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Abstract

As the applications of deep learning models on edge devices increase at an acceler-
ating pace, fast adaptation to various scenarios with varying resource constraints
has become a crucial aspect of model deployment. As a result, model optimization
strategies with adaptive configuration are becoming increasingly popular. While
single-shot quantized neural architecture search enjoys flexibility in both model
architecture and quantization policy, the combined search space comes with many
challenges, including instability when training the weight-sharing supernet and
difficulty in navigating the exponentially growing search space. Existing methods
tend to either limit the architecture search space to a small set of options or limit
the quantization policy search space to fixed precision policies. To this end, we
propose BatchQuant, a robust quantizer formulation that allows fast and stable
training of a compact, single-shot, mixed-precision, weight-sharing supernet. We
employ BatchQuant to train a compact supernet (offering over 107% quantized sub-
nets) within substantially fewer GPU hours than previous methods. Our approach,
Quantized-for-all (QFA), is the first to seamlessly extend one-shot weight-sharing
NAS supernet to support subnets with arbitrary ultra-low bitwidth mixed-precision
quantization policies without retraining. QFA opens up new possibilities in joint
hardware-aware neural architecture search and quantization. We demonstrate the
effectiveness of our method on ImageNet and achieve SOTA Top-1 accuracy under
a low complexity constraint (< 20 MFLOPs). The code and models will be made
publicly available at https://github.com/bhpfelix/QFA.

1 Introduction

In order to deploy deep learning models on resource-constrained edge devices, careful model opti-
mization, including pruning and quantization is required. While existing works have demonstrated
the effectiveness of model optimization techniques in speeding up model inference [1} 2,13} 4], model
optimization increases human labor by introducing extra hyperparameters. Consequently, automated
methods such as neural architecture search (NAS) [5, |6} [7, (8, 9L 110} [11} [12} [13} [14} [15] [16]] and
automated quantization policy search [[17 18, [19] have emerged to alleviate the human bandwidth
required for obtaining compact models with good performance.

In this paper, we focus on finding the best of both worlds—the best combination of architecture and
mixed-precision quantization policy. However, combining two complex search spaces is inherently
challenging, not to mention that quantization usually requires a lengthy quantization-aware training
(QAT) procedure to recover performance. Thus, previous methods tend to employ proxies to estimate
the performance of an architecture and quantization policy combination. For example, APQ [20]
performs QAT on each of 5000 architecture and quantization policy combinations for 0.2 GPU hours
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Table 1: Comparisons of quantized architecture search approaches: DNAS [[19] SPOS [12], HAQ [17]],
APQ [20], OQA [23] and BQ (Ours). “Single-shot mixed-precision QAT” means the supernet is
directly trained with QAT on arbitrary mixed-precision quantization policies. “No training during
search” means there is no need for re-training the sampled network candidate during the search
phase, and this is accomplished by single-shot supernet training similar to [22]]. “No evaluation
during search” means that we do not have to evaluate sampled network candidates on the validation
dataset during the search phase, and this is achieved by training an accuracy predictor similar to
[22]. “No retraining/finetuning” means that we do not have to finetune any searched architectures as
weights inherited from supernet already allow inference for the given architecture under the specified
quantization policy. “Weight-sharing” means that quantization policies share the same underlying
full-precision weights so that we can obtain mixed-precision weights by fusing the corresponding
quantizers with the same set of full precision weights. “Compact MobileNet search space” means
that supernet is based on the Mobilenet search space, which offers better accuracy v.s. complexity
trade-off but is more sensitive to quantization than heavy search space such as ResNet.

DNAS SPOS HAQ APQ OQA QFA

Single-shot mixed-precision QAT v v
No training during search v v v
No evaluation during search v v v
No retraining / finetuning v v
Mixed-precision quantization v v v v v
Weight-sharing v v
Compact MobileNet search space v v v v

and uses the sampled combinations to train an accuracy predictor. BATS [21]] searches for cell
structures that are repeatedly stacked to form the target architecture. Proxy-based methods necessitate
both careful treatments to ensure reliable ranking of quantized architectures and a time-consuming
retraining procedure when the target quantized architecture is identified, rendering proxy-based
approaches impractical for frequently changing deployment scenarios.

