
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

STORYGPT-V: LARGE LANGUAGE MODELS AS CON-
SISTENT STORY VISUALIZERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent generative models have demonstrated impressive capabilities in generating
realistic and visually pleasing images grounded on textual prompts. Nevertheless,
a significant challenge remains in applying these models for the more intricate
task of story visualization. Since it requires resolving pronouns (he, she, they) in
the frame descriptions, i.e., anaphora resolution, and ensuring consistent charac-
ters and background synthesis across frames. Yet, the emerging Large Language
Model (LLM) showcases robust reasoning abilities to navigate through ambiguous
references and process extensive sequences. Therefore, we introduce StoryGPT-V,
which leverages the merits of the latent diffusion (LDM) and LLM to produce im-
ages with consistent and high-quality characters grounded on given story descrip-
tions. First, we train a character-aware LDM, which takes character-augmented
semantic embedding as input and includes the supervision of the cross-attention
map using character segmentation masks, aiming to enhance character generation
accuracy and faithfulness. In the second stage, we enable an alignment between
the output of LLM and the character-augmented embedding residing in the input
space of the first-stage model. This harnesses the reasoning ability of LLM to
address ambiguous references and the comprehension capability to memorize the
context. We conduct comprehensive experiments on two visual story visualization
benchmarks. Our model reports superior quantitative results and consistently gen-
erates accurate characters of remarkable quality with low memory consumption.
Our code will be made publicly available1.

1 INTRODUCTION

Image generation algorithms have made significant strides and are on the verge of matching human-
level proficiency. Despite this progress, even a powerful image generator suffers from story visual-
ization task, which involves generating a series of frames that maintain semantic coherence based on
narrative descriptions (Li et al., 2019; Zeng et al., 2019; Maharana et al., 2021; 2022). This challenge
arises from the fact that captions for a single image are typically self-sufficient, lacking the conti-
nuity needed to capture the narrative of object interactions that unfold through multiple sentences
over a sequence of frames. This poses a promising avenue for further research and exploration of
story visualization. Such a task demands a model capable of producing high-quality characters and
detailed environmental objects grounded on given text descriptions. Moreover, it requires the ability
to disambiguate referential pronouns in the subsequent frame descriptions, e.g., “she, he, they”.

Prior studies (Maharana & Bansal, 2021; Li et al., 2019; Maharana et al., 2022; Song et al., 2020b;
Chen et al., 2022a) explore the realm of story visualization but do not take reference resolution (Seo
et al., 2017) (i.e., anaphora resolution in the context of natural language processing (Aone &
William, 1995; McCarthy & Lehnert, 1995)) into consideration. Story-LDM (Rahman et al., 2023)
first extended story visualization benchmarks with referential text and devises an attention mem-
ory module that retains visual context throughout the series of generated frames. However, it still
struggles to generate precise characters for referential text since the interaction between current
descriptions and contextual information occurs within the CLIP (Radford et al., 2021b) semantic
space, causing a loss in fine-grained language understanding and hindering referencing capabili-
ties. Furthermore, the attention memory module requires maintaining all previous images in latent

1Please refer to the anonymous webpage for qualitative results.
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Figure 1: We present StoryGPT-V, which empowers a large language model for interleaved image-
text comprehension and aligns its output with character-aware Latent Diffusion (Char-LDM) for
autoregressive story visualization grounded on co-referential text descriptions.

pixel space for attention calculations, significantly increasing memory demands with each additional
frame in autoregressive generation.

The limitation of previous works leads us to rethink how to achieve accurate and efficient reference
resolution toward consistent story visualization. Large Language Models (LLMs) (Radford et al.,
2019; Raffel et al., 2020; Brown et al., 2020; Zhang et al., 2022), trained on extensive text corpora,
have exhibited impressive capabilities in deciphering contextual references in natural language de-
scriptions. Prior works (Koh et al., 2023a; Ge et al., 2023) have demonstrated the effectiveness of
harnessing LLMs for tasks involving image comprehension and generation, where the visual fea-
tures are adapted within LLM’s token space rather than the pixel space. Hence, such a model could
be utilized to efficiently address ambiguous references for story visualization tasks.

In this work, we aim at story visualization grounded on given co-referential frame descriptions, fo-
cusing on delivering high-quality and coherent portrayals of characters. To achieve this, we leverage
a powerful text-to-image model (Rombach et al., 2022) to generate high-quality characters and en-
vironmental objects grounded on given frame descriptions, coupled with the reasoning ability of
Large Language Models (LLMs) to resolve ambiguous references and improve the cohesiveness of
the context. To improve the generation of highly faithful characters, we enhance the pre-trained
Latent Diffusion (LDM) towards character-aware training in the first stage. We first augment the to-
ken feature by incorporating the visual representation of the corresponding character. Additionally,
we regulate the cross-attention map of the character token to highlight the interaction between the
conditional token and specific latent pixels.

In addressing the challenge of ambiguous reference, which cannot be effectively handled by a ro-
bust text-to-image model alone, we leverage an LLM that takes interleaved images and co-referential
frame descriptions as input, and aligns its visual output with the character-augmented embedding
encoded by first-stage model. Such semantic guidance, along with LLM’s casual modeling, en-
ables effective reference resolution and consistent generation. Furthermore, our approach efficiently
preserves context by processing images as sequences of tokens in the LLM input space with low
memory consumption.

Contributions. Our contributions are as follows:

• We enhance the text representation by integrating the visual features of the corresponding
characters, then refine a character-aware LDM for better character generation by directing
cross-attention maps with character segmentation mask guidance.
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• We adapt LLM by interlacing text and image inputs, empowering it to implicitly deduce
references from previous contexts and produce visual responses that align with the input
space of the first-stage Char-LDM. This leverages the LLM’s reasoning capacity for refer-
ence resolution and the synthesis of coherent characters and scenes.

• Our model is capable of visualizing stories featuring precise and coherent characters and
backgrounds on story visualization benchmarks. Furthermore, we showcase the model’s
proficiency in producing extensive (longer than 40 frames) visual stories with low memory
consumption.

2 RELATED WORK

Text-to-image synthesis. Numerous works (Crowson et al., 2022; Gafni et al., 2022; Ding et al.,
2021) have demonstrated unprecedented performance on semantic generation. Recently, diffusion-
based text-to-image models (Ramesh et al., 2022; 2021; Rombach et al., 2022; Saharia et al., 2022)
have shown significant advancements in enhancing image quality and diversity through the utiliza-
tion of diffusion models. However, these text-to-image approaches primarily concentrate on aligning
individual-generated images grounded on text descriptions and do not take into account the crucial
aspects of character and scene consistency across multiple frames in the story visualization task.
Additionally, they lack the capability to effectively resolve co-reference issues within a narrative
description.

