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Abstract

Parameter-averaging, a method for combining multiple models into a single one,
has emerged as a promising approach to enhance performance without requir-
ing additional space or retraining. Nonetheless, the conditions for successful
parameter-averaging remain undefined, calling for further research to characterize
them. In this study, we empirically investigate the influential factors for successful
parameter-averaging and reveal positive correlations between representation power
and the performance gain of parameter-averaging. Specifically, we evaluate how
computational budget, data diversity and vocabulary size contribute to representa-
tion power, and their influence on the success of parameter-averaging. Our results
demonstrate that parameter-averaging improves the generalization ability for both
in-domain and out-of-domain data. Additionally, to reduce the computational cost
of parameter-averaging, we introduce partial averaging, which assumes arbitrary
participation of a subset of contributors. We observe that partial averaging outper-
forms fine-tuning for models with sufficient representation power. Furthermore,
we find that the impact of data heterogeneity, which arises from different data
distributions of contributors, reduces as the representation power of the model
increases. These findings provide valuable insights into the principles governing
parameter-averaging and its potential for enhancing model performance.

1 Introduction

The advantages of multitask learning in the field of Natural Language Processing (NLP) have been
consistently observed in numerous studies [4, 6, 34, 35, 36, 44, 45]. Multitask learning refers
to a training approach where machine learning models are trained using data from multiple tasks
simultaneously. By utilizing shared representations, these models learn common concepts and
patterns across a set of related tasks. Combining knowledge from multiple datasets to build a unified
model can enhance the generalization ability of the model on in-domain data [35] and out-of-domain
data [44].

However, updating models with new knowledge often requires retraining, which can be computa-
tionally inefficient. To address this issue, researchers have recently explored strategies that involve
combining multiple models. One common technique is model ensembling, where the outputs of
individual models are aggregated to generate the final prediction [33, 40]. Model ensembling shows
promising results outperforming standard fine-tuning [8, 14, 25]. Nevertheless, this technique requires
additional space and computational resources to accommodate multiple models and generate the
final prediction. Another approach is parameter-averaging (i.e. model merging), which combines
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multiple models into a single one in parameter space [29]. Parameter-averaging allows the knowledge
of multiple models to be consolidated into a single model without the need for additional space.

In addition to computational and parameter efficiency, parameter-averaging has shown potential for
improving performance. Recent research has demonstrated that simple averaging of parameters can
enhance the performance of a specific model when fine-tuned with the same dataset but different
hyperparameters [46]. Other works have focused on improving performance by merging models
using various weighted averaging algorithms on multiple domains or tasks [8, 19, 29]. Researchers
have also investigated merging models on the same task but trained on different datasets and or tasks
form can enhance the performance [13, 37].

Parameter-averaging methods can fail under certain circumstances, such as when including failed
fine-tuned models in the merging process [20, 46]. However, while previous works have demonstrated
the effectiveness and potential of parameter-averaging, none of them have specified the conditions
under which it is successful, requiring further research to identify the factors that influence its success.
In this work, we first investigate the underlying laws governing parameter-averaging and show a
strong correlation between the representation power of a model and the performance gains achieved
through parameter-averaging. Specifically, we evaluate how the effect of computational budget, data
diversity and vocabulary size contribute to representation power, and their influence on the success of
parameter-averaging. We also show that parameter-averaging improves the generalization ability for
both in-domain and out-of-domain data, which is an evidence that it can truly combine knowledge
from multiple models. To support our findings, we performed an empirical study, comparing 13
fine-tuned language models with inherently controlled variables.

We further explore a way to maximize computational efficiency. To reduce the computational cost
of parameter-averaging, we introduce partial averaging, which assumes arbitrary participation of a
subset of contributors. We show that the performance can be maintained for models with sufficient
representation power. Also, we observe that the effect of data heterogeneity [21] decreases as
the representation power of the model increases, suggesting that parameter-averaging models with
sufficient representation power are robust to various contributors with different data distribution.

Our key findings are as follows:

• We find that the performance gain of parameter-averaging has a positive correlation with the
representation power of a model (Section 4.)

• We observed that parameter-averaging can improve the generalization ability of both in-
domain and out-of-domain data (Section 5).

• We first show that partial averaging, assuming arbitrary participation of a subset of contribu-
tors, outperforms full fine-tuning for models with sufficient representation power (Section
6).

• We find that the impact of data heterogeneity, which arises from different data distributions
of contributors, reduces as the representation power of the model increases (Section 7).

2 Related Works

2.1 Representation Power of Language Models

Computational Budget. Previous study first demonstrates that the performance of a model, which
reflects its representation power, follows a power-law relationship with three scaling factors, including
the number of model parameters(excluding embeddings), the dataset size, and the compute used for
training [22, 39]. Furthermore, one research found that the model size and dataset size should be
scaled in equal proportions [15].

