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Abstract— We enhance object search in unknown environ-
ments by integrating a large language model (LLM) with model-
based planning to quickly and reliably locate an object of
interest. The LLM is prompted to produce predictions about
the likelihood of finding the object of interest used to define
a model for planning that the robot then uses to determine
its search policy, affording both good performance due to the
integration of learning and reliability due to the reliance on
classical planning to find the object. From our findings on
200 random maps on the ProcTHOR dataset, our proposed
LLM-informed planner, utilizing GPT-4o predictions, achieves a
cost reduction of 27.1% and 30.3% compared to the standard
baseline and Myopic LLM-informed baseline, respectively.

I. INTRODUCTION

We consider the task of object search in household en-
vironments, in which a robot is tasked to find an object of
interest in the minimum expected time. Even if when the
robot is provided a high-level layout of the environment—
told what rooms exist and the presence of cabinets, con-
tainers, or surfaces within them that may contain the target
object—deciding where to prioritize search requires making
predictions about uncertainty and incorporating that into
planning, a challenging task in general.

Non-learned strategies that tackle this task must often
make simplifying assumptions about where the object might
be found or the robot’s behavior. In the absence of knowledge
about the contents of any containers, a greedy planning
strategy in this domain may prescribe that the robot simply
navigate to and search the nearest unexplored container,
repeating until the object of interest is found. However, such
naive search strategies, underperform in general, because
they lack knowledge about the likely locations of common
household objects. Overcoming this limitation instead re-
quires that the robot be imbued with general purpose world
knowledge to aid in reasoning about where objects are likely
to be found.

To improve the object search capability of robots in
unseen environments the inherent knowledge of a large
language model (LLM) or vision language model (VLM) can
be leveraged to enable the robots to make more accurate
decisions during object search. In recent times we have
witnessed planning approaches that rely entirely on LLMs [1],
[2] and vision language model (VLM)s [3], [4]. LLMs have
shown limited potential in this domain, one straightforward
approach [5] involves asking an LLM where the robot should
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search next, searching that location, and then requerying
the LLM until the object is found. However, multiple recent
studies have shown that language models can struggle to
serve as effective planners [6]–[9], and so can underperform
in this domain as well, despite the general-purpose world
knowledge implicit in such models. By contrast, model-based
planning is well-suited to reason far into the future to perform
the long-horizon reasoning with which LLMs struggle.

In this work, we assert that there is a need for a novel
strategy that integrates learning and planning, to both lever-
age the general-purpose knowledge captured by an LLM
and a planning framework to make use of it for effective
and reliable decision-making. Taking inspiration from recent
work in learning-augmented model-based planning under
uncertainty [10], we present a novel approach that uses an
LLM to make predictions about statistics of the belief—
namely, the likelihood of finding an object of interest in a
particular location—parameters used to define a model for
planning. We conduct experiments in simulated ProcTHOR
environments, which procedurally generate home-like envi-
ronments well-suited for studying object search tasks. Across
200 maps, our LLM-informed planner, relying on GPT-4o
to help make predictions about object likelihoods, shows
reductions of 27.1% and 30.3% against Myopic non-learned
and learned baselines, respectively, thus demonstrating the
efficacy of our approach.

II. RELATED WORK

This section initially provides a brief overview of using
LLMs and VLMs as planners. Then it summarizes some
model-based learning techniques used in planning.

A. LLM- and VLM-Based Planning

Huang et al. [11] demonstrate the use of VLMs in planning
complex robotic actions in dynamic environments. Shirai et
al. [12] introduce a ViLaln combining LLMs and VLMs to
generate task planning that is machine-readable. Zhang et
al. [13] focuses on visual ground planning to leverage VLMs
to detect action failures and verify potential actions.

LLM-based approaches [14], [15] propose to use language-
based frameworks that enhance the capabilities of robots
that successfully utilize feasibility heuristics and enhance
task planning and situation handling in open-world envi-
ronments for robots. Additionally, Guan et al. [16] and
Kambhampati et al. [17] address improvement in PDDL
quality and combining LLMs with external verifiers. Say-
Can [18] introduces the combination of low-level tasks with
LLMs to perform complex tasks while SayNav [19] leverages



LLMs to generate step-by-step navigation plans in large-
scale unknown environments incrementally building a 3D
scene graph during exploration and using LLMs for real-
time high-level planning. DynaCon [20] presents a planning
system with LLMs to provide a semantic understanding of
the environment enabling robots to improve task execution.

B. Object Search and Learning-for-Planning

Ye et al. [21] propose a hierarchical policy learning model
that combines intrinsic and extrinsic motivations to improve
object search efficiency in sparse reward environments. This
approach allows robots to prioritize exploration based on
expected task relevance and reward outcomes.

