

# 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PROTO-SAGA: PROTOTYPE-BASED 3D SCENE SEG- MENTATION WITH SEMANTIC-AWARE GAUSSIAN GROUPING

Anonymous authors

Paper under double-blind review

## ABSTRACT

Segment anything models (SAM), trained with lots of ground-truth labels, have achieved strong performance in 2D scene segmentation. Compared to this, accurate 3D scene segmentation remains challenging, since annotating consistent segmentation masks across multiple views is highly labor-intensive. To address this, many approaches have been proposed using inconsistent masks predicted by SAM as pseudo labels. They typically build on 3D Gaussian splatting (3DGS) to synthesize and segment novel views in a 3D scene simultaneously. To be specific, several 3DGS-based methods focus on associating the inconsistent masks across training views so that a classifier is trained with the associated masks. They however have two limitations: (1) the association process considers only the location of each 3D Gaussian in the scene and (2) training a classifier with the associated masks is prone to overfitting to incorrect labels of the associated masks. We introduce in this paper Proto-SaGa, a novel 3DGS-based framework that addresses the aforementioned limitations. Specifically, we present a semantic-aware mask association strategy that exploits both location and high-level semantics of each Gaussian to improve the consistency of the associated masks. We also propose a novel inference scheme that alleviates the influence of possibly incorrect results within the associated masks. Specifically, we obtain a set of prototypes by averaging features with the consistent masks, and use it as a classifier at test time without further training. Extensive experiments on Replica, LERF-Mask, ScanNet, and Mip-NeRF 360 demonstrate the effectiveness of our approach. We will make our code publicly available upon acceptance.

## 1 INTRODUCTION

Recent approaches to localizing objects in 2D images have achieved remarkable progress thanks to large-scale datasets. For instance, segment anything models (SAM) (Kirillov et al., 2023) leverage 11M images along with 1B high-quality masks at training time, producing notable improvements in 2D scene understanding. Compared to this, 3D scene segmentation (Dai et al., 2017; Schult et al., 2023) has shown limited advancements, since annotating consistent segmentation masks in a 3D scene is extremely labor-intensive.

To alleviate the annotation cost, many approaches have been introduced exploiting 2D foundational models (Kirillov et al., 2023; Caron et al., 2021; Radford et al., 2021) for 3D scene segmentation. They typically build on novel view synthesis methods (Mildenhall et al., 2020; Kerbl et al., 2023), synthesizing novel views and producing consistent segmentation masks simultaneously. Early work (Kobayashi et al., 2022) adopts neural radiance fields (NeRF) (Mildenhall et al., 2020) and trains additional feature fields that imitate feature representations extracted from CLIP (Radford et al., 2021) and DINO (Caron et al., 2021). Although NeRF-based methods (Cen et al., 2023; Siddiqui et al., 2023) provide decent segmentation results in novel views, they are limited in that the volumetric rendering of NeRF is computationally expensive and time-consuming. For faster rendering, several approaches rely on 3D Gaussian splatting (3DGS) (Kerbl et al., 2023), and augment each 3D Gaussian with an additional embedding vector that is used to render a feature map for segmentation at a specific view. 3DGS-based methods typically exploit segmentation masks predicted by SAM to learn discriminative features, but the segmentation masks are inconsistent across

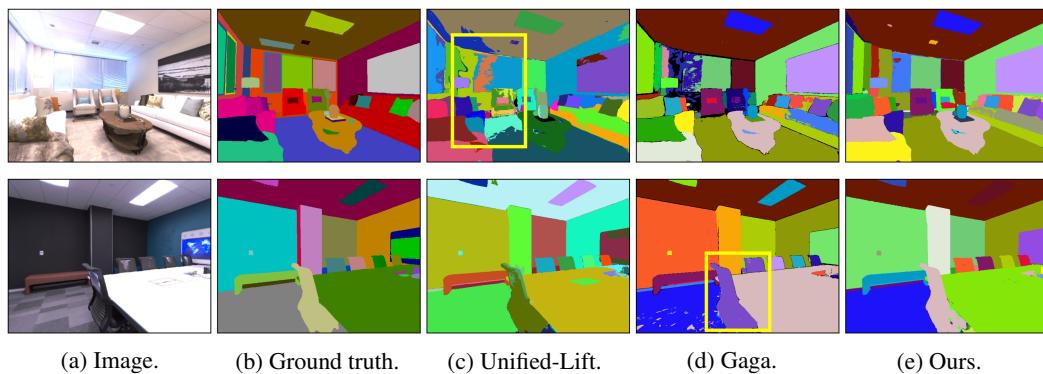


Figure 1: We compare segmentation results of Unified-Lift (Zhu et al., 2025), Gaga (Lyu et al., 2024), and our method on Replica (Straub et al., 2019). Yellow boxes highlight incorrect predictions.

different views, making it difficult to produce consistent segmentation results. To address this, recent approaches (Zhu et al., 2025; Ying et al., 2024) propose to leverage a contrastive clustering strategy (Li et al., 2020), enabling learning discriminative embeddings. They are however sensitive to the number of clusters, producing imprecise segmentation results, especially for wall and floor (Fig. 1(c)). Another line of work (Lyu et al., 2024; Ye et al., 2024) instead introduces a mask association scheme that generates pseudo segmentation masks, which are consistent across views, either by using an off-the-shelf video object tracker (Cheng et al., 2023) or by grouping 3D Gaussians directly. The associated masks are then used as pseudo labels to train a classifier that takes rendered feature maps as input. While the mask association is effective, the quality of pseudo labels largely influences the segmentation performance. For example, if two different chairs are incorrectly grouped as one within the pseudo-labels, the segmentation results also reflect the same error (Fig. 1(d)).

We introduce in this paper a novel framework for 3DGS-based segmentation, dubbed Proto-SaGa, that generates consistent segmentation masks across training views and use them to obtain a prototype-based classifier for inference. Specifically, we present a semantic-aware mask association strategy that better groups 3D Gaussians, where each group represents an individual object in a 3D scene. To this end, we define a view-specific classifier for each training view, and train these classifiers using inconsistent masks obtained from SAM as pseudo labels. After training, we associate each region within the inconsistent masks at every training view with a set of 3D Gaussians based on two criteria: (1) the distance of each Gaussian from the 2D image plane and (2) the softmax probabilities of each Gaussian computed by the learned classifier. Different from Gaga (Lyu et al., 2024) that uses the first criterion only, our approach incorporates high-level semantics (*i.e.*, the second criterion), better associating the inconsistent masks across views. After the association process, we discard the view-specific classifiers. While a straightforward way to using the associated masks is training a new classifier shared across different views as in current methods (Lyu et al., 2024; Ye et al., 2024), it could be prone to association errors. To address this, we introduce a prototype-based segmentation pipeline that exploits the associated masks to obtain a prototype-based classifier, rather than using them to train a new classifier. In particular, we first render a feature map at each training view, and compute a set of prototypes by averaging features belonging to the same region within the corresponding mask. We then average the prototypes across training views to obtain an ensemble of prototypes, which is used as a classifier to render coherent segmentation masks in novel views. Our approach to using the prototype-based classifier mitigates the influence of potentially incorrect results from the association process. We evaluate our approach on standard benchmarks (Straub et al., 2019; Ye et al., 2024) to demonstrate its effectiveness. Experimental results show that our approach outperforms current methods by a significant margin, providing precise and coherent segmentation results (Fig. 1(e)). Our main contributions are summarized as follows:

- We propose a semantic-aware mask association strategy that uses location and high-level semantics of each Gaussian, producing coherent masks across training views.
- We introduce a novel inference scheme using a prototype-based classifier, allowing us to alleviate erroneous results that possibly occur during the association process.
- We present comprehensive experiments on standard benchmarks and show that our approach achieves a new state of the art.