Vocabulary Size. Vocabulary size is another attribute that affects the representation power of a
language model. It is widely known that a larger vocabulary size generally improves the accuracy of
tokenization, especially for handling Out-Of-Vocabulary words, as it captures a wider range of distinct
words or subword units. Recent studies show that vocabulary size directly affects the performance of
language models, suggesting that the proper vocabulary size per language for accurate tokenization
is about 30k vocabulary [12]. Several multilingual NLP works demonstrate that increasing the
vocabulary size improves the representation ability of multilingual language models [5, 26, 48].
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(a) Monolingual case (b) Multilingual case

Figure 1: We conducted accuracy tests on NLI datasets to evaluate the performance of both monolin-
gual and multilingual models. The Computational Budget (CB) was set at N*1015. We used a dotted
vertical line to indicate the point at which parameter-averaging surpasses standard fine-tuning. The
graph illustrates the relationship between the performance gain achieved through parameter-averaging
and the increase in computational budget. Additionally, the graph shows the distinction between the
IID and Non-IID settings. Although the exact point of exceeding differs, both the monolingual and
multilingual cases exhibit a clear linear correlation between the performance gain and computational
budget.

Dataset Diversity. Recent works have consistently shown that the diversity of pre-training corpus
leads to better downstream generalization capability [11, 42, 23]. By enabling a model to see
various domains and knowledge, the general cross-domain knowledge and downstream generalization
capabilities of the model improve compared to models trained on only a handful of data sources [11].

2.2 Theoretical explanation for Parameter-averaging

Previous studies on the geometry of loss landscapes have consistently revealed that models trained on
the same dataset generally converge into a single, connected linear basin of the loss surface [9, 10,
31]. This observation has led to the widely accepted notion that neural networks trained on the same
dataset will maintain loss when interpolated in the weight space. Models on the same task but trained
on different datasets have local minima which are interconnected [13, 37]. Specifically, language
models that have been fine-tuned on the same dataset form a compact cluster in the weight space and
those fine-tuned on different datasets or tasks form a more dispersed cluster. Furthermore, merging
two models inside a specific region leads to comparable or even better performance than models
found via fine-tuning, even on tasks that the original models were not fine-tuned on [13].

2.3 Merging of Language Models

With theoretical guarantees of the effectiveness of parameter-averaging trained models [1, 10],
researchers have been exploring the potential of combining language models through two approaches:
model ensembling and parameter-averaging. Model ensembling has achieved impressive results,
surpassing standard fine-tuning [14, 17, 25]. However, it requires additional space to accommodate
all the expert language models’ outputs for the final prediction.

On the other hand, parameter-averaging algorithms combine multiple models into a single model
in parameter space. This approach is highly efficient, as it maintains constant inference cost and
space[29], allowing it to be extended to a larger number of tasks. Also, parameter-averaging has
demonstrated great potential for success in addition to its efficiency. Recent research indicates that
simple parameter-averaging can enhance the performance of a specific model when fine-tuned with
different hyperparameters using the same dataset [46]. Other studies have focused on improving
performance by merging models using various weighted averaging algorithms to construct a single
model applicable to multiple domains or tasks, capable of generalizing to new domains [8, 19, 29].

Federated learning is another line of work that naturally uses merging. In federated learning, multiple
contributors collaborate to train a centralized model by merging their locally trained parameters to
form a new set of parameters. Works on federated learning have also focused on a partial client
participation scenario where only a small fraction of the total number of contributors is merged, as it
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Table 1: Summary of the representation power of models. The representation power of a model is
determined by the combination of its computational budget, vocabulary size and the diversity of
training datasets (i.e. number of languages). The computational budget of a model is determined
by the combination of its parameter size (N), dataset size (B), and the compute used for training
(S). More precisely, the computational budget is denoted as 6*N*B*S. The models are presented in
ascending order.

Name Lang. Count Vocab. Size Model Size Dataset Size Training Steps Batch Size Computational Budget

TINY-BERT 1 30,522 6M 16GB (3.3B) 1M 256 9.22 ∗ 1015
DISTILBERT [41] 1 30,522 43M 16GB (3.3B) 15K 8000 3.1 ∗ 1016

DISTILMBERT [41] 104 119,547 43M 67.4GB 15K 8000 3.1 ∗ 1016
BERT-BASE [7] 1 30,522 85M 16GB (3.3B) 1M 256 1.3 ∗ 1017

MBERT [34] 104 119,547 85M 67.4GB 1M 256 1.3 ∗ 1017
BERT-LARGE [7] 1 30,522 302M 16GB (3.3B) 1M 256 4.63 ∗ 1017

ROBERTA-BASE [27] 1 50,265 85M 160GB (30B) 0.5M 8000 2.04 ∗ 1018
BART-BASE [24] 1 50,265 99M 160GB (30B) 0.5M 8000 2.38 ∗ 1018
XLMR-BASE [5] 100 250,002 85M 2.5TB (296.5B) 1.5M 8192 6.27 ∗ 1018

XLMV-BASE [26] 100 901,629 85M 2.5TB (296.5B) 1.5M 8192 6.27 ∗ 1018
ROBERTA-LARGE [27] 1 50,265 302M 160GB (30B) 0.5M 8000 7.25 ∗ 1018

BART-LARGE [24] 1 50,265 353M 160GB (30B) 0.5M 8000 8.47 ∗ 1018
XLMR-LARGE [5] 100 250,002 302M 2.5TB (296.5B) 1.5M 8192 2.23 ∗ 1019

is unrealistic to anticipate all contributors to participate in every single round of federated learning
training [3, 18, 28, 47].

3 Experiment Setting

3.1 Data Partitioning

We consider three different training settings: centralized, IID and Non-IID. In the centralized setting,
the model performs standard training using all available data. IID and Non-IID perform distributed
learning with multiple clients, assigning a portion of the data to each client, which sees data for
multiple classes sampled from all data (IID) or sees data for one class (Non-IID) . For example,
each client under IID setting sees various languages in multilingual datasets, while each client under
non-IID setting sees only one language.