To avoid the lengthy retraining process, NAS methods that train a single-shot weight-sharing su-
pernet [12, 22] are ideal. However, many previous works have shown evidence that QAT of mixed-
precision supernets can easily become highly unstable [23] 21]. As a result, existing single-shot
quantized architecture search methods usually limit the size of the combined search space. For
example, SPOS [12] sacrifices architecture search space size to only allow channel search and re-
quires retraining to recover performance. OQA [23]] limits its quantization policy search space to
fixed-precision quantization policies and trains a separate set of weights for each bitwidth.

To successfully train the mixed-precision supernet, we propose BatchQuant (BQ). Analogous to
batch normalization, BQ leverages batch statistics to adapt to the shifting activation distribution as a
result of quantized subnet selection, offering better robustness to outliers than quantizer with vanilla
running min/max based scale estimation, and better flexibility than a learnable quantizer that only
learns a fixed set of parameters. Without limiting the architecture search space, our joint architecture
and quantization policy search space contains over 107® possible quantized subnets, providing much
more flexibility than previous search spaces (e.g. The OQA search space has 102° possible quantized
subnets). While our approach and OQA both follow the supernet training strategy introduced in
[22], our weight-sharing supernet takes only 190 epochs to train despite the complex search space,
significantly less than the 495 epochs required by OQA. We further leverage the NSGA-II algorithm
to produce a Pareto set of quantized architectures that densely covers varying complexity constraints,
eliminating the marginal cost of adapting architecture to new deployment scenarios.

The contributions of the paper are

* To the best of our knowledge, we present the first result to train one-shot weight-sharing supernet
to support subnets with arbitrary mixed-precision quantization policy without retraining.

* We propose BatchQuant, an activation quantizer formulation for stable mixed-precision supernet
training. The general formulation of BatchQuant allows easy adaptation of new scale estimators.

* Compared with existing methods, our method, QFA, takes a shorter time to train a significantly
more complex supernet with over 107® possible quantized subnets and discovers quantized subnets
at SOTA efficiency with no marginal search cost for new deployment scenarios.



Table 2: Design runtime comparison with state-of-the-art quantized architecture search methods. Here
we use T'(+) to denote the runtime of an algorithm. Note we separate the accuracy predictor training
from the search procedure because it is a one-time cost amortized across deployment scenarios. We
define marginal cost as the cost for searching in a new deployment scenario, and we use /N to denote
the number of deployment scenarios. Our method eliminates the marginal search cost completely.

Method Design Runtime
SPOS T(Supernet Training) + T(Search + Finetune) x N
APQ T(Supernet Training + Accuracy Predictor Training) + T(Search + Finetune) x N

OQA T(Supernet Training + Accuracy Predictor Training) + T(Search + Finetune) x N

Ours T(Supernet Training + Accuracy Predictor Training + Search)

2 Related Work

2.1 Mixed Precision Quantization

Different layers of a network have different redundancy and representation power, each layer will
react to quantization differently and may achieve varying levels of efficiency gain on hardware. In fact,
many fixed-bitwidth quantization methods are inherently mixed-precision by making design decisions
to leave the first convolution layer, batch-norm layers [24]], squeeze and excitation layers [25], and
the last fully connected layer at full precision / int8 precision [3} 12,1912, [23]]. As a result, mixed-
precision quantization methods [26, 1827, |17] emerge in the place of fixed precision quantization and
are receiving increasing attention from hardware manufacturers [17]. In contrast to mixed-precision
quantization methods that optimize for a single quantization policy on a single architecture, QFA
allows the discovery of the most suitable quantization policy for arbitrary subnet architectures.

Adaptive Quantization is also closely related to our work. Methods include Adabits [28]], Any-
Precision DNN [29]], Gradient ¢; regularization or quantization robustness [30], and KURE [31]
train model that can adaptively switch to different bitwidth configuration during inference. Most
methods [28 29, 130]] only address the case of fixed precision quantization where all weights share
the same bitwidth and activations share another. Our quantization policy search space offers much
more flexibility in terms of layerwise mixed-precision quantization.

