, a desirable
pre-trained policy (or its corresponding d̄π) can be defined in terms of minimizing the (regularized)
regret against the worst-case reward function:

min
d̄pre(s)

max
r(s)

ADAPTATIONOBJECTIVE
(
d̄pre(s), r(s)

)
(20)

(Eysenbach et al., 2022) has shown that (20) is equivalent to:

min
d̄pre(s)

max
d̄+(s)

DKL(d̄
+(s)||d̄pre(s)), (21)

and thus maximum-entropy (uniform) d̄pre is the solution of (21) and (20). This means that SEM
policy provides robust policy initialization against the worst-case reward function for fine-tuning,
justifying why state-entropy maximization is useful for unsupervised RL pre-training. Figure 5
visualizes information geometry of RL pre-training (Eysenbach et al., 2022).

1

𝑑𝑑(𝑠𝑠0)

1
𝑑𝑑(𝑠𝑠1)

𝑑𝑑(𝑠𝑠2)

1

Reward 𝑟𝑟

Figure 5: Visualization of reward function and policies as their state stationary distributions in a
3-state MDP. The shaded orange area denotes a set of achievable state stationary distributions that
lie on the probability simplex ∆(S) (shaded blue). The green arrow represents the reward function
r as a vector starting at the origin.  denotes the state stationary distribution of a pretrained SEM
policy, d̄pre = [ 13 ,

1
3 ,

1
3 ], and  denotes the state stationary distribution of an optimal policy for r,

d̄+ which is an intersection of r and ∆(S). The distance from  to  reflects the adaptation cost.
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B WHY BOTH d(s, a) AND d̄(s) ARE USED

Without d̄(s), the main objective becomes:

−
∑
s,a

d(s, a) log
∑
a′

d(s, a′) (22)

This makes algorithm derivation complicated due to the summation inside logarithm. Specifically,
our derivation with d̄(s) results in the following inner-max problem (See (23) in Appendix C):

max
w≥0

EdD
[
w(s, a)

(
µ(s)+γEs′ [ν(s′)]−ν(s)

)
−αf

(
w(s, a)

)]
= αf∗+

(
1
α

(
µ(s)+γEs′ [ν(s′)]−ν(s)

)
where inner-maximization problem maxw≥0 could have been easily eliminated by applying Fenchel
conjugate of f , i.e. f∗+(y) := maxx≥0 xy − f(x).
In contrast, without d̄(s), we have the following inner-maximization problem:

max
w≥0

E(s,a)∼dD
[
w(s, a)

(
− log

∑
a′

w(s, a′)dD(s, a′) + γEs′ [ν(s′)]− ν(s)
)
− αf

(
w(s, a)

)]
where Fenchel conjugate is not directly applicable to eliminate this inner-maximization problem.

To sum up, the introduction of the new optimization variable d̄(s) eliminates the need for solving
nested min-max optimization, enabling SEM to be formulated as solving a single convex optimiza-
tion problem.

C PROOFS

C.1 PROOF OF PROPOSITION 3.1

𝑠𝑠0 𝑠𝑠1

𝑎𝑎 = 1

𝑠𝑠2

𝑎𝑎 = 0

𝑎𝑎 = 1

𝑎𝑎 = 0

𝑎𝑎 = 0 𝑎𝑎 = 1

Figure 6: An illustrative example of MDP with three states and two actions, where the optimal SEM
policy is stochastic. Specifically, in order to maximize the state entropy, the action selection should
be randomized at s1. If the agent deterministically takes action a = 0 at s1, it precludes visiting s2.
Conversely, if the agent deterministically takes action a = 1 at s1, it will never visit s0 thereafter.

Proposition 3.1. (Hazan et al., 2019) There always exists a stationary Markovian policy that max-
imizes the entropy of state stationary distribution (i.e., solution of (3)). Such an optimal stationary
Markovian policy is generally stochastic.
Lemma C.1. (Puterman, 1994) For any possibly non-Markovian policy π, define a stationary
Markov policy π′ as π′(a|s) = dπ(s,a

dπ(s,a)
. Then, dπ = dπ′ .