3.2 Algorithms

To analyze the tendency of parameter-averaging, we use the classic FL algorithm called Federated
Average (FedAvg) [30], which performs uniform averaging between multiple clients. In the given
communication round t, K active clients among N clients run stochastic gradient descent (SGD) on
their local data. The central server distributes global model parameters wt to these clients, and after a
certain number of steps, the clients send their updated parameters to the central server. The server
then averages these updates into a single centralized set of parameters, wt+1 =

∑
i piw

t+1
i , using

the weighted sum of client weights pi, which are proportional to the amount of training data stored
on each client i, i.e. pi = ni∑

i ni
. The centralized parameters are then broadcast to each client, and

the process is repeated for the next round.

The application of Federated Learning (FL) scenario allows for the comprehensive examination of the
interdependent impacts that arise from the core aspects of parameter-averaging. These factors include
the number of clients, training steps for each client, the number of averaging, the nature and size of
data assigned to individual clients, and the overall data volume. To demonstrate this, we conducted
several experiments by modifying the local iteration of each model and the number of averaging.
This allowed us to validate the impact of these features on the overall process. Results are reported in
Appendix B.

3.3 Models

We provide a summary of the configuration for each model used in our study, as shown in Table 1.
We carefully selected 13 language models that exhibit high relevance while also being distinguishable
based on the factors below.
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(a) Monolingual case (b) Multilingual case

Figure 2: Results on MNLI and XNLI dataset. The results indicate that accuracy gain improves with
model size. We selected five models for comparison, including TINY-BERT(6M), BERT-BASE(85M),
and BERT-LARGE(302M), which share the same architecture, training objective, and pre-training
corpus but differ in size for monolingual models. Additionally, we evaluated two models for the
multilingual case: DISTILMBERT(43M) and MBERT(85M). Furthermore, we also evaluated two
models, namely DISTILMBERT(43M) and MBERT(85M), for the multilingual case. The results from
this evaluation reveal a similar trend to that observed in the monolingual case, further affirming the
relationship between model size and accuracy gain.

Model Size To isolate the effect of model size, we compare the performance of TINY-BERT, BERT-
BASE, and BERT-LARGE. Since there is no publicly available pre-trained weight for TINY-BERT, we
trained it from scratch (refer to Appendix A.1 for details).

Dataset Size To directly observe the impact of dataset size, we utilized two pairs of models:
BERT-BASE and ROBERTA-BASE for the monolingual case, and MBERT and XLMR-BASE for the
multilingual case. Each pair consists of models with the same size and maximum input length.

Vocabulary Size We selected two models, XLMR-BASE and XLMV-BASE, to investigate the in-
fluence of vocabulary size. The XLMV-BASE model uses a larger vocabulary compared to the
XLMR-BASE model.

Dataset Diversity To assess the impact of pre-training corpus diversity, we compare the perfor-
mance of BERT, MBERT, DISTILBERT, and DISTILMBERT. These models differ only in terms of the
number of languages included in their pre-training corpus.

3.4 Training and Evaluation Strategy

We fine-tuned models with a learning rate of 2e-5 and batch size of 32. Each contributors in
parameter-averaging run 2 epochs with a fixed batch size per task, and we perform 5 rounds of
parameter-averaging as it was the best setting in both full parameter averaging and partial averaging
(Appendix B). Each contributors were fine-tuned on train dataset with 77K examples and evaluated on
test dataset with 5K examples in monolingual and multilingual setting. We run each experiment with
three different random seeds and report the average accuracy. For evaluation, we defined accuracy
gain as the gap between parameter-averaged models and centralized model.

4 Representation Power and Parameter-Averaging

What drives the success of merging? This question remained unanswered in studies focusing on
parameter-averaging [8, 25]. We revealed that the representation power of the model and the accuracy
gain of parameter-averaging has a positive correlation. In this section, we explore the impact of
various aspects related to ‘the representation power of the model. This correlation offers a definitive
guide on choosing models that maximize the benefits of parameter-averaging. We also show this
correlation appears to be model and task agnostic.
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(a) Monolingual case (b) Multilingual case

Figure 3: Results on MNLI and XNLI datasets. We paired two models with different pre-training
datasets. Specifically, we compared BERT-BASE and ROBERTA-BASE for the monolingual case and
MBERT and XLMR-BASE for the multilingual case. The accuracy gain shows a positive correlation
with the size of the dataset in both cases.

4.1 Effect of Model Sizes

The size of a model has a significant impact on its performance, and this impact also extends to the
effectiveness of parameter-averaging. In our study, we discovered that the accuracy gain and the
model size has a positive correlation, as illustrated in Figure 2.

To investigate this correlation, we compared the performance of three models: TINY-BERT, BERT-
BASE, and BERT-LARGE. For the largest model, 302M (BERT-LARGE), the average accuracy for both
IID and Non-IID settings was higher than that of centralized setting. In contrast, for the smallest
model, 6M (TINY-BERT), the average accuracy was significantly lower than that of centralized setting.
For the 85M (BERT-BASE) model, we observed no accuracy gain, one getting slight improvement
while another showing slight degradation. As the only difference between these models is their size,
it is clear that the size of the model and the impact of parameter-averaging have positive correlation,

Similar trends were observed in a multilingual setting. We found that while parameter-averaging had
a negative impact on the performance of the 85M (MBERT) and 43M (DISTILMBERT) models, the
negative impact of parameter-averaging was smaller for the larger 85M (MBERT) model. This indicates
that parameter-averaging large models enhances the performance, while parameter-averaging with
small models such as TINY-BERT and DISTILBERT will have negative impact only.

