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Abstract

Imitation learning from large-scale, diverse human demonstrations has been shown
to be effective for training robots, but collecting such data is costly and time-
consuming. This challenge intensifies for multi-step bimanual mobile manipulation,
where humans must teleoperate both the mobile base and two high-DoF arms. Prior
X-Gen [1–3] works have developed automated data generation frameworks for
static (bimanual) manipulation tasks, augmenting a few human demos in simulation
with novel scene configurations to synthesize large-scale datasets. However, prior
works fall short for bimanual mobile manipulation tasks for two major reasons:
1) a mobile base introduces the problem of how to place the robot base to enable
downstream manipulation (reachability) and 2) an active camera introduces the
problem of how to position the camera to generate data for a visuomotor policy
(visibility). To address these challenges, MOMAGEN formulates data generation as
a constrained optimization problem that satisfies hard constraints (e.g., reachability)
while balancing soft constraints (e.g., visibility while navigation). This formulation
generalizes across most existing automated data generation approaches and offers
a principled foundation for developing future methods. We evaluate on four multi-
step bimanual mobile manipulation tasks and find that MOMAGEN enables the
generation of much more diverse datasets than previous methods. As a result of the
dataset diversity, we also show that the data generated by MOMAGEN can be used
to train successful imitation learning policies using a single source demo. More
details are on our project page: https://momagen-rss.github.io/.

1 Introduction
Learning from human demonstrations is a powerful paradigm for teaching robots complex manipula-
tion skills. A common approach for collecting such data is teleoperation, where a human directly
controls the robot to demonstrate desired behaviors. When scaled up, teleoperated data has enabled
training visuomotor policies with impressive generalization and success in challenging manipulation
tasks [4–8]. However, this data collection process remains expensive and time-consuming, especially
for tasks that require high-quality demonstrations to ensure effective policy learning.
Recently, collecting a small amount of human teleoperation data and then synthesizing additional
data in simulation has become a popular approach to scale up data collection [1–3, 9, 10]. Compared
to offline data augmentation techniques such as those based on image augmentation [11–15], this
approach can autonomously generate new behaviorally diverse data for the same task. This process
enlarges the support and convergence region of the policies and reduces the teacher-student distri-
bution mismatch [16] through new generated experiences validated in simulation to ensure quality.
Notably, the X-Gen family of techniques [1–3, 9, 10] leverages simulation and augmentation based
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Figure 1: (left) MOMAGEN uses a single human-collected demonstration to generate a large set
of demonstrations, formulating data generation as a constrained optimization problem. (top-left)
shows a human-collected demo for cleaning a pan with a scrub. (top-right) shows three novel
object configurations with aggressive object pose randomization and additional distractors/obstacles.
MOMAGEN can generate novel trajectories in these diverse scenarios. (bottom-left) shows three
robot base poses and (bottom-right) shows two arm trajectories for picking up the pan.

on a small number of human demonstrations that are used as seeds to generate multiple new variations
automatically. While they have shown success in simple table-top manipulation tasks, a significant
standing challenge for X-Gen methods is to extend the benefits of generalizable data generation to
real-world tasks with more complex robot embodiments such as mobile manipulators.
Solving real-world tasks, such as everyday household activities, often requires a mobile manipulator
with whole-body control capabilities to coordinate stable and accurate navigation with end-effector
manipulability, often with two arms [17–19]. Teleoperation data collection becomes significantly
challenging for high-degrees-of-freedom whole-body control since controlling the base and two arms
is a severe overload on the human operators [19–21] (see Fig. 1, left). Augmenting a few (expensive)
demonstrations becomes thus critical, but previous methods of the X-Gen family fall short in this
domain due to two major reasons: First, mobile manipulation introduces the problem of object
reachability. For novel object arrangements, naive replay of the navigation segments of the human
collected demonstrations easily leads to robot configurations that render subsequent manipulation
infeasible. Second, having a mobile base, and thus a movable camera, exacerbates the problems
of partial observability. Concretely, when training visuomotor policies for mobile manipulation, a
naive augmentation of demonstrations leads to severe problems in object visibility: the task-relevant
objects may move out of the field of view, making it hard for the policy to make optimal decisions
based on the images from onboard sensors. Naive motion planning [2] or replay [3, 22] is insufficient
to ensure either reachability or visibility of the task-relevant objects.
To address these challenges, we propose MOMAGEN, a general data generation method for bimanual
mobile manipulation. It formulates data generation as a constrained optimization problem with
hard constraints (e.g., reachability, visibility right before manipulation) and soft constraints (e.g.,
visibility while navigation). Significantly, we realized that previous methods of the X-Gen family
can be interpreted as using different (but insufficient) hard and soft constraints for data generation,
providing a unified framework. With data generated by MOMAGEN, we evaluate on four multi-step
bimanual mobile manipulation tasks. We find that MOMAGEN enables the generation of much more
diverse datasets than previous methods. As a result of the dataset diversity, we also show that the data
generated by MOMAGEN can be used to train successful imitation learning policies with a single
source demonstration. MOMAGEN generalizes across most existing automated data-generation
approaches and offers a principled foundation for developing future methods.