2.2 Joint Mixed-Precision Quantization and Neural Architecture Search

There exist many exciting works in the intersection of mixed precision quantization and NAS.
JASQ [32] employs population-based training and evolutionary search to produce a quantized
architecture under a combined accuracy and model size objective. DNAS [[19] is a differentiable NAS
method that optimizes for a weighted combination of accuracy and resource constraints. SPOS [12]
trains a quantized one-shot supernet to search for bit-width and network channels for heavy ResNet
search space. APQ [20] builds upon a full precision one-shot NAS supernet and trains 5000 quantized
subnets to build a proxy accuracy predictor. The best quantized architecture proposed by the
predictor is then retrained. Most existing methods fall into two categories. The first optimizes
for a single weighted objective of accuracy and complexity and produces only a single or a few
quantized architectures [32, [19]], which is difficult to scale to multiple deployment scenarios. The
second category is capable of estimating the performance for many quantized architectures by
using proxies such as weight-sharing supernet and partially trained models [12}[20]. Due to the
accuracy degradation in weight-sharing supernet in SPOS and the use of proxy in APQ, both
methods require retraining when the best quantized architecture is discovered. On the contrary, our
approach does not require retraining. Training the weight-sharing supernet with BQ reduces accuracy
degradation, allowing quantized subnets to reach competitive performance without retraining. As
a result, QFA enjoys no marginal cost for deploying quantized subnet to new scenarios. Table [1]
details the difference of our approach from other architecture search approaches. Table|2|compares
the algorithmic complexity of our method with other mixed-precision quantized architecture search
methods.



3 Stabilizing Mixed Precision Supernet Training with BatchQuant

We adopt the single-path weight-sharing MobileNetV3 [33]] supernet formulated in [22] that supports
adaptive input resolution, network kernel size, depth, and width. In addition, we assign simulated
quantization operations (quantizers) [34], one for each bitwidth, to each weight and activation tensor
within the supernet to support quantization-aware training (QAT). We allow bitwidths {2, 3,4} for
both weight quantizers and activation quantizers.

The compact weight-sharing supernet formulation allows us to share a single set of quantizers across
all the subnets. However, such compactness also leads to instability. Specifically, supernet training
becomes highly unstable when activations from different subnets are quantized by a shared quantizer.
In the following sections, we will review the fundamentals of quantization and address why shared
activation quantizer can cause unstable supernet training. Then, we introduce BatchQuant as a
solution to stabilize supernet training.

3.1 Quantization Preliminaries

To help address the difficulty in training the mixed-precision supernet, we start by introducing common
notations for quantization. WLOG, we consider the case of uniform affine (asymmetric) quantization.
Let x = {z1, -+ ,xn} be a floating point vector/tensor with range (Zin, Tmaz) that needs to be
quantized to b-bitwidth precision. The integer coding x,, will have range [n, p] = [0, 2" — 1]. Then we
derive two parameters: Scale (A) and Zero-point(z) which map the floating point values to integers
(See [1]]). The scale specifies the step size of the quantizer and floating point zero maps to zero-point
[34], an integer which ensures that zero is quantized with no error. The procedure is as follows:

A_xmaw_xmin -l Tmin
_p—in’ z=camp |\ — A 2y Y

xT, = Lclamp (% + 2, n,p)—‘ (D

z=(xy—2)A

where |-] indicates the round function and the clamp(-) function clamps all values to fall between n
and p. The quantized tensor & is then used for efficient computation by matrix multiplication libraries
that handle A efficiently (See [35]). Note that during training, the range (2 in, Tmae) Of activations
are not known beforehand. Therefore, standard practice is to keep track of an exponential moving

average (EMA) of past extreme values (min&max) to generate the scale estimator A. As both the
calculation of z and x,, relies on a good A estimate, we will later provide insights into why using

EMA estimator A for activation quantization in the supernet could lead to unstable training.

3.2 Weight Quantization with LSQ
Since the value distribution of a weight tensor is relatively stable across updates and is empirically

observed to be symmetrical around zero, many methods treat A as a learnable parameter and discard
the zero point z [36} 4]]. We leverage the symmetric LSQ quantizer [36] to quantize weight tensors

in our supernet as follows:
x
Ty = {clamp (E,n,pﬂ

T = x4 A

2

where [n, p] = [-2°~1, 2= —1]. Note the rounding operation | -] has 0 derivative almost everywhere,
QAT applies the straight through estimator (STE) [37]] to allow gradients to backpropagate through.

3.3 Challenges of Activation Quantization in One-shot Supernet

While weight quantization for weight-sharing supernet is similar to that of normal networks, activation
quantization requires careful treatment to enable stable supernet training. According to the insights
in [31]], as well as shown in Equation (1)), an unstable A estimate could impact the quantized tensor &
and negatively impact QAT performance. Given the significant delay in the EMA estimator A when



the ranges shift rapidly, practical approaches such as [34] completely disables activation quantization
for the first 50 thousand to 2 million steps. However, we now show that one-shot supernet will always
have rapidly shifting activation ranges due to subnet sampling.