4.2 Effect of Dataset Sizes

The representation power of a single language model relies on several factors, including batch size
B and training step S, which can be directly expressed by dataset size (D). The size of the dataset
used for pre-training can be decomposed into the multiplication of B, S, and maximum input length
L divided by the number of epochs E, i.e. D = L∗B∗S

E . Therefore, we decided to simultaneously
evaluate the impact of batch size and training step on parameter-averaging by varying dataset size.

To exclude the involvement of other variables, we selected BERT-BASE and ROBERTA-BASE for the
monolingual case and MBERT and XLMR-BASE for the multilingual case. Figure 3 illustrates that
increasing dataset size boosts the positive impact of parameter-averaging. While BERT-BASE did not
achieve any significant performance improvement through parameter averaging, ROBERTA-BASE
achieved accuracy gains of 1.63 on IID and 1.39 on Non-IID settings when compared to the central
fine-tuning method. Similarly, XLMR-BASE benefited more from parameter-averaging than MBERT.

As previous studies have demonstrated that the dataset size directly affects the representation power
of a language model [15, 22] and ROBERTA-BASE and XLMR-BASE is trained with larger datasets,
we concluded that they possess stronger representation power than their counterparts.

4.3 Effect of Vocabulary Sizes

We have analyzed the degradation caused by parameter-averaging, which arises from their limited
representation power resulting from a smaller vocabulary size.
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Table 2: The size of the vocabulary is re-
lated to the accuracy gain by parameter-
averaging.

XLMV-BASE XLMR-BASE

Model Size 85M 85M
Vocab. Size 900k 250K
Acc. Gains +1.41 +1.29

Previous research has indicated that a model must have a
minimum vocabulary size of 30K per language to achieve
high-quality language representation [12, 48]. However,
recent multilingual models only have 250K vocabulary
size to represent 100 languages. It is 2.5K vocabulary
per language on average, which is not sufficient to encode
individual language precisely. Therefore, to explore the
impact of vocabulary size on the accuracy gain of parameter
averaging, we compared the XLMR-BASE and XLMV-BASE
models. XLMV-BASE shares same configuration with XLMR-BASE except for vocabulary size, which
is 900K. The accuracy gain of parameter averaging XLMR-BASE model in IID partition was 1.29
whereas accuracy gain in XLMV-BASE model was 1.41, as reported in Table 2. It clearly shows that
increasing vocabulary size leads to the higher accuracy gain of parameter averaging.

4.4 Effect of the Dataset Diversity

Table 3: Results with MNLI dataset us-
ing monolingual and multilingual mod-
els. Language models trained with di-
verse pre-training datasets have better
scores after parameter-averaging.

Model Method Acc. Gains

DISTILBERT
IID -0.66

Non-IID -0.42

DISTILMBERT
IID -0.32

Non-IID -0.19

BERT-BASE
IID -0.26

Non-IID +0.04

MBERT
IID +0.11

Non-IID +0.37

Previous works show that using diverse pre-training cor-
pus enhances the representation power of language mod-
els [11]. One clear example is that a multilingual model
trained on 7 languages outperforms its monolingual coun-
terpart [5]. We conducted experiments to verify whether
a similar correlation exists between the diversity of the
pre-training corpus and the model’s parameter-averaging
capability. To this end, we compared multilingual and
monolingual models with the same configuration except
for the number of languages they trained with. These mod-
els were then fine-tuned on the MNLI dataset. Table 3
shows a correlation between the diversity of the dataset and
the accuracy gained through parameter-averaging. While
both the DISTILBERT model, trained exclusively on En-
glish, and the DISTILMBERT model, trained on multiple
languages, did not surpass the standard fine-tuned model,
we observed that parameter-averaging yielded better re-
sults for DISTILMBERT compared to DISTILBERT. Simi-
larly, parameter-averaging proved beneficial for MBERT, while BERT-BASE did not exhibit the same
advantage.

5 Generalization Ability of Parameter-Averaging

In this section, we show that parameter-averaging models with sufficient representation power
enhances generalization ability of the model on both in-domain and out-of-domain data. This finding
suggests that parameter-averaging has the potential to be a better alternative for fine-tuning large
language models without requiring extra computational budget. In Table 4, we present the accuracy
scores for each language in the XNLI dataset using a Non-IID setting with XLMR-BASE.

In the full scenario, all languages are included in the fine-tuning process, whereas in the partial
scenario, only randomly selected languages from the XNLI dataset are used for training. Languages
which are not selected during fine-tuning stage are considered as unseen, allowing us to evaluate the
model’s generalization ability on out-of-domain data. Experiment are run as follows: 3 contributors
out of 15 contributors are randomly sampled at every parameter-averaging round. We run for 5
parameter-averaging round as it is minimum round to select and fine-tune every contributors. In
this experiment, only 9 contributors were selected during fine-tuning. Further details of training
procedure can be found in Appendix A.2.