Proof. Firstly, it is evident that there must exist at least one non-stationary, non-Markovian pol-
icy capable of maximizing the entropy of the state’s stationary distribution. Then, according to
Lemma C.1, we can always obtain its corresponding stationary and Markov policy. This derived
policy is generally stochastic, as any deterministic policy can be arbitrarily bad in terms of maxi-
mization of state entropy, as exemplified in Figure 6.

C.2 PROOF OF THEOREM 3.2

Theorem 3.2. The minimax optimization problem (9) is equivalent to solving the following uncon-
strained minimization problem:

min
ν,µ

(1− γ)Ep0 [ν(s0)] + EdD
[
αf∗+

(
1
αeν,µ(s, a)

)]
+

∑
s
exp(−µ(s)− 1) =: L(ν, µ) (10)
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where f∗+(y) = maxx≥0 xy − f(x). The objective function L(ν, µ) is convex for ν and µ. Fur-
thermore, given the optimal solution (ν∗, µ∗) = argminν,µ L(ν, µ), the stationary distribution
corrections of the optimal SEM policy are given by:

d∗(s, a)

dD(s, a)
= (f ′)−1

(
1
α

(
µ∗(s) + γEs′ [ν∗(s′)]− ν∗(s)︸ ︷︷ ︸

=eν∗,µ∗ (s,a)

))
+
=: w∗

ν∗,µ∗(s, a) (11)

where x+ := max(0, x).

Proof. Start with Equation (9)

min
ν,µ

max
d̄,d≥0

(1− γ)Es0∼p0 [ν(s0)]− αEdD

[
f
( d(s,a)

dD(s,a)︸ ︷︷ ︸
=:w(s,a)

)]
+

∑
s,a

d(s, a)eν,µ(s, a)−
∑
s

d̄(s)
(
µ(s) + log d̄(s)

)

=min
ν,µ

max
d̄,w≥0

(1− γ)Es0

[
ν(s0)

]
− αEdD

[
f
(
w(s, a)

)]
+

∑
s,a

dD(s, a)w(s, a)eν,µ(s, a)−
∑
s

d̄(s)
(
µ(s) + log d̄(s)

)
(23)

First, we can derive the closed-form solution for d̄ in (23):

∂L

∂d̄(s)
= −(µ(s) + log d̄(s))− 1 = 0 (24)

⇒ d̄∗(s) = exp(−µ(s)− 1) (25)

Check the second order conditions to confirm that L is concave with respect to d̄(s):

∂2L

∂d̄(s)2
= − 1

d̄(s)
< 0 (26)

We can plug this solution to L, which eliminates the maxd̄:

min
ν,µ

max
w≥0

(1− γ)Es0
[
ν(s0)

]
− αEdD

[
f
(
w(s, a)

)
− 1

αw(s, a)eν,µ(s, a)
]
+

∑
s

exp(−µ(s)− 1)

(27)

Consider simplifying the second term in (27) using Fenchel conjugate:

max
w≥0
−αEdD

[
f
(
w(s, a)

)
− 1

αw(s, a)eν,µ(s, a)
]

(28)

max
w≥0

αEdD
[
1
αw(s, a)eν,µ(s, a)− f

(
w(s, a)

)]
(29)

= αEdD
[

max
w(s,a)≥0

w(s, a)
(
1
αeν,µ(s, a)

)
− f

(
w(s, a)

)]
(30)

= αEdD
[
f∗+

(
1
αeν,µ(s, a)

)]
(31)

Hence, the Equation (9) is equivalent to:

min
ν,µ

(1− γ)Ep0 [ν(s0)] + EdD
[
αf∗+

(
1
αeν,µ(s, a)

)]
+

∑
s
exp(−µ(s)− 1) =: L(ν, µ)

Consider obtaining the closed-form solution for the inner-maximization for w in (27):

∂L

∂w(s, a)
= −αdD(s, a)f ′

[
w(s, a)

]
+ dD(s, a)eν,µ(s, a) = 0 (32)