EMA Estimator A is problematic. Let N = B x C' x H x W denote the number of elements
within an activation tensor with batch size B, channel number C, height H, and width . Due to
adaptive input resolution and network width (number of channels), the activation map at a given layer
will vary in size (H, W) and channel number C' depending on the activated subnet. For example, at a
batch size of 64 the size of incoming activations to the second mobile inverted residual block in our
search space can vary from [64, 72, 64, 64] to [64, 144,112,112].

We now consider the case where elements within 2 are .7.d random variables with cumulative

distribution F', and let My = max{z1, -+ ,xn} denote the maximum. Then My follows the
maximum extreme value distribution with the following cumulative distribution function:
P(My <t)=P(z; <t,--- oy <t) =P(x; <t)---Play <t)=F@t)V 3)

Following the assumptions in [38], we model activations within neural networks as tensor-valued
Laplace random variables. WLOG, when considering the maximum value distribution, we can model
each element as an exponential random variable, because the Laplace distribution can be thought of
as two exponential distributions spliced together back-to-back. With z; ~ Exp(\), i € [1,---, N],
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above, the largest difference in E[My/] is propor-
tional to log(1511424 x batch_size), which can
lead to substantial instability in the EMA estima-
tion. Furthermore, due to adaptive layer skipping, layers that are only present in deep subnets will
activate less frequently and have substantially more lag in EMA update than layers shared among
shallow and deep subnets, exacerbating the instability in EMA and the quantized activations. Figure[T]
shows the maximum extreme value distribution for the respective activations collected from 1000
batches of training data.

Figure 1: Shifting Max Value Distribution of
activation tensors during training.

Note such a shifting extreme value distribution problem can also happen to weight tensors in weight-
sharing supernets because different subnets can have different weight tensor sizes. Conveniently,
our supernet construction ensures that at each layer, the weight tensor for smaller subnets is nested
within the weight tensor for the larger subnet. Therefore we simply perform quantization on the entire
weight tensor before indexing out the weights for the given subnet to stabilize weight quantization.

Learnable scale does not help. Methods that learn a fixed A is also suboptimal in the case of
supernet training. According to [38]] the optimal quantization level depends on the variance in
activation distribution (e.g. Laplace parameter b for Laplace distribution or the variance o® of normal
distribution). However, as observed in [29], quantizing weights and input to varying precision leads to
activations with different mean and variance. While we can easily resolve this issue in fixed-precision
quantization by learning a different set of A for each bitwidth setting, it is impossible to assign a set
of A parameters for each mixed-precision quantization policy on each subnet.

Empirically, during the training of our compact MobileNet search space, EMA estimator A leads to
gradient explosion, and a fixed set of learnable A leads to diverging training loss as well.



3.4 Batch Quantization for Robust Activation Quantization

To alleviate the unstable scale estimation issue, we propose the following general definition of batch
quantizer (BatchQuant)

A @maw_jmin s jjmzn
A=————7—  Z=clamp|—|——|,n,p
p—n A

xT, = {clamp (Ax 3 n,p —‘ )]
Y

z=(xy—2—B)Ay.
Analogous to batch normalization [24], we leverage batch statistics to help standardize the activation
distribution across different sampled subnets. Instead of using EMA, we estimate the extreme values
Zmin and 2,4, only from the current batch to negate the effect of changing extreme value distribution

due to subnet sampling. In addition, we learn a multiplicative residual v on A and an additive residual
[ on Z to facilitate learning of the optimal clipping range.

Note, similar to LSQ+ [4], zero in activation may not be exactly quantizable based on such a
formulation. However, we share emprical observation as LSQ+, that the learned [ is often small
and aids in empirical performance by reducing the quantization error for H-swish activation [33]].
Because we use symmetric quantization for weights, asymmetric quantization of activations has no
additional cost during inference as compared to symmetric quantization since the bias term can be
precomputed and fused with the bias in the succeeding layer: bias

WE = (WgAy) (g — 2 — ﬁ)Amv = wqquwAz'y — weAy (2 + 6)A$7. (6)

BatchQuant (BQ) is generally applicable. Note our formulation of BatchQuant is general. We do not
explicitly define the batch extreme value estimators ., and .42, because it is straightforward to
plug in different definitions as the usage sees fit. We will provide three simple example formulations of
Zmin and Zp,q, below. BatchQuant could potentially be a good drop-in replacement for conventional
QAT with EMA scale estimator when adjusting training batch size or performing tasks that have
varying activation size such as semantic segmentation. Due to the adaptive formulation, BatchQuant
offers a much simpler initialization strategy than the optimization-based strategy in LSQ+ [4]. With
a proper choice of the batch extreme value estimator (Z,,in, Zmaz)» We can simply initialize the
residual terms with v = 1 and 8 = 0. As training is stabilized from the beginning, BQ can also avoid
the delayed activation quantization strategy introduced in [34], which requires choosing a starting
schedule for activation quantization.