Central(partial) vs Non-IID(partial). In this experiment, we compare standard fine-tuned model
and parameter-averaged model trained on partial scenario. In seen languages, parameter-averaged
model and standard fine-tuned model show similar accuracy whereas in unseen languages, parameter-
averaged model outperforms its baseline counterpart by 1.45 point on average. This outcome reveals
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Table 4: Results of parameter-averaging models trained on Non-IID partitions using XNLI dataset.
We compared the performance of two types of models: merged models trained with 9 seen languages,
and fully merged models trained with all 15 languages. Additionally, we conducted a comparison
between the performance of the merged models and that of the central fine-tuned models. Bold
numbers indicate the best-performing results and underline indicates the second best performance.

Method Unseen Seen Total Avg.
es el bg ar vi zh Avg. en fr de ru tr th hi sw ur Avg.

Central (full) 78.08 75.94 77.68 71.94 76.48 75.66 75.96 81.94 77.04 75.96 75.44 73.40 72.36 71.30 68.71 67.65 73.75 74.63
Central (partial) 77.14 74.95 76.86 71.49 75.50 74.97 75.15 82.45 78.64 77.62 76.66 75.38 73.90 73.14 68.93 69.27 75.11 75.13

Non-IID (full) 79.86 78.00 79.3 74.74 77.64 75.62 77.53 84.30 79.06 78.53 77.44 75.36 72.96 72.70 68.85 69.77 75.44 76.27
Non-IID (partial) 78.79 77.52 78.55 72.82 77.36 74.56 76.60 83.40 78.47 78.49 76.20 75.06 72.78 72.34 69.23 70.19 75.13 75.71

(a) Monolingual case (b) Multilingual case

Figure 4: The graph shows positive correlation between computational budget and the performance
gain of partial averaging. When the representation power of the model is sufficiently strong, partial
average outperforms standard fine-tuning.

the fact that parameter-averaging effectively enhances contributor’s generalization capability to
unseen dataset.

Central(full) vs Non-IID(partial). In this experiment, we compare standard fine-tuned model
trained on full scenario and parameter-averaged model trained on partial scenario. In both seen
and unseen languages, parameter-averaged model outperforms standard fine-tuned model by 1.38
point and 0.64 point on average. This result highlights the effectiveness of parameter-averaging in
incorporating new knowledge.

Non-IID(full) vs Non-IID(partial). In this experiment, we compare parameter-averaged model
trained on full and partial scenario. In both seen and unseen languages, parameter-averaged model
with full scenario outperforms its partial counterpart by 0.31 point and 0.93 point on average.
Given the fact that full scenario requires 5 times more computational power than partial scenario,
performance gap can be considered relatively small. This finding motivates us to explore ways to
reduce computational costs while preserving performance in parameter-averaging.

6 Partial Averaging

While it is possible in theory to merge a large number of models, it is less practical when it comes to
deployment. The computational cost of training and merging all clients can be prohibitively expensive,
especially in scenarios where there are a large number of contributors. Moreover, averaging all
contributors can lead to delayed convergence [8].

Therefore, we further explore a way to maximize the computational efficiency. To reduce the compu-
tational cost of parameter-averaging, we introduce partial averaging (or partial client participation
scenario in federated learning). Partial averaging involves selecting a subset of contributors to partici-
pate in the parameter-averaging process, rather than averaging all clients. Note that the we randomly
select contributors. This technique is realistic but often reported as more challenging scenario [3, 18,
28, 47].

To assess the effectiveness of partial averaging, we conducted experiments with XNLI and MNLI
datasets. The process of parameter-averaging requires a minimum of two contributors. To enable this,
the proportion of contributors participating in the merging process varied. In the case of MNLI, 40%
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of the total contributors were involved in averaging, while in XNLI, the proportion was 20%. This
difference also implies a corresponding reduction in computational costs.

Interestingly, as depicted in Figure 6, we observed that if the language model possesses sufficient
representation power, partial averaging can outperform full fine-tuning. Additionally, Table 5 presents
the results that demonstrate that although full parameter-averaging leads to better performance
compared to partial averaging, the difference between the two approaches is relatively small despite
a significant gap in computational costs. This suggests that partial averaging can be considered an
efficient method for fine-tuning.

7 Data Heterogeneity and Parameter-Averaging

Despite the practical reality of Non-IID data samples being distributed across various clients [16],
handling this issue remains a significant challenge in the field of Federated Learning (FL) [43]. When
models trained on heterogeneous data are averaged, it leads to a phenomenon known as client drift,
where gradients become orthogonal to each other. This, in turn, causes the global server optimizer to
diverge, as it is guided by the loss of the averaged models [32].

Figure 5: The performance gap between
IID and Non-IID was negligible when
the model has sufficient representation
power.

However, recent studies have shown that utilizing a pre-
trained model can significantly reduce the performance
gap between IID and Non-IID [32]. In addition, it has been
found that the performance gap can be further reduced
when using a pre-trained transformer model with stronger
representation power in image classification task [38].

In order to investigate whether this trend also holds true
in the field of natural language processing (NLP), we con-
ducted experiments using larger pre-trained language mod-
els. The result in Figure 5 indicates that using stronger
representation power models can further reduce the per-
formance gap between IID and Non-IID. Therefore, it can
be concluded that and stronger representation power by
pre-training in scale can almost fully mitigate the negative
effects of data heterogeneity and therefore, data heterogeneity is negligible when merging sufficiently
strong models.

