
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

ENHANCING LINEAR BOUND TIGHTNESS IN NEURAL
NETWORK VERIFICATION VIA SAMPLING-BASED UN-
DERESTIMATION

Anonymous authors
Paper under double-blind review

ABSTRACT

We present PT-LiRPA (Probabilistically Tightened LiRPA), a novel approach
that enhances existing linear relaxation-based perturbation analysis (LiRPA)
methods for neural network verification. PT-LiRPA combines LiRPA ap-
proaches with a sampling-based underestimation technique to compute probabilis-
tically optimal intermediate bounds, resulting in tighter linear lower and upper
bounds. Notably, we show that this approach preserves the soundness of veri-
fication results while significantly tightening the bounds for generic non-linear
functions. Additionally, we introduce a new metric, ∆∗, to quantify the tightness
for LiRPA bounds and to bound the magnitude of the possible error in the sample-
based overestimation, thus complementing the probabilistic bound of statistical
results we use. Our empirical evaluation, conducted on several state-of-the-art
benchmarks, including those from the International Verification of Neural Net-
works Competition, demonstrates that PT-LiRPA achieves higher or comparable
verified accuracy with lower verification times. The significantly tighter bounds
and better efficiency allow us to verify instances where state-of-the-art methods
could not provide a specific answer.

1 INTRODUCTION

Deep neural networks (DNNs) and recently large language models (LLMs) have revolutionized
various fields, from healthcare and finance to natural language processing, enabling unprecedented
capabilities, for instance, in image recognition (O’Shea & Nash, 2015) and autonomous navigation
(Tai et al., 2017). However, their opacity and vulnerability to the so-called “adversarial inputs”
(Szegedy et al., 2013) raise significant concerns, particularly when they are deployed in safety-
critical applications such as autonomous driving, medical diagnosis, or financial decision-making.
Hence, developing methods to ensure that these models can be trusted, even in edge cases, is crucial.
Provable safety guarantees involve formal verification (FV) techniques that mathematically ensure
a system under a given amount of input perturbation will not produce harmful outcomes, offering a
higher level of assurance than empirical testing alone.

Existing FV approaches tackle the problem in two main ways. The first solution consists of encoding
the linear combinations and the non-linear activation functions of a DNN as a set of constraints for
an optimization problem (Katz et al., 2017; Wu et al., 2024). The second method relies on interval
bound propagation (IBP) (Lomuscio & Maganti, 2017; Gowal et al., 2018; Gehr et al., 2018) and
consists of determining each neuron’s reachable set, i.e., the lower and upper bound values until the
output layer. However, due to the non-linear and non-convex nature of the DNN, computing the
exact bounds of a neural network has been proven to be NP-hard (Katz et al., 2017). To address
this challenging problem, a recent line of works called linear relaxation-based perturbation analysis
(LiRPA) algorithms (Zhang et al., 2018; Xu et al., 2020b; Wang et al., 2021; Xu et al., 2020a)
proposes a perturbation analysis based on a sound DNN linear relaxation. In detail, for a given
DNN, the idea is to compute a linear relaxation of any non-linear activation function in the network.
Thus for any possible input x ∈ C (with C, for instance, an ℓ∞ ball around the original input
x0), we can obtain two linear bounds for the output f(x), an upper and lower bound, such that
f(x) = aTx + c ≤ f(x) ≤ f(x) = aTx + c. Hence these approaches compute sound, over-

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Overview of the proposed method in this work.

approximated linear bounds of the real minimum f∗ = min
x∈X

f(x) (and maximum, respectively) that

provide a conservative estimate of the system’s behavior, thus covering all possible potential worst-
case scenarios.1Even though this conservative approach enables to verify in a sound (and sometimes
complete) way DNNs, it still presents two main limitations depicted in Figure 1 (left) that we aim
to address in this paper. (i) The over-approximation approach f

LiRPA
(in purple) could lead to loose

bounds, thus preventing the possibility of answering the verification query. This problem is amplified
in large networks, directly translating into scalability issues. (ii) To the best of our knowledge, no
global optimal tightness guarantee (∆) of the computed bounds is provided for the approach of
(Zhang et al., 2018; Xu et al., 2020b; Wang et al., 2021; Xu et al., 2020a). Recently, Biktairov &
Deshmukh (2023) proposed an approach with an optimality criterion for the computation of tightness
bound in terms of discrepancy volume between the lower (or upper) linear bound and the actual min
(or max) value of the function. However, similar to other existing approaches (Liu et al., 2021), this
procedure requires multiple invocations to a linear programming (LP) solver, which could result in
prohibitive computational demand in the verification of large networks.

To tackle these challenging problems, in this work, we shift the focus from conventional over-
approximation methods to examine the impact of provable probabilistic underestimation tech-
niques. In detail, we propose PT-LiRPA (Probabilistically Tightened LiRPA), a novel approach
for computing tighter linear lower and upper bounds by combining existing LiRPA methods with
a sampling-based underestimation strategy. We first show that leveraging theoretical probabilistic
guarantees (Wilks, 1942; Marzari et al., 2024), the overestimation of the actual minimum value
of f—calculated using n random input samples drawn uniformly from the perturbation region
C—could be incorrect for at most a countably small fraction of an indefinitely large additional sam-
ple set, with a predefined confidence level α. Hence, we prove that by computing probabilistically
optimal intermediate bounds in the DNN and combining them with any formal verification methods
based on LiRPA, the soundness of the results is preserved for a specified confidence level (i.e., the
method still yields valid overestimated lower and upper bounds with a confidence α). Crucially, as
also speculated by Xu et al. (2020b), having tighter intermediate reachable sets significantly tightens
the final linear bounds, which directly translates into verification efficiency. The right side of Figure
1 depicts our idea: f

OVER
the brown dot represents the overestimation of the min value of f , derived

from a sampling-based approach within the perturbation region C. By employing a similar proce-
dure also to compute probabilistically optimal intermediate bounds (i.e., an under-estimation of the
intermediate reachable sets) and by incorporating them in the linearization employed in the verifi-
cation tools based on LiRPA, we can achieve significantly tighter linear lower bounds f

PT-LiRPA
(in

orange) which can lead to a more accurate verification result in less computational time. Crucially,
we show that this approach allows us to provide precise answers even in instances where state-of-
the-art approaches fail. To assess the improvement in the tightness of the new linear bounds, we
provide a novel analytical formula ∆∗ as a distance between f

OVER
and f

PT-LiRPA
to assess the

global tightness of the bound relative to f∗. If ∆∗ → 0, then both methods produce near-optimal
bounds and provide a novel dual assurance: optimality guarantees for the LiRPA bounds and quali-

1For the sake of clarity and without loss of generality, we are only going to discuss the optimal lower
bounding f(x). Similar considerations can also be applied when computing the upper bound f(x) with the
necessary changes in computation.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

tative insights on the magnitude of the possible error in the sample-based overestimation of the min
of f , thus complementing the probabilistic bound of statistical results we employ. In detail, the re-
sult provided in Wilks (1942) quantitatively predicts how many new samples in a future indefinitely
larger sample could be smaller than f

OVER
, calculated from the initial sample of size n. However, it

does not specify how far apart these points could be from f
OVER

(i.e., the distance). By employing
∆∗, we can also provide, for the first time, a qualitative interpretation of this statistical outcome.
This dual assurance represents a significant advancement in bounding non-linear functions, deliv-
ering more accurate results with reduced computational demand, thereby enhancing the reliability
and scalability of safety verification for neural networks. In summary, the main contributions of the
paper are:

• PT-LiRPA: a novel approach that combines existing over-approximation methods with
sampling-based underestimation techniques with provable probabilistic guarantees to com-
pute tighter linear bounds for deep neural networks (§3).

• A novel analytical formula, ∆∗, to assess the global tightness of the computed bounds
relative to the actual minimum function value, providing dual assurance of optimality for
both over-approximated and probabilistically underestimated bounds (§3.2).