Extreme Value Estimators Due to presence of learnable residuals v and £, the extreme value
estimators (Zmin, Lmae ) does not need to capture the exact value of the scale as long as the calculated

scale A captures the range variation in activation. Consider 4D activations with vector index
it = (iB,ic,im,iw) that indexes batch, channel, height, and width dimension respectively, we
present three example definitions to use in our experiment:

Tomin = min x;, Tmaz = max x; @)

Tomin = E min x;, Tmas = E max &; ()
ZB,ZH,'LW ZB,ZH,'LW

mmin =K — 30a xmaz =pu+ 30 (9)

where 1 is the tensor-wise mean and o is the tensor-wise variance. Note that Equation [7] provides
unbiased estimation of extreme values and is analogous to EMA A estimator but only based on batch
statistics. Equation [J]is a biased estimation with the least variance and is equivalent to the scale
parameter initialization strategy of LSQ+ [4]]. Plugging Equation[J]into Equation [5]is thus analogous
of using a learned scale quantizer. Equation[8]is a biased estimation with a bias-variance trade-off
between Equation[7]and[9] We show empirically that Equation [§]leads to stable supernet training.

BatchQuant Calibration during test time Similar to the treatment of batchnorm in [22]], to obtain a
set of extreme value estimations (Z,in, £maz ) Specific to a quantized subnet for inference, we simply
perform BatchQuant calibration by forwarding a few batches of data and accumulate a running mean
of the estimations.



4 Mixed-Precision Quantized Architecture Search

Equipped with BatchQuant for stable mixed-precision supernet training, we now introduce the search
procedure of our mixed-precision quantized architecture search method, QFA.

Supernet Search Space Definition Following the convention [3[2}[19} 12} 23] of only searching and
quantizing the residual blocks in the Mobilenet V3 search space, we keep the input and weights of the
first convolutional layer at full precision and quantize the incoming activation and weights of the last
fully-connected layer to 8-bit precision. Specifically, our Mobilenet V3 search space contains 5 stages
each with 4 mobile inverted residual blocks. Each stage can optionally skip 1 or 2 of its last blocks.
Each block has kernel size options {3, 5, 7} and expansion ratio choices {3, 4, 6}. Within each block,
there are 3 convolution layers. Each convolution layer can independently choose an activation bitwidth
and a weight bitwidth. Thus, each block has (3 x 3 x 33%2) = 6561 configurations, each stage has
65612 x (1 + 6561 x (1 + 6561)) ~ 1.85 x 10'® configurations. Without considering the elastic
input resolution choices, our complete search space contains over (1.85 x 10*%)% ~ 2.19 x 107°
different quantized architectures.

Supernet Training and Elastic Quantization. Fol-
lowing the common practice of starting QAT from a
trained full precision network [1]], we start by pretrain-
ing the supernet without quantizers on ImageNet [39]].
We follow the training protocol introduced in [22] to
train the supernet. Then, we perform QAT starting
from the full precision supernet. Unlike [22} 23] that
adopts a progressive shrinking strategy which gradually
opens up smaller subnet choices as training progresses,
we directly allow all possible quantized subnet options.
Our elastic quantization training consists of two stages.

Table 3: The accuracy of the biggest fixed-
precision model after single-stage and two-
stage elastic quantization. Single-stage
means that we directly train supernet with
bitwidth choices {2, 3,4} for 190 epochs,
and two-stage means that we first train su-
pernet with bitwidth choices {2, 3,4, 32}
for 65 epochs, then continue training the
supernet with bitwidth choices {2, 3,4} for
125 epochs. W/A denotes the bitwidth for
weights and activation respectively.

