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Agent Aggregator with Mask Denoise Mechanism for
Histopathology Whole Slide Image Analysis

Anonymous Authors

ABSTRACT
Histopathology analysis is the gold standard for medical diagnosis.
Accurate classification of whole slide images (WSIs) and region-
of-interests (ROIs) level localization will assist pathologists in clin-
ical diagnosis. With a gigapixel resolution and a scarcity of fine-
grained annotations, WSI is difficult to classify directly. In the field
of weakly supervised learning, multiple instance learning (MIL)
serves as a promising approach to solving WSI classification tasks.
Currently, a prevailing aggregation strategy is to apply attention
mechanism as a measure of the importance of each instance for
further classification. Notwithstanding, attention mechanism fails
to capture inter-instance information and self-attention mechanism
can cause quadratic computational complexity issues. To address
these challenges, we propose an agent aggregator with mask de-
noise mechanism for multiple instance learning termed AMD-MIL.
The agent token represents an intermediate variable between the
query and key for implicit computation of the instance impor-
tance. Mask and denoising are also learnable matrices mapped from
the agents-aggregated value, which first dynamically mask out
some low-contribution instance representations and then elimi-
nate the relative noise introduced during the mask process. AMD-
MIL can indirectly achieve more reasonable attention allocation
by adjusting feature representations, thereby sensitively capturing
micro-metastases in cancer and achieving better interpretability.
Our extensive experiments on CAMELYON-16, CAMELYON-17,
TCGA-KIDNEY, and TCGA-LUNG datasets show our method’s su-
periority over existing state-of-the-art approaches. The code will
be available upon acceptance.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
histopathology diagnosis, multiple instance learning, agent atten-
tion, mask denoise mechanism

1 INTRODUCTION
The advancement of deep learning technologies and increased com-
putational capacities have significantly enhanced the field of com-
putational pathology [2, 12, 16, 23]. This progress assists physicians
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Figure 1: Comparison of core modules: (a) pooling agents. (b)
proposed trainable agnets. (c) self-attention mechanism. (d)
proposed agent aggregator with mask denoise mechanism.
Mask and denoising are learnable matrices.

in diagnosis and standardizes pathological diagnostics [7, 20]. How-
ever, analyzing histopathology whole slide images (WSIs) markedly
differs from typical computer vision tasks [19]. A single WSI, with
its gigapixel resolution, makes obtaining pixel-level annotations
impracticable, in contrast to natural images [6]. The Multiple In-
stance Learning (MIL) approach is currently the mainstream frame-
work for analyzing pathology slides using only WSI-level annota-
tions [18, 24, 31]. This method considers the entire WSI as a bag,
with each patch within it as an instance [4, 29]. If any instance
within the WSI is classified as cancerous, then the entire WSI is
labeled as such [3, 28]. The WSI is labeled as normal only if all
instances within it are normal.

Current MIL methodologies are typically divided into two stages.
Initially, the entire WSI is segmented into numerous patches. After
segmentation, a pre-trained feature extractor is used to embed
features in each patch, creating a comprehensive representation of
the WSI. The subsequent stage involves aggregating these features.
Various mechanisms, from standard pooling like mean-pooling and
max-pooling to advanced attention-based methods like ABMIL [11],
DSMIL [13], and TransMIL [21], are employed in this process. These
aggregated features are then mapped to categorical dimensions for
classification purposes.

ABMIL [11] employs the standard attention mechanism for infor-
mation aggregation. However, due to the lack of consideration for
the relationships between different instances, this kind of method
struggles with global modeling and long-distance dependency cap-
turing. TransMIL and MMIL [35] use self-attention [27] within

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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MIL’s feature aggregator. Self-attention can calculate the relations
between any two patches within a WSI, thus enabling the cap-
ture of long-distance dependencies within the image. Moreover,
self-attention dynamically allocates weights according to the im-
portance of the input elements, enhancing the model’s ability to
process complex data. Nonetheless, due to the quadratic complexity
of self-attention, its real-world application within MIL aggregators
is challenging.

To address the quadratic complexity issue of self-attention, Trans-
MIL [21] employs nystrom attention [32] as the substitute for the
standard self-attention module. Nystrom attention selects a subset
of sequence elements, also known as landmarks, to approximate the
attention scores for the entire sequence. Specifically, in the nystrom
attention mechanism, the local downsampling of query and key
matrices is implemented along the dimension of the instance tokens.
This approach has two significant issues. Firstly, since the sampling
process relies on adjacent instances, many insignificant ones might
dilute the impact of significant instances. Secondly, Equidistant
division is not always the optimal sampling strategy, as the distribu-
tion of information in a sequence may be uneven. Fixed sampling
intervals might fail to capture all crucial information points, leading
to a decrease in approximation quality.