• A thorough empirical evaluation to assess the benefits of our approach. Crucially, our
evaluation in different datasets and standard benchmarks of the international verification of
neural networks competition (VNN-COMP) shows that PT-LiRPA obtains consistently
similar or higher verified accuracy with respect to the original formal verification tools
based on LiRPA counterpart (Zhang et al., 2018; Xu et al., 2020b; Wang et al., 2021;
Xu et al., 2020a) while reducing verification time by several orders of magnitudes (§4).
Crucially, we show that our method resolves instances that are considered “unknown” by
previous state-of-the-art approaches.

2 PRELIMINARIES

For the sake of clarity in this section and all our work, we recall and simplify—when possible– main
notation in related works on linear relaxation-based perturbation analysis (Xu et al., 2020b; Wang
et al., 2021; Xu et al., 2020a).

2.1 NOTATION AND PROBLEM FORMULATION

Consider neural network classifier f : Rd0 → R, with d0 the input space dimension. We assume
a model with L layers (L > 1). In each layer we have weights W (i) ∈ Rdi×di−1 and biases
b(i) ∈ Rdi , for i ∈ {1, . . . , L}. Given an input x ∈ Rd0 , we define the output of the neural
network as the sequence of several linear and non-linear operations that produce: f(x) := z(L)(x)

where z(i)(x) = W (i)ẑ(i−1)(x) + b(i) and ẑ(i)(x) = σ(z(i)(x)) is application of one arbitrary
(non-)linear activation function with ẑ(0)(x) = z(0)(x) = x. We define we the symbol z(i)j (x)

and ẑ
(i)
j (x) the pre and post-activation values of the j-th neuron in the i-th layer, respectively (see

Figure 3 in Appendix B). In this work, we consider Rectified Linear Unit (ReLU) as an activation
function which is the most employed in the literature verification works (Xu et al., 2020b; Wang
et al., 2021), but the soundness of the proposed approach still holds with different non-linear scalar
functions studied in literature such as Tanh, Sigmoid, GeLU, etc. For practical purposes and without
loss of generality, we observe that it is possible to assume that the network has a single output node
on whose we can verify the desired safety/robustness property. We can enforce this condition for
networks that do not satisfy this assumption by adding one layer and encoding, for instance, the
robustness property we aim to verify in a single output node as a margin between logits, which
produces a positive output only if the correct label is predicted (Liu et al., 2021; Wang et al., 2021).
Hence, we can define the robustness verification problem of deep neural networks as follows.

Given an input perturbation set C = {x| ||x − x0||∞ ≤ ϵ}, i.e., with C as an ℓ∞ ball around an
original input x0, we aim to find, if exists, an input x ∈ C such that f(x) < 0, thus resulting in a
violation of the property. If f(x) ≥ 0 ∀x ∈ C, we say f(x) is robust (or verified) to all the possible

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

input perturbations in C. A possible way to prove the property is to solve the optimization problem
in terms of min

x∈C
f(x) and by checking if the result is positive. Formally:

Definition 1 (Robustness verification problem).

Input: A tuple T = ⟨f, C⟩.

Output: Robust ⇐⇒ min
x∈C

f(x) := z(L)(x) ≥ 0.

However, given the non-convex transformation imposed by ẑ(i), i.e., by the non-linear activation
functions, Def. 1 presents a non-convex NP-hard optimization problem to solve (Katz et al., 2017).
To address this problem, (in)complete verifiers usually relax the DNNs’ non-convexity to obtain
over-approximate sound lower f and upper f bounds of f . If f ≥ 0, then also f∗, i.e., the real
minimum value of f will be positive, and similarly if f < 0 than also f

∗
< 0. In both these

situations, we can return a provable result. In the last situation, namely if f < 0 < f , we cannot
provide an answer, and we typically have to proceed with a branch and bound (BaB) (Bunel et al.,
2018). More specifically, many FV tools firstly recursively divide the original verification problem
into smaller subdomains either, for instance, dividing the perturbation region (Wang et al., 2018) or
splitting ReLU neurons into positive/negative linear domains (Bunel et al., 2020). Secondly, they
bound each subdomain with specialized (incomplete) verifiers, typically linear programming (LP)
solvers (Ehlers, 2017), which can fully encode neuron split constraints. The verification process ends
once either we verify all the subdomains of this searching tree or we find a single counterexample
where f < 0. Even though LP-verifiers are mainly used in complete FV tools, recent LiRPA-based
approaches Xu et al. (2020b); Wang et al. (2021) show how to solve an optimization problem that
is equivalent to the costly LP-based methods with neuron split constraints while maintaining the
efficiency of bound propagation techniques significantly outperforming LP-verification time thanks
to GPU’s acceleration.

2.2 LINEAR RELAXATION-BASED PERTURBATION ANALYSIS (LIRPA) APPROACHES

Figure 2: Linear relaxation for ReLU(z(i)j)

To produce linear bounds of a DNN, LiRPA ap-
proaches (Zhang et al., 2018; Singh et al., 2019;
Xu et al., 2020a;b; Wang et al., 2021) propose
to resolve non-linearity in the neural network by
computing linear relaxation of each non-linear
unit. The high-level idea is to compute the linear
bounds of each neuron in the DNN, for instance,
all the ReLU nodes, to express a linear relation
between layers. In detail, using bound propaga-
tion, we first compute a lower and upper bound
for each neuron l

(i)
j ≤ z

(i)
j ≤ u

(i)
j . A ReLU

node, ẑ(i)j = max(0, z
(i)
j), is considered “unstable” if its pre-activated bounds are u

(i)
j > 0 > l

(i)
j

and can be linearized as depicted in Figure 2. In the other cases, is either considered “active” if
l
(i)
j ≥ 0 or “inactive” if u

(i)
j ≤ 0. Once linear bounds are established across all neurons, two

propagation methods are typically employed: forward and backward. In forward propagation, the
linear bounds for each neuron are expressed in terms of the input and propagated layer by layer until
the output is reached. In backward propagation, we start from the output and propagate the bounds
backward to earlier layers until we can express a linear relation between input and output.

To improve the tightness of the bounds, Xu et al. (2020a) suggest using a refined backward prop-
agation based on the results of a preceding forward pass. In detail, once we have the intermediate
reachable sets, we start by defining the new linear dependency of each layer i with respect to the
previous one i− 1 using a vector A(i) = A(i−1)D(i)W (i)(x), with i ∈ {1, . . . , L} and A(L) = I ,
A(L−1) = wT , assuming a single output node. In detail, D(i) is a diagonal matrix that expresses
the linear relaxation of the i-th non-linear layer ẑ(i). Each diagonal coefficient Dj,j of the matrix is

based on the preactivated reachable set of the node z(i)j , computed in the forward propagation and on

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

the sign of A(i−1)
j , i.e., the j-th element in the vector that represents the linearization of the previous

layer.

Zhang et al. (2018) show the given two vectors A,v ∈ Rd, where v is the pre-activated ReLU
vector, with l ≤ v ≤ u (element-wise) and A is the vector of the linear bounds coefficients entering
in the ReLU layer, we have:

ATReLU(v) ≥ AT (Dv + b) (1)

where D is a diagonal matrix (thus, we omit the subscripts (j, j) to denote the elements of the
diagonal in the notation) and b the biases that linearize each specific ReLU node2 defined as:

D =

1 lj ≥ 0,

0 uj ≤ 0,

αj uj > 0 > lj and Aj ≥ 0,
uj

uj−lj uj > 0 > lj and Aj < 0

b =

0 lj > 0 or uj ≤ 0,

0 uj > 0 > lj and Aj ≥ 0,

− ujlj
uj−lj uj > 0 > lj and Aj < 0.

Thus they prove that given an L-layer ReLU DNN f(x) : Rd0 → R with weights W(i), biases b(i),
pre-ReLU bounds l(i) ≤ z(i) ≤ u(i) and an input constraint x ∈ C, it holds

min
x∈C

f(x) ≥ min
x∈C

aT
LiRPA(x) + cLiRPA. (2)

Where aT
LiRPA and cLiRPA are the coefficients of the linear equation for the lower bound of f(x). We

provide further details and an explanatory example of linear bounds computation for a toy DNN in
Appendix B.