2 Related Works
Data Acquisition for Robot Learning. Collecting large-scale human teleoperation data for robot
learning incurs considerable costs. Scaling up data collection requires a large number of human
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Methods Bimanual Mobile Obstacles Base Active Hard Soft
Random. Perception Constraints Constraints

MimicGen [1] ✗ ✓ ✗ ✗ ✗ Succ N/A
SkillMimicGen [2] ✗ ✗ ✓ ✗ ✗ Succ, Kin, C-Free N/A
DexMimicGen [3] ✓ ✗ ✗ ✗ ✗ Succ, Temp N/A
DemoGen [9] ✗ ✗ ✓ ✗ ✗ Kin, C-Free N/A
PhysicsGen [10] ✓ ✗ ✗ ✗ ✗ Kin, C-Free, Dyn Trac

MoMaGen (Ours) ✓ ✓ ✓ ✓ ✓ Succ, Kin, C-Free, Temp, Vis Vis, Ret

Table 1: Comparison of different automated data generation methods and the constraints they enforce.
“Succ”: task success; “Kin”: kinematic feasibility; “C-Free”: collision-free execution; “Temp”:
temporal constraints for bimanual coordination; “Dyn”: system dynamics; “Trac”: target trajectory
tracking; “Vis”: visibility of task-relevant objects in the robot’s camera view; “Ret”: retraction of
robot torso and arm to a compact configuration before navigation.

operators over extended periods of time [4–6] or needs to rely on crowdsourced teleoperation systems
such as RoboTurk [23]. Offline data augmentation techniques can boost data quantity and diversity
by perturbing existing trajectories [1, 2], or leveraging image augmentation techniques and generative
models [11–15]. However, the augmented data may not always be executable by real robots. A
promising alternative is to leverage automated data generation and validation in simulation. Fully
automated approaches include trial-and-error [24–27] and pre-programmed (e.g., scripted) experts
[28–31], which are yet to be proven effective for complex tasks without additional components such
as planning [32]. X-Gen [1–3, 9, 10] represents a hybrid approach that leverages simulation and
augmentation to build upon a handful of human demonstrations as seeds to generate many new
variations, augmenting the data by a factor of 25× to 350× [1, 3], while ensuring synthesized data is
valid. A comparison between prior X-Gen works and our work can be found in Table 1. Our work
signifies an important step toward a more generalizable data generation framework for challenging
mobile manipulation tasks, which have never been tackled before.

Imitation Learning for Mobile Manipulation. Early successes in robot imitation learning mostly
focused on fixed-based arms, but many real-world tasks require a mobile manipulator that can both
navigate and manipulate. Such robots need to effectively chain navigation and manipulation, move
through an environment to position itself, and then perform manipulation. Collecting teleoperation
data for mobile manipulation is significantly more costly: operators must simultaneously control the
robot base and arms [17, 19, 20, 33, 34], calling for automated data generation methods for better
scaling. On the algorithmic side, imitation learning methods started handle the complexities of mobile
manipulation tasks, employing behavior cloning [19, 35–42] and large pretrained models [43–49].

3 Problem Formulation: Data Generation as Constrained Optimization
We formulate automated demonstration data generation as a constrained optimization problem, and
provide a unified framework that incorporates existing approaches (see Table 1). This optimization
problem incorporates both hard and soft constraints. The former must be strictly satisfied (e.g., task
success, convergence to target end-effector poses at key frames, and collision avoidance). The latter
capture desirable properties (e.g., shorter trajectory length and reduced jerkiness). Generating valid
data requires strictly satisfying hard constraints while minimizing the costs associated with soft
constraints. We formally define the problem as follows.

Each task is modeled as a Markov Decision Process (MDP) with state space S and action space
A. Given a set of source demonstrations Dsrc = {dj = (sj0, a

j
0, . . . , s

j
Tsrc

)}Nsrc
j=0 , where Nsrc is the

number of source demonstrations, Tsrc is the trajectory length, and s0 ∼ D is the initial state from
distribution D. We aim to generate a new set of successful demonstrations D = {d}Ngen given the
source demonstrations Dsrc and a set of constraints {Gi}. With the generated demonstrations, we
can train Behavioral Cloning [50] policies πθ using argminθ E(s,a)∼D[− log πθ(a|s)].
Following prior work [1–3], each source demonstration d can be decomposed to N subtasks. Each
subtask contains an object trajectory Si(oi), i ∈ [N ], where oi is the object of interest, and an
end-effector trajectory τi = {TEk

W }Ki

k=0, i ∈ [N ], k ∈ [Ki], where TEk

W is the pose of the end-effector
frame E with respect to the world reference frame W at time k, and Ki is the number of steps for the
subtask i. Each subtask can further be labeled as either a free-space subtask or a contact-rich subtask.
In a free-space subtask, the goal is to move the robot base or arms in free space (e.g. to a pregrasp
pose), where feasible trajectories can be sampled using motion planning subject to kinematic and
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collision constraints. In a contact-rich subtask, the goal is to manipulate the relevant objects through
contacts (e.g. picking, placing, wiping). The relative poses between the end-effector frame and the
object frame for contact-rich subtasks are preserved from the source to the generated demonstrations.
Generating a demonstration can be viewed as solving the following constrained optimization problem:

argmin
at∈[T ]

L (·) s.t.



st+1 = f(st, at), ∀ t ∈ [T ]

Gkin(st, at) ≤ 0, ∀ t ∈ [T ]

Gcoll(st, at) ≥ 0, ∀ t ∈ [T ]

Gvis(st, at, oi(t)) ≤ 0, ∀ t ∈ [T ]

TEk

W = Toi
W (T

oi,src
W )−1TEk

W , ∀ contact τi, ∀ k ∈ [Ki]

st ∈ Dsuccess ∃ t ∈ [T ] (task success)

(1)

Here, L(·) contains user-specified soft constraints. The function f(st, at) denotes the system dy-
namics. The constraints Gkin encode kinematic feasibility (e.g. joint limits), Gcoll encode collision
avoidance, and Gvis encode visibility constraints (e.g. during manipulation).