⇒ w∗(s, a) = f ′−1
(

1
αeν,µ(s, a)

)
+

(33)

where x+ := max(0, x).
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Again, we plug w∗(s, a) into the original objective function, which results in the minimization
problem:

min
ν,µ

(1− γ)Es0
[
ν(s0)

]
− αEdD

[
f
(
f ′−1

(
eν,µ(s,a)

α

)
+

)
− 1

αf
′−1

(
eν,µ(s,a)

α

)
+
eν,µ(s, a)

]
+
∑
s

exp(−µ(s)− 1)

We can check that the function L is convex with respect to both ν and µ, by noting that f∗+(·) is a
convex function.

C.3 PROOF OF THEOREM 3.3

Theorem 3.3. Define the objective functions L̃(ν, µ) as

L̃(ν, µ) := (1− γ)Es0

[
ν(s0)

]
+ E(s,a)∼dD

[
αf∗

+

(
1
α
eν,µ(s, a)

)]
+ log

∑
s

exp(−µ(s)) (12)

Then, for any optimal solutions (ν∗, µ∗) = argminν,µ L(ν, µ) and (ν̃∗, µ̃∗) = argminν,µ L̃(ν, µ),
the following holds:

L(ν∗, µ∗) = L̃(ν̃∗, µ̃∗) (13)
Also, there exists a constant C such that the following holds:

µ∗ = µ̃∗ + C and ν∗ = ν̃∗ + C
1−γ (14)

Lemma C.2. For any functions ν and µ, and a constant C, the following equality holds:

L̃(ν, µ) = L̃(ν + C
1−γ , µ+ C). (34)

L̃(ν + C
1−γ , µ+ C) (35)

= (1− γ)Es0∼p0 [ν(s0) + C
1−γ ] + log

∑
exp(−µ(s)− C) (36)

+ E(s,a)∼dD
[
αf∗+

(
1
α

(
µ(s) +�C + γEs′ [ν(s′)] +

�
�γC

1−γ − ν(s)−�
�C

1−γ
))]

= (1− γ)Es0∼p0 [ν(s0)] +�C + E(s,a)∼dD
[
αf∗+

(
1
αeν,µ(s, a)

)]
+ log

∑
exp(−µ(s))−�C

(37)

= (1− γ)Es0∼p0 [ν(s0)] + E(s,a)∼dD
[
αf∗+

(
1
αeν,µ(s, a)

)]
+ log

∑
exp(−µ(s)) (38)

= L̃(ν, µ) (39)

Lemma C.3. For any functions ν and µ, L(ν, µ) ≥ L̃(ν, µ) holds. The equality holds if and only if∑
s

exp(−µ(s)− 1) = 1. (40)

Proof. For any x ≥ 0, the inequality x − 1 ≥ log x always holds, where the equality holds if and
only if x = 1. By applying this equality, we have:∑

s

exp(−µ(s)− 1)− 1 ≥ log
∑
s

exp(−µ(s)− 1) (41)

⇔
∑
s

exp(−µ(s)− 1)��−1 ≥ log
∑
s

exp(−µ(s))����exp(−1) (42)

⇔
∑
s

exp(−µ(s)− 1) ≥ log
∑
s

exp(−µ(s)) (43)

⇔L(ν, µ) ≥ L̃(ν, µ) (44)
where the equality holds if and only if

∑
s exp(−µ(s)− 1) = 1.
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Lemma C.4. Let (ν̃∗, µ̃∗) = argminν,µ L̃(ν, µ). Then, there exists a constant C such that (ν̃∗ +

C, µ̃∗ + C
1−γ ) is an optimal solution of minν,µ L(ν, µ).