To address these challenges, We transform the pooling agent
within the agent attention [9] mechanism into trainable matrices,
aiming for an effective agent mapping. Furthermore, to indirectly
achieve a more rational distribution of attention scores through
adjustments in instance representations, we introducemask denoise
mechanism for dynamic adaptation.

Agent attention [9] introduce the agent tokens in addition to
the query, key, and value tokens. Agent token acts as an agent
for the query tokens, aggregating information from the key and
value tokens, and then information is returned to the query tokens
via a broadcasting mechanism. Given the lesser number of agent
tokens compared to sequence tokens, agent mechanism can reduce
the computational load of standard self-attention. However, agent
tokens are obtained through mean pooling of the query tokens
in standard agent attention, making it challenging to adapt to the
variable-length token inputs of pathological multiple instance tasks.
Additionally, mean pooling, by aggregating features through local
averaging, fails to capture some long-instance dependencies. Conse-
quently, we adjust the number of agent tokens as a hyperparameter
and substitute the mean pooling agent tokens with trainable agent
tokens.

Moreover, we introduce a mask denoise mechanism to dynami-
cally refine attention scores by adjusting instance representations.
Mask and denoising matrices, matching the agent’s aggregated
value dimension, are generated by projecting this value through
a linear layer. Mask matrices transform into binary matrices via
threshold filtering, not directly from the value token but its high-
level mapping, allowing dynamic adaptation to the input. Then, the
mask directly multiplies with the value, filtering out non-significant
features. However, as the mask applies binary filtering to the value,
it might suppress unimportant instances excessively, thereby in-
troducing relative noises. Therefore, we introduce the denoising
matrices from the agent-aggregated values to correct the relative

noises. We conducted extensive comparative experiments and ab-
lation studies on four datasets to verify the effectiveness of the
trainable agent aggregator and mask denoise mechanism.

2 RELATEDWORK
2.1 Multiple Instance Learning for WSI Analysis
MIL methodology demonstrates significant potential in the clas-
sification and analysis of pathological images. In this framework,
a WSI is treated as a bag and the local regions within it are con-
sidered instances. Primarily, MIL paradigms are categorized into
three types: instance-based, embedding-based, and bag-based meth-
ods. The instance-based method scores each instance, and then
aggregates these scores to predict the bag’s label. The embedding-
based method initially uses a pre-trained feature encoder to obtain
instance representations, then aggregates them for classification.
Instance representations share the same feature space, enhancing
fit with Deep Neural Networks (DNN) but reducing interpretability.
Bag-based approaches classify by comparing distances between
different bags, with the main challenge being to identify a univer-
sal distance metric for global comparison. Current advancements
in MIL methodology focus on the development of specialized fea-
ture encoders pre-trained on pathological datasets, enhancements
in aggregator techniques, augmentation of training data, and the
improvement of training strategies.

Feature encoders pre-trained on natural images often struggle
to extract high-level pathological features, such as specific tex-
tures and morphological structures. TransPath [30] trained a vi-
sion transformer-based feature encoder using a semantically rel-
evant contrastive learning approach on a large number of WSIs.
IBMIL [15] also employed a feature encoder that was pre-trained
on nine pathological datasets using a Representations produced
by these pathology-specific feature extractors significantly outper-
form those from feature encoders pre-trained on ImageNet [5] in
downstream tasks.

The most common aggregation strategies for instance-based and
embedding-based methods include pooling and attention mech-
anisms. Mean-MIL and Max-MIL aggregate representations then
categorize through the average and maximum values respectively,
but fixed aggregation mechanisms cannot adapt to varying inputs.
In contrast, ABMIL employ attention mechanisms to aggregate
features through trainable weights. Similarly, CLAM uses gate
attention and a top-k selection strategy for bag label prediction.
TransMIL, on the other hand, applies a linear approximation of self-
attention to explore relationships between instances. WiKG [14]
introduces a knowledge-aware attentionmechanism, enhancing the
capture of relative positional information among instances. HAT-
Net+ [1] advances cell graph classification by leveraging a unique,
parameter-free strategy to dynamically merge multiple hierarchical
representations, effectively capturing the complex relationships
and dependencies within cell graphs.