8 Explaining Previous results

Our findings further support and offer preliminary explanations in line with recent studies on
parameter-averaging. Previous research has indicated that a single parameter-averaged model sur-
passes the performance of the ROBERTA-BASE model [8], and our results align with this observation,
indicating that the ROBERTA-BASE model possesses sufficient representation power to benefit from
parameter-averaging. Another recent study demonstrates that the perplexity gap between base lan-
guage models without parameter averaging and a single uniform parameter-average decreases as the
number of model parameters increases, both during pre-training and inference stages [25]. Similarly,
this perspective suggests that merging adapters may not yield the same positive impact as merging
the full model, as adapters generally have less representation power than the full model itself [17].

9 Discussions and Conclusions

Broader Impacts Parameter-averaging is an important paradigm that offers several benefits, such as
expanding new knowledge, efficient fine-tuning and privacy preservation. Nonetheless, this technique
requires additional measures to prevent the involvement of malicious contributors, which can harm
the overall performance.

Conclusions and Limitations Our result conveys a single, consistent message: There is a clear
positive correlation between the representation power of a language model and the accuracy gain
of parameter-averaging. In Section 4, we conclude that computational budget(4.1, 4.2), vocabulary
size(4.3) and dataset diversity(4.4) affect accuracy gain of parameter-averaging. We further observe
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that merging can improve the generalization ability on out-of-domain data on Section 5. In addition,
Section 6 shows that partial averaging, more realistic deployment setting, can also defeat standard
fine-tuned model. We also show in Section 7 that the effect of data heterogeneity has negligible
impact on parameter-averaging as contributors have sufficient representation power. We expect for
future works to further explore merging on (i) large-scale language models and (ii) broader region
such as parameter-averaging models trained with different tasks.
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A Experimental Setups

Here we provide additional details of our experimental setups. The code is implemented by PyTorch
and the overall code structure is based on Flower [2] library with some modifications. We report the
final round score for parameter-averaged model (both iid and non-iid setting) and the highest score
for centralized model and calculate accuracy gain based on this score.

A.1 Tiny BERT

To investigate how parameter-averaging affects performance of model with notably limited represen-
tation power, we trained extremely small version of BERT, TINY-BERT, which consists of 2 layers,
a hidden dimension size of 128, 2 attention heads and an intermediate dimension size of 512. We
follow the hyperparameters proposed by crammed BERT with the exception of training a batch size
of 256 and using post layer normalization with learning rate 1e-4[12]. Pretraining TINY-BERT takes
around 1 day on 4 A5000(24GB) GPUs.

A.2 Experiment Configuration on Section 5

During partial averaging, some contributors may not be participated in parameter-averaging process
since contributors are chosen randomly in each communication round. In our experiment, only 9
languages participate in parameter-averaging process and we count the number of access to each
language. The result is as follows:

Table 5: The number of each contributors participate in parameter-averaging process

Language en fr de ru tr th hi sw ur
Count 1 2 1 2 3 1 2 1 2

Total iter. 2 4 2 4 6 2 4 2 4

For fair comparison, we decided to fine-tuned the Central(partial) model which trained on 9 seen
languages for 4 epochs to make sure that total number of iteration is larger than Non-IID(partial).
We reported the best scores among 4 epochs.

B Hyperparameter Details

We offer an explanation for conducting experiments with contributors trained for 2 epochs and 5
rounds of parameter-averaging. We conducted 50 experiments where we varied the number of training
epoch of contributors and parameter-averaging rounds from 1 to 5 on iid and non-iid setting.

(a) IID (b) Non-IID

Figure 6: Accuracy graph by different training epochs and parameter averaging round

Parameter-averaging round As depicted in Figure 6, we reach a conclusion that single parameter-
averaging is not enough. There is a noticeable enhancement in performance as the number of
parameter-averaging rounds increases, particularly when comparing parameter-averaging round 1
and 2. Furthermore, we only observed marginal improvements beyond a parameter-averaging round
of 5. Table 6 reports specific score for each parameter-averaging round.
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Training epochs of contributors Among all combinations of the training epochs and parameter
averaging rounds, we found out that the combination of local 2 and global 5 is the most robust and
efficient choice.
Table 6: Accuracy for different combinations of training epochs of contributors and parameter-
averaging round. Bold scores indicate the best-performing results and underline indicate the second
and third best result.

Traning epochs Parameter-Avg round Total iter. IID Acc. Non-IID Acc.

1 1 1 71.27 56.27
1 2 2 72.66 72.07
1 3 3 74.85 72.41
1 4 4 74.92 75.21
1 5 5 74.41 74.36

2 1 2 72.6 68.92
2 2 4 74.95 73.95
2 3 6 76.06 73.78
2 4 8 75.5 74.07
2 5 10 75.9 75.71

3 1 3 73.38 72.45
3 2 6 74.35 73.67
3 3 9 74.76 74.23
3 4 12 75.22 74.96
3 5 15 74.5 74.76

4 1 4 68.04 72.81
4 2 8 74.61 75.16
4 3 12 74.8 75.34
4 4 16 75.38 75.79
4 5 20 75.04 75.92
5 1 5 71.92 60.29
5 2 10 74.34 73.98
5 3 15 74.94 74.08
5 4 20 75.09 74.85
5 5 25 75.08 75.05
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C MNLI

C.1 Full Parameter-Averaging Result

Table 7: Accuracy on MNLI dataset. All available contributors participate in parameter-averaging
process. We use 3 different seeds and report the average. The value in the parenthesis is accuracy
gain score.