2.3 RELATED WORK

In recent years, significant research has been dedicated to increasing the quality of linear bounds of
the most popular activation functions, such as ReLU, and more general activation functions. More
specifically, (Xu et al., 2020a) proposes a framework for deriving and computing near-optimal sound
bounds with linear relaxation-based perturbation analysis for neural networks. This framework is the
base of all the most famous state-of-the-art formal verification tools such as CROWN (Zhang et al.,
2018), α-CROWN (Xu et al., 2020b), β-CROWN (Wang et al., 2021), the top performer on last
years VNN-COMP (Müller et al., 2022; Brix et al., 2023). Recently, different approaches have tried
to incorporate a sampling-based approach to enhance either the linear relaxation of arbitrary non-
linear functions (Paulsen & Wang, 2022; Biktairov & Deshmukh, 2023) or the verification process
(Balunovic et al., 2019). For instance, (Paulsen & Wang, 2022) proposed a method synthesizing lin-
ear bounds for arbitrary complex activation functions, such as GeLU (Hendrycks & Gimpel, 2016)
and Swish (Ramachandran et al., 2017), by combining a sampling technique with an LP solver to
synthesize candidate lower and upper bound coefficients and then certified the final result via SMT
solvers (Gao et al., 2013). However, no tightness optimality guarantees are returned for the bounds
computed. To address such an issue, (Biktairov & Deshmukh, 2023) presented a combination of an
efficient sampling-based approach and linear programming solvers for finding linear bounds arbi-
trarily close to optimum in terms of tightness for Lipschitz-continuous functions. Unlike LinSyn,
their approach provides optimality guarantees based on LP verification for the generated bounds
and does not heavily rely on using the SMT solver, resulting in superior running time performance.
However, they still require an LP solver to provide optimality guarantees.

In contrast, the scope of this paper is to provide a method to probabilistically enhance the tightness of
existing LiRPA linear bounds without relying on any LP or SMT solvers. Hence, our methodology
and comparative analysis will be predominantly based on the available auto LiRPA (Xu et al.,
2020a), which recently has also incorporated the improvements of (Paulsen & Wang, 2022; Bik-
tairov & Deshmukh, 2023), and α, β−CROWN (Zhang et al., 2018; Xu et al., 2020b; Wang et al.,
2021) frameworks. This allows us to effectively derive and assess the tightness of our linear bounds
approach with respect to recent state-of-the-art approaches also employed in the VNN-COMP.

2We do not report for clarity of reading the superscript (i) on D and (i + 1) on Aj . We use the complete
notation in Appendix B.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3 PROBABILISTICALLY TIGHTENED LIRPA VIA UNDERESTIMATION

In this section, we present all the theoretical and practical components of our PT-LiRPA approach
to computing tightened bounds with probabilistic guarantees on the optimality of the result returned.
As previously introduced, our approach is based on two main components: probabilistically optimal
intermediate bounds and a tight overestimation of f∗.

We start by exploiting statistical results known as Statistical Prediction of Tolerance Limits (Wilks,
1942) to derive provable probabilistic guarantees on the underestimated reachable sets computed
from a sampling-based approach. Let z(i)j be a node in a neural network with pre-activation values
computed from a uniform sample of n points drawn from a continuous perturbation set on interest
C. We compute its pre-activated bounds as:

l
(i)

j = min
k=1,...,n

z
(i)
j (xk); u

(i)
j = max

k=1,...,n
z
(i)
j (xk),

i.e., the minimum and maximum value obtained from of the propagation of n random points in that
specific neuron z

(i)
j . Notably, since we perform one single propagation on n random inputs, l

(i)

j

and u
(i)
j preserve the soundness and interdependence between the layers. Nonetheless, since we are

using a sample-based approach with high probability, we are underestimating [l∗
(i)
j , u∗

(i)
j], i.e., the

real lower and upper bound for that node. In fact, we have the following proposition.

Proposition 1 (Underestimation of sampling-based approaches). Let z(i)j the j-th neuron in the

i-th layer and l∗
(i)
j , u∗(i)j the true lower and upper bounds of z(i)j , respectively. Then for l

(i)

j =

min
k=1,...,n

z
(i)
j (xk) and u

(i)
j = max

k=1,...,n
z
(i)
j (xk) the lower and upper bounds of z(i)j computed using a

sampling-based approach, it necessary holds: l
(i)

j ≥ l∗
(i)
j ; u

(i)
j ≤ u∗

(i)
j .

By choosing a sample size based on the results of Wilks (1942), we can achieve a quantitative
correctness result in terms of probability α that our estimate of the intermediate reachable set holds
for at least a fixed (chosen) fraction R of a further possibly infinitely large sample of inputs from
the same perturbation set C. Crucially, this statistical result does not require any knowledge of the
probability distribution governing our function of interest and thus also applies to our setting.
Lemma 1 (Probabilistically optimal pre-activated intermediate bounds). Let n the number of sam-
ples employed in the computation and the interval [l

(i)

j , u
(i)
j], where l

(i)

j and u
(i)
j are the minimum

and maximum pre-activation values observed in the sample, respectively. Fix R ∈ (0, 1), then for

any further possibly infinite sequence of samples from C, the probability that [l
(i)

j , u
(i)
j] is incorrect

for more than 1−R of points is at most 1− α, with α = n ·
∫ 1

R
xn−1 dx = (1−Rn).

Hence, following lemma 1, by selecting a desired confidence level α, and a fraction R, we can derive
the number of samples necessary to obtain the provable probabilistic guarantees on the intermediate
bounds computed. Notably, we have that for n ≥ ln (1−α)

ln (R) samples used to compute [l
(i)

j , u
(i)
j], with

probability α at most a fraction (1 − R) of points in an indefinitely larger future sample could fall
outside that reachable set.

We now prove that, by utilizing these probabilistically optimal underestimation techniques to com-
pute intermediate bounds in the DNN and combining them with any LiRPA formal verification
methods, the soundness of the results in terms of lower (and upper, respectively) bound of f re-
turned is probabilistically preserved, with a predefined confidence level α. We start by showing that
the soundness of the relaxation of the ReLU layers using any LiRPA approaches is still probabilisti-
cally preserved using PT-LiRPA.
Lemma 2 (ReLU Layer Relaxation using PT-LiRPA). Fix α,R ∈ (0, 1). Given two vectors
A∗,v ∈ Rd, where v is the pre-activated ReLU vector, with l ≤ v ≤ u (element-wise) obtained
from a sampled of n ≥ ln(1−α)

ln(R) samples and A∗ is the vector of the linear bounds coefficients of
the previous ReLU layer (computed with the probabilistically optimal intermediate bounds), with a
confidence ≥ α it holds:

A∗TReLU(v) ≥ A∗T (D∗v + b∗) (3)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where

D∗ =

1 lj ≥ 0,

0 uj ≤ 0,

αj uj > 0 > lj and A∗j ≥ 0,
uj

uj−lj
uj > 0 > lj and A∗j < 0

b∗ =

0 lj > 0 or uj ≤ 0,

0 uj > 0 > lj and A∗j ≥ 0,

− ujlj

uj−lj
uj > 0 > lj and A∗j < 0.

The proof is reported in Appendix A. As a direct implication of this result, we can show that the
linear lower and upper bounds computed using PT-LiRPA still remain probabilistically valid.
Lemma 3 (PT-LiRPA lower bound). Given an L-layer ReLU DNN f(x) : Rd0 → R with weights

W (i), biases b(i), pre-ReLU bounds l
(i) ≤ z(i) ≤ u(i) and an input constraint x ∈ C, it holds with

probability ≥ α
min
x∈C

f(x) ≥ min
x∈C

aT
PT-LiRPA(x) + cPT-LiRPA

Proof. The proof directly follows from our Lemma 2 and the derivations of Zhang et al. (2018).

3.1 PT-LIRPA FRAMEWORK

Based on the theoretical results of our approach, we now present in Algorithm 1 the PT-LiRPA ap-
proach for the verification process. For the sake of clarity and without loss of generality, we present
the procedure applied to the parallel BaB as shown for the optimized LiRPA approach proposed in
(Xu et al., 2020b).