To enhance performance and stability, various methods employ
data augmentation. For example, DTFD [34] increases the num-
ber of bags using a partitioning pseudo-bag split strategy. LNPL-
MIL [22] enhances the robustness and generalization of MIL meth-
ods through feature augmentation.
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Figure 2: Overall process: (a) the preprocess of WSI. (b) overall framework of AMD-MIL. (c) proposed mask denoise mechanism.

In terms of training strategies, IBMIL [15] utilizes interven-
tional training to reduce the impact of contextual priors on rel-
evance.Meanwhile, SSC-MIL [33] leverages semantic-similarity col-
laborative knowledge distillation to exploit latent bag information.
MHIM-MIL [25] addresses key instances via hard example mining.

2.2 Approximate Self-Attention Mechanism
Self-attention mechanism is capable of grasping dependencies over
long distances to facilitate comprehensive modeling. but its qua-
dratic complexity limits the increase in input sequence length. Con-
sequently, research on approximate self-attention mechanisms aims
to approximate the complexity to linear without significantly com-
promising the global modeling capability.

Nystrom attention utilizes the nystrom method, a mathematical
technique for estimating the eigenvalues and eigenvectors of large
matrices. This method approximates self-attention mechanism by
selecting a small subset of landmarks to represent the entire matri-
ces, thereby reducing computational and storage requirements. Fo-
cused Linear [8] attention provides a nonlinear reweighting mech-
anism that can easily concentrate on important features. Agent
attention introduces the concept of agents that represent key infor-
mation within the input sequence. The computational complexity
is significantly lowered by computing attention only among these
agents instead of across the entire input sequence.

These advancements in approximate attention mechanisms pro-
vide a new perspective for improvements in the aggregator for MIL
methods.

3 METHODOLOGY
3.1 MIL and Feature extraction
In the MIL methodology, each WSI is conceptualized as a labeled
bag, wherein its constituent patches are considered as instances
possessing indeterminate labels. Taking binary classification of
WSIs as an example, the input WSI 𝑋 is divided into numerous
patches {(𝑥1, 𝑦1), · · · , (𝑥𝑁 , 𝑦𝑁 )}, encompassing 𝑁 instances of 𝑥𝑖 .
Under the MIL paradigm, the correlation between the bag’s label,
𝑌 , and the labels of instances 𝑦𝑖 is established as follows:

𝑌 =

{
1, iff

∑
𝑦𝑖 > 0

0, else
. (1)

Given the undisclosed nature of the labels for the instances 𝑦𝑖 ,
the objective is to develop a classifier,M(𝑋 ), tasked with estimat-
ing 𝑌 . In alignment with methodologies prevalent in contemporary
research, the classifier can be delineated into three steps: feature
extraction, feature aggregation, and bag classification. All the pro-
cesses can be defined as follows:

𝑌 ←M(𝑋 ) := ℎ(𝑔(𝑓 (𝑋 ))), (2)

where 𝑓 , 𝑔, and ℎ represent the feature extractor, feature aggregator,
and the MIL classifier.

The feature aggregator is considered to be the most important
part of summarizing features, which can aggregate features of differ-
ent patches. The attention mechanisms can discern the importance
of patches in a WSI, and it is widely used in the feature aggregator.
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Attention-based and self-attention-based MIL are the main methods
currently used.

In the attention-based MIL [34], the feature aggregator can be
defined as,

𝐺 =

𝑁∑︁
𝑖=1

𝑎𝑖ℎ𝑖 =

𝑁∑︁
𝑖=1

𝑎𝑖 𝑓 (𝑥𝑖 ) ∈ R𝐷 , (3)

where 𝐺 is the bag representation, ℎ𝑖 ∈ R𝐷 is the extracted feature
for the patch 𝑥𝑖 through the feature extractor 𝑓 , 𝑎𝑖 is the trainable
scalar weight for ℎ𝑖 and 𝐷 is the dimension of vector 𝐺 and ℎ𝑖 .

In the self-attention-based [27] MIL, the feature aggregator can
be defined as,

𝑄 = 𝐻𝑊𝑄 , 𝐾 = 𝐻𝑊𝐾 ,𝑉 = 𝐻𝑊𝑉 , (4)

𝑂 = softmax

(
𝑄𝐾𝑇√︁
𝑑𝑞

)
𝑉 = 𝑆𝑉 , (5)

where𝑊𝑄 ,𝑊𝐾 , and𝑊𝑉 represent trainable matrices, 𝐻 denotes
the collection of patch features, and 𝑂 has integrated the attributes
of the other features.