Model Type Method MNLI Total Avg.
Fiction Government Slate Telephone Travel

TINY-BERT Monolingual
Central 62.7 63.85 56.12 62.79 56.07 60.30

IID(100%) 58.03 59.2 54.05 60.01 54.0 57.05 (-3.24)
Non-IID(100%) 57.86 59.88 52.96 57.06 52.89 56.12 (-4.17)

DISTILBERT Monolingual
Central 78.38 80.62 75.24 79.5 75.25 77.79

IID(100%) 77.34 80.87 74.45 78.55 74.46 77.13 (-0.66)
Non-IID(100%) 76.97 81.23 75.4 77.76 75.5 77.37 (-0.42)

BERT-BASE Monolingual
Central 80.71 82.54 78.44 81.0 78.43 80.22

IID(100%) 80.43 83.26 77.74 80.65 77.74 79.96 (-0.26)
Non-IID(100%) 80.2 83.5 78.53 80.57 78.53 80.26 (+0.04)

BERT-LARGE Monolingual
Central 84.52 84.0 80.82 82.42 80.82 82.52

IID(100%) 84.6 84.95 82.0 84.15 82.0 83.53 (+1.02)
Non-IID(100%) 84.25 85.02 82.3 83.38 82.3 83.45 (+0.93)

ROBERTA-BASE Monolingual
Central 84.25 85.15 82.3 86.05 82.3 84.01

IID(100%) 86.3 86.35 84.15 87.25 84.15 85.64 (+1.63)
Non-IID(100%) 86.05 86.6 83.95 86.2 83.95 85.35 (+1.34)

ROBERTA-LARGE Monolingual
Central 87.92 87.3 85.88 88.57 85.88 87.11

IID(100%) 89.48 88.7 88.1 89.7 88.1 88.81 (+1.70)
Non-IID(100%) 89.35 88.38 87.75 89.45 87.75 88.53 (+1.42)

DISTILMBERT Multilingual
Central 72.62 77.52 71.17 76.5 71.17 73.79

IID(100%) 73.63 77.25 70.4 75.67 70.4 73.47 (-0.32)
Non-IID(100%) 72.15 77.6 71.58 75.08 71.58 73.6 (-0.19)

MBERT Multilingual
Central 76.38 81.12 75.38 78.85 75.38 77.42

IID(100%) 77.42 80.1 75.28 79.58 75.28 77.53 (+0.11)
Non-IID(100%) 77.03 80.62 75.97 79.35 75.97 77.79 (+0.37)
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C.2 Partial Averaging Result

Table 8: Accuracy on MNLI dataset. Only 40% of contributors participate in parameter-averaging
process. We use 3 different seeds and report the average. The value in the parenthesis is accuracy
gain score.

Model Method MNLI Total Avg.
Fiction Government Slate Telephone Travel

TINY-BERT

Central 62.70 63.85 56.12 62.79 56.07 60.30
IID(40%) 58.5 59.51 53.97 58.85 53.93 56.95 (-3.35)

Non-IID(40%) 54.37 55.21 50.34 55.19 50.35 53.09 (-7.21)

DISTILBERT

Central 78.38 80.62 75.24 79.5 75.25 77.79
IID(40%) 77.5 80.43 74.43 79.07 74.37 77.15(-0.63)

Non-IID(40%) 76.51 80.19 74.08 77.02 73.97 76.35(-1.44)

BERT-BASE

Central 80.71 82.54 78.44 81.0 78.43 80.22
IID(40%) 80.52 82.88 77.72 80.1 77.72 79.78 (-0.43)

Non-IID(40%) 79.48 82.65 77.95 80.32 77.95 79.66 (-0.55)

BERT-LARGE

Central 84.52 84.00 80.82 82.42 80.82 82.52
IID(40%) 83.78 85.10 81.70 83.45 81.70 83.14 (+0.62)

Non-IID(40%) 84.60 84.12 81.78 83.65 81.78 83.18 (+0.66)

ROBERTA-BASE

Central 84.25 85.15 82.30 86.05 82.30 84.01
IID(40%) 84.75 86.70 83.60 85.80 83.60 84.88 (+0.88)

Non-IID(40%) 83.50 85.65 82.75 85.60 82.75 84.05 (+0.04)

ROBERTA-LARGE

Central 87.92 87.30 85.88 88.57 85.88 87.11
IID(40%) 88.22 88.55 86.55 89.9 86.55 87.95 (+0.85)

Non-IID(40%) 88.95 88.5 87.00 89.12 87.00 88.11 (+1.00)
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D XNLI

D.1 Full parameter-Averaging Result

Table 9: Accuracy on XNLI dataset. All available contributors participate in parameter-averaging
process. We use 3 different seeds and report the average. The value in the parenthesis is accuracy
gain score.