108 

## 2 RELATED WORK

110 **Novel view synthesis.** There have been approaches (Mescheder et al., 2019; Park et al., 2019;  
 111 Sitzmann et al., 2019) that adopt implicit scene representations to avoid the discretization error of  
 112 explicit counterparts (*e.g.*, voxel grids), where they typically train neural networks to represent a  
 113 3D scene. Among them, NeRF (Mildenhall et al., 2020) proposes to exploit a multi-layer perceptron  
 114 (MLP) that maps a 3D point into its color and volume density in a specific viewing direction.  
 115 Although NeRF achieves impressive results in novel view synthesis using a set of posed images at  
 116 training time, the volumetric rendering process of NeRF requires forwarding a large set of 3D points  
 117 through the MLP, which is computationally demanding. 3DGS (Kerbl et al., 2023) has recently been  
 118 introduced as an effective alternative, representing a 3D scene with a set of 3D Gaussians explicitly.  
 119 It synthesizes a novel view by projecting 3D Gaussians onto the corresponding image plane  
 120 and applying an alpha-blending technique in a depth-sorted order. This allows to achieve real-time  
 121 rendering, while producing high-quality results in novel views. Moreover, compared to NeRF, the  
 122 explicit nature of 3DGS enables manipulating and editing of 3D scenes more user-friendly, which  
 123 makes it practical for interactive 3D scene segmentation. Based on these benefits, we build our  
 124 approach on top of 3DGS to synthesize novel views and generate coherent segmentation masks.  
 125

126 **3D scene segmentation.** With the recent success of novel view synthesis, many approaches for  
 127 3D scene segmentation have been proposed. Many methods rely on NeRF (Mildenhall et al., 2020)  
 128 or 3DGS (Kerbl et al., 2023) to synthesize and segment novel views simultaneously. To be specific,  
 129 NeRF-based methods (Cen et al., 2023; Siddiqui et al., 2023) introduce an additional feature field to  
 130 imitate features extracted from CLIP (Radford et al., 2021), enabling open-vocabulary recognition  
 131 in a 3D scene. They however entail the volumetric rendering process, which is time-consuming,  
 132 limiting the applicability in real-world scenarios (*e.g.*, interactive editing). On the contrary, benefitting  
 133 from the real-time rendering ability, 3DGS-based methods have proven effective in 3D scene  
 134 segmentation. Specifically, several approaches (Qin et al., 2024; Li et al., 2025; Zhou et al., 2024)  
 135 attempt to distill rich semantics from 2D foundational models (Radford et al., 2021; Kirillov et al.,  
 136 2023; Li et al., 2022) into 3D Gaussians at training time. For example, LangSplat (Qin et al., 2024)  
 137 and Feature 3DGS (Zhou et al., 2024) propose to imitate features extracted from CLIP and LSeg (Li  
 138 et al., 2022), respectively. Although these methods are effective in localizing objects of a certain  
 139 class (*i.e.*, semantic segmentation), they struggle to distinguish individual objects of the same class  
 140 (*i.e.*, instance segmentation). Rather than imitating features from the 2D foundational models, recent  
 141 approaches (Cen et al., 2025; Ying et al., 2024; Zhu et al., 2025) focus on learning discriminative  
 142 features to address both semantic and instance segmentation. They first apply SAM (Kirillov et al.,  
 143 2023) to each training view independently to obtain segmentation masks, and then adopt a con-  
 144 trastive learning framework (Li et al., 2020) that encourages features to be similar if they belong to  
 145 the same region within a segmentation mask at a specific view. Since the segmentation masks pre-  
 146 dicted by SAM are inconsistent across different views, inferring segmentation results at novel views  
 147 requires grouping features with a clustering technique (*e.g.*, HDBSCAN (McInnes et al., 2017)). The  
 148 clustering scheme is however sensitive to the number of clusters, leading to suboptimal segmentation  
 149 results. Instead of grouping features, Gau-Grouping (Ye et al., 2024) employs off-the-shelf video  
 150 object trackers (Cheng et al., 2023) to associate inconsistent masks. The associated masks are then  
 151 used as pseudo ground-truth labels to train additional embeddings attached to each 3D Gaussian.  
 152 The video object tracker however suffers from handling significant changes between training views,  
 153 producing inaccurate results. To address this, Gaga (Lyu et al., 2024) first trains vanilla 3DGS and  
 154 then groups 3D Gaussians directly. In particular, it identifies a set of 3D Gaussians belonging to  
 155 each region within the inconsistent mask at every training view, and determines whether each pair  
 156 of regions from two different views represents the same object in a given 3D scene based on the  
 157 number of overlapping Gaussians. However, Gaga uses only the depth of each Gaussian to associate  
 158 each region with 3D Gaussians, which often leads to unsatisfactory results. Our approach differs in  
 159 that we take account both depth and semantics of each Gaussian for better association.  
 160

161 

## 3 METHOD

162 In this section, we provide a detailed description of our approach. Specifically, we introduce a  
 163 simple yet effective method for training a set of 3D Gaussians along with a separate classifier at  
 164 each training view (Sec. 3.1). We then present a semantic-aware grouping strategy that clusters the  
 165

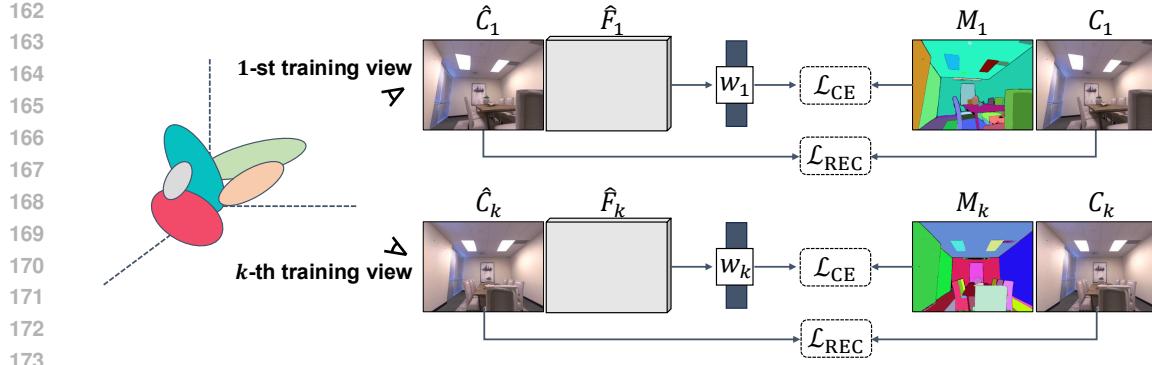


Figure 2: An overview of our training process. At each training step, we randomly select a training view and synthesize its image and feature map. We adopt the same objective as in 3DGS (Kerbl et al., 2023) to reconstruct the given 3D scene, while using a cross-entropy loss to supervise the feature map for segmentation. Specifically, we define an individual classifier at each training view, and train these classifiers with the inconsistent mask predicted by SAM (Kirillov et al., 2023).