3.2 Attention Aggregator
During the computation of Sim(𝑄,𝐾) as defined in Eq. 5, the algo-
rithmic complexity scales quadratically with O(𝑁 2). Given that 𝑁
frequently comprises several thousand elements, this substantially
extends the expected computational time. Linear attention offers a
reduction in computational time but at the expense of information.
To mitigate this issue, transmil [21] employs nystrom approxima-
tion for Eq. 5 [32]. The matrices �̃� and �̃� are constructed, and the
mean of each segment is computed as follows:

�̃� = [𝑞1; . . . ;𝑞𝑚], 𝑞 𝑗 =
1
𝑚

( 𝑗−1)×𝑙+𝑚∑︁
𝑖=( 𝑗−1)×𝑙+1

𝑞𝑖 , ∀𝑗 = 1, . . . ,𝑚 (6)

�̃� = [�̃�1; . . . ; �̃�𝑚], �̃� 𝑗 =
1
𝑚

( 𝑗−1)×𝑙+𝑚∑︁
𝑖=( 𝑗−1)×𝑙+1

𝑘𝑖 , ∀𝑗 = 1, . . . ,𝑚 (7)

where �̃� ∈ R𝑚×𝐷 and �̃� ∈ R𝑚×𝐷 .
The approximation of the 𝑆 in Eq. 5 can then be expressed as:

𝑆 = softmax

(
𝑄�̃�𝑇√︁
𝑑𝑞

)
𝑍 ∗softmax

(
�̃�𝐾𝑇√︁
𝑑𝑞

)
, (8)

where, 𝑍 ∗ represents the approximate solution to 𝑧 (�̃�, �̃�, 𝑍 ) = 0,
necessitating a linear number of iterations for convergence.

In MIL tasks, nystrom attention filters out patches with impor-
tant features because of the filtering of patches. Moreover, the
difference in N will lead to an overall imbalance during local down-
sampling. So we consider agent attention methods with linear time
complexity and the agent attention mechanism [9] can be written
as:

𝑂 = 𝜎 (𝑄𝐴𝑇 )𝜎 (𝐴𝐾𝑇 )𝑉 , (9)

where 𝜎 (·) is the Softmax function, 𝑄,𝐾,𝑉 are defined in equation
Eq. 4. Here 𝐴 ∈ R𝑛×𝐷 is the agent matrix pooling from 𝑄 . The

Algorithm 1 Agent Aggregator With Mask Denoise Mechanism
Input: H : ( B , N , D )
Output: Y : ( B , N , D )
1: // H : bag features
2: // B : batch N : token length D : feature dimensions
3: 𝑄,𝐾,𝑉 : ( B , N , D )←− nn.linear ( H )
4: 𝐴𝐺𝐸𝑁𝑇 : ( B , n , D )←− trainable parameters
5: // n : number of agent tokens
6: 𝑄𝐴: ( B , N , n )←− torch.matmul ( 𝑄 , 𝐴𝐺𝐸𝑁𝑇𝑇 )
7: 𝐾𝐴: ( B , n , N )←− torch.matmul ( 𝐴𝐺𝐸𝑁𝑇 , 𝐾𝑇 )
8: 𝑉𝐴 : ( B , n , D )←− torch.matmul ( 𝐾𝐴 , 𝑉 )
9: 𝑀𝐴𝑆𝐾 : ( B , n , D)←− nn.linear ( 𝑉𝐴 )
10: 𝑇𝐻𝑅 : ( B , 1)←− nn.linear ( 𝑉𝐴 ) . suqeeze ( ) . mean ( -1 )
11: 𝑀𝐴𝑆𝐾𝑡 : ( B , n , D)←−torch.where (𝑀𝐴𝑆𝐾 > 𝑇𝐻𝑅 , 1 , 0 )
12: 𝑉𝑀 : ( B , n , D )←− torch.mul ( 𝑉𝐴 ,𝑀𝐴𝑆𝐾𝑡 )
13: 𝐷𝑁 : ( B , n , D)←− nn.linaer ( 𝑉𝐴 )
14: 𝑉𝑀𝐷 : ( B , n , D )←− torch.add ( 𝑉𝑀 , 𝐷𝑁 )
15: 𝑌 : ( B , N , D )←− torch.matmul( 𝑄𝐴 , 𝑉𝑀𝐷 )
16: // Y : weighted fbag features
17: return 𝑌

term 𝐷 stands for the feature dimension, while 𝑛 refers to the agent
dimension and acts as a hyperparameter.