4 MOMAGEN
Following the proposed problem formulation in Section 3, we develop MOMAGEN that solves a
constrained optimization problem to generate demonstrations for bimanual mobile manipulation tasks.
We first introduce the rechability and visibility constraints that are essential for bimanual mobile
manipulation in Section 4.1. We then detail the data generation method in Section 4.2.

4.1 Constraints for Bimanual Mobile Manipulation
In our instantiation of MOMAGEN, besides the commonly used hard and soft constraints mentioned
in the previous section, we highlight a few key technical innovations that are essential for generating
high-quality bimanual mobile manipulation demonstrations.
Reachability as Hard Constraint. One of the key distinctions between mobile and stationary
manipulation is that, in the former, the robot must actively control its mobile base to position itself
appropriately for effective downstream manipulation. While prior works [3, 22] have demonstrated
mobile manipulation tasks, such as placing a pan on a stove or inserting a plate into a dishwasher, the
navigation trajectories in these approaches are copied directly from source demonstrations without
any adaptation. Such methods fail when object randomization places targets beyond the reachable
workspace of the robot arm, making manipulation infeasible from the original base pose. To address
this, we impose reachability as a hard constraint during data generation. Specifically, we ensure that
the sampled base pose allows all required end-effector trajectories for downstream manipulation to
remain within the robot’s reachable workspace.
Object Visibility during Manipulation as Hard Constraint. A valid robot base pose must also
satisfy a hard visibility constraint: the task-relevant objects must be within the field of view of the
robot. This requirement is critical because the generated data is intended to train visuomotor policies,
which rely on consistent visual access to task-relevant objects during manipulation. To enforce this,
we ensure that each sampled base pose allows the robot’s head camera to observe the task-relevant
objects without occlusion, leveraging additional camera or torso articulation when necessary.
Object Visibility during Navigation as Soft Constraint. While maintaining task-relevant object
visibility during navigation toward the target base pose is desirable, it is not strictly required and is
therefore treated as a soft constraint. To encourage this behavior, we introduce an additional visibility
cost that biases the robot’s head camera to remain oriented toward the target object during navigation.
Retraction as Soft Constraint. After manipulation, it is usually beneficial for the robot to retract
its torso and arms into a compact, tucked configuration, before the next phase of navigation. This
reduces the robot’s footprint and makes the future base motion generation easier and safer.
As illustrated above, the choice of constraints, particularly soft constraints, is highly dependent on
the specific application or domain. In our case, we selected the aforementioned constraints because
we believe they promote the generation of high-quality bimanual manipulation demonstrations that
closely approximate human-level optimality for visuomotor policy training.

4.2 Automated Demonstration Generation for Bimanual Mobile Manipulation

In this section, we discuss our framework that leverages the novel constraints introduced above to
efficiently generate diverse demonstration data.
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Figure 2: MOMAGEN method. Given a single source demonstration, as well as annotations for
object-centric subtasks for each end-effector, MOMAGEN first randomizes scene configuration, and
transforms the end-effector poses from the source demo to the new objects’ frame of reference. For
each subtask, it tries to sample a valid base pose that satisfies reachability and visibility constraints.
Once found, it plans a base and torso trajectory to reach the desired base and head camera pose while
trying to look at the target object during navigation. Once arrived, it plans an arm trajectory to the
pregrasp pose and uses task space control for replay, before retracting back to a tucked, neutral pose.

Algorithm 1 MOMAGEN

Input: original demo, new initial state s0
Output: generated demo

1: for each segment do
2: Get current Tbase, Tcam, qtorso, qarm
3: if held object not in hand then abort
4: Compute transformed end-effector pose Teef using new target object pose
5: Check visibility of target object with Tcam

6: Solve IK for arm trajectory {qarmt } with current Tbase, Tcam

7: while not visible or no IK exists do
8: Sample new base pose Tbase

9: Sample new camera pose Tcam

10: Solve IK for arm {qarmt } and torso {qtorsot } with sampled Tbase, Tcam

11: Plan motion for {qtorsot } from current Tbase to sampled Tbase, Tcam w/ soft visibility
12: Plan motion for {qarmt } from previous Teef to pregrasp Teef

13: Control end-effector in task space to follow transformed Teef

14: Attempt retraction

Source Demonstration Annotation. For each demonstration, we first segment it into temporally
ordered subtasks that include single arm uncoordinated motion or bimanual coordinated motion that
require synchronization of the robot’s left and right arms at subtask boundaries. Each subtask is
annotated with the target object otarget, the object held by the gripper oheld, the timestep immediately
preceding contact tpregrasp, the motion’s end timestep tend, and the retraction type r to execute after
the motion. Figure 2 illustrates an annotated subtask of grasping a cup using a single arm. To stress
test our method and minimize human effort, we collect and annotate a single source demo (Nsrc=1).