3D Gaussians to obtain consistent segmentation masks (Sec. 3.2), and describe a novel inference pipeline using prototypes (Sec. 3.3).

### 3.1 TRAINING

Following the common practice (Ye et al., 2024; Lyu et al., 2024; Zhu et al., 2025), we build our method on 3DGS (Kerbl et al., 2023) to synthesize and segment novel views simultaneously (Fig. 2). To be specific, we augment each 3D Gaussian with an additional embedding vector, and define the  $i$ -th 3D Gaussian,  $G_i$ , as follows:

$$G_i = \{p_i, s_i, q_i, \alpha_i, c_i, f_i\}, \quad (1)$$

where  $p_i$ ,  $s_i$ ,  $q_i$ ,  $\alpha_i$ , and  $c_i$  indicate its center, scale, orientation, opacity, and spherical harmonics (SH) coefficients, respectively. We denote by  $f_i$  the  $D$ -dimensional embedding of the  $i$ -th Gaussian. We can render a color value at pixel  $\mathbf{p}$  from the  $k$ -th view,  $\hat{C}_k(\mathbf{p})$ , by projecting 3D Gaussians onto the corresponding 2D image plane as follows:

$$\hat{C}_k(\mathbf{p}) = \sum_{i \in N} c_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j), \quad (2)$$

where  $N$  is the number of Gaussians ordered by the distance from the image plane (*i.e.*, depth). To supervise the rendered image, we adopt the same objective used in 3DGS with a balance parameter  $\lambda$  as follows:

$$\mathcal{L}_{\text{REC}} = (1 - \lambda) \sum_{\mathbf{p}} \|\hat{C}_k(\mathbf{p}) - C_k(\mathbf{p})\|_1 + \lambda \mathcal{L}_{\text{SSIM}}, \quad (3)$$

where  $C_k(\mathbf{p})$  is a ground-truth color and  $\mathcal{L}_{\text{SSIM}}$  indicates a SSIM (Wang et al., 2004) loss, defined as follows:

$$\mathcal{L}_{\text{SSIM}} = 1 - \sum_{\mathbf{p}} \text{SSIM}(\hat{C}_k(\mathbf{p}), C_k(\mathbf{p})). \quad (4)$$

Similar to Eq. 2, we can also render a feature for segmentation at pixel  $\mathbf{p}$  from the  $k$ -th view,  $\hat{F}_k(\mathbf{p})$ , as follows:

$$\hat{F}_k(\mathbf{p}) = \sum_{i \in N} f_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j). \quad (5)$$

To supervise the rendered features, we exploit segmentation masks predicted by SAM (Kirillov et al., 2023). These masks are inconsistent across training views, since we apply SAM to each view independently. That is, each mask has a different number of instance labels, and the instance labels are not associated across views. To address this, we propose a simple yet effective method that assigns a separate classifier to each training view. Let us suppose we have the inconsistent mask

at the  $k$ -th training view, denoted by  $M_k$ , and it contains  $L_k$  instance labels. We then refer to the view-specific classifier of size  $D \times L_k$  for the  $k$ -th view as  $w_k$ , and use it to compute a softmax probability at pixel  $\mathbf{p}$  from the  $k$ -th view,  $\sigma_k(\mathbf{p})$ , as follows:

$$\sigma_k(\mathbf{p}) = \text{Softmax}(\tau \frac{w_k^\top \hat{F}_k(\mathbf{p})}{|w_k| |\hat{F}_k(\mathbf{p})|}), \quad (6)$$

where  $\tau$  indicates a temperature parameter adjusting the sharpness of the probabilities. To optimize both the features and the classifier, we adopt a cross-entropy loss as follows:

$$\mathcal{L}_{\text{CE}} = \sum_{\mathbf{p}} \text{CE}(\sigma_k(\mathbf{p}), M_k(\mathbf{p})). \quad (7)$$

Since the feature map  $\hat{F}_k$  is rendered from the features of individual Gaussians (*i.e.*,  $f_i$ ), which are shared across all views, the cross-entropy term can guide Gaussians to learn discriminative features, even with view-specific classifiers. The overall objective for a given scene is then defined as follows:

$$\mathcal{L} = \mathcal{L}_{\text{REC}} + \lambda_{\text{CE}} \mathcal{L}_{\text{CE}}, \quad (8)$$

where we denote by  $\lambda_{\text{CE}}$  a balance parameter. Unlike Gaga (Lyu et al., 2024), our approach learns to reconstruct the 3D scene and acquire discriminative features simultaneously.

### 3.2 ASSOCIATION

Following Gaga (Lyu et al., 2024), we group 3D Gaussians to obtain consistent segmentation masks across training views. Specifically, we first identify a set of Gaussians belonging to the  $t$ -th instance of the inconsistent mask  $M_k$  at the  $k$ -th training view as follows:

$$\mathcal{G}_k(t) = \{G_i \mid \mathbf{u}_i \in \mathcal{R}_k(t) \text{ and } i = 1, 2, \dots, E\}, \quad (9)$$

where  $\mathbf{u}_i$  is the projected center of the  $i$ -th Gaussian on the image plane and  $\mathcal{R}_k(t)$  indicates a set of pixels labeled as the  $t$ -th instance within  $M_k$ . Let us denote by  $E$  the total number of elements in the set. Since the influence of Gaussians far from the image plane is negligible, Gaga proposes to filter them out as follows:

$$\mathcal{G}_k^d(t) = \{G_i \mid G_i \in \mathcal{G}_k(t) \text{ and } \text{Rank}_d[z_i] < \delta_d E\}, \quad (10)$$

where  $z_i$  indicates the depth of the  $i$ -th Gaussian and  $\delta_d$  is a hyperparameter for controlling the degree of filtering.  $\text{Rank}_d[\cdot]$  is a function that returns the rank of the input among  $E$  elements. Specifically, it assigns higher ranks to smaller inputs, that is,  $\text{Rank}_d[z_i] < \text{Rank}_d[z_j]$  if  $z_i < z_j$ . Next, Gaga initializes a memory bank, denoted by  $\mathcal{M}$ , by using a set of Gaussians at the first training view (*i.e.*,  $k=1$ ) as follows:

$$\mathcal{M}(t) = \mathcal{G}_1^d(t). \quad (11)$$

The memory bank is then updated repeatedly across the subsequent views. To be specific, Gaga defines an overlapping score between the  $t$ -th instance at the  $k$ -th training view ( $k \neq 1$ ) and the  $e$ -th instance within the memory bank as follows:

$$\gamma_k(t, e) = \frac{\#\mathcal{G}_k^d(t) \cap \mathcal{M}(e)}{\#\mathcal{G}_k^d(t)}, \quad (12)$$

where  $\#\cdot$  indicates a function counting the number of Gaussians. If the score is above the predefined threshold  $\delta$ , the corresponding set for the  $e$ -th instance within the memory bank is updated as follows:

$$\mathcal{M}(e) \leftarrow \mathcal{G}_k^d(t) \cup \mathcal{M}(e). \quad (13)$$

Otherwise, the set of Gaussians for the  $t$ -th instance at the  $k$ -th view,  $\mathcal{G}_k^d(t)$ , is appended to the memory bank as a new instance. After updating the memory bank across training views, the memory bank represents a unified set of instance labels across training views. However, simply using the distance from the image plane of each Gaussian as in Eq. 10 is suboptimal in that Gaussians near the plane do not always represent the corresponding instance.