Given that the agent is non-trainable and the distribution of
attention scores may not be optimal, it becomes imperative to
establish an adaptive agent capable of dynamically adjusting the
attention score distribution to enhance model performance and
flexibility.

3.3 Agent Mask Denoising Mechanism
As illustrated in Figure 1, our overall framework is based on Eq. 5
and Eq. 9. Proposed Overall framework is in Figure 2. Before the in-
put features are processed by the model, a class token is embedded
into them, resulting in the feature matrix 𝐻 ∈ R𝐷×(𝑁+1) , where 𝐷
is the dimension of the features and (𝑁 + 1) represents the number
of patches, with the accounting for the embedded class token.
Trainable Agent. In the methodology outlined earlier, matrix 𝐴
in Eq. 9 is initially from matrix 𝑄 through mean pooling, 𝐴 =

𝑝𝑜𝑜𝑙𝑖𝑛𝑔(𝑄) ∈ R𝑛×𝐷 , indicating a limitation in encapsulating the en-
tirety of information present within𝑄 . To overcome this limitation,
𝐴 is defined as a trainable matrix. Through matrix 𝐴 ∈ R𝑛×𝐷 , the
intermediate matrices 𝑄𝐴 = 𝑄𝐴𝑇 ∈ R(𝑁+1)×𝑛 and 𝐾𝐴 = 𝐴𝐾𝑇 ∈
R𝑛×(𝑁+1) can be obtained. Utilizing the general attention strategy,
the intermediate variable is

𝑉𝐴 = 𝜎 (𝐾𝐴)𝑉

= 𝜎 (𝐴𝐾𝑇 )𝑉 ∈ R𝑛×𝐷 .
(10)

Mask Agent. In this MIL task, most regions of a WSI do not
contribute much to the prediction, so a learnable mask is generated
by using the trainable threshold to mask the information

𝜏 = 𝜎 (𝑝 (𝑊𝜏𝑉𝑇𝐴 )), (11)

where𝑊𝜏 ∈ R1×𝐷 , function 𝑝 is an adjustable aggregate function
such as mean-pooling, and 𝜏 is the threshold.
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Table 1: Performance of AMD-MIL on CAMELYON-16, CAMELYON-17, TCGA-LUNG, and TCGA-KIDNEY datasets.

Method
CAMELYON-16 CAMELYON-17 TCGA-LUNG TCGA-KIDNEY

ACC(%) AUC(%) F1(%) ACC(%) AUC(%) F1(%) ACC(%) AUC(%) F1(%) ACC(%) AUC(%) F1(%)

MeanMIL 79.42.12 83.32.31 78.52.23 69.52.14 69.21.51 65.42.21 82.41.31 86.41.62 82.02.11 90.31.49 93.11.04 87.91.10
MaxMIL 76.40.91 80.42.04 75.41.55 66.71.45 70.21.52 65.80.92 87.71.12 87.41.34 88.71.72 91.21.58 93.51.13 86.81.32

ABMIL [11] 84.81.14 85.91.05 84.11.22 78.7 1.98 77.3 1.64 75.3 1.32 88.42.04 93.12.23 87.62.10 91.60.93 94.10.82 88.51.23
G-ABMIL [11] 84.01.26 85.31.11 83.61.34 79.91.76 79.31.87 76.21.82 87.61.77 91.01.63 86.31.82 91.41.15 93.81.04 89.41.20
CLAM-MB[17] 91.10.82 94.50.78 90.70.91 83.61.42 84.8 0.71 81.31.70 89.31.23 94.21.18 88.21.42 91.20.78 92.90.66 90.20.74
CLAM-SB[17] 91.91.58 94.31.27 91.11.54 83.91.48 85.21.64 81.51.44 87.31.23 93.11.41 89.11.64 89.71.76 93.91.67 90.21.98
DSMIL [13] 85.80.63 91.80.72 86.20.75 72.20.76 72.80.86 72.40.72 85.20.85 93.60.82 85.90.94 90.20.78 94.70.66 86.20.71