Proof. LetC∗ = log
∑
s exp(−µ̃∗(s)−1) be a constant. Also, let ν̄∗ = ν̃∗+ C∗

1−γ and µ̄∗ = µ̃∗+C∗.
Then, ∑

s

exp
(
µ̄∗(s)− 1

)
=

∑
s

exp
(
− (µ̃∗(s) + C∗)− 1

)
=

∑
s

exp
(
− µ̃∗(s)− 1− log

∑
s′

exp(−µ̃∗(s′)− 1)
)

=

∑
s exp(−µ̃∗(s)− 1)∑
s′ exp(−µ̃∗(s′)− 1)

= 1. (45)

Then, we have

L(ν̄∗, µ̄∗) = L̃(ν̄∗, µ̄∗) (by (45) and Lemma C.3) (46)

= L̃
(
ν̃∗, µ̃∗) (by Lemma C.2) (47)

= min
ν,µ

L̃(ν, µ) (48)

≤ min
ν,µ

L(ν, µ) (by Lemma C.3) (49)

which implies that (ν̄∗, µ̄∗) is the optimal solution of minν,µ L(ν, µ).

D F-DIVERGENCE

In the experiments, we use the softened version of chi-square divergence for f :

fsoft-χ2(x) :=

{
x log x− x+ 1 if 0 < x < 1
1
2 (x− 1)2 if x ≥ 1.

⇒ (fsoft-χ2(x)′)−1(x) =

{
exp(x) if x < 0

x+ 1 if x ≥ 0

When f = fsoft-χ2 , its corresponding f∗+(y) = maxx≥0 xy − f(x) is given by:

f+(x) =


∞ if x ≤ 0

x log x− x+ 1 if 0 < x < 1
1
2 (x− 1)2 if x ≥ 1

⇒ f∗+(y) =

{
exp(y)− 1 if y < 0
1
2y

2 + y if y ≥ 0
(50)

where f∗+ is the Fenchel conjugate of f+.

E HYPERPARAMETERS

Baseline hyperparameters are taken from URLB (Laskin et al., 2021), except for using the smaller
hidden sizes 1000→ 256 for fast training/evaluation.

SEMDICE pretraining hyper-parameter Value
Action repeat 1
α 0.5
Batch size 1024
f -type softchiq
Hidden dimension 256
Learning rate 0.0001
nsteps 1
Update every step 2

Table 1: Hyperparameter Settings

For the policy network, we use a tanh-Gaussian distributions, following the baselines in URLB.
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F POLICY EXTRACTION

Our practical SEMDICE optimizes (16) that yields ν∗ and µ∗. However, ν∗ itself is not a directly
executable policy, so we should extract a policy from them. Note that the optimal SEM policy π∗ is
encoded in w∗:

d∗(s, a)

dD(s, a)
= (f ′)−1

(
1
α

(
µ∗(s) + γEs′ [ν∗(s′)]− ν∗(s)︸ ︷︷ ︸

=eν∗,µ∗ (s,a)

))
+
=: w∗(s, a) (11)

Then, we extract a policy from w∗ via I-projection policy extraction method (Lee et al., 2021).

min
π

KL
(
dD(s)π(a|s)||dD(s)π∗(a|s)

)
(51)

= Es∼dD
a∼π

− [logw∗(s, a)−DKL(π(ā|s)||πD(ā|s))] + C (52)

= Es∼dD
a∼π

−
[
log(f ′)−1

(
1
α

(
eν∗,µ∗(s, a)

))
+(((((((((((
−DKL(π(ā|s)||πD(ā|s))

]
+ C (53)

≈ Es∼dD
a∼π

−
[
log(f ′)−1

(
1
αe(s, a)

)
+

]
+ C (54)

where C is some constraint and πD(a|s) is a data policy. As we perform online optimization, πD
can be considered as an old policy, and we ignored the KL term in our practical implementation.
Finally, to enable eν∗,µ∗ to be evaluated every action a, we train an additional parametric function
(implemented as an MLP that takes (s, a) as an input and outputs a scalar value) by minimizing the
mean squared error:

min
e

E(s,a,s′)∼dD
[(
e(s, a)− êν∗,µ∗(s, a, s′)

)2]
(55)

In the following section, we present the pseudo-code for practical SEMDICE.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

G PSEUDO-CODE FOR SEMDICE

To sum up, SEMDICE computes a SEM policy by optimizing (ν∗, µ∗), which corresponds to ob-
taining a stationary distribution correction ratios of the optimal SEM policy. Then, we extract a
policy by training a e-network and performing I-projection as described in the previous section.