270 **Semantic-aware memory bank.** To consider semantics of each Gaussian, we propose to use the  
 271 learned classifiers. Formally, we compute the softmax probability of the  $i$ -th Gaussian for the  $t$ -th  
 272 instance at the  $k$ -th training view as follows:  
 273

$$274 \quad \sigma_{i,k} = \text{Softmax}\left(\tau \frac{w_k^\top f_i}{\|w_k\| \|f_i\|}\right) \in \mathbb{R}^{L_k}. \quad (14)$$

275 Based on this, we define a new set of Gaussians for the  $t$ -th instance at the  $k$ -th view as follows:  
 276

$$277 \quad \mathcal{G}_k^s(t) = \{G_i \mid G_i \in \mathcal{G}_k(t) \text{ and } \text{Rank}_s[\sigma_{i,k}(t)] < \delta_s E\}, \quad (15)$$

278 where  $\sigma_{i,k}(t)$  is the probability value for the  $t$ -th instance and  $\delta_s$  indicates a hyperparameter for  
 279 eliminating Gaussians whose probability is low.  $\text{Rank}_s[\cdot]$  is a ranking function that assigns higher  
 280 ranks to higher inputs. Namely,  $\text{Rank}_d[\sigma_{i,k}(t)] < \text{Rank}_d[\sigma_{j,k}(t)]$  if  $\sigma_{i,k}(t) > \sigma_{j,k}(t)$ . We propose  
 281 to combine both criteria (*i.e.*, Eqs. 10 and 15) to identify a set of Gaussians belonging to the  $t$ -th  
 282 instance at the  $k$ -th view as follows:  
 283

$$284 \quad \mathcal{G}_k^{\text{saga}}(t) = \mathcal{G}_k^d(t) \cup \mathcal{G}_k^s(t). \quad (16)$$

285 The combined set,  $\mathcal{G}_k^{\text{saga}}(t)$ , is then used to construct and update the memory bank as in Eqs. 11, 12,  
 286 and 13, better grouping 3D Gaussians. This allows us to build the memory bank that reflects how  
 287 likely each Gaussian is to represent the corresponding instance.  
 288

### 289 3.3 INFERENCE 290

291 A straightforward way to predict segmentation  
 292 masks at novel (*i.e.*, test) views is to group rendered  
 293 features using HDBSCAN (McInnes et al., 2017)  
 294 as in (Ying et al., 2024). However, it is suscep-  
 295 tible to the number of clusters, leading to inaccu-  
 296 rate segmentation results. Alternatively, similar to  
 297 *Gaga* (Lyu et al., 2024), we could define a unified  
 298 classifier and train it together with the features by  
 299 using the consistent masks as pseudo labels. The ad-  
 300 ditional training process however increases the com-  
 301 putational cost, and is likely to overfit to the pseudo  
 302 labels.  
 303

303 **Prototype-based segmentation.** We instead com-  
 304 pute a set of prototypes at each training view, and  
 305 average them across views to obtain a unified classi-  
 306 fier without further training (Fig. 3). Concretely, we  
 307 define the prototype for the  $t$ -th instance at the  $k$ -th  
 308 training view,  $v_k(t)$ , as follows:  
 309

$$310 \quad v_k(t) = \frac{1}{|\mathcal{R}'_k(t)|} \sum_{\mathbf{p} \in \mathcal{R}'_k(t)} \hat{F}_k(\mathbf{p}), \quad (17)$$

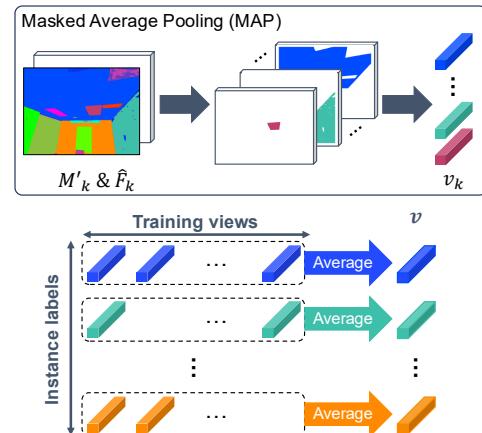
312 where  $\mathcal{R}'_k(t)$  is a set of pixels labeled as the  $t$ -th instance within the corresponding consistent mask.  
 313 We then use an ensemble of prototypes to obtain a classifier weight for the  $t$ -th instance as follows:  
 314

$$315 \quad v(t) = \frac{1}{K} \sum_k v_k(t), \quad (18)$$

317 where  $K$  is the number of training views that contain the  $t$ -th instance. For inference, we predict an  
 318 instance label at pixel  $\mathbf{p}$  from the  $n$ -th novel view,  $\hat{y}_n(\mathbf{p})$ , as follows:  
 319

$$320 \quad \hat{y}_n(\mathbf{p}) = \arg \max_t \left( \tau \frac{v(t)^\top \hat{F}_n(\mathbf{p})}{|v(t)| \|\hat{F}_n(\mathbf{p})\|} \right), \quad (19)$$

322 where  $\hat{F}_n$  is the rendered feature map at the  $n$ -th novel view. This allows us to segment novel views  
 323 without using the clustering scheme, while preventing the overfitting problem.  
 324



325 Figure 3: An illustration of our inference  
 326 scheme. At each training view, we render a  
 327 feature map and adopt masked average pool-  
 328 ing to compute prototypes (top). We then ob-  
 329 tain an ensemble of prototypes by averaging  
 330 the prototypes for each instance label across  
 331 training views (bottom).  
 332

324 Table 1: Quantitative comparison with state-of-the-art methods (Lyu et al., 2024; Ye et al., 2024;  
 325 Zhu et al., 2025) on Replica (Straub et al., 2019). Numbers in bold indicate the best performance,  
 326 while underscored ones represent the second best. I, P, and R indicate mIoU, precision, and recall,  
 327 respectively.  $\dagger$  indicates Unified-Lift (Zhu et al., 2025) trained with associated masks from the video  
 328 object tracker (Cheng et al., 2023).