TransMIL [21] 87.83.24 93.73.21 88.73.61 75.44.02 74.63.77 71.73.23 87.93.22 94.13.12 88.23.40 91.12.56 92.52.75 89.32.98
DTFD [34] 89.40.73 92.30.92 88.40.78 76.30.67 77.80.88 75.40.82 86.81.04 94.70.75 86.10.91 91.50.79 95.30.85 90.80.77
RRT [26] 88.60.96 93.41.23 89.90.94 76.72.14 74.51.49 72.31.22 87.12.10 93.21.87 88.01.72 92.81.46 93.61.68 90.71.38
WiKG [14] 91.11.26 94.61.20 90.81.15 80.31.41 80.41.38 77.81.20 89.70.96 94.60.72 89.31.23 93.21.11 95.90.84 91.61.12
AMD-MIL 92.92.73 96.42.89 92.72.83 85.01.32 85.30.69 82.71.24 90.51.51 95.20.70 90.51.59 94.41.13 97.30.74 92.91.01

Calculate the importance of each feature to optimize the impor-
tant features in the hidden space. The selection of features will
have the risk of information loss. To balance important information
selection and the original characteristics of the aggregation, we
proposed a new module which can be defined as,

𝑉𝑀𝐷𝑖 𝑗
= 𝑉𝐴𝑖 𝑗

I𝑀𝑖 𝑗>𝜏 + 𝐷𝑀𝑖 𝑗 , (12)

where𝑀 =𝑊𝑀𝑉𝐴 is the threshold matrix to obtain the importance
of each feature, and 𝐷𝑁 =𝑊𝐷𝑁𝑉𝐴 is the denoise matrix to aggre-
gate information.
Agent Visualization. The foundational agent attention architec-
ture lacks the capability to produce a variable concentration score
for sequences. To address this limitation, we outline a methodology
that facilitates the visualization of attention scores:

𝐴𝑡𝑡𝑖 =

𝑛∑︁
𝑗=1

𝑄𝐴0, 𝑗𝐾𝐴 𝑗,𝑖+1 , (13)

where 𝐴𝑡𝑡𝑖 is the attention score of the feature ℎ𝑖 .
AMD. Establishing the aforementioned modules, we introduce a
novel framework titled Attention Mask Denoising. This framework,
as illustrated in the Figure 2, encompasses a learning-based agent
attention mechanism, feature selection, and feature aggregation
within the hidden space. The algorithm process is shown in Algo-
rithms 1 and the module can be expressed as:

𝑂 = 𝜎 (𝑄𝐴𝑇 )𝜎 (𝐴𝐾𝑇 )𝑉

= 𝜎 (𝑄𝐴𝑇 )𝑉𝑀𝐷 ,
(14)

where 𝑉𝑀𝐷 represents the mask and denoising module Eq. 12.
Due to the difference in the threshold selection method, the other

two feature threshold selection strategies are considered as follows:
• Mean-AMD. Mean selection: selected the average value in the
features as the threshold selected by all features.
• CNN-AMD. CNN selection: through the method of group con-
volution, the characteristics of different groups are reduced, and
the average value between the groups is the threshold.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
In our study, we employ four datasets available in the public domain
to assess the performance of the approach we proposed.
CAMELYON-16 is a dataset for early-stage breast cancer lymph
node metastasis detection. The dataset comprises 399 WSIs, which
are officially split into 270 for training and 129 for testing. Follow-
ing the split, we employed 6-fold cross-validation to ensure that all
data were utilized for both training and testing, thereby preventing
overfitting to the official test set. In addition, we employ the pre-
trained weights from CAMELYON-16 dataset to perform inference
on the external dataset CAMELYON-17 only once. Subsequently,
we report both the mean and variance of the evaluation metrics.
TCGA-LUNG comprises 1034 WSIs, encompassing 528 WSIs from
Lung Adenocarcinoma (LUAD) cases and 507WSIs from Lung Squa-
mous Cell Carcinoma (LUSC) cases. We randomly split the dataset
into training, validation, and testing sets with a ratio of 65:10:25.
4-fold cross-validation is used, and the mean and standard deviation
of performance metrics are reported.
TCGA-KIDNEY comprises 1075 WSIs, encompassing 117 WSIs
from Kidney Chromophobe (KICH) cases,539 WSIs from Kidney
Clear Cell Carcinoma (KIRC) cases, and 419 WSIs from Kidney Pap-
illary Cell Carcinoma (KIRP) cases. We randomly split the dataset
into training, validation, and testing sets with a ratio of 65:10:25.We
adopt 4-fold cross-validation and report the mean and standard
deviation of evaluation metrics.

We report the evaluation metrics as the mean and standard
deviation of the macro F1 score, the area under the curve (AUC) for
one-versus-rest scenarios, and the slide-level accuracy (ACC).