Multi-modal Large Language Models. Large Language Models (LLMs) wield an extensive repos-
itory of human knowledge and exhibit impressive reasoning capabilities. Recent studies (Tsim-
poukelli et al., 2021; Chen et al., 2022b; Alayrac et al., 2022; Li et al., 2023b) utilize pre-trained
language models to tackle vision-language tasks, and subsequent studies (Zhu et al., 2023; Zhang
et al., 2023; Wang et al., 2023; Li et al., 2023a; Huang et al., 2023; Chen et al., 2023) further en-
hance multi-modal abilities by aligning vision models with LLM input space. In addition to multi-
modal comprehension, several works are dedicated to more challenging multi-modal generation
tasks. FROMAGe (Koh et al., 2023b) appends a special retrieval token to LLM and maps the hidden
representation of this token into a vector space for retrieving images. Several current works (Koh
et al., 2023a; Wu et al., 2023; Zeqiang et al., 2023) learn a mapping from hidden embeddings of
an LLM represents for additional visual outputs into the input space of a frozen pre-trained text-
to-image generation model (Rombach et al., 2022). In this work, we fed multi-modal LLM with
interleaved image and referential text descriptions as input and aligned the output with a character-
aware fused embedding from our first-stage Char-LDM, guiding the LLM in implicitly deducing the
references.

Story Visualization. StoryGAN (Li et al., 2019) pioneers the story generation task, which proposes
a sequential conditional GAN framework with dual frame and story level discriminators to im-
prove image quality and narrative coherence. DuCoStoryGAN (Maharana et al., 2021) introduces a
dual-learning framework that utilizes video captioning to enhance semantic alignment between de-
scriptions and generated images. VLCStoryGAN (Maharana & Bansal, 2021) used video captioning
for semantic alignment between text and frames. Recently, StoryDALL-E (Maharana et al., 2022)
retrofits the cross-attention layers of the pre-trained text-to-image model to promote generalizabil-
ity to unseen visual attributes of the generated story. These methods do not consider ambiguous
references in text descriptions. Story-LDM (Rahman et al., 2023) first introduced reference reso-
lution in story visualization tasks and proposed an autoregressive diffusion-based framework with
a memory-attention module to resolve ambiguous references. Nevertheless, it struggled with accu-
rately resolving references and was memory-intensive, as it required retaining all previous context in
pixel space. In our work, we employ a powerful causal inference LLM for reference resolution, and
it efficiently maintains context by mapping visual features into several token embeddings as LLM
inputs rather than operating in latent pixel space.

3 METHODS

The objective of story visualization is to transform a textual narrative, composed of a series of N
descriptions S1, ...SN , into a sequence of corresponding visual frames I1, ..., IN that illustrate the
story. We’ve developed a two-stage method aimed at generating temporally consistent visual stories

3
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Figure 2: (a) In the first stage, a fused embedding is created by integrating character visuals with
text embeddings, serving as the Char-LDM’s conditional input, and the cross-attention maps of
Char-LDM will be guided by corresponding character segmentation mask for accurate and high-
quality character generation (section 3.2). (b) In the second stage, the LLM takes the interleaved
image and text context as input and generates R [IMG] tokens. These tokens are then projected by
LDM Mapper into an intermediate output, which will be encouraged to align with fused embedding
as Char-LDM’s input. The figure intuitively shows how the character-augmented fused embedding
and the casual language modeling aid LLM for reference resolution (section 3.3).

with accurate and high-quality characters. First, we augment text representation with characters’
visual features and refine a character-aware LDM (Rombach et al., 2022) (Char-LDM) towards
high-quality character generation. This is achieved by directing the cross-attention maps of specific
tokens associated with the corresponding characters, using character segmentation mask supervision
(section 3.2). Then, we leverage the reasoning ability of LLM to resolve ambiguous references by
aligning the output of LLM with Char-LDM input space for temporal consistent story visualization
(section 3.3).

3.1 PRELIMINARIES

Cross-attention in text-conditioned Diffusion Models. In diffusion models (Ho et al., 2020; Song
et al., 2020a), each diffusion step t involves predicting noise ϵ from the noise code zt ∈ R(h×w)×dv

conditioned on text embedding ψ(S) ∈ RL×dc via U-shaped Network (Ronneberger et al., 2015),
where ψ is the text encoder, h and w are the latent spatial dimensions and L is the sequence length.
Within U-Net, the cross-attention layer accepts the spatial latent code z and the text embeddings
ψ(S) as inputs, then projects them into Q = W qz, K = W kψ(S) and V = W vψ(S), where
W q ∈ Rdv×d′

, W k,W v ∈ Rdc×d′
. The attention scores is computed as A = Softmax(QKT

√
d′ ) ∈

R(h×w)×L, where A[i, j, k] represents the attention of k-th text token to the (i, j) latent pixel. In
this context, each entry A[i, j, k] within the cross-attention map A quantifies the magnitude of in-
formation propagation from the k-th text token to the latent pixel at position (i, j). This feature of
the interaction between semantic representation and latent pixels is harnessed in various tasks such
as image editing (Hertz et al., 2022; Parmar et al., 2023), video editing (Liu et al., 2023b), and fast
adaptation (Shi et al., 2023; Xiao et al., 2023; Couairon et al., 2023; Wei et al., 2023).
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3.2 CHARACTER-AWARE LDM WITH ATTENTION CONTROL

Integrate visual features with text conditions. To achieve accurate and high-quality characters in
story visualization, we augment text descriptions with visual features of corresponding characters
and guide the attention of text conditions to focus more on corresponding character synthesis. Given
a text description S, suppose there are K characters that should be generated in image I , images of
those characters {I1c , ..., IKc }, a list of token indices indicating each character name located in the
description, denoted as {i1c , ...iKc }. Inspired by (Wei et al., 2023; Xiao et al., 2023; Ma et al., 2023),
we first utilize CLIP (Radford et al., 2021b) text encoder ψ and image encoder ϕ to obtain text
embedding and visual features of the characters appear in the image respectively. Then, we augment
the text embedding if the token represents a character name. More specifically, we concatenate
the token embedding and the visual features of the corresponding character and feed them into an
MLP to obtain the augmented text embedding. Each augmented token embedding in the augmented
embedding c is formulated as below:

ck = MLP
(
concat

(
(ψ(S[ikc ]), ϕ(I

k
c )
))

(1)

where ikc refers to the index of the text token for character k, and Ikc the image corresponding to
character k. The embeddings for tokens in c that are unrelated to the character remain identical to
the vanilla CLIP token embeddings. The enhanced embedding c is then employed as supervision
for the second-stage training, which will be further detailed in section 3.3, where c1, ...cN are the
corresponding augmented embeddings for S1, ..., SN .