We assume ν, µ, e, π are parameterized by θ, ω, ψ, ϕ respectively. Then, we optimize the parameters
via stochastic gradient descent. The loss functions are summarized in the following:

J(νθ, µω) :=(1− γ)Es0
[
νθ(s0)

]
+ E(s,a,s′)∼dD

[
αf∗+

(
1
α êνθ,µω

(s, a, s′)
)]

+ logEs∼d̄D(s)

[
exp(−µω(s)− log d̄D(s))

]
(56)

J(eψ) :=E(s,a,s′)∼dD
[(
eψ(s, a)− êνθ,µω (s, a, s

′)
)2]

(by (55)) (57)

J(πϕ) :=Es∼dD
a∼πϕ

−
[
log(f ′)−1

(
1
αeψ(s, a)

)
+

]
(by 54) (58)

where êνθ,µω (s, a, s
′) = µω(s) + γνθ(s

′)− νθ(s). For − log d̄D(s) in (56), we used particle-based
density estimation using k-nearnest-neighbor: − log d̄D(si) ≈ log

(
∥si− sk-NN

i ∥2
)
. Instead of fully

optimizing νθ and µω until convergence, we alternatively perform single gradient updates for νθ,
µω , eψ , and πϕ. The pseudocode of SEMDICE is presented in Algorithm 1.

Algorithm 1 SEMDICE
Input: Neural networks νθ, µω , and eψ with parameters θ, ω, and ψ, policy network πϕ with
parameter ϕ, replay buffer D, a learning rate η, a regularization hyperparameter α

1: for each timestep t do
2: Sample an action at ∼ πϕ(st) for the current state st.
3: Observe next state st+1 ∼ P (·|st, at) by taking action to the environment.
4: Add transition to replay buffer D ← D ∪ (st, at, st+1)
5: Sample a minibatch from D for the following SGD updates.
6: Perform SGD updates:

(θ, ω)← (θ, ω)− η∇θ,ωJ(νθ, µω) (Eq. (56))

ψ ← ψ − η∇ψJ(eψ) (Eq. (57))

ϕ← ϕ− η∇ϕJ(πϕ) (Eq. (58))

7: end for
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H ADDITIONAL EXPERIMENTS ON TABULAR MDPS - SEMDICE USING
DATASET COLLECTED BY UNIFORM POLICY
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Figure 7: Performance of SEMDICE when the dataset is always being collected by uniform random
policy in randomly generated tabular MDPs. The first column indicates normalized policy entropy
(0: state entropy of uniform policy, 1: state entropy of optimal SEM policy), and the second column
indicates normalized entropy of the cumulative experiences. This result demonstrates the capability
of SEMDICE that can be optimized from arbitrary off-policy experiences.
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I ADDITIONAL EXPERIMENTS ON TABULAR MDPS: VALUE-BASED
BASELINES

In Figure 1, we presented the performance of the policy-based baselines: for each iteration, they
compute policy gradients for the intrinsic reward r̂ and perform policy gradient ascents. In this
section, we provide an additional result for value-based RL baselines. The intrinsic rewards are
defined in the same way as described in the main text.

CB-SA : r̂(s, a) = 1√
N(s,a)

, CB-S : r̂(s, a) = 1√
N(s)

, PB-S : r̂(s, a) = − log dD(s) (59)

where N(s, a) is the cumulative (s, a)-visitation counts by the agent, N(s) is the s-visitation counts
by the agent, and dD(s) is the empirical state distribution of the cumulative experiences. Then,
for each value-based baselines, they maintain Q-table (initialized by zeros) and perform Q-learning
updates by:

Q(s, a)← Q(s, a) + η
(
r̂(s, a) + γmax

a′
Q(s′, a′)−Q(s, a)

)
(60)

where η ∈ (0, 1) is a learning rate.