In the first stage, we train the supernet for 65 epochs

with bitwidth choices {2, 3,4, 32}, where a bitwidth W/A 44 33 212
of 32 means floating-point precision. Empirically, we Single Stage 74.8% 73.7% 66.3%
found that mixing in the well-trained floating-point lay- Two Stage  75.6% 74.3% 68.4%

ers helps the low precision layers learn and leads to
more stable training. Then, we proceed to the second
stage and train the supernet for 125 epochs with only low bitwidth choices {2, 3,4}. Table|3|shows
that our two-staged training strategy outperforms training a supernet with bitwidth choices {2, 3,4}
for the same number of epochs. Our elastic quantization training requires only 190 epochs of training.
In comparison, the staged training of fixed precision supernet at each bitwidth in [23]] takes 495
epochs in total.

Subnet Sampling. Similar to [22| 23| [16]], for each supernet training update, we sample and
accumulate gradients from multiple subnets. Specifically, we adopt the sandwich rule proposed
in [[16] by sampling 4 quantized subnets accompanied by the smallest architecture and the largest
architecture within the supernet with the entire architecture set to a random bitwidth.

Multi-objective Evolutionary Search To balance multiple competing objectives, we leverage multi-
objective evolutionary search to produce desirable subnets. Unlike the aging evolution in [22] that
only produce one output architecture under a given set of constraints at a time, we adopt the NSGA-II
algorithm [40], which outputs a Pareto population at once. As a result, we can quickly access
the Pareto front of a trained supernet. At each iteration, the NSGA-II algorithm selects the best-fit
population with non-dominated sorting. Then, a crowding distance is calculated to ensure the selected
individuals cover the Pareto front evenly without concentrating at a single place. To speed up the
search process, we follow [22]] and train an accuracy predictor that predicts the accuracy of a given
quantized architecture configuration. We use one-hot encoding to encode quantized architecture
configurations into a binary vector.

S Experimental Analysis and Results

Experiment Settings and Implementation Details We base our codebase on the open-source
implementation of [22] under the MIT License, and we follow the exact training procedure on
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Figure 2: Comparison with state-of-the-art quantization methods on the ImageNet dataset. The
left subplot compares our Pareto architectures with those of existing mixed-precision quantized
architecture search methods (APQ, SPOS). The right subplot compares our Pareto architectures with
existing fixed-precision quantization methods (OQA, BATS, BMobi, LSQ, LSQ+, APOT, QKD). For
the ease of viewing, we denote each discovered architecture with a marker only on the left subplot.

ImageNet [39] to obtain the full precision supernet. For both stages of the elastic quantization
procedure, we follow the common hyperparameter choice of [22]] and use an initial learning rate of
0.08. For all experiments, we clip the global norm of the gradient at 500. We train with a batch size
of 2048 across 32 V100 GPUs on our internal cluster. Unless otherwise mentioned, we keep all other
settings the same as [22]. After training is complete, we randomly sample 16k quantized subnets
and evaluate on 10k validation images sampled from the training set to train the accuracy predictor.
During the evolutionary search, we keep a population size of 500 for 1000 generations. For each
generation, once we identify the Pareto population based on nondominated sorting and crowding
distance, we breed new genotypes through crossover and mutation with a crossover probability of
0.007 and a mutation probability of 0.02. We determine both crossover and mutation probability
through grid search. To demonstrate the effectiveness of QFA, we conduct experiments that cover the
accuracy and complexity trade-off of searched subnets. For a fair comparison with previous methods,
we adopt FLOPs for full precision layers and BitOPs for quantized layers as our complexity measure.
While there is no direct conversion from BitOPs to FLOPs, we follow the convention in [21), 23],
where given a full precision layer with FLOPs a, its quantized counterpart with m bit weight and n
bit activation will have a BitOPs of mn x a and a FLOPs of (mn x a)/64. To be concise, we report
our complexity as FLOPs of FP layers + BitOPs of quantized layers / 64 = Total FLOPs.

Stable Mixed-precision Supernet Training with BQ To test the effectiveness of BQ in stabilizing
supernet training, we attempt to train a baseline supernet with LSQ quantized weights and LSQ+
quantized activations. To test the robustness of low bitwidth training, we only allow bitwidth choices
{2,3,4}. We follow the practice of LSQ+ and initialize the scale and offset parameter layer-by-
layer through an optimization procedure that minimizes the MSE between quantized output and
full precision output at the given layer. However, the training loss diverged at the start of the
second learning rate warm-up epoch. Replacing LSQ+ activation quantizer with BQ, we obviate the
optimization-based initialization procedure, and the divergent training loss problem no longer occurs.