Controlling attention of text tokens. Previous work (Hertz et al., 2022) has demonstrated that the
visual characteristics of generated images are influenced by the intricate interplay between latent
pixels and text embedding through the diffusion process of LDM (Rombach et al., 2022). How-
ever, in vanilla LDM (Rombach et al., 2022), a single latent pixel can unrestrictedly engage with all
text tokens. Therefore, we introduce a constraint to refine this behavior and strengthen the impact
of the token representing the character’s name on certain pixels in the denoising process, as illus-
trated in fig. 2 (a). First, we obtain offline segmentation masks of corresponding characters denoted
as {M1, ...MK} as supervision signals via SAM (Kirillov et al., 2023). We then encourage the
cross-attention map Ak for each character k at the token index position ikc , to align with the binary
segmentation mask Mk, whereas diverging from irrelevant regions M̄k, formulated as follows:

Lreg =
1

K

K∑
k=1

(A−
k −A

+
k ) (2)

where

A−
k =

Ak ⊙ M̄k∑
i,j(M̄k)ij

, A+
k =

Ak ⊙Mk∑
i,j(Mk)ij

(3)

where K is the number of characters to be generated in the image, ikc is the index of text token
representing character k and ⊙ is the Hadamard product. By reducing the loss, it increases the
attention of character tokens to the relevant pixels of their respective characters, while reducing their
attention to irrelevant areas. Moreover, as the token embeddings are enriched with the visual features
of the corresponding character, this attention control serves to deepen the connection between the
augmented semantic space and latent pixel denoising, which can consequently enhance the quality
of synthesized characters.

Our first stage Char-LDM focuses solely on the quality of image generation grounded on a sin-
gle caption. Yet, there remain challenges that surpass the abilities of text-to-image generators in
visualizing a sequence of stories. Firstly, story visualization demands character and background
consistency, an aspect not covered by our first-stage enhancements. Moreover, the inherent nature
of lengthy descriptions includes referential terms like he, she, or they, which presents a significant
challenge for LDM in achieving accurate inference. In contrast, LLMs can adeptly infer the in-
tended character to which the ambiguous text refers. Therefore, to address this issue, we harness the
formidable reasoning capabilities of LLM to disambiguate such references.

3.3 ALIGNING LLM FOR REFERENCE RESOLUTION

To enable an LLM to autoregressively generate images conditioned on prior context and resolve
ambiguous references, the model must be capable of (i) processing images; (ii) producing images;

5
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and (iii) implicitly deducing the subject of reference. The model could understand the image by
learning a linear mapping from the visual feature to the LLM input space, and generate images by
aligning the hidden states with conditional input required by LDM, which is the fused embedding
encoded by first-stage Char-LDM’s text and visual encoder. It integrates the visual features of
characters into the text embedding. This character-augmented embedding, along with the causal
language modeling (CLM) (Vaswani et al., 2017; Radford et al., 2018; 2019) will direct the LLM
to implicitly deduce and generate the correct character for the referential input, as depicted in fig. 2
(b).

More specifically, the LLM input consists of interleaved co-referential text descriptions and story
frames with flexible frame length n, in the order of (I1, S1, ..., In−1, Sn−1, Sn), where 2 ≤ n ≤ N .
We first extract visual embeddings ϕ(Ii) ∈ Rdi with CLIP (Radford et al., 2021b) visual back-
bone, where i ∈ [2, n], and learn MapperLLM with trainable matrix Wv2t ∈ Rdi×me which maps
ϕ(Ii) into m k-dimensional embeddings reside within LLM input space (Li et al., 2023b; Liu et al.,
2023a; Zhu et al., 2023), where e is the dimension of LLM embedding space. Additionally, like
recent works (Koh et al., 2023a; Wu et al., 2023; Zeqiang et al., 2023) in enabling LLM to generate
images, we add additional R tokens, denoted as [IMG1], ..., [IMGR] to represent visual outputs
and incorporate trainable matrix Wgen ∈ RR×e into frozen LLM. The training objective is to mini-
mize the negative log-likelihood of producing [IMG] tokens conditioned on previously interleaved
image/text tokens Tprev:

Lgen = −
R∑

r=1

log p([IMGr]|Tprev,[IMG<r]) (4)

where

Tprev = {ϕ(I<i)
TWv2t, ψ(S1:i)} (5)

where i ∈ [2, n] is the number of text descriptions of the current step. To align [IMG] produced by
LLM with LDM input space, we utilize a Transformer-based MapperLDM to project [IMG] tokens
to the input space of first-stage finetuned LDM with L learnable query embeddings (q1, ..., qL) ∈
RL×d, where L is the maximum input sequence length of the LDM, similar to BLIP-2 Q-Former (Li
et al., 2023b). The training objective is to minimize the distance between Mapper’s output Gen
Emb and the augmented conditional text representations of LDM, i.e., Fuse Emb introduced in
section 3.2, formulated as:

Lalign = ||MapperLDM (h[IMG1:R], q1, ...qL)− ci||22 (6)

where h[IMG1:R] denotes the last hidden states of LLM’s [IMG] tokens. Suppose we can get access
to the original text without reference S

′

i . Then, ci is the augmented text embedding of caption S
′

i
encoded by the first-stage model’s text and visual encoder. For instance, if Si is “They are talking
to each other”, then S

′

i would be ”Fred and Wilma are talking to each other.” This non-referential
text, augmented with character visual features, assists LLM in efficiently disambiguating references
using casual language modeling.

In addition to Lalign, we leverage pixel-level loss Limg to facilitate semantic alignment and visual
consistency. More specifically, the Gen emb is used as a condition input for the frozen Char-LDM.
The Unet ϵθ of pretrained Char-LDM is used to calculate the Limg to provide pixel-level supervision
defined as follow:

Limg = Eϵ∈N(0,1),t

[
∥ϵ− ϵθ(zt, t,MapperLDM (h[IMG1:R], q1, ...qL))∥22

]
(7)

Inference. During the inference process, the model sequentially visualizes stories grounded on
text descriptions. It begins by processing the text description of the initial frame S1. Focusing
exclusively on frame generation, we constrain the LLM to generate only R specific [IMG] tokens
and then feed these token embeddings into the first-stage Char-LDM, resulting in the generation
of the first frame Igen1 . Subsequently, the LLM takes a contextual history that includes the text
description of the first frame S1, the generated first frame Igen1 , and the text description of the
second frame S2 as input. This process is repeated to visualize the entire story progressively.