Li et al. [22] compares model-free and model-based
learning-informed planning strategies for PointGoal naviga-
tion. While model-based approaches use learned environment
models to create more intelligent, effective decisions, model-
free approaches only use reinforcement learning, necessitat-
ing large amounts of data and training. According to the
study, model-based planning provides more efficiency and
adaptability, especially in new situations.

III. LLM-INFORMED MODEL-BASED PLANNING

A. Problem Formulation

Our robot is tasked to do object search to reach a target
object in a household environment at a minimum expected
cost (distance). Containers are objects that can contain other
objects, like a bed, dresser, countertop, etc., and so the
set of containers defines the robot’s set of available search
actions. The containers are located in different rooms in
the household environment. We presume that the robot has
access to a low-level navigation planner and controller that
can be used to move about and interact with the environment
and determine the costs of each. As such, the aim of our
planner is to determine the sequence of container search
actions that minimize the expected cost.

B. Approach

To achieve effective household object search, we introduce
an approach for LLM-informed model-based object search, in
which we seek to perform model-based planning wherein the
robot’s behavior is informed by the predictions about object
locations generated by an LLM.

Our approach takes inspiration from the recent Learning
over Subgoals Planning (LSP) approach of Stein et al. [10].
Their approach, designed around the aim of effective long-
horizon navigation, is centered around using learning to es-
timate statistics associated with temporally extended actions
for exploration; a learned model, trained in environments
similar to those the robot sees when deployed, estimates the
goodness of each such exploratory action and the likelihood
exploring the space to which the action corresponds will
reach the unseen goal. In the event the action fails, the robot
must select another, proceeding until the goal is found.

In our approach, which we term LLM-LSP, we adopt a
similar planning abstraction. For our task of object search,
the robot’s action space A consist of actions to search each

Fig. 1. The schematic gives an overview of the LSP-LLM approach

of the containers within the environment. Under our model,
each search action has an immediate cost of first traveling to
the container—corresponding to a distance D(mt, at) com-
puted via A* from the occupancy grid—-and then searching
the container for the object, which has a (known) cost
Rsearch(at). For each such search action a, there is an inherent
probability of success PS(a) that the object is located in the
container searched by action a; in the event the object is not
found, which occurs with probability 1 − PS(a), the lobot
must continue searching and so select another action. Under
this model, the optimal expected cost of a state-action pair
can be represented by a Bellman equation:

Q({mt, gt}, at ∈ A) = D(mt, at) +Rsearch(at)

+ (1− PS(at))

[
min
at+1

Q({mt, gt}, at+1)

]
(1)

The objective of planning is thus to find the sequence of
search actions that minimize the expected cost to find the
object of interest.

The likelihood of finding the object in each of the con-
tainers, the success probability PS , is not known in advance
and so we instead query an LLM, specifically GPT-4o, to
provide them based on its general-purpose world knowledge.
As mentioned above, we treat the LLM as a commonsense
knowledge repository and operate under the assumption that
it will contain generally reasonable understanding of where
to look for objects and where not to look for them. Though
the LLM is not particularly effective at directly planning in
this domain, querying it for statistics about the world is a
much more well-scoped task that does not require explicitly
reasoning multiple steps into the future and so allows us to
leverage the knowledge contained within the LLM without
the need to rely upon it to directly make effective decisions.

C. Obtaining Object Likelihoods from an LLM

To use the LLM, we design a prompt that provides
the necessary contextual information—a summary of the
environment—followed by a query to estimate the likelihood
the object of interest will be found at any one of the
locations. Our prompt is built around four main elements:
(1) a description of the setting and the role that the LLM
will serve, (2) a description of the house including a list
of the rooms present and the containers they contain, (3)
an example for reference, and (4) the query asking for the
probability of finding the object of interest in a container



TABLE I
AVG. COST FOR 200 HOUSEHOLD ENVIRONMENTS

Planner Avg. Cost (metres)

Myopic Optimistic 16.1
Myopic Learned with GPT-4o 16.8
LSP-LLM with GPT-4o (ours) 11.7

within a particular room. The output of the LLM is then
parsed to obtain the probability. We repeat this process until
all probabilities needed for planning are determined. We
provide a full example prompt for our system in Sec.V.

We note that planning via Eq. (1) can scale poorly as
the number of potential containers grows. As a cost-saving
measure, we use a heuristic to pick a subset of the best
8 containers including the 8 containers nearest to the agent,
and then the 8 highest likelihood of the remaining containers.
These are used as the action set for the robot. Whenever a
container is searched and found not to contain the object
of interest, the robot chooses the 8 best of the remaining
unsearched containers. This process of searching and replan-
ning continues until the object is found or all containers are
exhausted.