| Method                 | Metric | office_0 | office_1 | office_2 | office_3 | office_4 | room_0 | room_1 | room_2 | Avg.          |
|------------------------|--------|----------|----------|----------|----------|----------|--------|--------|--------|---------------|
| Gau-Group              | PSNR   | 43.369   | 42.091   | 38.767   | 38.519   | 34.443   | 37.168 | 38.196 | 37.946 | 38.812        |
|                        | I      | 19.7     | 36.0     | 20.6     | 16.3     | 19.5     | 20.1   | 27.8   | 17.0   | 22.1          |
|                        | P      | 14.9     | 37.5     | 25.5     | 23.5     | 16.7     | 33.9   | 24.1   | 23.7   | 25.0          |
|                        | R      | 16.7     | 40.9     | 17.4     | 14.6     | 14.3     | 20.4   | 24.1   | 14.5   | 20.4          |
| Gaga                   | PSNR   | 44.496   | 43.330   | 39.582   | 39.370   | 36.035   | 38.150 | 39.612 | 38.753 | 39.916        |
|                        | I      | 39.8     | 48.1     | 51.4     | 41.6     | 43.8     | 42.4   | 50.6   | 53.9   | 46.4          |
|                        | P      | 22.1     | 41.2     | 49.2     | 41.7     | 43.7     | 41.7   | 46.0   | 57.4   | 42.9          |
|                        | R      | 43.9     | 54.5     | 56.5     | 45.1     | 48.8     | 43.4   | 59.3   | 62.9   | 51.8          |
| Unified-Lift           | PSNR   | 44.548   | 43.104   | 39.665   | 39.437   | 36.050   | 38.210 | 39.655 | 38.828 | <b>39.937</b> |
|                        | I      | 38.3     | 51.3     | 46.1     | 46.1     | 52.6     | 44.5   | 57.4   | 40.3   | 47.1          |
|                        | P      | 15.4     | 24.2     | 36.5     | 39.4     | 29.1     | 35.5   | 32.6   | 37.7   | 31.3          |
|                        | R      | 38.9     | 53.0     | 49.8     | 50.4     | 57.1     | 45.9   | 58.6   | 43.6   | 49.7          |
| Unified-Lift $\dagger$ | PSNR   | 44.552   | 43.052   | 39.626   | 39.452   | 36.050   | 38.167 | 39.652 | 38.853 | <b>39.926</b> |
|                        | I      | 25.0     | 44.9     | 31.9     | 24.7     | 31.3     | 22.9   | 40.6   | 21.5   | 30.4          |
|                        | P      | 20.8     | 37.6     | 38.9     | 37.8     | 28.5     | 38.8   | 37.1   | 27.6   | 32.1          |
|                        | R      | 23.9     | 49.2     | 30.4     | 25.6     | 31.0     | 20.8   | 46.3   | 19.9   | 30.9          |
| Ours                   | PSNR   | 44.457   | 43.318   | 39.529   | 39.411   | 35.975   | 38.100 | 39.520 | 38.680 | 39.874        |
|                        | I      | 44.6     | 52.1     | 55.7     | 46.7     | 48.8     | 50.1   | 58.9   | 56.5   | <b>51.7</b>   |
|                        | P      | 21.4     | 43.6     | 57.3     | 49.6     | 52.4     | 49.6   | 57.4   | 61.1   | <b>49.1</b>   |
|                        | R      | 50.6     | 54.5     | 62.3     | 50.8     | 53.6     | 52.0   | 70.4   | 63.4   | <b>57.2</b>   |

## 4 EXPERIMENTS

350 In this section, we describe implementation details of our approach, and provide a quantitative com-  
 351 parison against state-of-the-art methods on standard benchmarks (Straub et al., 2019; Ye et al., 2024).  
 352 We then present an in-depth analysis along with ablation studies. We also provide quantitative re-  
 353 sults on ScanNet (Dai et al., 2017) and a qualitative comparison on Mip-NeRF 360 (Barron et al.,  
 354 2022) in Appendix A.

### 4.1 IMPLEMENTATION DETAILS

355 **Datasets.** We mainly perform experiments on Replica (Straub et al., 2019) and LERF-Mask (Ye  
 356 et al., 2024). Following Gaga (Lyu et al., 2024), we select eight indoor scenes from the Replica  
 357 dataset, with each scene containing 180 training and 180 test images. The LERF-Mask dataset is  
 358 based on LERF (Kerr et al., 2023), and consists of three scenes: figurines, ramen, and teatime. Each  
 359 scene provides 6-10 text queries for objects, along with manually annotated masks.

360 **Training.** We build our method on the official implementation of 3DGS (Kerbl et al., 2023). Fol-  
 361 lowing the common practice (Lyu et al., 2024; Ye et al., 2024), we adopt SAM (Kirillov et al.,  
 362 2023) with a ViT-H (Dosovitskiy et al., 2021) backbone, and augment each Gaussian with a 16-  
 363 dimensional embedding, that is,  $D$  is set to 16. During training, we render both an image and a  
 364 feature map from a specific view, and jointly optimize a set of 3D Gaussians and individual clas-  
 365 sifiers using the Adam optimizer (Kingma & Ba, 2015). Specifically, we adopt a learning rate of  
 366 2.5e-3 for the embeddings and 5e-4 for the classifiers. For each scene, we set  $\tau$ ,  $\lambda_{CE}$ , and the total  
 367 number of training iterations to 10, 0.05, and 30K, respectively. The values of  $\delta_d$  and  $\delta$  are chosen  
 368 as in Gaga (Lyu et al., 2024), i.e.,  $\delta_d = 0.2$  and  $\delta = 0.1$ , and we set  $\delta_d = \delta_s$  for simplicity. All  
 369 experiments are performed on a NVIDIA RTX A6000 GPU.

370 **Evaluation.** We follow the same evaluation protocol as in Gaga (Lyu et al., 2024) on  
 371 Replica (Straub et al., 2019). Specifically, we measure the performance of instance segmenta-  
 372 tion in terms of mean intersection-over-union (mIoU), precision, and recall. Please refer to Gaga for  
 373 a detailed description of each metric. We also report PSNR scores between ground-truth and ren-  
 374 dered images to evaluate the performance of novel view synthesis. For the LERF-Mask (Ye et al.,  
 375 2024) dataset, we follow Gau-Group (Ye et al., 2024), adopting Grounding DINO (Liu et al., 2024)

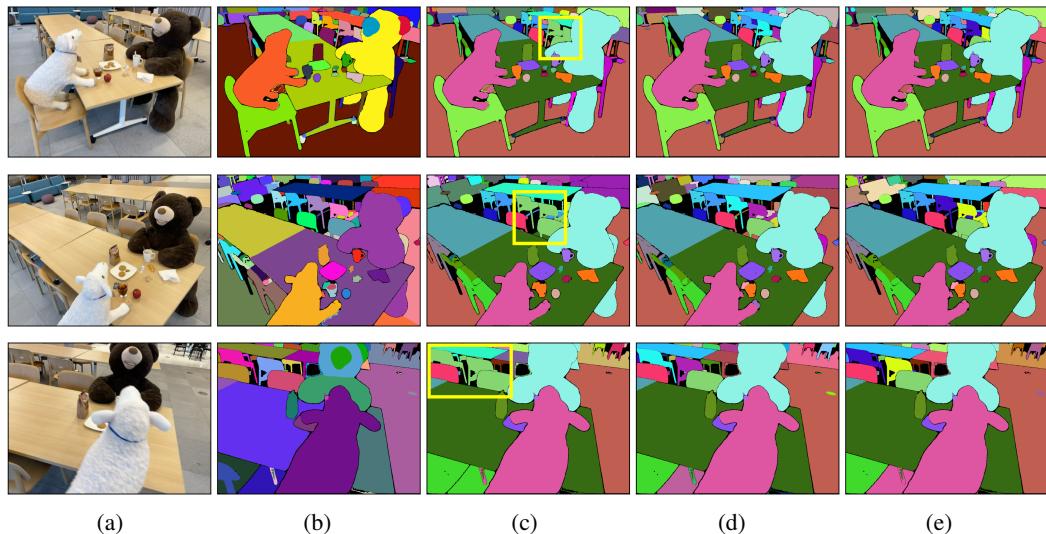


Figure 4: Comparison of associated masks on LERF-Mask (Ye et al., 2024). (a) Training images. (b) Inconsistent masks predicted by SAM (Kirillov et al., 2023). (c,d,e) Consistent masks associated by using the depth of each Gaussian  $\mathcal{G}_k^d$ , the probability of each Gaussian  $\mathcal{G}_k^s$ , and our method  $\mathcal{G}_k^{\text{saga}}$  (from left to right).

to evaluate the performance of open-vocabulary segmentation. We report mIoU and boundary IoU (mBIOU) scores. For all experiments, we report average scores over 3 different runs.