Demonstration Generation. MOMAGEN generates new robot demonstrations for novel initial states
by following the high-level procedure described in Algorithm 1. For each subtask of a source demo,
we first verify the robot is holding the required object and abort early if not (line 3), likely due to the
previous grasping failures. We then compute end-effector poses for contact-rich motions by applying
the appropriate transforms from the original demonstration (line 4). Next, we check reachability
and visibility constraints for the current base and head camera configuration (lines 5-6); if these
constraints are satisfied, the robot proceeds directly to manipulation (lines 12–13). Otherwise, we
enter a sampling loop (lines 7–11) to find a feasible base and camera pose, repeatedly sampling
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Figure 3: Task visualization. Our multi-step tasks include long-range navigation, sequential and
coordinated bimanual manipulation, requiring pick-and-place and contact-rich motion.

Figure 4: Generated data diversity analysis for Tidy Table task (50 trajectories, subsampled). Given
the same object randomization (D0) (a), compared to SkillMimicGen, MOMAGEN samples diverse
base poses (b), and as a result, diverse end-effector poses (c) and joint positions (d). MOMAGEN is
also the only method that can generate data for D1 randomization (red) for even greater diversity.

and checking configurations until a valid one is found. Throughout this process, heuristics-based
sampling and inverse kinematics are used to guarantee both reachability and visibility (lines 8-10).
Once a valid base configuration is found and reached (line 11), the robot executes the manipulation
phase, bringing the end effector(s) to the pregrasp pose wiht motion planning and replaying the
contact-rich segment using task-space control (lines 12–13). Finally, the robot attempts to retract
its arms and torso to a canonical or previous configuration (line 14). This process repeats for each
annotated subtask. We use cuRobo [51] for all motion planning and inverse kinematics checking.

Key Novelties. We highlight several key novelties of our approach for generating mobile manipulation
demonstrations. (1) Full-body Motion: Unlike prior work that primarily focuses on the end-effector
pose Teef , our method simultaneously considers the end-effector pose Teef , head camera pose
Tcam, and base pose Tbase. (2) Visibility Guarantee: We explicitly ensure that the target object α
is visible before manipulation (lines 5 and 9), and further incorporate a soft visibility constraint to
encourage the robot to keep the object in view during navigation (line 11). (3) Expanded Workspace:
To fully leverage the robot’s mobility, we actively sample base poses near the target object (line 8) and
plan base motions to transition efficiently between target objects throughout the entire room (line 11).
(4) Efficient Generation: To improve data generation efficiency, we prioritize inverse kinematics
checks, which are significantly faster than full motion planning for preemptive filtering. We also
decompose the robot’s configuration into subspaces for the torso and arms, enabling more efficient
conditional sampling in a manner similar to integrated task and motion planning methods [52].

5 Experiments and Results
We aim to investigate whether MOMAGEN can effectively generate demonstrations for multi-step
bimanual mobile manipulation tasks. We evaluate MOMAGEN in four household tasks (Section 5.1)
and with three different object/scene randomization schemes (Section 5.2). We compare MOMA-
GEN with two data generation baselines [2, 3] and show that MOMAGEN generates data with larger
data diversity, higher data generation success rates for complex tasks, and substantially higher task-
relevant object visibility which is critical for visuomotor policies in Section 5.3. We further analyze
how MOMAGEN’s generated demonstrations help train imitation learning policies in Section 5.4.

5.1 Task Setup
We evaluate MOMAGEN on four household tasks that require mobile manipulation, illustrated
in Figure 3. These tasks are inspired by BEHAVIOR-1K benchmark and are implemented in
OmniGibson [53, 54]. Pick Cup involves single arm mobile manipulation, where the robot must
navigate to the table to grasp the cup, and lift it. Success is defined as raising the cup to a specified
height above the table surface. Tidy Table involves longer range of mobile manipulation, where
the robot must navigate to the countertop to pick up the cup, and then place it in the sink. The task
is successful when the teacup is placed inside the sink. Put Dishes Away involves uncoordinated
bimanual mobile manipulation. There is one plate initially on the shelf, and two are on the countertop.
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The robot must pick up all countertop plates and stack them on the shelf. The task is successful
if all plates form a stable stack on the shelf. Clean Frying Pan involves coordinated bimanual
mobile manipulation, where the robot must use the brush to scrub the pan to remove the dust while
holding the pan. Success is measured by the percentage of dust removed from the pan’s surface. For
each task we collect one human demonstration through teleoperation in OmniGibson. Each human
expert demonstration lasts approximately 1–3 minutes. These tasks involve substantial mobile base
movement, which accounts for approximately 45% of the total demonstration duration.

5.2 Domain Randomization Schemes
For each task, we have three levels of domain randomization with increasing difficulty. D0 randomizes
task-relevant objects on a furniture with position and orientation ranges of ±15 cm and ±15 degrees,
respectively. D1 randomizes task-relevant objects on the original furniture without constraints. For
example, the position of the cup is randomly sampled on the entire kitchen island and the orientation
is randomly sampled between [−π, π] (Figure 4 (a)). D2 performs D1 randomization for task-relevant
objects and introduces additional objects on furniture (obstacles for manipulation) and objects on the
floor (obstacles for navigation) as illustrated in Figure 1 (upper right) . Note that this randomization
scheme is much more aggressive than previous methods [1–3], due to MOMAGEN ’s capability to
generate novel robot base motions. More detailed visualizations are in Appendix.