6
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Models Ref text Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓) BLEU4 (↑) CIDEr (↑)
StoryDALL-E† (Maharana et al., 2022) 69.49 83.35 48.46 55.24 44.24 0.4666 1.4473
LDM (Rombach et al., 2022)

×
85.66 93.41 54.85 62.04 32.05 0.5230 1.8048

Story-LDM (Rahman et al., 2023) 82.43 91.86 55.3 61.58 36.29 0.4656 1.4335
Char-LDM (Ours) 90.36 95.76 58.36 63.92 21.13 0.5260 1.8361

StoryDALL-E† (Maharana et al., 2022) 61.83 78.36 48.10 54.92 44.66 0.4460 1.3373
LDM (Rombach et al., 2022)

✓
75.37 87.54 52.57 58.41 32.36 0.4911 1.5103

Story-LDM (Rahman et al., 2023) 77.23 88.26 54.97 60.99 36.34 0.4585 1.4004
StoryGPT-V (Ours) 88.45 94.94 56.45 62.09 21.71 0.5037 1.6718

Table 1: Main experiments on FlintStonesSV (Gupta et al., 2018). The top portion is evaluated on
the dataset w/o extended referential text. The bottom half displays the results on the extended dataset
with co-reference. †StoryDALL-E (Maharana et al., 2022) takes the source frame as additional input.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Datasets. Our experiments are conducted using two story visualization datasets: Flint-
stonesSV (Gupta et al., 2018) and PororoSV (Li et al., 2019). FlintstonesSV (Gupta et al., 2018)
contains 20132-training, 2071-validation, and 2309-test stories with 7 main characters and 323 back-
grounds, while PororoSV (Li et al., 2019) consists of 10,191 training samples, 2,334 for validation,
and 2,208 for testing with 9 main characters. We follow (Rahman et al., 2023) to extend the datasets
with referential text, by replacing the character names with references, i.e., he, she, or they, wherever
applicable. Please refer to the supplementary for details.

Evaluation metrics. To measure the accuracy of the characters and background in the generated
stories, we consider the following evaluation metrics the same as previous story visualization litera-
ture (Maharana & Bansal, 2021; Maharana et al., 2022; Rahman et al., 2023): Following (Maharana
& Bansal, 2021), we finetune Inception-v3 to measure the classification accuracy and F1-score of
characters (Char-Acc, Char-F1) and background (BG-Acc, BG-F1) respectively. In addition, we
consider the Frechet Inception Distance (FID) score, which compares the distribution between fea-
ture vectors from real and generated images for quality assessment.

When assessing text-image alignment, the CLIP (Radford et al., 2021b) score falls short in reliabil-
ity since it cannot capture fine-grained details. Therefore we choose the powerful captioning model
BLIP2 (Li et al., 2023b) as the evaluation model and fine-tune it on the corresponding datasets. We
then employ it as a captioner to predict 5 captions for generated images and 5 captions for ground
truth images as a comparison to report the average BLEU4 (Papineni et al., 2002) and CIDEr (Vedan-
tam et al., 2015) score to assess text-image alignment.

Comparison Approaches. We compare our model with state-of-the-art approaches: VLCStory-
GAN (Maharana & Bansal, 2021), StoryDALL-E (Maharana et al., 2022), LDM (Rombach et al.,
2022) and Story-LDM (Rahman et al., 2023). Following previous research (Li et al., 2019; Rah-
man et al., 2023), we use 4 consecutive frames for evaluation. For StoryDALL-E (Maharana et al.,
2022), which takes both story descriptions and the initial frame as input, we use the first frame of
a 5-frame story and evaluate using the generated 4 frames. We finetune vanilla Stable Diffusion
(LDM) on FlintStonesSV (Gupta et al., 2018) and PororoSV (Li et al., 2019) as a baseline. Since
Story-LDM (Rahman et al., 2023) does not provide pre-trained checkpoint or cleaned training code,
we initiate training from pre-trained LDM2.

Implementation Details. For the first stage training, we freeze CLIP (Radford et al., 2021b) text
encoder and fine-tune the remaining modules for 25k steps with a learning rate 1e-5 and batch size
of 32 on original non-referential text. To enhance inference time robustness and flexibility, we adopt
a training strategy that includes 10% unconditional training, i.e., classifier-free guidance (Ho &
Salimans, 2022), 10% text-only training, and 80% character-augmented fuse training (section 3.2).
We use the original loss of latent diffusion and Lreg (eq. (2)) loss for the first stage training.

2https://ommer-lab.com/files/latent-diffusion/nitro/txt2img-f8-large
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• Fred is standing in the living room while holding the phone and talking.
• He is in a room. He picks up the phone and then speaks into the phone.
• He stands next to a small table in the room. He holds the receiver for a phone   

while talking to someone. He then hangs up the phone when he finishes the 
call.

• Fred and Barney are standing in a room. There is a telephone next to Fred. 
Barney is talking with something in his hand.
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• Poby is seated beside a canvas. He holds a red pencil in his hand. There are 
many pictures on the wall.

• He is seated beside a canvas. He holds a red pencil in his hand. He lowers  
down his arm and makes a big smile. There are many pictures on the wall. 

• Harry is in a house. Harry is seated on a green bed. 
• He comes out of the house. He looks around the room. In the middle of the 

room, there is a wooden table. There is an apple on the table.

Figure 3: Qualitative comparison on FlintStonesSV (Gupta et al., 2018) (left) and PororoSV (Li
et al., 2019) (right) with co-reference descriptions.

For the second stage training, we use OPT-6.7B3 model as the LLM backbone. Please refer to the
result with Llama2 (Touvron et al., 2023) as the LLM backbone in the supplementary. To expedite
the second stage alignment training, we first pre-compute non-referential fused embeddings residing
in the input space of the first-stage Char-LDM. We map visual features into m = 4 token embed-
dings as LLM input, set the max sequence length as 160 and the number of additional [IMG] tokens
represents for LLM’s visual output as R = 8, batch size as 64 training for 20k steps. Please refer to
the supplementary for more details. We use Lgen (eq. (4)), Lalign (eq. (6)) and Limg (eq. (7)) losses
for the second stage training.

4.2 VISUAL STORY GENERATION

Quantitative Results. (i) Generation with original descriptions. The upper half of table 1 shows
the comparison results on original FlintStonesSV (Gupta et al., 2018) without referential text de-
scriptions. Our first-stage Char-LDM exhibits superior performance in generating accurate char-
acters (Char-Acc, Char-F1) and background scenes (BG-Acc, BG-F1), achieving high fidelity
(FID), and exhibiting better alignment with given text descriptions (BLEU4 (Papineni et al., 2002),
CIDEr (Vedantam et al., 2015)). (ii) Generation with co-referenced descriptions. table 1 (bottom)
and table 2 show the results on extended FlintStonesSV (Gupta et al., 2018) and PororoSV (Li
et al., 2019) with co-referential text descriptions (Rahman et al., 2023) respectively. By harness-
ing the merit of reasoning and comprehension abilities of LLM, our model substantially boosts
performance in reference resolution compared to baselines, while maintaining a strong text-image
alignment grounded in the provided text descriptions.