## 4.2 RESULTS

**Replica.** We compare in Table 1 our approach with state-of-the-art methods (Lyu et al., 2024; Ye et al., 2024; Zhu et al., 2025) on Replica (Straub et al., 2019). For a fair comparison, we reproduce all methods using the same set of inconsistent masks predicted by SAM (Kirillov et al., 2023). We also report the results of Unified-Lift trained with consistent masks, denoted by  $\dagger$ , obtained from the off-the-shelf video object tracker (Cheng et al., 2023). From this table, we can see that our approach achieves the best performance in terms of mIoU (I), precision (P), and recall (R), demonstrating its effectiveness. In particular, our method produces a precision gain of 6.2% over Gaga, while maintaining a comparable PSNR score.

**LERF-Mask.** Table 2 presents a quantitative comparison of our approach with Gau-Group (Ye et al., 2024), Gaga (Lyu et al., 2024), OmniSeg3D (Ying et al., 2024), and Unified-Lift (Zhu et al., 2025) on LERF-Mask (Ye et al., 2024) in terms of mIoU and mBIOU scores. The results of Gau-Group, Gaga, and OmniSeg3D are borrowed from the paper of Gaga, while we reproduce Unified-Lift. From this table, we have two findings: (1) Unified-Lift trained with inconsistent masks from SAM (Kirillov et al., 2023) performs much worse compared to the variant using the consistent masks, denoted by  $\dagger$ . This suggests that Unified-Lift relies heavily on the quality of the associated masks to achieve its best performance. (2) Our approach outperforms all other methods in terms of both mIoU (M) and mBIOU (B), confirming its effectiveness once again.

## 4.3 DISCUSSION

Table 2: Quantitative comparison with state-of-the-art methods (Lyu et al., 2024; Ye et al., 2024; Zhu et al., 2025; Ying et al., 2024) on LERF-Mask (Ye et al., 2024). I and B represent mIoU and mBIOU, respectively.

| Method                 | Metric | figurines | ramen | teatime | Avg.        |
|------------------------|--------|-----------|-------|---------|-------------|
| Gau-Group              | I      | 69.7      | 77.0  | 71.7    | 72.8        |
|                        | B      | 67.9      | 68.7  | 66.1    | 67.6        |
| Gaga                   | I      | 92.3      | 72.0  | 71.2    | 78.5        |
|                        | B      | 90.8      | 63.3  | 68.4    | 74.2        |
| OmniSeg3D              | I      | 85.0      | 83.6  | 69.8    | 79.5        |
|                        | B      | 83.7      | 75.5  | 63.8    | 74.3        |
| Unified-Lift           | I      | 92.0      | 74.0  | 67.8    | 77.9        |
|                        | B      | 90.2      | 68.0  | 64.8    | 74.3        |
| Unified-Lift $\dagger$ | I      | 87.5      | 76.3  | 77.9    | 80.6        |
|                        | B      | 85.9      | 69.7  | 74.6    | 76.8        |
| Ours                   | I      | 88.2      | 75.0  | 79.4    | <b>80.9</b> |
|                        | B      | 86.0      | 69.4  | 75.9    | <b>77.1</b> |

432 **Performance of associated masks.** We provide in Table 3 an analysis of each component 433 of our method on Replica (Straub et al., 434 2019). Specifically, we measure the performance 435 of associated masks on training views. Note 436 that ground-truth masks are used for evaluation 437 only. We can see from the first row that simply 438 using the depth of each Gaussian (Eq. 10) 439 results in a relatively low recall score. On the 440 contrary, we can also see from the second row 441 that using the softmax probabilities (*i.e.*, semantics) 442 of each Gaussian alone (Eq. 15) yields a 443 high recall score of 50.2% at the cost of precision. 444 This suggests that the second criterion produces 445 finer segmentation results, since the precision is 446 inversely proportional to the total number of 447 predicted instances. The last row shows that our 448 approach achieves the best compromise between 449 recall and precision by using both criteria (*i.e.*, 450 depth and semantics of each Gaussian). We 451 also present in Fig. 4 a qualitative comparison on 452 LERF-Mask (Ye et al., 2024). We can see that 453 using the depth of each Gaussian alone fails to 454 separate the three chairs (highlighted by the 455 yellow boxes in Fig. 4(c)), while using the 456 semantics of each Gaussian enables distinguishing 457 them (Fig. 4(d-e)).

458 **Analysis of inference strategies.** To validate 459 the effectiveness of our inference scheme, 460 we compare in Table 4 quantitative results of 461 different strategies on Replica (Straub et al., 462 2019). Specifically, we explore a training-based 463 strategy, similar to previous methods (Ye et al., 464 2024; Lyu et al., 2024), where it trains a single 465 classifier with the associated masks. We follow 466 Gaga (Lyu et al., 2024) to train the classifier 467 jointly with the embeddings for 10K iterations, 468 while freezing other attributes of Gaussians. 469 Additionally, we report the results of applying the 470 K-means clustering technique (Arthur & Vassilvitskii, 471 2006) to a set of prototypes (*i.e.*,  $v_t$ ), obtaining 472 a final classifier for inference without further 473 training. Note that we set the number of clusters 474 to the total number of instance labels within 475 our associated masks. We can see from the 476 first row that using the trained classifier at test 477 time, denoted by Cls, produces unsatisfactory 478 results. We conjecture that this is because 479 training an additional classifier is prone to 480 overfitting to incorrect labels of the associated 481 masks. We can also see from the second row 482 that the strategy adopting the K-Means 483 clustering still underperforms. The last row 484 shows that our strategy using the ensemble 485 of prototypes achieves the best performance, 486 avoiding the overfitting problem.

487 **Hyperparameters.** To analyze the effect of 488 varying values of  $\lambda_{CE}$  and  $\tau$ , we provide in Fig. 5 a 489 comparison of mIoU scores on Replica (Straub et al., 490 2019) and LERF-Mask (Ye et al., 2024). 491 Specifically, we vary  $\lambda_{CE}$  with fixing the value of  $\tau$  (left), 492 and vice versa (right). We can see from the left 493 that the performance decreases as  $\lambda_{CE}$  increases. 494 This is because a large value of  $\lambda_{CE}$  prevents 3D 495 Gaussians from reconstructing a given scene, 496 leading to imprecise attributes (*e.g.*, location, 497 color) of each Gaussian. We can also see from 498 the right that extreme values of  $\tau$  (either too 499 high or too low) result in suboptimal performance.

## 5 CONCLUSION

499 We have introduced Proto-SaGa that 500 synthesizes and segments novel views in a 3D 501 scene simultaneously. To this end, we have 502 first designed a simple yet effective training 503 scheme that optimizes a set of 3D Gaussians 504 together with view-specific classifiers. Then, we 505 have proposed a semantic-aware mask 506 association strategy that exploits the learned 507 classifiers to incorporate high-level semantics 508 of each Gaussian during association, improving 509 the consistency of the associated masks. We 510 have also presented a novel inference pipeline 511 using an ensemble of prototypes at test time, 512 reducing the influence of potentially incorrect 513 results from the association process. Finally, we 514 have performed extensive experiments to 515 demonstrate the effectiveness of our approach 516 on standard benchmarks.