Algorithm 1: PT-LiRPA on parallel BaB
Input : a DNN f , a region C, sample size n, confidence parameter R, batch size m.
Output : robust/not-robust with a confidence≥ α = 1− Rn

1 interm bounds← get interm bounds(f, C, n)
2 f

C
, fC ← LiRPA(f, C,interm bounds)

3 B ← {(f
C
, fC)}

4 while B ≠ ∅ do
5 C1, . . . , Cm ← split(B,m)
6 interm boundsC1,...,Cm ← get interm bounds(f, [C1, . . . , Cm], n)

7 (f
C1

, fC1
), . . . , (f

Cm
, fCm

)← LiRPA(f, (C1, . . . , Cm),interm boundsC1,...,Cm)

8 B ← B ∪ B \ get robust domain((f
C1

, fC1
), . . . , (f

Cm
, fCm

))

9 if ∃fCi
< 0 in B then

10 return not robust
11 end
12 end
13 return robust

Given a DNN f and a region of interest C the verification process of state-of-the-art verification
tools typically involves a projected gradient descent (PGD) attack (Madry et al., 2018), which is
employed either before starting or during the BaB process to search for potential adversarial input in
the region under consideration. If no adversarial is found, the BaB process starts. For a given sample
size n and confidence parameter R, we first compute probabilistically optimal intermediate bounds
using get interm bounds method, and then use these bounds in the linear bounds computation
on any existing LiRPA approach. We store the resulting bounds f and f for the region C, namely
fC and fC in a set B of unverified regions (lines 1-3). We then start the BaB process by splitting
using the split method the original region from B into m sub-regions (line 5). Notably, we can
perform the parallel selection and splitting into sub-domains using information on unstable ReLU
nodes, as shown in (Bunel et al., 2020; Wang et al., 2021), or just on the perturbation region Ci
(Wang et al., 2018). Once we have the new sub-domains, we recompute the intermediate reachable
sets in parallel and use these bounds for the new computation of the linear lower and upper bounds
for each sub-region (lines 6-7). Finally, we update B with the resulting unverified sub-domains from
the procedure get robust domain (line 8). The verification process continues until either B
is empty, returning a robust answer, or we find an adversarial configuration, i.e., there is at least
a single sub-domain Ci that presents f < 0, thus returning not robust as the answer (lines 9-13).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Crucially since PT-LiRPA could overestimate the lower bound (and respectively underestimate
the upper bound of a region Ci), we can perform either a sample-based or a PGD attack in the
get robust domain procedure, to empirically asses whether we wrongly deemed a region as
robust. Following Lemma 3, if no adversarial is found with this further check, we can state that with
a confidence ≥ 1−Rn in that region Ci, the DNN is robust.

3.2 A NOVEL ANALYTIC FORMULA TO ASSESS THE TIGHTNESS OF LINEAR BOUNDS

In this section, we derive a novel analytical formula to estimate the tightness of the bounds computed
using the PT-LiRPA approach. This formula provides a means to evaluate how closely the overap-
proximated or underestimated bounds align with the actual minimum values of the neural network
function f .

Given a perturbation region C of interest and the minimum value of the neural network function
f∗ = min

x∈C
f(x), we define f

OVER
= min

k={1,...,n}
f(xk), where each xk sampled is in C, the overap-

proximated estimate value of f∗ computed using a sampling-based method. By knowing the value
of f∗ we can estimate the exact tightness of f

OVER
, by measuring the relative difference between

the overapproximated minimum and the true minimum, normalized by the magnitude of f∗. Specif-
ically, we can write this formula:

∆ =
f

OVER
− f∗

|f∗|+ ε
(4)

We note that if f∗ tends towards 0, ∆ will wrongly return an indefinitely larger result with respect
to the actual ratio. To address such an issue, we sum a small quantity ε > 0 to avoid division
for minimal values and still preserve the correctness of the formula. Nonetheless, in many practi-
cal scenarios, computing f∗ of the neural network function is hard or even potentially unfeasible.
To address this, we can derive an upper bound on the tightness estimate ∆ by replacing the true
minimum f∗ with our probabilistically optimal lower bound of f .
Corollary 1 (Analytic formula for probabilistic global tightness). Let C be a perturbation region of
interest, and f be a neural network. Given f

OVER
= min

k={1,...,n}
f(xk) the overestimation of minimum

value of f and f
PT-LiRPA

= min
x∈C

aT
PT-LiRPA(x)+cPT-LiRPA the probabilistically optimal lower bound

of f , a valid upper bound of Equation 4 is given by:

∆∗ =
f

OVER
− f

PT-LiRPA

min
(
|f

OVER
|, |f

PT-LiRPA
|
)
+ ε

(5)

Where f
PT-LiRPA

is the probabilistic optimal lower bound of the neural network function, which
is obtained by integrating the probabilistic optimal intermediate bounds into any existing LiRPA
method. The upper bound formula ∆∗ derivation follows from the principles of linear relaxation and
probabilistic underestimation outlined in §3. In detail, by considering the probabilistic nature of the
lower bounds f

PT-LiRPA
derived through sampling-based approaches, we know that f

PT-LiRPA
≤ f∗

with a confidence ≥ α (as guaranteed by Lemma 3). Hence, the difference f
OVER

− f
PT-LiRPA

serves
as an overestimation of the difference f

OVER
− f∗. To normalize this difference, we divide by the

minimum magnitude of f
OVER

or f
PT-LiRPA

, ensuring that the upper bound ∆∗ remains a meaningful
estimate even when the exact value of f∗ is unknown. Once again, we add a small quantity ε > 0
to avoid division for too small values. This upper bound provides a practical and theoretically
grounded method to assess the tightness of the bounds obtained through the PT-LiRPA or any
LiRPA approaches.

4 EXPERIMENTAL EVALUATION

In this section, we empirically validate the effectiveness and the correctness of theoretical results
of the PT-LiRPA. In detail, we present two sets of experiments to answer the following questions:
(i) What is the impact of probabilistically optimal intermediate bounds on the computation of the

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Results w/ MIP (Tjeng et al., 2017) as ground truth

Method Mean ℓ2 norm % tighter Mean ∆∗

CROWN 0.84 - 0.23
CROWN w/ PT-LiRPA 0.49 42% 0.12

α-CROWN 0.42 - 0.1
α-CROWN w/ PT-LiRPA 0.28 31.4% 0.07

PT-OVER 0.002 - -

Table 1: Results with MIP as ground truth

Results w/ Powell (Powell, 1989) as ground truth

Method Mean ℓ2 norm % tighter Mean ∆∗

CROWN 4.14 - 2.56
CROWN w/ PT-LiRPA 0.20 95% 0.04

α-CROWN 0.82 - 0.69
α-CROWN w/ PT-LiRPA 0.13 84.3% 0.03

PT-OVER 0.004 - -

Table 2: Results without MIP as ground truth

lower bound of an arbitrary function f? (ii) How accurate is the analytic formula for estimating the
tightness of the bound if the true minimum of the function is unknown? (iii) How much does the use
of PR-LiRPA impact the lower bounds and verification process in realistic models/benchmarks?
We provide the code, trained models, and comprehensive instructions for reproducing our results in
the supplementary material.
Comparison of auto LiRPA and PT-LiRPA linear bounds. To answer the first two questions,
we compare the quality of the linear lower bounds of PT-LiRPA and auto LiRPA on a synthetic
dataset of 2000 models. In the first test, we consider 500 randomly generated models from 5 random
seeds, such that a computation of the real min of the neural network is achievable by employing
Mixed Integer Programming (MIP) (Tjeng et al., 2017), implemented in auto LiRPA. To test the
scalability and effectiveness of our approach, in this second experiment, we consider other 1500
random models with different non-linear activation functions, such as Tanh and Sigmoid, beyond
ReLU and larger models where MIP cannot be employed. In both the experiments for PT-LiRPA
approaches, we set α = 0.9999 (i.e., the answer is correct with a confidence ≥ 99.99%) and the
fraction of tolerance error 1 − R = 0.001. Following Lemma 1, this setting required a sample size
of n ≥ 9205. Hence, we use a sample size of 10k random input from the input region of interest in
these first two experiments to compute the probabilistically optimal intermediate bounds.