Model Method XNLI Total Avg.
en fr es de el bg ru tr ar vi th zh hi sw ur

DISTILMBERT
Central 75.44 70.73 71.85 69.5 67.55 70.21 68.01 66.01 65.19 68.56 54.21 69.79 62.15 60.42 60.18 66.65

IID(100%) 73.56 69.41 69.39 67.72 65.71 67.69 66.52 64.18 62.75 66.59 53.17 68.1 60.38 58.07 59.27 64.83 (-1.82)
Non-IID(100%) 73.83 70.46 71.06 68.55 64.59 67.48 66.56 62.4 62.18 67.22 48.44 67.27 59.49 53.71 58.85 64.13 (-2.51)

MBERT
Central 78.22 73.98 75.02 72.89 70.17 72.71 71.43 68.85 67.87 72.28 56.48 72.66 65.6 63.15 62.41 69.58

IID(100%) 77.84 73.36 74.58 72.19 69.89 72.61 71.25 68.49 67.18 71.13 56.95 71.71 65.06 61.38 61.51 69.00 (-0.57)
Non-IID(100%) 79.24 74.72 75.95 73.22 70.51 72.66 72.05 67.54 67.11 72.3 55.09 71.28 64.83 57.66 61.77 69.06 (-0.51)

XLMR-BASE
Central 81.95 77.61 78.18 76.13 76.05 77.67 75.83 72.99 72.91 76.39 72.69 75.92 71.45 68.44 67.34 74.76

IID(100%) 83.47 78.48 79.32 77.61 77.83 78.51 76.92 74.51 74.33 77.14 74.76 76.61 72.44 69.63 69.38 76.06 (+1.29)
Non-IID(100%) 83.95 79.15 80.14 78.62 78.2 79.15 77.49 75.14 74.69 77.63 73.5 75.93 72.55 68.91 69.67 76.31 (+1.54)

XLMR-LARGE
Central 87.13 82.38 83.88 82.77 82.18 83.14 80.58 79.3 78.98 80.46 77.79 80.39 77.63 73.16 73.39 80.21

IID(100%) 88.55 84.21 85.62 84.78 84.03 84.86 81.92 81.27 81.25 82.17 79.12 81.9 79.66 76.54 76.06 82.12 (+1.91)
Non-IID(100%) 89.15 84.57 85.64 84.94 84.04 84.77 81.92 81.24 81.44 81.87 77.83 80.94 78.96 75.56 75.67 81.90 (+1.69)

XLMV-BASE
Central 82.48 77.97 79.27 78.06 77.69 78.65 76.16 75.08 73.56 76.34 72.74 76.58 72.08 70.25 69.61 75.76

IID(100%) 84.03 79.34 79.96 79.35 78.62 79.76 77.9 76.11 74.22 77.33 75.11 77.72 74.52 71.89 71.82 77.17 (+1.41)
Non-IID(100%) 84.3 79.72 80.51 79.59 78.67 80.04 78.43 76.35 74.49 77.61 73.67 76.82 73.79 71.54 71.25 77.11 (+1.35)

D.2 Partial Averaging Result

Table 10: Accuracy on XNLI dataset. Only 20% of contributors participate in parameter-averaging
process. We use 3 different seeds and report the average. The value in the parenthesis is accuracy
gain score.

Model Method XNLI Total Avg.
en fr es de el bg ru tr ar vi th zh hi sw ur

DISTILMBERT
Central 75.44 70.73 71.85 69.50 67.55 70.21 68.01 66.01 65.19 68.56 54.21 69.79 62.15 60.42 60.18 66.65

IID(20%) 72.77 68.74 69.4 67.13 65.18 67.95 65.46 63.79 62.2 65.92 52.48 67.02 60.22 57.66 59.16 64.33 (-2.31)
NON-IID(20%) 73.11 69.7 69.48 68.33 64.36 65.53 66.02 63.37 60.87 67.69 49.07 66.5 59.88 51.56 58.53 63.60 (-3.05)

MBERT
Central 78.22 73.98 75.02 72.89 70.17 72.71 71.43 68.85 67.87 72.28 56.48 72.66 65.6 63.15 62.41 69.58

IID(20%) 77.22 72.52 73.97 71.35 69.08 71.80 69.97 67.63 66.04 70.33 55.36 71.06 63.6 60.8 61.49 68.14 (-1.43)
NON-IID(20%) 78.19 73.96 73.66 72.34 67.10 70.53 71.63 68.28 64.34 71.21 54.92 69.62 65.02 60.82 61.10 68.18 (-1.39)

XLMR-BASE
Central 81.95 77.61 78.18 76.13 76.05 77.67 75.83 72.99 72.91 76.39 72.69 75.92 71.45 68.44 67.34 74.76

IID(20%) 83.16 78.33 79.11 77.56 76.96 78.55 76.84 73.92 74.02 76.74 73.96 76.66 72.28 68.8 68.72 75.70 (+0.94)
NON-IID(20%) 83.07 78.25 78.87 77.99 77.27 78.29 76.33 74.50 73.22 76.74 72.49 74.81 72.1 67.69 69.34 75.39 (+0.63)

XLMR-LARGE
Central 87.13 82.38 83.88 82.77 82.18 83.14 80.58 79.3 78.98 80.46 77.79 80.39 77.63 73.16 73.39 80.21

IID(20%) 88.24 83.3 84.73 83.84 83.24 84.08 81.33 80.62 80.44 81.42 78.42 81.18 78.68 75.27 74.8 81.30 (+1.10)
NON-IID(20%) 88.46 83.94 84.81 84.25 83.54 83.91 81.48 80.93 80.27 81.18 77.55 80.14 78.37 73.80 74.56 81.14 (+0.93)
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