5.3 Data Generation Comparison
In this section, we evaluate the data generation performance of MOMAGEN for bimanual mobile
manipulation tasks under different randomization ranges. We compare MOMAGEN with two data
generation baselines: (1) SkillMimicGen [2], which generates collision-free trajectories for single-
arm manipulation tasks using motion planners and task-space control for contact-rich motion, and (2)
DexMimicGen [3], which focuses on dexterous bimanual manipulation data generation. Since all
evaluated tasks involve substantial mobile base movement, we additionally extend SkillMimicGen
and DexMimicGen to support mobile manipulation by incorporating base trajectory replay from the
source demo, following a similar approach to MimicGen [22]. We compare different data generation
methods using three categories of metrics: (1) data diversity, measured in terms of object pose
variation, and robot action diversity; (2) data generation success rate, which reflects the method’s
ability to handle complex bimanual mobile manipulation tasks; and (3) object visibility ratio,
quantifying how often target objects remain visible during robot navigation.

Figure 5: Object visibility analysis for MOMA-
GEN and ablations. The x-axis is the % of frames
where the target object is visible during navigation,
and the y-axis is the trajectory count (out of 1000).
MOMAGEN siginificantly outperforms ablations
thanks to both hard and soft visibility constraints.

How diverse are the demonstrations gener-
ated by MOMAGEN? Figure 4 (a) shows the
variation in task-relevant object poses in the data
generated by MOMAGEN for D0 and D1 and
SkillMimicGen for D0. The baseline can hardly
generate trajectories for D1 due to their lack
of ability to generate novel base motions. MO-
MAGEN can generate data for much larger ob-
ject pose coverage as compared to the baselines
(where the object is clustered on the top-right of
the table). Furthermore, data generated by MO-
MAGEN has much more diverse scenes with
novel obstacles and distractor objects (see Ap-
pendix). We also evaluate the diversity in the
generated actions. Figure 4 (b) and (c) show
that MOMAGEN D1 has much larger coverage
of base and end-effector actions as compared to MOMAGEN D0 and the baseline. In Figure 4 (d), we
visualize the PCA 2D projections of the robot arm and torso joints in the data generated by the two
baselines and MOMAGEN , and confirm that MOMAGEN has much larger action coverage.
Can MOMAGEN achieve high-throughput data generation? Table 2 shows MOMAGEN achieves
an average data generation success rate of 63% for D0. Our method can generate data for all tasks, at
all levels of randomization, although we note that the data throughput decreases as the randomization
range increases. While the baselines perform well on simpler tasks like Pick Cup, the success rate
drops for harder tasks like Clean Frying Pan due to a stronger need for adapting base motions, and
cannot handle D1 and D2 randomization at all.
Can MOMAGEN generate demonstrations with high object visibility? Object visibility plays a
critical role in visuomotor policy learning (Sec. 5.4), motivating our evaluation of visibility ratios
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Methods Pick Cup Tidy Table Put Dishes Away Clean Frying Pan

D0

MOMAGEN 0.86 0.80 0.38 0.51
SkillMimicGen 1.00 0.69 0.38 0.40
DexMimicGen 1.00 0.72 0.38 0.35

MOMAGEN w/o soft vis. const. 0.88 0.78 0.50 0.46
MOMAGEN w/o hard vis. const. 0.97 0.59 0.29 0.24

MOMAGEN w/o vis. const. 0.97 0.74 0.29 0.36

D1 MOMAGEN 0.60 0.64 0.34 0.20
MOMAGEN w/o vis. const. 0.66 0.48 0.23 0.13

D2 MOMAGEN 0.47 0.22 0.07 0.16
MOMAGEN w/o vis. const. 0.50 0.16 0.05 0.12

Table 2: Data generation success rates comparison. For simpler tasks (Pick Cup), ablations and
baselines achieve higher data gen success rates because of fewer constraints and less motion planning
stochasticity. However, for more complex tasks (the other three), enforcing hard visibility constraints
helps position the robot torso to a suitable configuration that facilitates downstream manipulation,
leading to higher success rates. The baselines suffer from zero success rates and hence are omitted for
D1/D2 because the objects are beyond the reachability of replayed base poses from the source demo.

Methods Pick Cup Tidy Table Put Dishes Away Clean Frying Pan

D0

MOMAGEN 1.00 0.86 0.79 0.69
SkillMimicGen 1.00 0.40 0.71 0.65
DexMimicGen 1.00 0.39 0.71 0.67

MOMAGEN w/o soft vis. const. 1.00 0.63 0.62 0.56
MOMAGEN w/o hard vis. const. 0.98 0.63 0.68 0.55

MOMAGEN w/o vis. const. 0.90 0.46 0.40 0.35

D1 MOMAGEN 0.93 0.89 0.78 0.80
MOMAGEN w/o vis. const. 0.71 0.46 0.40 0.43

D2 MOMAGEN 0.94 0.79 0.75 0.81
MOMAGEN w/o vis. const. 0.73 0.48 0.40 0.44

Table 3: Object visibility comparison. Our hard and soft visibility constraints are exceedingly
effective in keeping the object in view during navigation, achieving over 75% visibility even for
aggressively randomized object pose (D1) and obstacles/occluders (D2). We omit baselines for
D1/D2 due to zero data generation success rates.

presented in Table 3 and Figure 5. We compare the object visibility ratios of MOMAGEN against
baselines and three ablations that systematically ablate the hard and soft constraints introduced in
MOMAGEN . MOMAGEN achieves significantly higher task-relevant object visibility (oftentimes
doubled) as compared to the baselines and the ablations. Figure 5 compares task-relevant object
visibility of MOMAGEN to the ablations for the Tidy Table task, and shows that both hard and soft
visibility constraints are crucial for high object visibility in the generated data.