Models Char-Acc (↑) Char-F1 (↑) FID (↓) BLEU4 (↑) CIDEr (↑)
StoryDALL-E† (Maharana et al., 2022) 21.03 50.56 40.39 0.2295 0.3666
LDM (Rombach et al., 2022) 27.81 57.02 28.98 0.2560 0.5122
Story-LDM (Rahman et al., 2023) 29.14 57.56 26.64 0.2420 0.4581
StoryGPT-V (Ours) 36.06 62.70 19.56 0.2586 0.5279

Table 2: Performance comparison on PororoSV (Li et al., 2019) with co-referenced descriptions.
†StoryDALL-E (Maharana et al., 2022) takes the source frame as additional input.

3https://huggingface.co/facebook/opt-6.7b
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Qualitative Results. fig. 3 demonstrates qualitative comparison on FlintStonesSV (Gupta et al.,
2018) and PororoSV (Li et al., 2019) with co-reference descriptions. LDM (Rombach et al., 2022)
could generate high-quality images but struggles to produce correct characters in the presence of
reference in the captions. Story-LDM (Rahman et al., 2023), despite incorporating an attention-
memory module to handle context, struggles to produce accurate characters in some frames. In
comparison, our model excels at generating frames with pleasing visuals, accurate characters, and
maintaining temporal consistency in the background scenes.

Human Evaluation. In addition, we use Mechanical Turk to assess the quality of 100 stories pro-
duced by our methods or Story-LDM (Rahman et al., 2023) on FlintStonesSV (Gupta et al., 2018).
Given a pair of stories generated by Story-LDM (Rahman et al., 2023) and our model, MTurkers
are asked to decide which generated four-frame story is better w.r.t visual quality, text-image align-
ment, character accuracy, and temporal consistency. Each pair is evaluated by 3 unique workers. In
fig. 6(a), our model demonstrates significantly better story visualization quality with accurate and
temporally coherent synthesis.

4.3 ABLATION STUDIES

First stage ablation. We conducted an ablation study for the first stage and presented results in ta-
ble 3. w/o Lreg indicates that we disabled the Lreg loss (eq. (2)), i.e., the model underwent training
without the influence of segmentation masks to direct the cross-attention maps. w/o augmented text
signifies that the model’s conditional input during its training phase was the standard CLIP (Rad-
ford et al., 2021b) text embedding, rather than the fused embedding incorporating the character’s
visual attributes as discussed in section 3.2. freeze vis denotes the visual encoder remained frozen
during training. Unless specified, the last two layers of the visual encoder are made adjustable. The
final two rows employ our default training strategy and the only distinction lies in the inference
phase. Default (w/o img) takes vanilla CLIP (Radford et al., 2021b) text embedding as input condi-
tion, whereas Default (w/ img) employs the fused embedding. As indicated by table 3, integrating
character visual features during training significantly enhances the generation performance and the
additional cross-attention control propels the model to achieve its peak on accurate character gen-
eration. Note that the FID score of Default (w/ img) is slightly higher than Default (w/o img). This
is because, during inference, the reference images for corresponding characters in Default (w/ img)
are obtained online, introducing a slight deviation from the original distribution.

Models Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓)
w/o Lreg 88.86 95.21 55.50 60.77 23.51
w/o augmented text 87.45 94.70 57.67 63.04 21.27
freeze vis 88.67 95.14 56.58 62.46 22.01
Our stage1 (w/o img) 89.73 95.56 56.18 62.85 20.96
Our stage1 (w/ img) 90.36 95.76 58.36 63.92 21.13

Table 3: Ablation study for the first stage finetuning LDM with cross-attention control.

Second stage ablation. As shown in table 4, we conducted an ablation study on (i) whether to align
with the text embedding (Embtext) or the fused embedding (Embfuse) of our first stage model; (ii)
whether the model’s input consists of a sequence of captions (Caption-) or utilizes interleaved train-
ing with both images and captions (Interleave-) (eq. (5)). Experimental results shown in table 4
indicate that image-text interleave training can significantly enhance performance. It is intuitive that
taking both images and corresponding captions as input provides a more profound comprehension of
the characters and their interactions within the image than when provided with sole captions. This,
in turn, amplifies its generative capabilities. In addition, the Limg loss introduces pixel-level su-
pervision, further improving visual consistency by propagating pixel-level generation to the [IMG]
token representation of LLM.

4.4 ANALYSIS

We further investigate the impact of first-stage finetuning with cross-attention control by visualizing
averaged cross-attention maps in U-Net latent pixel space and interpolating them to match the size of

9
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Models Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓)
Caption-Embtext 69.70 83.37 52.67 58.78 21.32
Caption-Embfuse 71.77 84.81 52.57 58.04 24.79
Interleave-Embtext 86.10 93.46 54.92 60.15 21.30
Interleave-Embfuse w/o Limg 87.96 94.17 56.01 61.07 21.71
Interleave-Embfuse w Limg (default) 88.45 94.94 56.45 62.09 21.71

Table 4: Second stage training strategy ablation. Input only caption or interleaved text and im-
age. The output of LLM is aligned with our Char-LDM text embedding (Embtext) or character-
augmented fused embedding (Embfuse).

the generated images. As illustrated in fig. 5, vanilla LDM (top) finetune on FlintStonesSV (Gupta
et al., 2018) w/o Lreg (section 3.2) struggles to accurately focus on the corresponding characters
for character tokens. Our model (bottom), which incorporates cross-attention guidance, is able to
precisely direct attention to generated characters given corresponding character tokens.

4.5 PROPERTIES

Our model could generate longer stories featuring accurate characters, at a faster speed and with
lower computational consumption. Our architecture allows our model to retain an extensive con-
text requiring minimal computational resources by efficiently mapping visual features into tokens
instead of operating in pixel space. fig. 6 shows the comparison between our model and Story-
LDM (Rahman et al., 2023) w.r.t GPU memory consumption and inference speed for longer-frames
story generation. Our model is capable of producing sequences exceeding 50 frames with low mem-
ory usage, whereas Story-LDM (Rahman et al., 2023) encounters GPU memory limitations (80G
A100) when generating 42 frames. This is because Story-LDM (Rahman et al., 2023) requires the
retention of the entire context, e.g., n frames in latent pixel space (n × h × w × d), whereas our
model processes visual features as four token embedding (n × 4 × d) with the same dimensions as
the text tokens in LLM. table 5 compares the accuracy of generated characters and FID score for
long story visualizations between our model and Story-LDM (Rahman et al., 2023). The perfor-
mance of Story-LDM (Rahman et al., 2023) significantly decreases when generating longer stories
and reaches the memory limit before 50 frames. In contrast, by utilizing the capacity of LLM to
retain extensive context, our model upholds accurate character consistency in visualizing lengthy
narratives with co-referential text descriptions.