For each experiment, we compute the lower bound of the models using four different bound prop-
agations strategies, namely CROWN (Zhang et al., 2018), α-CROWN (Xu et al., 2020b), and their
corresponding enhanced implementation in our PT-LiRPA with probabilistically optimal interme-
diate bounds. We then compare the final linear bounds with the MIP result in terms of mean ℓ2
norm distance, if available, or with the Powell (Powell, 1989) algorithm–to have still an intuition
of the tightness of the computed bounds in terms of ℓ2 norm. Additionally, we compute the mean
over all the models tested of our novel analytic formula ∆∗, without relying on the MIP result,
to show the relation between exact ℓ2 norm distance (when available) and the ratio between linear
bounds computed with different approaches. Notably, our empirical results on 2000 models show
that PT-LiRPA always produced a valid lower bound of f(x), comparing the minimum discovered
by our approach and the one returned by MIP and Powell. In Appendix C, we report all the details
regarding the model tested and the hyperparameters used.

Results in Table 1 and 2 show that, in general, PT-LiRPA can improve the tightness of the linear
bounds by at least 30% on smaller models, reaching up to more than 80% on larger models. We
do not provide the computational times for the two approaches, as they are comparable. In fact,
compared to any LiRPA method, PT-LiRPA only adds the requirement of a single forward pass of
n random inputs, storing all intermediate results—an operation that can be efficiently performed in
batches using GPU acceleration as highlighted in our ablation study in Appendix D.

Impact of PT-LiRPA in the formal verification process. To answer the last question, we inte-
grate our PT-LiRPA in α, β-CROWN (Xu et al., 2020b; Wang et al., 2021) and perform a final
experiment on different benchmarks of the VNN-COMP 2022 and 2023 (Müller et al., 2022; Brix
et al., 2023). This set of experiments aims to confirm our hypothesis regarding the effectiveness
of having tighter intermediate bounds for verification purposes. In detail, our intuition is that with
tighter intermediate bounds, we can achieve more precise final reachable sets, which reduces the
cases where the verification approach can not make a decision and must resort to a split in the BaB
process. Hence, by reducing these situations, we can achieve faster verification results.

Table 3 reports our results, where we consider an increased difficulty for the verification process.3
We start with the simpler benchmark ACASxu (Julian et al., 2016; Katz et al., 2017), and we test

3We refer the interested readers to further detail in the benchmarks used to Appendix C and to the final
report of the VNN-COMP available here (Müller et al., 2022; Brix et al., 2023)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Results on VNN-COMP 2022-2023 benchmarks

Benchmark Method Verified accuracy #safe/unsat #unsafe/sat #unkwown Tot verification time

ACASxu
prop. 3

α,β-CROWN 93.33% 42 3 0 26s

α,β-CROWN
w/ PT-LiRPA

93.33% 42 3 0 16.37s

tllVerifyBench
α,β-CROWN 46.875% 15 17 0 90.2s

α,β-CROWN
w/ PT-LiRPA

46.875% 15 17 0 92s

CIFAR biasfield
α,β-CROWN 95.83% 69 1 2 1553.5s

α,β-CROWN
w/ PT-LiRPA

98.61% 71 1 0 408.7s

CIFAR tinyimagenet
α,β-CROWN 62.5% 15 3 6 1429.6s

α,β-CROWN
w/ PT-LiRPA

87.5% 21 3 0 425.6s

Table 3: Results on VNN-COMP 2022-2023 benchmarks. Results in green bold report the best-
resulted method in terms of verified accuracy (% sat instances/all instances) and total verification
time for the specific benchmark tested.

property 3. This property is particularly interesting as it holds for 42 of the 45 models tested, thus
allowing us to verify the improvement in terms of time and verification accuracy. In the first row of
Table 3, we can notice that α, β-CROWN enhanced with PT-LiRPA achieves the same verified ac-
curacy in less verification time, thus confirming our intuition. Interestingly, we observe that tighter
bounds are not always beneficial in general. Specifically, in cases where a PGD attack succeeds
despite loose bounds, using tighter bounds does not lead to further improvements. Additionally, in
some scenarios, less accurate bounds from vanilla LiRPA methods could be quickly refined by BaB,
still resulting in efficient verification time. This is exemplified by the tllVerifyBench experiments,
where PT-LiRPA produced tighter intermediate bounds but achieved the same verified accuracy
with a minor overhead in bounds computation.
Finally, we test our PT-LiRPA approach in more challenging verification benchmarks such as CI-
FAR biasfield and CIFAR tinyimagenet. Both these benchmarks are image-based verification tasks
and thus allow us to show the scalability of the proposed approach. Before initiating the verification
process with PT-LiRPA, we conduct a preliminary ablation study to evaluate the impact of differ-
ent sample sizes on intermediate bounds computation. Specifically, in CIFAR biasfield benchmark,
our results in Appendix D indicate that stable intermediate bounds—defined as maintaining a con-
sistently small pre-defined distance from the reference bounds computed with a confidence level of
α ≥ 99.999% and R = 0.00001—can be achieved using between 250k and 350k samples. Hence
we use 350k to compute intermediate bounds in the verification approach. Crucially, in these two
last benchmarks, we obtain huge improvements in verification results with respect to α, β-CROWN.
In detail, in both CIFAR biasfield and CIFAR tinyimagenet, we achieved higher verified accuracy
without incurring any unknown answer and with significantly less verification time. These strong
final results demonstrate the effectiveness and impact of using PT-LiRPA for verification, showing
the advantage of incorporating probabilistically optimal intermediate bounds in handling challeng-
ing instances that are difficult to solve with provable solvers.

5 CONCLUSION

We introduced PT-LiRPA, a novel probabilistic method that enhances the formal verification of
deep neural networks by combining existing linear relaxation-based perturbation approaches with
a sampling-based technique. Our approach provides tighter linear bounds while maintaining prov-
able guarantees on the soundness of the result returned, significantly improving both the accuracy
and computational efficiency of verification. Moreover, we presented a new analytical formula, ∆∗,
which offers a dual assurance of optimality for LiRPA bounds and qualitative insights into the error
margin of sample-based estimations. Empirical results demonstrate that PT-LiRPA outperforms
existing methods, particularly in terms of verification time, while also successfully addressing pre-
viously unsolved instances. Inspiring future directions involves studying the impact of this novel
approach for verification guarantees for other realistic tasks, such as deep reinforcement learning or
explainability of AI models.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Mislav Balunovic, Maximilian Baader, Gagandeep Singh, Timon Gehr, and Martin Vechev. Cer-
tifying geometric robustness of neural networks. Advances in Neural Information Processing
Systems, 32, 2019.

Yuriy Biktairov and Jyotirmoy Deshmukh. Sol: Sampling-based optimal linear bounding of arbitrary
scalar functions. Advances in Neural Information Processing Systems, 36:33161–33173, 2023.

Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. The fourth international veri-
fication of neural networks competition (vnn-comp 2023): Summary and results. arXiv preprint
arXiv:2312.16760, 2023.

Rudy Bunel, Jingyue Lu, Ilker Turkaslan, Philip HS Torr, Pushmeet Kohli, and M Pawan Kumar.
Branch and bound for piecewise linear neural network verification. Journal of Machine Learning
Research, 21(42):1–39, 2020.

Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli, and Pawan K Mudigonda. A unified
view of piecewise linear neural network verification. Advances in Neural Information Processing
Systems, 31, 2018.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Au-
tomated Technology for Verification and Analysis: 15th International Symposium, ATVA 2017,
Pune, India, October 3–6, 2017, Proceedings 15, pp. 269–286. Springer, 2017.

Sicun Gao, Soonho Kong, and Edmund M Clarke. dreal: An smt solver for nonlinear theories over
the reals. In International conference on automated deduction, pp. 208–214. Springer, 2013.

Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar Tsankov, Swarat Chaudhuri, and Mar-
tin Vechev. Ai2: Safety and robustness certification of neural networks with abstract interpreta-
tion. In 2018 IEEE symposium on security and privacy (SP), pp. 3–18. IEEE, 2018.