5.4 Policy Learning with Generated Demonstrations
Although MOMAGEN can synthesize successful trajectories to solve the tasks, it assumes privileged
information such as ground truth object pose and geometry. We still need to train visuomotor policies
from onboard sensor inputs (e.g., RGB images). In this section, we investigate whether the demos
generated by MOMAGEN help train imitation learning-based policies compared with other data
generation methods, show how data with different object visibility ratios influences policy training,
and whether MOMAGEN generated data benefits different types of imitation learning methods.
Policy Learning Setup. We experiment with two imitation learning based methods, WB-VIMA
[17] and π0 [7]. Both methods take as input proprioceptive info and RGB images from the head
camera and two wrist-mounted cameras, and outputs the target robot joint state. For WB-VIMA, we
further fuse and post-process the three RGB images (with grountruth depth from the simulation) into
egocentric colored point cloud, before feeding into the policy network. For WB-VIMA, we train
individual single-task policies from scratch, whereas for π0, we finetune a pre-trained π0 model with
a LoRA rank of 32. More implementation details are in the Appendix.
How do different data generation methods impact policy performance? We generate 1000
successful demonstrations using MOMAGEN for Pick Cup (D0), Pick Cup (D1), and Tidy Table (D0).
For comparison, we also generate 1000 demonstrations using SkillMimicGen and DexMimicGen
with replayed navigation for Pick Cup (D0) and Tidy Table (D0). WB-VIMA policies are trained on
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data from MOMAGEN and the baselines. As shown in Figure 6 (a), for Pick Cup (D0) with a small
randomization range (0.3m × 0.3m), MOMAGEN performs on par with the baselines, likely because
learning the replayed navigation is sufficient for D0 object coverage. However, for Tidy Table (D0),
MOMAGEN clearly outperforms the baselines. The gap comes from overfitting long, nonsmooth
navigation trajectories replayed from a single human demonstration. For the more challenging Pick
Cup (D1) task (1.3m × 0.8m randomization range), only MOMAGEN enables WB-VIMA to achieve
a 0.25 success rate; baselines trained on D0 data fail entirely (Figure 6 (b)). The diverse base motions
in MOMAGEN (D0) data further support intermediate successes like touching the cup.

(a) (b)

(c) (d)

Figure 6: Comparison between MOMAGEN and other data genera-
tion methods on WB-VIMA’s performances in (a) and (b), perfor-
mances of WB-VIMA and π0 trained with MOMAGEN data in (c)
and visibility ablations in (d). The success rate is averaged over 20
unseen evaluation episodes. Policies trained on MOMAGEN data
consistently perform better than those trained on others’ data.

How does object visibility
ratio affect policy perfor-
mance? In MOMAGEN, the
eye camera is constrained to
focus on the object of interest,
aiding visual servoing during
navigation and improving ob-
ject visibility during manipu-
lation (see Section 5.3). We
investigate whether these vis-
ibility constraints, which in-
crease the proportion of time
the object remains in view, en-
hance imitation learning per-
formance. We conduct an ab-
lation study using WB-VIMA
on Pick Cup (D0) and Tidy Ta-
ble (D0), comparing the full
MOMAGEN with three vari-
ants: (1) without soft visibil-
ity constraints (camera not en-
couraged to look at the task-
relevant object during naviga-
tion); (2) without hard visibil-
ity constraints (camera not enforced to look at the task-relevant object during manipulation); (3)
without any visibility constraints. As shown in Figure 6 (d), for Pick Cup (D0), ablated variants
achieve success rates between 0.45 and 0.65, below the 0.75 achieved by MOMAGEN. For Tidy Table
(D0), the gap is larger: ablations peak at 0.05, while MOMAGEN reaches 0.40. These results suggest
that enforcing visibility constraints during data generation significantly improves policy performance,
particularly when the policy depends on short history inputs.
Does MOMAGEN generated data benefit various imitation learning methods? We fine-tune π0

on MOMAGEN data for Pick Cup (D0), Pick Cup (D1), and Tidy Table (D0) with 1000 generated
demonstrations. Figure 6 (c) shows that the fine-tuned π0 achieves success rates that are comparable
to WB-VIMA across all three tasks. These results demonstrate that MOMAGEN generated data
effectively enhance the performance of diverse imitation learning methods.