Models Metric 4 10 20 40 50

Story-LDM (Rahman et al., 2023) Char-Acc (↑) 77.23 74.84 69.01 63.40 N/A
FID (↓) 36.34 48.92 53.32 60.33 N/A

StoryGPT-V (Ours) Char-Acc (↑) 85.44 84.63 82.86 81.04 80.92
FID (↓) 27.08 38.91 42.60 48.37 61.23

Table 5: Longer-frames story visualization comparison on FlintStonesSV (Gupta et al., 2018) with
referential text. Story-LDM reaches maximum GPU capacity when generating 50 frames.

5 CONCLUSION

In this paper, we aim at high-quality and consistent character synthesis for story visualization
grounded on co-referential text descriptions. To accomplish this, we utilize the strengths of the
LDM for generating high-quality images, combined with the reasoning capability of LLM to com-
prehend extended contexts, resolve ambiguities, and ensure semantic consistency in the generation
process. We first finetune LDM by guiding the cross-attention map of LDM with character seg-
mentation masks, which improves the accuracy and faithfulness of character generation. Next, we
facilitate a mapping from the output of LLM to align with the input space of the first stage LDM,
thus allowing Multi-modal LLM to both process and produce images. This process leverages the
LLM’s logical reasoning to clarify ambiguous references and its capacity to retain contextual infor-
mation. Our model reports superior quantitative results and consistently generates characters with
remarkable quality.

10
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A MULTI-MODAL STORY GENERATION

Owing to StoryGPT-V design leveraging the advanced capabilities of Large Language Models
(LLMs), it exhibits a unique proficiency in that it can extend visual stories. StoryGPT-V is not
merely limited to visualizing stories based on provided textual descriptions. Unlike existing models,
it also possesses the innovative capacity to extend these narratives through continuous text gener-
ation. Concurrently, it progressively synthesizes images that align with the newly generated text
segments.

Figure 4 presents an example of a multi-modal story generation. Initially, the first four frames are
created according to the text descriptions from the FlintstonesSV (Gupta et al., 2018) dataset (gray
part). Subsequently, the model proceeds to write the description for the next frame (blue part), taking
into account the captions provided earlier, and then creates a frame based on this new description
(blue part). This method is employed iteratively to generate successive text descriptions and their
corresponding frames.

Our model represents a notable advancement in story visualization, being the first of its kind to
consistently produce both high-quality images and coherent narrative descriptions. This innovation
opens avenues for AI-assisted technologies to accelerate visual storytelling creation experiences by
exploring various visualized plot extensions as the story builds.
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Fred is 
looking over 
the food on 
the table in 
the dinning 
room.

Wilma is 
speaking to 
Fred in the 
dinning 
room.

Fred is in the 
kitchen. He 
talks while 
lokking at a 
giant pile on 
the table.

He is in the 
dinning 
room. He 
puts his 
hands on his 
hips as he 
talks.

Wilma says 
(excitedly) 
Oh boy, look 
at all the 
food!

Wilma looks 
at Fred in 
disblief.

Wilma rolls 
her eys and 
muBers 
under her 
breath.

Fred looks at 
Wilma with a 
mischievous 
grin on his 
face.

Figure 4: Our model StoryGPT-V extending stories in both language and vision: Gray part is
the text descriptions from datasets. Blue part corresponds to the model-generated frames and the
continued written stories based on the previous captions.

Fred and Barney are standing 
in the room. Fred is talking to 
Barney. They are both wearing 
hats.

LD
M

Ch
ar

-L
DM

 (O
ur

s)

Fred Barney Fred Barney

Figure 5: Visualization of cross attention maps of corresponding character tokens.

B ABLATION STUDIES

B.1 EFFECT OF FIRST-STAGE DESIGN.

In Table 6 lower half, we conducted an ablation study on how the stage-1 design contributes to the
final performance. In the first line, the stage-2 LLM is aligned with vanilla LDM fine-tuned on
FlintstonesSV (Gupta et al., 2018). The second line aligns the LLM output with our Char-LDM’s
text embedding (Embtext), while the last line aligns with character-augmented fused embedding
(Embfuse) of our Char-LDM. The first two lines align to the same text embedding encoded by the
CLIP (Radford et al., 2021b) text encoder, however, our Char-LDM enhanced with cross-attention
control (Lreg) produces more precise characters. Different from Embtext, the last line is aligned
with Embfuse, which is augmented with characters’ visual features. This visual guidance helps
LLM to interpret references more effectively by linking “he, she, they” to the previous language and
image context.

Models Aligning space Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓)
Vanilla LDM (Rombach et al., 2022) × 75.37 87.54 52.57 58.41 32.36

Our Stage-2
Vanilla LDM Embtext 84.06 92.54 53.18 58.29 22.94
Char-LDM Embtext 86.10 93.46 54.92 60.15 21.30

Char-LDM Embfuse (default) 88.45 94.94 56.45 62.09 21.71

Table 6: The output of our stage-2 model (OPT) is aligned with conditional input of vanilla
LDM (Rombach et al., 2022) (finetuned on FlintstonesSV (Gupta et al., 2018)), our Char-LDM
text embedding (Embtext) or character-augmented fused embedding (Embfuse).
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B.2 NUMBER OF [IMG] TOKENS

We further examined the impact of the number of added [IMG] tokens. As indicated in Table 7,
aligning with the fused embedding and setting R = 8 yields the best performance.

Models R Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓)
Embtext 4 82.14 90.18 54.28 59.58 21.33
Embtext 8 86.10 93.46 54.92 60.15 21.30
Embtext 16 83.77 91.07 54.08 60.21 21.58

Embfuse 4 86.23 93.43 54.57 59.61 21.97
Embfuse 8 88.45 94.94 56.45 62.09 21.71
Embfuse 16 85.35 91.96 52.93 58.86 23.73

Table 7: StoryGPT-V Ablations: Impact of R, the number of added [IMG] tokens. Embtext: the
output of LLM (OPT) is aligned with text embedding extracted from the text encoder; Embfuse:
aligned with fused embedding Embfuse of first stage model.

B.3 DIFFERENT LLMS (OPT VS LLAMA2)

Models # Params Char-Acc (↑) Char-F1 (↑) BG-Acc (↑) BG-F1 (↑) FID (↓) BLEU4 (↑) CIDEr (↑)
OPT (Zhang et al., 2022) 6.7b 88.45 94.94 56.45 62.09 21.71 0.5037 1.6718
Llama2 (Touvron et al., 2023) 7b 89.08 95.07 57.29 62.62 21.56 0.5169 1.7516

Table 8: Performance on FlintstonesSV (Gupta et al., 2018) dataset with referential text using dif-
ferent LLMs.