As value-based RL methods do not maintain explicit policy, we evaluated two types of target pol-
icy induced by Q: greedy (deterministic) policy (π(s) = argmaxaQ(s, a)) and softmax policy
(π(a|s) ∝ exp(Q(s, a)/τ)). For exploration, all methods adopt an ϵ-soft behavior policy with
ϵ ∝ O(1/T ) decreasing over time. We also decrease the temperature of softmax policy over time
with the rate of O(1/T ). The result for greedy policy is shown in Figure 8, and the result for the
softmax policy is presented in Figure 9.
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Figure 8: Performance of SEMDICE and value-based baselines in randomly generated tabular
MDPs, where the target policy π(s) of baseline is given by the greedy policy w.r.t. Q(s, a).
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Figure 9: Performance of SEMDICE and value-based baselines in randomly generated tabular
MDPs, where the target policy π(a|s) of baseline is given by the softmax policy w.r.t. Q(s, a).

As can be seen from the left column of Figure 8, the greedy target policy for the estimated Q
exhibits very low state entropy. This result is expected, as the optimal SEM policy should generally
be stochastic (Proposition 3.1), but the greedy target policy is deterministic. Thus, it does NOT
converge to the optimal stochastic SEM policy, leading to significant suboptimality. The entropy of
the cumulative state-visit experiences H[d̄D(s)] (the right column of Figure 8) for PB-S approaches
to the maximum state entropy, but it was achieved by mixture of many non-stationary determinstic
policies. In contarst, SEMDICE yields a single stationary stochastic SEM policy.

In Figure 9, we can see that adopting the softmax (thus stochastic) policy leads to better state entropy
for the target policy (left column). However, there is no guarantee that any of these value-based
baselines with the softmax policy will converge to an optimal SEM policy.
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J ABLATION EXPERIMENT RESULTS FOR SEMDICE
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Figure 10: Experimental results on varying α (SEMDICE without function approximation).
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Figure 11: Experimental results on different f -divergence (SEMDICE without function approxima-
tion).
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Figure 12: The effect of the varying α and f on ContinuousMountainCar (SEMDICE with neural
function approximation).

As shown in Figure 10-12 SEMDICE can become numerically unstable with very small values of
α, but it remains not too sensitive to α as long as it is within a reasonable range. Additionally, using
different f didn’t make significant difference.
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K GENERALIZATION TO UNDISCOUNTED (γ = 1) SETTING

SEMDICE can be generalized to deal with γ = 1 setting, where d̄π(s) :=

limT→∞
1

T+1

∑T
t=0 Pr(st = s;π). To this end, the original optimization problem (3-5) in the

paper should be modified by adding an additional normalization constraint
∑
s,a d(s, a) = 1. Then,

for any γ ∈ (0, 1],

max
d,d̄≥0

−
∑
s

d̄(s) log d̄(s)− αDf

(
d(s, a)||dD(s, a)

)
(61)

s.t.
∑
a′

d(s′, a′) = (1− γ)p0(s
′) + γ

∑
s,a

d(s, a)T (s′|s, a) ∀s′ (62)∑
a

d(s, a) = d̄(s) ∀s (63)∑
s,a

d(s, a) = 1 (64)

By taking the similar derivation steps of SEMDICE with the additional constraint (64), we can
show that solving the following unconstrained convex optimization problem is equivalent to solving
(61-64), which additionally includes a single scalar variable λ:

min
ν,µ,λ

(1− γ)Ep0 [ν(s0)] + EdD

[
αf∗

+

(
1
α
eν,µ,λ(s, a)

)]
+

∑
s exp(−µ(s)− 1)− λ (65)

where eν,µ,λ(s, a) := λ + µ(s) + γEs′ [ν(s′)] − ν(s) and λ is Lagrange multiplier for the normal-
ization constraint (64). The detailed derivation will be included in the final version of the paper.