Effect of Residual Terms ~ and 3 To test the effect of «y and 5 in BQ, we removed ~ and 3 from all
BQ operations when training the supernet. The training loss diverged within a few update steps.

Comparing Extreme Value Estimator Choices To investigate the stability of different extreme
value estimators, we train BQ supernet with bitwidth choices {2, 3,4} and plug-in Equations @]
as extreme value estimator. Training loss for both Equations [7] and [9] diverged after the first few
updates, and only Equation[§]led to stable training.

Comparison with SOTA Mixed-Precision Quantized Architecture Search We compare with
existing quantization-aware NAS methods including APQ [20] and SPOS [12]], as shown in the left
subplot of Figure[2] Our results outperform both APQ and SPOS by a large margin. Thus, in terms
of existing mixed-precision quantized architecture search methods, we are able to achieve the best
accuracy v.s. FLOPs trade-off.



Table 4: Design cost comparison with state-of-the-art quantized architecture search methods. Our
method eliminates the marginal search time. Thus the marginal CO5 emission (Ibs) [41]] is negligible
for search in a new scenario. Here marginal cost means the cost for searching in a new deployment
scenario, we use NV to denote the number of up-coming deployment scenarios.

Design cost  COze (lbs)
(GPU hours)  (marginal)

SPOS 288 + 24N 6.81
APQ 2400 + 0.5N 0.14
OQA 2400 +0.5N 0.14

Ours 1805 + 0.N 0.

Method

Comparison with SOTA fixed-precision quantized models We further compare with several strong
fixed-precision quantization methods including OQA [23]], BATS [21]], BMobi [42], LSQ [36],
LSQ+ [4], APOT [43], and QKD[44]], as shown in Figure@ Our results demonstrate the competitive
performance of quantized subnets discovered by QFA against quantized models produced by state-of-
the-art quantization and quantization-aware NAS methods. For models > 20 MFLOPs, we are able to
achieve comparable performance as OQA with much less training cost—the OQA supernets require
a total of 495 epochs to train, while our mixed-precision supernet took only 190 epochs to train. We
achieve SOTA ImageNet top-1 accuracy on models under 20 MFLOPs. Our advantage over OQA
at < 20 MFLOPs could be mainly due to the flexibility of our search space to smoothly interpolate
between the Pareto frontiers of fixed-precision architectures by mixing layers with varying precision.

Design Cost Comparison with Quantized Architecture Search Methods As shown in Table 4] our
approach demonstrates better efficiency in terms of GPU hours and marginal carbon emission. We
report the total GPU hours for our approach, including 1200 GPU hours of full-precision supernet
training, 565 GPU hours of mixed-precision supernet training, and 40 hours of accuracy predictor
data collection and training. Running NSGA-II with the trained accuracy predictor does not make
use of GPU and finishes within 1 hour. For a fair comparison, we added the GPU hours to train the
full precision supernet to the quantized architecture search time reported by the authors of OQA.

6 Discussion

While we demonstrate the superior performance of BatchQuant in combination with mixed-precision
weight-sharing supernet, there remain many other directions for future investigation. QFA shares
some limitations common to many NAS methods with weight-sharing supernets. Since we only visit
a small fraction of subnets during training, some subnets may receive insufficient training. Employing
techniques [45} |46] targeting this limitation may prove helpful for our especially complex search
space. Finally, a thorough theoretical explanation of the effectiveness of BatchQuant on the training
dynamics of weight-sharing mixed-precision supernet is still an open problem, and we leave the
investigation for future exploration.

7 Conclusion

In this paper, we present Quantized-for-All (QFA), a novel mixed-precision quantized architecture
search method that can jointly search for architecture and mixed-precision quantization policy
combination and deploy quantized subnets at SOTA efficiency without retraining or finetuning. We
provide analysis on the challenge of activation quantization in mixed-precision supernet. To allow
stable training of QFA supernet, we proposed BatchQuant (BQ), a general, plug-and-play quantizer
formulation that stabilizes the mixed-precision supernet training substantially. We demonstrate the
robust performance of QFA in combination with BQ under ultra-low bitwidth settings (2/3/4). By
leveraging NSGA-II, we produce a family of Pareto architectures at once. Our discovered model
family achieves competitive accuracy and computational complexity trade-off in comparison to
existing state-of-the-art quantization methods.
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