Sven Gowal, Krishnamurthy Dvijotham, Robert Stanforth, Rudy Bunel, Chongli Qin, Jonathan Ue-
sato, Relja Arandjelovic, Timothy Mann, and Pushmeet Kohli. On the effectiveness of interval
bound propagation for training verifiably robust models. arXiv preprint arXiv:1810.12715, 2018.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016.

Kyle D Julian, Jessica Lopez, Jeffrey S Brush, Michael P Owen, and Mykel J Kochenderfer. Policy
compression for aircraft collision avoidance systems. In 2016 IEEE/AIAA 35th Digital Avionics
Systems Conference (DASC), pp. 1–10. IEEE, 2016.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An
efficient smt solver for verifying deep neural networks. In Computer Aided Verification: 29th
International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
I 30, pp. 97–117. Springer, 2017.

Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher Strong, Clark Barrett, Mykel J
Kochenderfer, et al. Algorithms for verifying deep neural networks. Foundations and Trends® in
Optimization, 4(3-4):244–404, 2021.

Alessio Lomuscio and Lalit Maganti. An approach to reachability analysis for feed-forward relu
neural networks. arXiv preprint arXiv:1706.07351, 2017.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In In International Conference on
Learning Representations (ICLR), 2018.

Luca Marzari, Davide Corsi, Enrico Marchesini, Farinelli Alessandro, and Ferdinando Cicalese.
Enumerating safe regions in deep neural networks with provable probabilistic guarantees. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mark Niklas Müller, Christopher Brix, Stanley Bak, Changliu Liu, and Taylor T Johnson. The third
international verification of neural networks competition (vnn-comp 2022): Summary and results.
arXiv preprint arXiv:2212.10376, 2022.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. arXiv preprint
arXiv:1511.08458, 2015.

Brandon Paulsen and Chao Wang. Linsyn: Synthesizing tight linear bounds for arbitrary neural
network activation functions. In International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pp. 357–376. Springer, 2022.

MJD Powell. A tolerant algorithm for linearly constrained optimization calculations. Mathematical
Programming, 45:547–566, 1989.

Prajit Ramachandran, Barret Zoph, and Quoc V Le. Searching for activation functions. arXiv
preprint arXiv:1710.05941, 2017.

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for cer-
tifying neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30,
2019.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

L. Tai, G. Paolo, and M. Liu. Virtual-to-real drl: Continuous control of mobile robots for mapless
navigation. In IROS, 2017.

Vincent Tjeng, Kai Xiao, and Russ Tedrake. Evaluating robustness of neural networks with mixed
integer programming. arXiv preprint arXiv:1711.07356, 2017.

Pauli Virtanen, Ralf Gommers, Travis E Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, et al. Scipy 1.0: funda-
mental algorithms for scientific computing in python. Nature methods, 17(3):261–272, 2020.

Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang, and Suman Jana. Formal security analysis
of neural networks using symbolic intervals. In 27th USENIX Security Symposium (USENIX
Security 18), pp. 1599–1614, 2018.

Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter.
Beta-crown: Efficient bound propagation with per-neuron split constraints for neural network
robustness verification. Advances in Neural Information Processing Systems, 34:29909–29921,
2021.

Samuel S Wilks. Statistical prediction with special reference to the problem of tolerance limits. The
annals of mathematical statistics, 13(4):400–409, 1942.

Haoze Wu, Omri Isac, Aleksandar Zeljić, Teruhiro Tagomori, Matthew Daggitt, Wen Kokke, Idan
Refaeli, Guy Amir, Kyle Julian, Shahaf Bassan, et al. Marabou 2.0: a versatile formal analyzer
of neural networks. In International Conference on Computer Aided Verification, pp. 249–264.
Springer, 2024.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya
Kailkhura, Xue Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified
robustness and beyond. Advances in Neural Information Processing Systems, 33:1129–1141,
2020a.

Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana, Xue Lin, and Cho-Jui Hsieh. Fast
and complete: Enabling complete neural network verification with rapid and massively parallel
incomplete verifiers. arXiv preprint arXiv:2011.13824, 2020b.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural
network robustness certification with general activation functions. Advances in neural information
processing systems, 31, 2018.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

APPENDIX

A PROOF OF LEMMA 2

Lemma 2 (ReLU Layer Relaxation using PT-LiRPA). Fix α,R ∈ (0, 1). Given two vectors
A∗,v ∈ Rd, where v is the pre-activated ReLU vector, with l ≤ v ≤ u (element-wise) obtained
from a sampled of n ≥ ln(1−α)

ln(R) samples and A∗ is the vector of the linear bounds coefficients of
the previous ReLU layer (computed with the probabilistically optimal intermediate bounds), with
probability ≥ α it holds:

A∗TReLU(v) ≥ A∗T (D∗v + b∗) (6)

where

D∗ =

1 lj ≥ 0,

0 uj ≤ 0,

αj uj > 0 > lj and A∗j ≥ 0,
uj

uj−lj
uj > 0 > lj and A∗j < 0

b∗ =

0 lj > 0 or uj ≤ 0,

0 uj > 0 > lj and A∗j ≥ 0,

− ujlj

uj−lj
uj > 0 > lj and A∗j < 0.

Proof. We want to show that with a confidence ≥ α we can still bound each ReLU layer even using
D∗ and b∗, i.e., the new diagonal matrix, a bias vector computed exploiting the probabilistically
optimal intermediate bounds.

To lower A∗TReLU(v) =
∑

j A
∗
j (ReLU(vj)) we show that following the construction of D∗ and

b∗, each term in the summation is probabilistically soundly bounded. Since the construction is the
same as in any LiRPA approaches, we only replace Aj with A∗j which is the j-th coefficient of the
row vector A∗ the encodes the linear relation with the previous layer, and [lj ,uj] the overestimated
intermediate bounds computed, for instance via IBP, with [lj ,uj] which are the underestimated
probabilistically optimal lower and upper bounds of the j-th node, computed with the sampling-
based approach.

We start by noticing that for unstable ReLU nodes, the following inequality holds

lj ≤ l∗j ≤ lj < 0 < uj ≤ u∗j ≤ uj , (7)

with [l∗j ,u
∗
j] the real lower and upper bound for that specific j-th node.

We prove the lemma by cases.

uj > 0 > lj

From inequality 7, we know that since we are underestimating true bounds [l∗j ,u
∗
j], the ReLU node

is actually unstable, even for any LiRPA approach. Comparing the diagonal coefficients
uj

uj−lj
with

uj

uj−lj and the biases − ujlj

uj−lj
with − ujlj

uj−lj of PT-LiRPA and any LiRPA cannot be helpful. The

relation between the coefficients strongly depends on the quality of the bounds computed, and we
cannot draw any direct conclusion since in some cases D > D∗ and in some cases not. Hence, we
need to proceed by subcases.

A∗j < 0. If A∗j < 0 the relation A∗j (ReLU(vj)) ≥ A∗j (D
∗
j,jvj + b∗j) to prove becomes

ReLU(vj) ≤ D∗j,jvj + b∗j where if vj < 0 we have:

0 ≤
uj

uj − lj
vj +

(
−

ujlj

uj − lj

)
=

uj(vj − lj)

uj − lj

since lj < 0 and lj ≤ vj , thus vj − lj ≥ 0 which is enough to prove the inequality.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

If vj ≥ 0 we have:

vj ≤
uj

uj − lj
vj +

(
−

ujlj

uj − lj

)
0 ≤

uj(vj − lj)

uj − lj
− vj

0 ≤
lj(vj − uj)

uj − lj

where lj < 0 and (vj − uj) < 0. The inequality necessarily holds since the numerator and the
denominator are positive. This concludes the first subcase.

A∗j ≥ 0. Now the condition to verify is ReLU(vj) ≥ D∗j,jvj + b∗j . If vj < 0 we have

0 ≥ αjvj + 0

since 0 < α < 1 and vj negative, the inequality holds. Similarly if vj ≥ 0 we have

vj ≥ αjvj

which is clearly true. This concludes the first case.