L EXTENSION TO UNDISCOUNTED (NON-STATIONARY) FINITE-HORIZON
SETTING

SEMDICE can be extended to a finite horizon setting, where the goal is to maximize the entropy of
the average state distribution d̄π(s) := 1

T+1

∑T
t=0 Pr(st = s;π). The following formulation results

in a non-stationary (timestep-dependent) policy by πt(a|s) = d∗t (s,a)∑
a′ d∗t (s,a

′) .

max
dt,d̄t≥0

−
∑T

t=0

∑
s d̄t(s) log d̄t(s)− α

∑T
t=0 Df

(
dt(s, a)||dD(s, a)

)
(66)

s.t.
∑

a d0(s, a) = p0(s) (67)

∀s
∑

a′ dt(s
′, a′) =

∑
s,a dt−1(s, a)T (s

′|s, a) ∀s′, t ∈ {1, . . . , T} (68)∑
a dt(s, a) = d̄t(s) ∀s, t ∈ {0, . . . , t} (69)

We can show that solving (66-69) is equivalent to solving the following unconstrained convex
optimization problem, where the difference to the original objective function is that ν, µ are timestep-
dependent (i.e. νt, µt).

min
{νt}T

t=0,{µt}T
t=0

(1− γ)Ep0 [ν0(s0)] +
∑T
t=0EdD

[
αf∗+

(
1
αet,ν,µ(s, a)

)]
+
∑T
t=0

∑
s exp(−µt(s)− 1)

(70)

where et,ν,µ(s, a) := µt(s) + Es′ [νt+1(s
′)]− νt(s), and νT+1(·) := 0. The detailed derivation will

be included in the final version of the paper.
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M MORE DISCUSSIONS ON SEMDICE’S OBJECTIVE

Despite its inclusion of f -divergence regularization, SEMDICE is not fundamentally opposed to
particle-based state-entropy estimation; rather, it addresses the same objective of maximizing state
entropy, with the additional inclusion of f -divergence regularization to enhance the stability of the
learning process. It is important to note that this regularizer is not intended to impose a strong con-
straint on the optimal policy, and its influence can be controlled by adjusting the hyperparameter
α. Note that many successful standard reward-maximizing RL algorithms have made use of reg-
ularizations such as entropy (Haarnoja et al., 2018) and KL-divergence (Schulman et al., 2015a),
f-divergence (Nachum et al., 2019b), Bregman-divergence (Geist et al., 2019), and so on. Although
these regularizations might appear contrary to pure reward maximization, their inclusion actually
stabilizes the overall learning process, and improves the overall reward performance of the resulting
policy. In a similar vein, our state-entropy maximization method employs f-divergence regulariza-
tion to prevent abrupt distribution shift (analogous to TRPO), enhancing the robustness and stability
of learning process. Additionally, from a technical perspective, f-divergence regularization makes
the objective function strictly concave, guaranteeing the global optimality of any local optimum (i.e.
ensuring the uniqueness of the optimal solution).

Also, SEMDICE’s objective function indeed aims to maximize the state entropy, i.e. encourag-
ing exploration of unvisited states more. To see this more intuitively, consider the main objective
function of OptiDICE (Lee et al., 2021), a reward-maximizing RL algorithm:

min
ν

(1− γ)Es0
[
ν(s0)

]
+ E(s,a,s′)∼dD

[
αf∗+

(
1
α

(
r(s, a) + γν(s′)− ν(s)

))]
(71)

Then, the following is the main objective function of our SEMDICE, a state-entropy maximization
method:

min
ν,µ

(1− γ)Es0
[
ν(s0)

]
+ E(s,a,s′)∼dD

[
αf∗+

(
1
α

(
µ(s) + γν(s′)− ν(s)

))]
+ log

∑
s

exp(−µ(s))

(72)

That being said, the for a fixed µ, SEMDICE can be interpreted as OptiDICE with the reward
function defined by µ(s). Of course, we are jointly optimizing the µ instead of using fixed µ.
Also, due to the second term of the objective function (f∗+ is increasing function), µ(s) is pressured
to decrease more in regions of high data density and less where the data density is low. Conse-
quently, SEMDICE’s resulting policy will tend to explore unvisited states more actively, which is
well-aligned with the goal of state entropy maximization.

N MACHINE AND SETUP

We run the experiments on machines with Titan XP GPUs. Pretraining took approximately 10 hrs
and finetuning took around 30 minutes.
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