IV. SIMULATED EXPERIMENTS IN PROCTHOR

We conduct simulated experiments in 200 distinct house-
hold environments drawn from the ProcTHOR dataset,
which consists of procedurally generated homes for use in
rearrangement-style tasks. In our experiments, we presume
that the robot has access to the underlying occupancy grid
representation and is provided the room layout and containers
that may contain objects of interest, but not what is inside
those containers, as it must search them to reveal the objects.
In this work, we evaluate the performance of three distinct
planning strategies:
LSP-LLM (ours) Our LLM-informed planner, as described

in Sec. III-B, which uses probability values obtained
from an LLM to define parameters for a model-based
planner.

Myopic Optimistic (non-learned baseline) This planning
strategy optimistically assumes that containers in the
map may contain the object of interest. This assumption
results in a greedy planning strategy in which the
robot systematically searches the nearest unexplored
container.

Myopic Learned (informed baseline) This planning strat-
egy leverages the probabilities produced from the LLM,
yet navigates directly to the container with the highest
probability, rather than using it to inform planning. As
such, this strategy is also greedy.

In Table I we show the average performance of each
planning approach among the 200 maps where our LSP-
LLM planner outperforms all other planners. From Fig. 2
we observe that our proposed LLM-based planner using
predictions from GPT-4o shows a cost reduction of 27.07%
and 30.29% compared to the Myopic Optimistic baseline

Fig. 2. Results for average cost for 200 random maps using GPT-4o.
Our LSP-LLM planner outperforms both the Myopic learned planner and
Myopic optimistic planner by 27.1% and 30.3% respectively

Fig. 3. Trajectory of the robot for each of the planners on a map where
the target object is a pan on a dining table

and Myopic LLM-informed baseline, respectively making our
proposed method the best among all.

In Fig. 3 LSP-LLM planner shows the most efficient
path planning around containers with minimal deviation,
indicating a strong ability to anticipate the environment.
The Myopic Learned planner, though more efficient than
the optimistic planner, still exhibits some unnecessary explo-
ration. The Myopic Optimistic planner blindly explores the
nearest containers with respect to the robot’s present location,
leading to excessive detours and inefficiency in locating the
target object.

Fig. 4 compares the performance of three planners on
three more maps where a robot searches for a target object.
In comparison to the other planners, our LSP-LLM planner
frequently makes quick progress toward finding the object,



Fig. 4. Trajectory of the robot for each of the planners on three different
maps where the target object where the target object is a fork located on
the countertop, laptop located on a dining table, and faucet located on the
sink respectively

occasionally stopping at other containers near to its path
along the way. The Myopic Learned planner shows planning
costs that are lower than those of the Myopic Optimistic
planner but higher than the LSP-LLM planner, the Myopic
Optimistic planner explores excessively and incurs substan-
tially higher costs. The results show that for the Myopic
Optimistic planner, good performance requires more than
simply making reasonable predictions about object location.
Our approach benefits from both model-based planning and
the predictions from the LLM, and so is able to outperform
the competitive baselines.

In comparison to the Myopic Optimistic planner, the LSP-
LLM planner in the final map achieves relatively low cost,
though slightly underperforms the Myopic Learned planner.
This shows that even if the LSP-LLM is not always optimal
it is still efficient and reaches the target object due to the
model-based planner coupled with the LLM having real-
world knowledge.

V. CONCLUSION AND FUTURE WORK

In this research, we present an LLM-based object search
approach. We extract predictions of finding particular target
objects in different containers of different rooms in an
apartment from GPT-4o. We then feed these prediction values
into the LSP planner to find the cost output and compare it
with cost outputs from other planners. From our findings, our
proposed LLM-based approach outperforms other planners.
In future work, we aim to conduct more experiments on

different household environments and compare the results
yielded by our LLM-based approach with the other baseline
approaches.

APPENDIX: EXAMPLE GPT-4O INSTRUCTION

This section includes the entire prompt construction and
LLM output.
Input Instruction:
You are serving as part of a system in which a robot
needs to find objects located around a household. Here
is a schema that describes the connectivity of rooms in
the house: The apartment contains: a bedroom. bedroom
contains: bed, dresser, diningtable, chair, chair, armchair,
safe, desk, dogbed.

You will be asked to estimate the probability (a value
between 0% and 100%) of where objects are located in
that house, leveraging your considerable experience in how
human occupied spaces are located. You must produce a
numerical value and nothing else, as it is important to
the overall functioning of the system. Here is an example
exchange for an arbitrary house:

User: “What is the likelihood that I find eggs in the
refrigerator in the kitchen.” You: “90%”

The logic here is that there is a high likelihood that a
typical refrigerator in the kitchen contains eggs, but it is not
guaranteed as not all refrigerators have eggs.

Here is your prompt for today: ”What is the likelihood
that the desk in the bedroom contains a tabletopdecor?”

Output: 25%
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