Table 3: Quantitative comparison of associated masks on Replica (Straub et al., 2019).

| Association Depth | Prob | mIoU | Avg.      |        |
|-------------------|------|------|-----------|--------|
|                   |      |      | Precision | Recall |
| ✓                 |      | 42.8 | 16.8      | 46.8   |
|                   | ✓    | 45.9 | 12.7      | 50.2   |
| ✓                 | ✓    | 43.8 | 19.6      | 48.5   |

Table 4: Quantitative results of different inference schemes on Replica (Straub et al., 2019).

| Cls | K-Means | Proto | mIoU | Avg.      |        |
|-----|---------|-------|------|-----------|--------|
|     |         |       |      | Precision | Recall |
| ✓   |         |       | 47.0 | 41.8      | 53.2   |
|     | ✓       |       | 51.4 | 48.0      | 55.8   |
|     |         | ✓     | 51.7 | 49.1      | 57.2   |

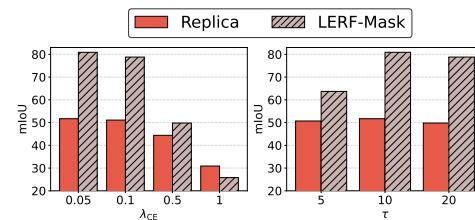


Figure 5: Analysis of different values of  $\lambda_{CE}$  (left) and  $\tau$  (right) on Replica (Straub et al., 2019) and LERF-Mask (Ye et al., 2024).

486 REFERENCES  
487

488 David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding. Technical  
489 report, Stanford, 2006.

490 Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. Mip-  
491 NeRF 360: Unbounded anti-aliased neural radiance fields. In *IEEE/CVF Conf. Comput. Vis.  
492 Pattern Recog. (CVPR)*, 2022.

493 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and  
494 Armand Joulin. Emerging properties in self-supervised vision transformers. In *IEEE/CVF Int.  
495 Conf. Comput. Vis. (ICCV)*, 2021.

496 Jiazhong Cen, Zanwei Zhou, Jiemin Fang, Wei Shen, Lingxi Xie, Dongsheng Jiang, Xiaopeng  
497 Zhang, Qi Tian, et al. Segment anything in 3d with NeRFs. *Adv. Neural Inform. Process. Syst.  
(NeurIPS)*, 36, 2023.

498 Jiazhong Cen, Jiemin Fang, Chen Yang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, and Qi Tian.  
499 Segment any 3d gaussians. In *Proceedings of the AAAI Conference on Artificial Intelligence*,  
500 volume 39, pp. 1971–1979, 2025.

501 Ho Kei Cheng, Seoung Wug Oh, Brian Price, Alexander Schwing, and Joon-Young Lee. Tracking  
502 anything with decoupled video segmentation. In *IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2023.

503 Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias  
504 Nießner. ScanNet: Richly-annotated 3d reconstructions of indoor scenes. In *IEEE/CVF Conf.  
505 Comput. Vis. Pattern Recog. (CVPR)*, 2017.

506 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
507 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An  
508 image is worth 16x16 words: Transformers for image recognition at scale. In *Int. Conf. Learn.  
509 Represent. (ICLR)*, 2021.

510 Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-  
511 ting for real-time radiance field rendering. *ACM Transactions on Graphics*, 42(4), 2023. URL  
512 <https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/>.

513 Justin Kerr, Chung Min Kim, Ken Goldberg, Angjoo Kanazawa, and Matthew Tancik. LERF:  
514 Language embedded radiance fields. In *IEEE/CVF Int. Conf. Comput. Vis. (ICCV)*, 2023.

515 Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In *Int. Conf.  
516 Learn. Represent. (ICLR)*, 2015.

517 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete  
518 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *IEEE/CVF  
519 Int. Conf. Comput. Vis. (ICCV)*, 2023.

520 Sosuke Kobayashi, Eiichi Matsumoto, and Vincent Sitzmann. Decomposing NeRF for editing via  
521 feature field distillation. *Adv. Neural Inform. Process. Syst. (NeurIPS)*, 35, 2022.

522 Boyi Li, Kilian Q Weinberger, Serge Belongie, Vladlen Koltun, and René Ranftl. Language-driven  
523 semantic segmentation. In *Int. Conf. Learn. Represent. (ICLR)*, 2022.

524 Hao Li, Roy Qin, Zhengyu Zou, Diqi He, Bohan Li, Bingquan Dai, Dingewn Zhang, and Junwei  
525 Han. Langsurf: Language-embedded surface gaussians for 3d scene understanding. In *Int. Conf.  
526 Machine Learning (ICML)*, 2025.

527 Junnan Li, Pan Zhou, Caiming Xiong, and Steven CH Hoi. Prototypical contrastive learning of  
528 unsupervised representations. In *Int. Conf. Learn. Represent. (ICLR)*, 2020.

529 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan  
530 Li, Jianwei Yang, Hang Su, et al. Grounding DINO: Marrying dino with grounded pre-training  
531 for open-set object detection. In *European conference on computer vision*, pp. 38–55. Springer,  
532 2024.

540 Weijie Lyu, Xuetong Li, Abhijit Kundu, Yi-Hsuan Tsai, and Ming-Hsuan Yang. Gaga: Group any  
 541 gaussians via 3d-aware memory bank. *arXiv preprint arXiv:2404.07977*, 2024.

542

543 Leland McInnes, John Healy, Steve Astels, et al. hdbscan: Hierarchical density based clustering. *J.*  
 544 *Open Source Softw.*, 2(11):205, 2017.

545

546 Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.  
 547 Occupancy networks: Learning 3d reconstruction in function space. In *IEEE/CVF Conf. Comput.*  
 548 *Vis. Pattern Recog. (CVPR)*, 2019.

549

550 Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and  
 551 Ren Ng. NeRF: Representing scenes as neural radiance fields for view synthesis. In *Eur. Conf.*  
 552 *Comput. Vis. (ECCV)*, 2020.

553

554 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.  
 555 DeepSDF: Learning continuous signed distance functions for shape representation. In *IEEE/CVF*  
 556 *Conf. Comput. Vis. Pattern Recog. (CVPR)*, 2019.

557

558 Minghan Qin, Wanhu Li, Jiawei Zhou, Haoqian Wang, and Hanspeter Pfister. LangSplat: 3d  
 559 language gaussian splatting. In *IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR)*, 2024.

560

561 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 562 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 563 models from natural language supervision. In *Int. Conf. Machine Learning (ICML)*, 2021.

564

565 Jonas Schult, Francis Engelmann, Alexander Hermans, Or Litany, Siyu Tang, and Bastian Leibe.  
 566 Mask3D: Mask transformer for 3d semantic instance segmentation. In *IEEE Int. Conf. Robotics*  
 567 *and Automation (ICRA)*, 2023.

568

569 Yawar Siddiqui, Lorenzo Porzi, Samuel Rota Buló, Norman Müller, Matthias Nießner, Angela  
 570 Dai, and Peter Kortschieder. Panoptic lifting for 3d scene understanding with neural fields. In  
 571 *IEEE/CVF Conf. Comput. Vis. Pattern Recog. (CVPR)*, 2023.