4.2 Implementation Details
During the preprocessing phase, we generated non-overlapping
patches of 256x256 pixels at 20x magnification for the datasets
CAMELYON-16, CAMELYON-17, TCGA-KIDNEY, and TCGA-LUNG.
This procedure yielded an average count of approximately 9024,
7987, 13266, and 10141 patches per bag for the respective datasets.
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Figure 3: Visualization of AMD-MIL Attention Distribution Compared to Official Annotations on CAMELYON-16.

Uniform hyperparameters were maintained across all experi-
ments. Each experiment was conducted on a workstation equipped
with NVIDIA RTX A100 GPUs, utilizing ImageNet [5] pre-trained
ResNet50 [10] as the feature encoding model. The Adam optimiza-
tion algorithm was used, incorporating a weight decay of 1e-5. The
initial learning rate was set at 2e-4, and cross-entropy loss was
employed as the loss function.

For ADM-MIL, we introduce a hyperparameter, agent numbers,
to control the number of agent tokens.

4.3 Comparison with State-of-the-Art Methods
In this study, we present the experimental results of our newly
developed AMD-MIL framework applied to the CAMELYON-16,
CAMELYON-17, TCGA-LUNG, and TCGA-KIDNEY datasets. We
compared this framework with various methodologies, including
MeanMIL, MaxMIL, ABMIL [11], CLAM [17], DSMIL [13], Trans-
MIL [21], DTFD [34], RRT [26], and WiKG [14], to evaluate its
effectiveness.

As shown in Table 1, the AMD-MIL framework demonstrated su-
perior performance, achieving AUC scores of 96.4% for CAMELYON-
16, 85.3% for CAMELYON-17, 95.2% for TCGA-LUNG, and 97.3% for
TCGA-KIDNEY. Notably, these scores consistently exceeded those
of the previously mentioned comparative methods, highlighting
the framework’s exceptional ability to dynamically adapt to in-
puts. This adaptability enables the effective capture of key features,
accurately representing the original bag features.

As demonstrated in Table 3, We also conducted a comparative
analysis to evaluate the impact of different threshold selection meth-
ods on the metrics. We found that using a linear layer for aggrega-
tion outperforms both average pooling and group-convolution.

4.4 Interpretability Analysis
We conducted an interpretability analysis of AMD-MIL. In Figure 3,
the blue-masked areas denote the official annotations of cancer-
ous regions in the CAMELYON-16 dataset, whereas the heatmap
regions represent the distribution of agent attention scores across
all patches constituting the WSIs, calculated according to Eq. 13.
The attention scores indicate the contribution level of instances to
the classification outcome, and it is distinctly observable that areas
of high attention scores align closely with the annotated cancer-
ous regions. This demonstrates that the AMD-MIL classification
relies on the cancerous ROI, mirroring the diagnostic process of
pathologists, thereby providing substantial interpretability for clin-
ical applications. AMD-MIL not only possesses robust localization
capabilities for macro-metastases but also accurately focuses on
micro-metastases. For example, Figure 3 (f), which includes both
macro and micro-metastases, AMD-MIL can also concurrently lo-
calize to different areas.

4.5 Ablation Study
Effectiveness of Agent Aggregator. The trainable agent aggre-
gator employs agent tokens as intermediate variables for the query
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Table 2: Comparison between TransMIL with AMD-MIL and the effectiveness of the components of AMD-MIL.

Dataset
Component

ACC(%) AUC(%) F1(%)
nystrom agent train mask denoise

CAMELYON-16

✓ 87.83.24 93.73.21 88.73.61
✓ 89.32.90 93.83.08 88.63.09
✓ ✓ 91.53.62 95.63.06 91.23.67
✓ ✓ ✓ 93.02.72 96.03.00 92.72.80
✓ ✓ ✓ ✓ 92.92.73 96.42.89 92.72.83

LUNG

✓ 87.93.22 94.13.12 88.23.40
✓ 88.40.86 93.50.86 88.40.88
✓ ✓ 87.51.00 92.63.47 87.41.02
✓ ✓ ✓ 90.21.19 94.60.91 90.21.19
✓ ✓ ✓ ✓ 90.51.51 95.20.70 90.51.59

KIDNEY

✓ 91.12.56 92.52.75 89.32.98
✓ 93.70.43 97.00.57 91.10.94
✓ ✓ 93.71.13 97.70.57 91.40.18
✓ ✓ ✓ 93.41.06 97.60.57 90.70.13
✓ ✓ ✓ ✓ 94.41.13 97.30.74 92.91.01

Table 3: Different thresh select methods on Camelyon-16.