For the next cases, lj > 0 and lj > 0, from proposition 1, we could define a ReLU node as
(un)stable when, in reality, it is not. However, from lemma 1, we know that in even a potentially
infinite sampling of points with a confidence α at most (1−R) points could fall outside of reachable
set [lj ,uj]. Thus, we can show the following cases with probability ≥ α.

lj > 0

A∗j < 0. We need to show that ReLU(vj) ≤ D∗j,jvj + b∗j . Since lj > 0 and lj ≤ vj we have
vj ≤ 1 · vj + 0 which is clearly true.

A∗j ≥ 0. We need to show that ReLU(vj) ≥ D∗j,jvj +b∗j , which for similar previous consideration
we have vj ≥ 1 · vj . This concludes the second case.

uj < 0

A∗j < 0. We need to show that ReLU(vj) ≤ D∗j,jvj + b∗j . Since uj < 0 and vj ≤ uj we have
0 ≤ 0 which is clearly true.

A∗j ≥ 0. We need to show that ReLU(vj) ≥ D∗j,jvj +b∗j , which for similar previous consideration
we have 0 ≥ 0. This concludes the last case.

Hence we prove that with probability ≥ α each term in the summation is soundly bounded by
A∗T (D∗v + b∗) thus concluding the argument.

B EXAMPLE OF LINEAR COMPUTATION WITH LIRPA AND PT-LIRPA

In the following, we provide a simple example of linear bound computation for a toy DNN depicted
in Figure 3. The neural network comprises two inputs, two hidden layers with ReLU activation, and
one single output.

Following the notation introduced in §2 we define

W (1) =

[
2 1
−3 4

]
, W (2) =

[
4 −2
2 1

]
, w(3)T = [−2, 1];

and we set the bias terms in the layers to zero. We consider an original input x0
T = [0, 1] and an

ℓ∞ ε = 2 perturbation around it, thus obtaining a perturbation region C = [[−2, 2], [−1, 3]].

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

x1

x2

z
(1)
1

z
(1)
2

ẑ
(1)
1

ẑ
(1)
2

z
(1)
2

z
(2)
2

ẑ
(2)
1

ẑ
(2)
2

f(x)

2

−3

1

4

ReLU

ReLU

4

2

−2

1

ReLU

ReLU

−2

1

[−2, 2]

[−1, 3]

z(1)

[−5, 7]
[−4.9, 6.96]

[−10, 18]
[−9.87, 17.94]

[0, 18]
[0, 17.94]

ẑ(1)

[0, 7]
[0, 6.96]

z(2)

[−36, 28]
[−35.89, 21.94]

[0, 32]
[0, 19.91]

ẑ(2)

[0, 28]
[0, 21.94]

[0, 32]
[0, 19.91]

z(3)

Figure 3: Toy DNN used in this example. Intervals reported in black are the result of the IBP for
the input [[-2,2], [-1,3]]. In red, intermediate reachable sets are computed using a sampling-based
approach in PT-LiRPA.

By propagating these intervals through the DNN, we obtain the interval [−56, 32] as the output
reachable set. Given the reasonable size of the neural network, before computing the linear lower
and upper bounds using LiRPA and PT-LiRPA, we employed a MIP (Tjeng et al., 2017) solution
to compute the true min and max of the function, respectively, which correspond to [−32.53, 18.86].

To compute the lower and upper bound using LiRPA’s backward computation, we employ the
CROWN (Zhang et al., 2018) strategy. To this end, it is useful to represent the neural network
as reported in Figure 4.

W (1)x W (2) w(3)ReLU ReLU f(x)

z(3)ẑ(2)z(2)ẑ(1)z(1)

Figure 4: Alternative representation of toy DNN of Figure 3.

We note that ẑ(2) and ẑ(1) contain non-linear activation functions (ReLU), and we have to linearize
them to keep the linear relationship between the output and these hidden layers. To this end, we
can create a diagonal matrix D(2),D

(2)
,D(1),D

(1)
and bias vectors b(2), b

(2)
, b(1), b

(1)
reflecting

the impact of ReLU nodes on the final output. We report for simplicity here the original definition
provided in (Zhang et al., 2018) also reported in §2 (a similar definition is applied to compute the
i-th layer D

(i)
and b

(i)
by switching the unstable case’s checking conditions on Aj):

D(i) =

1 lj ≥ 0,

0 uj ≤ 0,

αj uj > 0 > lj and A
(i+1)
j ≥ 0,

uj

uj−lj uj > 0 > lj and A
(i+1)
j < 0

b(i) =

0 lj > 0 or uj ≤ 0,

0 uj > 0 > lj and A
(i+1)
j ≥ 0,

− ujlj
uj−lj uj > 0 > lj and A

(i+1)
j < 0.

In the following, for simplicity, we always set αj = 0. Moreover, after defining the i-th diago-
nal matrix, we can also compute the i-th layer relaxation with respect to the output as A(i−1) =

A(i)D(i−1)W (i−1) and similarly for the A
(i−1)

. In the beginning, we set A(4) = A
(4)

= I and
A(3) = A

(3)
= w(3)T and write starting from right to left (backward computation)4

4We report the lower bound version but for the upper we have similar consideration with the reversed
inequality.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

f(x) = z(3)(x)

= w(3)T ẑ(2)(x)

≥ A(3)D(2)z(2)(x) computing a linearization for ẑ(2)

≥ A(3)D(2)W (2)︸ ︷︷ ︸
A(2)

ẑ(1)(x) rewriting z(2) = W (2)ẑ(1)

≥ A(2)D(1)z(1)(x) computing a linear bound for ẑ(1)

≥ A(2)D(1)W (1)︸ ︷︷ ︸
A(1)

(x) rewriting z(1) = W (1)ẑ(0) = W (1)(x)

≥ A(1)(x) + d.

Hence, in order to linearize ẑ(2)(x) we compute D(2),D
(2)

and b(2), b
(2)

which presely correspond
to

D(2) =

[
u

u−l 0
0 1

]
=

[
0.4375 0

0 1

]
D

(2)
=

[
α 0
0 1

]
=

[
0 0
0 1

] b(2) =

[−ul
u−l
0

]
=

[
15.75
0

]
b
(2)

=

[
0
0

]
where D

(2)
j,j element is computed looking at each intermediate pre-activated bounds of z(2)

j and the
sign of j-th element of the vector A(3). Thus we have A(2) = A(3)D(2)W (2) = [−1.5, 2.75] and

A
(2)

= A
(3)

D
(2)

W (2) = [2, 1]. We proceed computing the diagonal matrix D(1), D
(1)

and bias

vectors b(1), b
(1)

for ẑ(1). In detail, we obtain,

D(1) =

[
u

u−l 0
0 α

]
=

[
0.583 0
0 0

]
D

(1)
=

[u
u−l 0
0 u

u−l

]
=

[
0.583 0
0 0.643

] b(1) =

[−ul
u−l
0

]
=

[
2.92
0

]
b
(1)

=

[−ul
u−l
−ul
u−l

]
=

[
2.92
6.43

]
with A(1) = A(2)D(1)W (1) = [−1.75,−0.875] and A

(1)
= A

(2)
D

(1)
W (1) = [0.40, 3.74].

Finally, we compute the sum if the bias vectors d = A(3)b(2) + A(2)b(1) = −35.88 and d =

A
(3)

b
(2)

+A
(2)

b
(1)

= 12.27.

The final linear relation is thus f(x) ≥ A(1)(x) + d and f(x) ≤ A
(1)

(x) + d . To compute the
linear lower bound f from this linear relation when C in an ℓ∞ norm ball around x0, as in this
example, can be easily obtained using Hölder’s inequality (Zhang et al., 2018). In fact, we have

f
CROWN

= min
x∈C

A(1)(x) + d = −||A(1)||1 · ε+A(1)x0 + d

= −5.25− 0.875− 35.88 = −42.

fCROWN = max
x∈C

A
(1)

(x) + d = ||A(1)||1 · ε+A
(1)

x0 + d

= 8.28 + 3.74 + 12.27 = 24.29.