572

573 Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-  
 574 tinuous 3d-structure-aware neural scene representations. *Adv. Neural Inform. Process. Syst.*  
 575 (*NeurIPS*), 32, 2019.

576

577 Julian Straub, Thomas Whelan, Lingni Ma, Yufan Chen, Erik Wijmans, Simon Green, Jakob J Engel,  
 578 Raul Mur-Artal, Carl Ren, Shobhit Verma, et al. The Replica dataset: A digital replica of indoor  
 579 spaces. *arXiv preprint arXiv:1906.05797*, 2019.

580

581 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:  
 582 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–  
 583 612, 2004.

584

585 Mingqiao Ye, Martin Danelljan, Fisher Yu, and Lei Ke. Gaussian grouping: Segment and edit  
 586 anything in 3d scenes. In *Eur. Conf. Comput. Vis. (ECCV)*, 2024.

587

588 Haiyang Ying, Yixuan Yin, Jinzhi Zhang, Fan Wang, Tao Yu, Ruqi Huang, and Lu Fang. Om-  
 589 niSeg3D: Omnipresent 3d segmentation via hierarchical contrastive learning. In *IEEE/CVF Conf.*  
 590 *Comput. Vis. Pattern Recog. (CVPR)*, 2024.

591

592 Shijie Zhou, Haoran Chang, Sicheng Jiang, Zhiwen Fan, Zehao Zhu, Dejia Xu, Pradyumna Chari,  
 593 Suya You, Zhangyang Wang, and Achuta Kadambi. Feature 3dgs: Supercharging 3d gaussian  
 594 splatting to enable distilled feature fields. In *IEEE/CVF Conf. Comput. Vis. Pattern Recog.*  
 595 (*CVPR*), 2024.

596

597 Runsong Zhu, Shi Qiu, Zhengzhe Liu, Ka-Hei Hui, Qianyi Wu, Pheng-Ann Heng, and Chi-Wing  
 598 Fu. Rethinking end-to-end 2d to 3d scene segmentation in gaussian splatting. In *IEEE/CVF Conf.*  
 599 *Comput. Vis. Pattern Recog. (CVPR)*, 2025.

600

601

## 594 595 596 597 598 599 600 601 Appendix

602 In the following, we present more results of our method on Replica (Straub et al., 2019), LERF-  
603 Mask (Ye et al., 2024), ScanNet (Dai et al., 2017), and Mip-NeRF 360 (Barron et al., 2022) (Sec. A).  
604 We also discuss the limitation of our approach (Sec. B)

### 605 606 A MORE RESULTS

607 608 **Performance of associated masks.** We show in Table 5 an extended version of Table 3. Specif-  
609 610 ically, we also report the reproduced results of two baselines: Gau-Group (Ye et al., 2024) and  
611 612 Gaga (Lyu et al., 2024). The first row shows that Gau-Group using DEVA (Cheng et al., 2023)  
613 614 fails to produce consistent masks across training views. The only difference between the second  
615 616 and third rows is that the third one trains all attributes of Gaussians, including embeddings, jointly  
617 618 with individual classifiers. The results indicate that our joint training scheme maintains comparable  
619 620 performance when only the first criterion (*i.e.*, Eq. 10) is used to associate the inconsistent masks.

621 622 Table 5: Quantitative comparison of associated masks on Replica (Straub et al., 2019).  
623 624

| 625 626 Method | 627 Association Depth | 628 Prob | 629 mIoU | 630 Avg. Precision | 631 Recall |
|----------------|-----------------------|----------|----------|--------------------|------------|
| Gau-Group      |                       |          | 21.8     | 24.6               | 20.0       |
| Gaga           | ✓                     |          | 43.3     | 16.0               | 47.3       |
|                | ✓                     |          | 42.8     | 16.8               | 46.8       |
| Ours           |                       | ✓        | 45.9     | 12.7               | 50.2       |
|                | ✓                     | ✓        | 43.8     | 19.6               | 48.5       |

625 626 **Hyperparameters.** Table 6 compares the segmentation performance with varying the values of  
627 628  $\delta_d$  and  $\delta_s$ . To minimize the need for tuning, we set  $\delta_d$  and  $\delta_s$  to the same value, *i.e.*,  $\delta_d = \delta_s$ . We  
629 630 can see from this table that our method achieves the best performance by setting  $\delta_d$  and  $\delta_s$  to 0.2 on  
631 632 LERF-Mask, while showing the robustness to varying values of  $\delta_d$  and  $\delta_s$  on Replica.

633 634 Table 6: Comparison of segmentation results by varying the values of  $\delta_s$  and  $\delta_d$  on Replica (Straub  
635 636 et al., 2019) and LERF-Mask (Ye et al., 2024).  
637 638

| (639 $\delta_s$ , $\delta_d$ ) | 640 LERF-Mask |           | 641 Replica |               |            |
|--------------------------------|---------------|-----------|-------------|---------------|------------|
|                                | 642 mIoU      | 643 mBIoU | 644 mIoU    | 645 Precision | 646 Recall |
| (0.1, 0.1)                     | 78.1          | 77.8      | 52.0        | 49.3          | 58.0       |
| (0.2, 0.2)                     | 80.9          | 77.1      | 51.7        | 49.1          | 57.2       |
| (0.3, 0.3)                     | 74.3          | 74.0      | 51.6        | 49.5          | 57.1       |

647 648 **ScanNet.** We provide in Table 7 quantitative results of our method on ScanNet (Dai et al., 2017).  
649 650 The results of Gau-Group and Gaga are borrowed from the paper of Gaga. We can see that our  
651 652 approach outperforms others in terms of all metrics, confirming its effectiveness.

653 654 Table 7: Quantitative comparison with state-of-the-art methods (Lyu et al., 2024; Ye et al., 2024) on  
655 656 ScanNet (Dai et al., 2017). Numbers in bold indicate the best performance, while underscored ones  
657 658 represent the second best.

| 659 660 Method | 661 mIoU    | 662 Avg.<br>663 Precision | 664 Recall  |
|----------------|-------------|---------------------------|-------------|
| Gau-Group      | 34.2        | 18.7                      | 32.6        |
| Gaga           | 45.1        | 22.9                      | 51.0        |
| Ours           | <b>49.8</b> | <b>26.0</b>               | <b>53.7</b> |



Figure 6: Qualitative results of our method on Mip-NeRF 360 (Barron et al., 2022). (a) Ground-truth images. (b) Rendered images. (c) Inconsistent masks predicted by SAM (Kirillov et al., 2023). (d) Segmentation masks predicted by our method.

**Mip-NeRF 360.** We visualize in Figure 6 results of our approach on Mip-NeRF 360 (Barron et al., 2022). From this figure, we can see that our approach achieves high-quality performance in synthesizing novel view images (Fig. 6(b)), while predicting consistent segmentation masks (Fig. 6(d)).

## B LIMITATION

Although our approach achieves notable improvements on standard benchmarks (Straub et al., 2019; Ye et al., 2024; Dai et al., 2017), its performance still depends on the quality of inconsistent masks predicted by SAM (Kingma & Ba, 2015) as in current methods (Ye et al., 2024; Lyu et al., 2024; Ying et al., 2024; Zhu et al., 2025). In particular, the inconsistent mask of the first training view is important in that it is used to initialize the memory bank (Eq. 11). A promising direction to address this issue would be designing a method that adaptively selects a specific view whose mask does not suffer from over- and under-segmentation errors.