Thresh ACC(%) AUC(%) F1(%)
Mean 91.32.12 96.02.21 91.03.83
CNN 91.23.66 95.83.39 91.03.69
Linear 92.92.73 96.42.89 92.72.83

     (a) Officail annotation         (b) AMD-MIL attention                         

       (c) First agent token           (b) Second agent token                         

Figure 4: Attention distribution of different agent tokens.

and key of original self-attention mechanism, ensuring global mod-
elingwhile approximating linear attention.We compare the trainable-
agent aggregatorwith the original pooling-agent aggregator and the
nystrom attention aggregator from TransMIL. The original pooling-
agent aggregator reduces parameter count via a proxy mechanism
and achieves enhanced global modeling through a broadcasting
mechanism. As shown in Table 2, it significantly outperforms the
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Figure 5: Influence of the number of agent tokens

nystrom attention aggregator from TransMIL across three datasets.
However, the pooling-agent aggregator struggles to dynamically
adapt to inputs, and its pooling mechanism may average out im-
portant instances.By initializing the agent as a trainable parameter,
we observe a relative improvement in metrics compared to the
pooling-agent aggregator.

We further explored the attention distribution patterns among
various agent tokens, as depicted in Figure 4. Notably, the first agent
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Figure 6: Effectiveness of the mask denoise mechanism.
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Figure 7: Model convergence of AMD-MIL and TransMIL.

token is oriented towards non-cancerous tissues, whereas the sec-
ond agent token is aligned with cancerous zones. This observation
underscores the fact that different agent tokens exhibit unique focal
points across the spectrum. This variance in attention ensures that
during the broadcasting process by agents, diverse queries are able
to concentrate on their respective areas of significance, thereby
enhancing the model’s capacity to differentiate between critical
and non-critical regions effectively.

Additionally, the number of agent tokens constitutes a critical
hyperparameter in AMD-MIL. As shown in Figure 5, comprehen-
sive experiments were conducted on four datasets with agent token
counts of 32, 64, 128, 256, 384, and 512. We observed fluctuations
in the ACC on the CAMELYON-16 dataset as the number of agent
tokens increased, possibly due to the dataset’s small size causing
instability. On the CAMELYON-17 dataset, the AUC increases with
the number of agents, while the ACC shows a trend of first increas-
ing and then decreasing. Additionally, the AUC on CAMELYON-16
dataset, alongside the AUC and ACC for TCGA datasets, main-
tained relatively stable performance. This consistency aligns with
the results of experiments modifying the number of agent tokens
within shallow attention stacks on natural images [9].
Effectiveness of Mask Denoise Mechanism. The mask denoise
mechanism enables a more rational allocation of attention scores
by dynamically masking out representations of less significant

instances. Denoising matrices are used to mitigate the noise intro-
duced during the mask process. As shown in Table 2, we compare
the metrics of the agent aggregator with and without the mask and
denoise mechanisms. On average, the mask denoise mechanism
enhances performance metrics. Figure 6 contrasts the distribution
of instance attention scores for agent aggregators with and with-
out the mask denoise mechanism. It is evident that, even without
the mask denoise mechanism, some WSIs could be correctly clas-
sified. However, a portion of the higher attention is allocated to
non-cancerous areas, diminishing the model’s interpretability. For
micro-metastatic cancer as shown in Figure 6 (b), such bias could
lead to erroneous classification results, posing challenges for clinical
application.With the incorporation of themask denoisemechanism,
the distribution of attention scores becomes more concentrated on
the ROIs within cancerous areas, granting significantly lower atten-
tion to non-cancerous regions. This suggests that the mask denoise
mechanism can dynamically correct attention scores to achieve
improved interpretability.

5 CONCLUSION
In pathological image analysis, using attention-based aggregators
significantly advances MIL methods. However, traditional attention
mechanisms, due to their quadratic complexity, struggle with pro-
cessing high-resolution images. Additionally, approximate linear
self-attention mechanisms also have inherent limitations. To ad-
dress these challenges, we introduce AMD-MIL, a novel approach
for dynamic agent aggregation and feature refinement. Our valida-
tion on three distinct datasets not only demonstrates AMD-MIL’s
effectiveness but also its ability for instance-level interpretability.
Moving forward, we aim to further evaluate its robustness across a
broader range of datasets and explore its potential clinical applica-
tions.
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