B.1 PT-LIRPA COMPUTATION

The computation in PT-LiRPA is very similar to what we see above, with the exception of the
construction of the diagonal matrices and bias vectors. In detail, we start by computing the prob-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

abilistically optimal intermediate bounds from a sample-based approach in C. We report in Figure
3 highlighted in red the results obtained from the propagation of n random samples drawn from
[[−2, 2], [−1, 3]]. As we can notice, the bounds are slightly tighter than the overestimated ones
obtained from the interval bound propagation. Our intuition is thus that from the computation of
D(i),D

(i)
, b(i), b

(i)
using this tightened bounds we can obtain more accurate lower and upper final

linear bounds. Thus we obtain:

D(2) =

[
u

u−l 0
0 1

]
=

[
0.3793 0

0 1

]
D

(2)
=

[
α 0
0 1

]
=

[
0 0
0 1

] b(2) =

[−ul
u−l
0

]
=

[
13.6162

0

]
b
(2)

=

[
0
0

]
,

and

D(1) =

[
u

u−l 0
0 α

]
=

[
0.5868 0

0 0

]
D

(1)
=

[u
u−l 0
0 u

u−l

]
=

[
0.5868 0

0 0.6451

] b(1) =

[−ul
u−l
0

]
=

[
2.876
0

]
b
(1)

=

[−ul
u−l
−ul
u−l

]
=

[
2.876
6.367

]
.

We can now compute all the As and ds vectors.

A(2) = A(3)D(2)W (2) = [−1.0351, 2.517]

A
(2)

= A
(3)

D
(2)

W (2) = [2, 1]

A(1) = A(2)D(1)W (1) = [−1.2149,−0.6074]

A
(1)

= A
(2)

D
(1)

W (1) = [0.4121, 3.7541]

d = A(3)b(2) +A(2)b(1) = −30.209

d = A
(3)

b
(2)

+A
(2)

b
(1)

= 12.119

Finally we have

f
PT-LiRPA

= min
x∈C

A(1)(x) + d = −||A(1)||1 · ε+A(1)x0 + d

= −3.6447− 0.6074− 30.209 = −34.46.

fPT-LiRPA = max
x∈C

A
(1)

(x) + d = ||A(1)||1 · ε+A
(1)

x0 + d

= 8.33 + 3.7541 + 12.119 = 24.20.

As we can notice, even in this toy example, our procedure produces tighter bounds compared to the
original CROWN approach, confirming the correctness of our hypothesis.

C EMPIRICAL EVALUATION: FURTHER DETAILS

All the data are collected on a cluster running Rocky Linux 9.34 equipped with Nvidia RTX A6000
(48 GiB) and a CPU AMD Epyc 7313 (16 cores). To test the scalability and effectiveness of
PT-LiRPA, in the first set of experiments, we consider different non-linear activation functions,
such as Tanh and Sigmoid, beyond ReLU and models of different sizes. We report in Table 4 details
on the input and hidden sizes of the models tested. For larger models, since MIP cannot be exploited,
we employ the Powell algorithm (Powell, 1989) implemented in SciPy (Virtanen et al., 2020) to still
have an intuition of the tightness of the computed bounds in terms of ℓ2 norm. However, since

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hyperparameters first part empirical evaluation

Model tested Input size; domain ε perturbation hidden sizes; depth Activation functions LiRPA bound prop. PT-LiRPA hyperparams

500 [2]; [0, 1] [1, 2] [1, 2]; [32] ReLU CROWN,
α-CROWN

(optimized iterations:20,lr alpha:0.1)

α ≥ 99.99%
R = 0.001
n = 10k

1500 [2,4]; [0, 1] [1, 2] [2,4]; [32, 64, 128] ReLU CROWN,
α-CROWN

(optimized iterations:20,lr alpha:0.1)

α ≥ 99.99%
R = 0.001
n = 10k

Table 4: Hyperparameters used for the first set of experiments.

this algorithm solves the minimization problem in terms of local minima, before computing the ℓ2
norm and the ∆∗, we first check if both LiRPA and PT-LiRPA produce valid lower bounds ensur-
ing that LiRPA and PT-LiRPA produce linear bounds that are smaller (and greater for PT-OVER)
than the Powell minima, respectively. Results reported in Tab. 1 and 2, confirm the correctness of
Lemma 3 and our intuition on the tightness of linear bounds when using probabilistically optimal
intermediate reachable sets. Specifically, our empirical results on 2000 models PT-LiRPA always
produced a valid lower bound of f(x), comparing the minimum discovered by our approach and the
one returned by MIP and Powell.

Further details on the benchmark employed in the verification test. All the benchmarks used
in our empirical evaluation are comprehensively discussed in (Müller et al., 2022; Brix et al., 2023).
To keep the paper self-contained, we report below a brief overview of the selected benchmarks.

• ACAS xu (Julian et al., 2016; Katz et al., 2017) benchmark 2023: includes ten properties
evaluated across 45 neural networks designed to provide turn advisories for aircraft to pre-
vent collisions. Each neural network consists of 300 neurons distributed over six layers,
using ReLU activation functions. The networks take five inputs representing the aircraft’s
state and produce five outputs, with the advisory determined by the minimum output value.
Here, we verified only property 3, which returns unsafe if COC is minimal, with a max
computation time of 116s.

• TllVerifyBench benchmark 2023: this benchmark features Two-Level Lattice (TLL) neural
networks with two input and one single output. These models are then transformed into
MLP ReLU networks where the output properties consist of a randomly generated real
number and a randomly generated inequality direction to be verified. Here we verify all 32
instances of the VNN-COMP 2023 with a timeout of 600s for each property.

• CIFAR biasfield benchmark 2022: this benchmark focuses on verifying a Cifar-10 network
under bias field perturbations. These perturbations are modeled by creating augmented
networks that reduce the input space to just 16 parameters. For each image to be verified,
a distinct bias field transform network is generated, consisting of a fully connected (FC)
transform layer followed by the Cifar CNN with 8 convolutional layers with ReLU activa-
tions. Each bias field transform network has 363k parameters and 45k nodes. Here, we test
all 72 properties with a timeout set to 300s for each one.

• TinyImageNet benchmark 2022: consists of CIFAR100 image classification (56× 56× 3)
with Residual Neural Networks (ResNet). Here, we consider the medium network
size composed of 8 residual blocks, 17 convolutional layers, and 2 linear layers. For
TinyImageNet-ResNet-medium, we verify all 24 properties with a timeout of 200 seconds
for each property.

In general, we selected benchmarks where the state-of-the-art α, β-CROWN method is unable to
solve some of the instances.

D ABLATION STUDY

In this section, we study the impact of different sample sizes on the computation of the intermediate
reachable sets.

Although Lemma 1 provides a lower bound on the number of samples needed to achieve a confidence
level of α with an accuracy of at least R, we explore the effect of varying incremental sample sizes on

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

the computation of intermediate bounds. Specifically, we focus on the CIFAR biasfield benchmark,
which involves networks of substantial size. We begin with a confidence level of α ≥ 99.9% and
set R = 0.9995, requiring 1,378 samples. As a stopping criterion for the experiment, we establish
a distance threshold of ∆ = 0.001 between the intermediate reachable sets computed with the
tested sample sizes and the reference bounds, which are determined using the maximum achievable
sample size before encountering an out of memory error– in our settings 350k samples. Thus, we
progressively increase the sample size until the discrepancy exceeds the threshold.

0 50000 100000 150000 200000 250000 300000
Sample Size

2.10e-02

1.28e-02
1.20e-02

7.63e-03
6.56e-03

2.96e-03
2.18e-03

m
ea

n
 d

is
ta

nc
e

Figure 5: Intermediate bounds convergence for the increasing sample size in CIFAR biasfield bench-
mark. y-axis reports the mean distance between intermediate bounds using 350k samples (as refer-
ence) and the one using [100, 500, 1k, 5k, 10k, 100k, 200k, 300k, 330k], respectively.

Our results detailed in Figure 5 indicate that stable intermediate reachable sets, in this scenario, can
be obtained with sample sizes ranging from 250k to 330k as the mean distance between intermediate
bounds is strictly less than ∆ = 0.001. It is important to highlight that propagating a large num-
ber of samples, such as 350k, requires a computational effort and time comparable to propagating
significantly fewer samples due to batch processing and GPU acceleration. The primary limitation
is the GPU’s memory capacity, as higher sample sizes typically increase the likelihood of memory
errors compared to the use of CPU propagation.

19