6 Conclusions and Limitations
In this work, we present MOMAGEN, a general data generation method for multi-step bimanual
mobile manipulation using a single human-collected demonstration. MOMAGEN formulates data
generation as a constrained optimization problem that satisfies hard constraints while balancing soft
constraints. We propose key novelties that involve reachability and visibilty constraints, and evaluate
our method on four challenging bimanual mobile manipulation tasks. We showcase superior diversity
and task-relevant object visibility of MOMAGEN-generated data compared to those generated by
baselines and ablations, which further translates to better policy learning results.
Limitations. We currently assume access to full scene knowledge during demonstration generation.
While this is straightforward in simulation, it poses challenges in real-world scenarios. A possible
solution is to incorporate vision models such as SAM2 to estimate object poses relative to the
robot. Additionally, we only show data generation results with alternating phases of navigation and
manipulation, although our framework is easily extensible to whole-body manipulation (e.g. opening
doors) and we leave it for future work. Lastly, our approach depends on sizable GPU resources to run
GPU-accelerated motion generators, which can be computationally intensive during data generation.
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A Additional Data Generation Details

A.1 Visualizations of Domain Randomization Schemes

In Figure 7, we visualize the domain randomization schemes (D0 / D1 / D2) across all four tasks.
Thanks to the robot base sampling mechanism, MOMAGEN can generate successful demonstrations
across significantly more aggressive domain randomization than prior works (D1). With motion
planners in-the-loop, it can also generate diverse robot trajectories while avoiding obstacles for both
the base and the arm (D2).

Figure 7: Visualization of Domain Randomization. Blue represents the task-relevant objects. Green
represents the randomization range for these objects. Red represents the obstacles/distractor objects.

A.2 Visualizations of Data Diversity

Similar to Figure 4, we also include the visualization of data diversity for the other three tasks in
Figure 8, 9, and 10, comparing MOMAGEN to baselines (SkillMimicGen and DexMimicGen). As
we expect, the object diversity of D1 (shown in subfigures (a)) induces significantly more diverse
robot base and end-effector trajectories (shown in subfigures (b) and (c)), as well as joint positions.
This leads to better state space and action space coverage in both task space and joint space.

Figure 8: Generated data diversity analysis for Pick Cup task (50 trajectories, subsampled).
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Figure 9: Generated data diversity analysis for Put Dishes Away task (50 trajectories, subsampled).

Figure 10: Generated data diversity analysis for Clean Frying Pan task (50 trajectories, subsampled).

A.3 Compute Resources

The compute resource required for data generation scales with 1) the number of subtasks, 2) the
length of each subtask (including the free-space subtask and contact-rich subtask), affecting motion
execution time, and 3) the complexity of the scene (task-relevant objects, obstacles, etc), affecting
motion planning time. It inversely scales with the data generation success rate. Each successful
demonstration takes 0.1 to 1.3 GPU hours to generate, ranging from Pick Cup task to Put Dishes
Away task. All data generation runs are conducted on a single NVIDIA TITAN RTX GPU.

B Additional Policy Training Details

In this section, we first describe the data cleaning process in Section B.1 and then provide additional
training details for WB-VIMA (Section B.2) and π0 (Section B.3). For both methods, 90% of the
demonstrations are used for training and the remaining 10% for validation.

B.1 Data Cleaning

When teleoperating in simulation, it is difficult for human operators to accurately perceive depth,
often leading to hesitation to better align the robot gripper, especially just before grasping or making
contact with objects. As a result, the collected human demonstrations may contain short segments
where the gripper remains nearly stationary. These "frozen" segments can negatively affect training,
particularly for imitation learning methods with limited temporal context (e.g., WB-VIMA uses a
2-step history, and π0 only uses the current state).

To mitigate this, we add a data preprocessing step to clean the hesitation segments. For a trajectory of
length T , if at any timestep i ∈ [0, T − 5], the absolute difference in joint positions between step i
and step i+ 5 is smaller than a threshold (1e-3) across all dimensions, we treat the segment from i to
i+ 5 as frozen and remove it prior to policy training.

B.2 WB-VIMA Training Details

Policy Architecture. WB-VIMA [17] takes as input both proprioceptive observations and an
egocentric colored point cloud. The proprioceptive inputs include the mobile base velocity vbase ∈ R3,
torso joint position qtorso ∈ R4, left arm joint position qleft ∈ R6, left gripper width qgrip−left ∈ R1

as well as right arm position and gripper width qright ∈ R6, qgrip−right ∈ R1. The point cloud
is constructed by fusing RGB-D images from three cameras mounted on the robot: one eye-level
camera and two wrist-mounted cameras. Examples of point clouds for Pick Cup and Tidy Table are
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(a) Pick Cup point cloud visualization

(b) Tidy Table point cloud visualization

t=0 t=1 t=2 t=3

t=0 t=1 t=2 t=3

t=4 t=5 t=6 t=7

Figure 11: Visualization of ego-centric point cloud for Pick Cup and Tidy Table.

shown in Figure 11. It is then cropped using a robot-centric bounding box and downsampled to 4096
points using farthest point sampling. WB-VIMA takes a history input with 2 steps. Additional policy
architecture details can be found in the original paper [17]. For each task, we train WB-VIMA from
scratch, resulting in a single-task policy.

Hyperparameters. The training hyperparameters, covering the PointNet for point cloud processing,
the diffusion head, transformer backbone, learning rates, and task-specific point cloud clipping ranges,
are listed in Table 4. Note that the ego-centric point cloud clipping ranges are customized for each
task to account for differences in scene layouts and the randomization range of the target objects.
These hyperparameters are selected via grid search.