Our primary contribution lies in leveraging Large Language Models (LLMs) for reference resolution
for consistent story visualization. In our work, we experimented with OPT-6.7b4 and Llama2-7b-
chat5 models. It’s important to note that the utilization of Llama2 was specifically to demonstrate its
additional capability for multi-modal generation. The ablation study of different LLMs was not the
main focus of our research.

Our findings, as illustrated in Table 8, indicate only a slight improvement when changing from
OPT (Zhang et al., 2022) to Llama2 (Touvron et al., 2023). This marginal difference is attributed
to the evaluation metric’s emphasis on image-generation capabilities, which assesses whether the
model’s visual output aligns well with first-stage Char-LDM’s conditional input space.

C EVALUATION

C.1 TEXT-IMAGE ALIGNMENT.

CLIP (Radford et al., 2021b) is trained on large-scale image-caption pairs to align visual and se-
mantic space. However, a domain gap exists between pre-train data and the story visualization
benchmark. Therefore, we finetune CLIP (Radford et al., 2021b) on the story visualization datasets.
However, we found it still hard to capture fine-grained semantics, either text-image (T-I) similarity
or image-image similarity (I-I), i.e., the similarity between visual features of generated images and
corresponding ground truth images.

Upon this observation, we choose the powerful captioning model BLIP2 (Li et al., 2023b) as the
evaluation model. We finetune BLIP2 on FlintstonesSV (Gupta et al., 2018) and PororoSV (Li
et al., 2019), respectively, and employ it as an image captioner for generated visual stories. We
avoided direct comparisons to bridge the gap between BLIP2’s predictions and the actual ground
truth captions. Instead, we used the fine-tuned BLIP2 to generate five captions for each ground truth
image and one caption for each generated image. and report average BLEU4 (Papineni et al., 2002)
or CIDEr (Vedantam et al., 2015) score based on these comparisons.

4https://huggingface.co/facebook/opt-6.7b
5https://huggingface.co/meta-llama/Llama-2-7b-chat
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Models CLIP (T-I) (↑) CLIP (I-I) (↑) BLEU4 (↑) CIDEr (↑)
StoryDALL-E (Maharana et al., 2022) 0.4417 0.8112 0.4460 1.3373
LDM (Rombach et al., 2022) 0.5007 0.8786 0.4911 1.5103
Story-LDM (Rahman et al., 2023) 0.4979 0.8795 0.4585 1.4004
StoryGPT-V (Ours OPT) 0.5106 0.889 0.5070 1.6607

Table 9: Text-image alignment score for FlintstonesSV (Gupta et al., 2018) with referential text
descriptions in terms of CLIP (Radford et al., 2021b) similarity, BLEU4 (Papineni et al., 2002) and
CIDEr (Vedantam et al., 2015).

0%

25%

50%

75%

100%

Visual Quality Text-Image 
Alignment

Character 
Accuracy

Temporal 
Consistency

StoryGPT-V (Ours) Story-LDM

(a) (b)

Figure 6: (a) Human evaluation results on FlintStonesSV (Gupta et al., 2018) w.r.t visual quality,
text-image alignment, character accuracy and temporal consistency. (b) Compare inference speed
and GPU memory consumption between our method and Story-LDM (Rahman et al., 2023). Story-
LDM encounters the 80GB GPU limit when generating sequences exceeding 40 frames.

C.2 HUMAN EVALUATION.

We use Mechanical Turk to assess the quality of 100 stories produced by our methods or Story-
LDM (Rahman et al., 2023) on FlintStonesSV (Gupta et al., 2018). Given a pair of stories generated
by Story-LDM (Rahman et al., 2023) and our model, people are asked to decide which generated
four-frame story is better w.r.t visual quality, text-image alignment, character accuracy and temporal
consistency. Each pair is evaluated by 3 unique workers. The human study interface is illustrated in
Figure 7.

C.3 OPEN DOMAIN EVALUATION

Models CLIP-I (↑) LPIPS (↓)
LDM (Rombach et al., 2022) 0.598 0.704
Story-LDM (Rahman et al., 2023) 0.504 0.715
StoryGPT-V (Ours) 0.613 0.692

Table 10: Results on VIST (Huang
et al., 2016) dataset.

We mainly focus on closed-domain story visualization
and character synthesis with ambiguous references. VIST
is a story visualization data but lacks consistent visual sto-
ries as it relies on people crafting stories for 5 selected
photos from a Flickr album. And it doesn’t contain char-
acter/background labels for a comprehensive evaluation
in the setting of consistent story visualization like (Gupta
et al., 2018). We report CLIP image similarity and LPIPS
score following (Koh et al., 2023a) in Table 10.

D IMPLEMENTATION DETAILS

D.1 DATA PREPARATION

FlintstonesSV (Gupta et al., 2018) provides the bounding box location of each character in the
image. We fed the bounding boxes into SAM (Kirillov et al., 2023) to obtain the segmentation map
of corresponding characters. This offline supervision from SAM is efficiently obtained without the
need for manual labeling efforts.
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Figure 7: Human study interface.

D.2 EXTENDING DATASET WITH REFERENTIAL TEXT

We follow Story-LDM (Rahman et al., 2023) to extend the datasets with referential text by replacing
the character names with references, i.e., he, she, or they, wherever applicable as shown in Algo-
rithm 1. The statistics before and after the referentail extension are shown in Table 11. Please refer
to Story-LDM (Rahman et al., 2023) implementation6 for more details on how the referential dataset
is extended.

Dataset # Ref (avg.) # Chars # Backgrounds

FlintstonesSV (Gupta et al., 2018) 3.58 7 323
Extended FlintstonesSV 4.61 7 323
PororoSV (Li et al., 2019) 1.01 9 None
Extended PororoSV 1.16 9 None

Table 11: Dataset statistics of FlintstonesSV (Gupta et al., 2018) and PororoSV (Li et al., 2019)

D.3 FIRST STAGE TRAINING

We built upon pre-trained Stable Diffusion (Rombach et al., 2022) v1-57 and use CLIP (Radford
et al., 2021a) ViT-L to extract characters’ visual features. We freeze the CLIP text encoder and fine-
tune the remaining modules for 25,000 steps with a learning rate of 1e-5 and batch size of 32. The
first stage utilizes solely the original text description without extended referential text. To enhance
inference time robustness and flexibility, with or without reference images, we adopt a training
strategy that includes 10% unconditional training, i.e., classifier-free guidance (Ho & Salimans,
2022), 10% text-only training, and 80% augmented text training, which integrates visual features of
characters with their corresponding token embeddings.