B.3 π0 Training Details

Policy Architecture. For π0, we finetune a pre-trained π0 model with a lora rank of 32 for 50k
steps with a batch size of 64. The model takes the current eye-level camera RGB image and the two
wrist-mounted camera RGB images, the proprioceptive inputs as WB-VIMA, and outputs the target
robot joint state for the next 50 time-steps.

Hyperparameters. All the RGB images are resized to the size of 224x224. Actions and proprio-
ceptive inputs are normalized using the 1st and 99th quantile. Since π0 takes an action dimension of
32, the actions and proprioceptive inputs are zero-padded to 32. The model consists of a PaliGemma
VLM [55] backbone and a 300M action expert. More details on model architecture can be found
in [7]. More training hyper-parameters are shown in Table 5.
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Hyperparameter Value

Number of points in point cloud 4096
PointNet hidden dim 256

PointNet hidden depth 2
PointNet output dim 256
PointNet activation GELU

Proprioceptive MLP input dim 21
Proprioceptive MLP hidden dim 2

Proprioceptive MLP hidden depth 256
Proprioceptive MLP output dim 256
Proprioceptive MLP activation ReLU

Transformer embedding size 512
Transformer layers 4
Transformer heads 8

Transformer dropout rate 0.1
Transformer activation GEGLU

Action dim 21
Unet down dims [128, 256]
Unet kernel size 5

Unet number of groups 8
Diffusion step embedding dim 256

Diffusion noise scheduler DDIM
Number of training steps 100

Beta schedule squaredcos_cap_v2
Number of denoise steps per inference 16

Learning rate 1e-4
Learning rate scheduler Cosine decay

Learning rate warmup steps 100000
Learning rate cosine steps 1300000

Optimizer AdamW
Batch size per GPU 128

Number of GPUs in parallel 2

Pick Cup (D0) pointcloud clip range x: [0.0, 2.3], y: [-0.5, 0.5], z: [0.7, 2.0]
Pick Cup (D1) pointcloud clip range x: [0.0, 2.7], y: [-1.0, 1.0], z: [0.7, 2.0]

Tidy Table (D0) pointcloud clip range x: [0.0, 2.3], y: [-1.5, 1.5], z: [0.7, 1.5]

Model size 37.1M

Table 4: Hyperparameters for WB-VIMA.

B.4 Compute Resources

With a batch size of 128, WB-VIMA can be trained on two RTX 3090 GPUs (24GB each), taking
approximately 40 hours to reach 1 million steps. With a batch size of 64, π0 can be trained on four
H200 GPUs, taking approximately 7 hours to reach 50k steps.

C Additional Experimental Results

C.1 Sim-to-real

We aim to investigate whether MOMAGEN can support real-world deployment. For our experiments,
we use the Galaxea R1 mobile manipulator, which is the same robot used for data collection and
data generation in simulation. To obtain point clouds, we use R1’s onboard eye camera (a ZED 2
stereo camera) and an additional ZED Mini camera mounted above the left gripper. Due to noise in
depth estimation and point cloud reconstruction, we employ the built-in AI model to enhance the
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Hyperparameter Value

Proprioceptive MLP input dim 32
Proprioceptive MLP output dim 1024

Flow Matching MLP input dim 32
Flow Matching MLP hidden dim 2048

Flow Matching MLP hidden depth 2
Flow Matching MLP output dim 1024
Flow Matching MLP activation swish

PaliGemma embedding size 2048
PaliGemma number of layers 18
PaliGemma number of heads 18
PaliGemma heads dimension 256
PaliGemma MLP dimension 16384

Action expert embedding size 1024
Action expert MLP dimension 4096

Number of flow matching steps per inference 10

Learning rate 2.5e-5
Learning rate scheduler Cosine decay

Learning rate warmup steps 1000
Learning rate cosine steps 30000

Optimizer AdamW
Batch size 64

Number of GPUs in parallel 4

Model size 3.3B

Table 5: Hyperparameters for π0.

(a) Real World Setup (b) Validation Loss

Figure 12: Real world setup and the validation loss curve.

point cloud quality. We test on the Pick Cup (D0) task, using a table of similar height to the one
in simulation and a 3D-printed green cup. Similar to point cloud processing in simulation, we also
use farthest point sampling to downsample the point clouds to 4096 points. The real-world setup is
shown in Figure 12 (a).

Zero-shot transfer to the real world is notoriously challenging due to domain gaps, especially for
vision-based policies [56]. In our case, significant differences exist between simulated and real
RGB images, and the real-world depth estimates are inherently noisy. To address this, we collect 50
real-world demonstrations for the Pick Cup (D0) task and evaluate whether pretraining in simulation
improves real-world learning. We compare two training setups: one initializes from a simulation-
pretrained model checkpoint (trained for 1.8M steps), and the other trains from scratch. Both models
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are fine-tuned for 35k steps using 40 real demonstrations, with the remaining 10 used for validation.
The results show that the pretrained model achieves a much faster drop in validation loss. The
validation loss curve is in Figure 12 (b). After 35k steps, the pretrained model reaches a validation
loss of approximately 3.0, while the model trained from scratch remains around 6.0. Additional
rollout videos for both the simulation-pretrained policy and the policy trained from scratch are
available on the project website: https://momagen-rss.github.io/.
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