6https://github.com/ubc-vision/Make-A-Story/blob/main/ldm/data
7https://huggingface.co/runwayml/stable-diffusion-v1-5
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D.4 SECOND STAGE TRAINING

We use OPT-6.7B8 model as the LLM backbone in all experiments in the main paper. To expedite the
second stage alignment training, we first pre-compute non-referential fused embeddings residing in
the input space of the first-stage Char-LDM. We map visual features into m = 4 token embeddings
as LLM input, set the max sequence length as 160 and the number of additional [IMG] tokens
as R = 8, batch size as 64 training for 20k steps. Llama2 is only trained for the experiments
highlighted in the supplementary materials, demonstrating its capability for multi-modal generation
and the ablation of different LLMs. The training configuration is almost the same as OPT, except
for batch size 32. All experiments are executed on a single A100 GPU.

Please refer to all the details at the source code.

Algorithm 1 Character Replacement Algorithm
Definitions:
i: index for frames, ranging from 1 to N
Si: text description of frame i
Ci: a set contains immediate character(s) in the current frame
for i ∈ {1, 2, . . . , N} do

if i = 1 then
Ci ← immediate character of Si

else
if Ci ⊆ Ci−1 then

if length(Ci) = 1 then
Replace Ci in Si with “he” or “she”

else if length(c) > 1 then
Replace Ci in Si with “they”

end if
end if
Ci ← Ci−1

end if
end for

E LIMITATIONS

Our method demonstrates proficiency in resolving references and ensuring consistent character and
background conditions in the context provided by guiding the output of a multi-modal Large Lan-
guage Model (LLM) with character-augmented semantic embedding. However, several limitations
remain. The process involves feeding the previously generated frame into the LLM to produce a
visual output that aligns with the Latent Diffusion Model (LDM) input conditional space. This ap-
proach guarantees semantic consistency, enabling the generation of characters and environmental
objects that resemble their originals. Nonetheless, there are minor discrepancies in detail. This is
because the visual output from the Large Language Model (LLM) is aligned with the semantic em-
bedding space rather than the pixel space, which hinders the complete reconstruction of all elements
in the input image. However, the current most powerful multi-modal LLM, i.e., DALL-E 3 (Ope-
nAI, 2023), could not solve this exact appearance replication in the multi-round image generation
task (Figure 8), indicating an area ripe for further exploration and research.

F QUALITATIVE RESULTS

We provide more generated samples on FlintstonesSV (Gupta et al., 2018) and PororoSV (Li et al.,
2019) with referential text as Figure 9-18 show.

8https://huggingface.co/facebook/opt-6.7b
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• Fred is standing in the living room while holding the phone and talking.
• He is in a room. He picks up the phone and then speaks into the phone.
• He stands next to a small table in the room. He holds the receiver for a phone 

while talking to someone. He then hangs up the phone when he finishes the 
call.

• Fred and Barney are standing in a room. There is a telephone next to Fred. 
Barney is talking with something in his hand.
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Figure 8: DALL-E 3 (OpenAI, 2023) zero-shot inference on FlintstonesSV (Gupta et al., 2018)
dataset.

• Barney is in the dining room at the table. He is holding a stack of papers and 
talking. 

• He stands in the room, laughing at a newspaper. 
• He opens a box while holding papers in a room. Then he hold the papers with 

both hands and laughs. 
• Betty is sitting on a chair in the living room.
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Figure 9: Qualitative comparison on Flint-
stonesSV (Gupta et al., 2018) with co-
reference descriptions.

• Wilma is in the room. She at first has her eyes closed and then opens them.
• Fred is standing in the living room while talking.
• He is in the living room with arms stretched out.
• He is standing in the doorway of the living room, talking to someone off 

screen right.
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Figure 10: Qualitative comparison on Flint-
stonesSV (Gupta et al., 2018) with co-
reference descriptions.
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• Fred is in a room of the house. He is shaking his head as he talks.
• He stands in the room and slightly shakes his head.
• Fred and Wilma are standing in the living room. Fred speaks to Wilma. Then 

he raises his hand, looks down and closes his eyes.
• They are standing in the living room. Wilma has her hands planted on her 

hips as Fred talks to her.
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Figure 11: Qualitative comparison on Flint-
stonesSV (Gupta et al., 2018) with co-
reference descriptions.

• A man dressed with a hat holds a night stick to Fred's face while Fred leans 
on a mail box while they both stand on the sidewalk outside.

• Fred is leaning against the mailbox on the street.
• He is standing outside in front of the mailbox and is bending to pick up a 

letter.
• He is outside. He lights dynamite and then throws it into the shut.
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Figure 12: Qualitative comparison on Flint-
stonesSV (Gupta et al., 2018) with co-
reference descriptions.

• Fred is in a room and talking with his eyes closed.
• He is walking through a room. He is frowning and talking.
• He is walking through the quarry.
• Mr slate is in his office. He is talking with his hand on his desk.
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Figure 13: Qualitative comparison on Flint-
stonesSV (Gupta et al., 2018) with co-
reference descriptions.

• Wilma and Betty are standing in a desert. Wilma is speaking to Betty as Betty 
stands with her hand on her hip.

• They are standing in a desert while looking at something.
• They are standing outdoors. They are laughing together.
• The old man with pink color hat is in the desert. He is being dragged out to 

somewhere.
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Figure 14: Qualitative comparison on Flint-
stonesSV (Gupta et al., 2018) with co-
reference descriptions.
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• Fred is speaking to someone in the room and points to himself.
• He is standing in a room. He point and then gestures with his arms while 

speaking.
• Fred and Wilma are in a room. Fred is looking back at Wilma, speaking to 

her. Wilma is listening.
• They are talking to each other in a good manner in a room.
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Figure 15: Qualitative comparison on Flint-
stonesSV (Gupta et al., 2018) with co-
reference descriptions.

• Tongtong is talking while putting his hand around his mouth.
• Pororo is talking and crong is standing beside pororo.
• He is talking while moving his hand. Crong is looking at him.
• He is calling with his hands around his mouth. crong looks at him and turns his head.
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Figure 16: Qualitative comparison on Poro-
roSV (Li et al., 2019) with co-reference de-
scriptions.

• Pororo throws the blue fish to Crong. Crong is trying to catch it with his mouth and eat it.
• Pororo caught more fish. Pororo hands the fish to Crong.
• He is happy that he caught many fish. He is holding a fishing rod and a fish. He goes over to Crong to 

check how many fish Crong caught.
• He looks into the basket and is surprise. Then, he becomes angry at Crong.
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Figure 17: Qualitative comparison on Poro-
roSV (Li et al., 2019) with co-reference de-
scriptions.

• Pororo smiles and say something to his friends. Then pororo turns his body and keeps going.
• He is climbing the mountain. There is some snowstorm
• He walks through snowstorm. He finally reach a top of the mountain.
• He is surprised. He stands up on the top of the mountain. Mountain is so high.
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Figure 18: Qualitative comparison on Poro-
roSV (Li et al., 2019) with co-reference de-
scriptions.
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