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Abstract

Our work aims to minimize interaction in secure computation due to the high cost
and challenges associated with communication rounds, particularly in scenarios
with many clients. In this work, we revisit the problem of secure aggregation in the
single-server setting where a single evaluation server can securely aggregate client-
held individual inputs. Our key contribution is the introduction of One-shot Private
Aggregation (OPA) where clients speak only once (or even choose not to speak) per
aggregation evaluation. Since each client communicates only once per aggregation,
this simplifies managing dropouts and dynamic participation, contrasting with
multi-round protocols and aligning with plaintext secure aggregation, where clients
interact only once.
We construct OPA based on LWR, LWE, class groups, DCR and demonstrate
applications to privacy-preserving Federated Learning (FL) where clients speak
once. This is a sharp departure from prior multi-round FL protocols whose study
was initiated by Bonawitz et al. (CCS, 2017). Moreover, unlike the YOSO (You
Only Speak Once) model for general secure computation, OPA eliminates complex
committee selection protocols to achieve adaptive security. Beyond asymptotic
improvements, OPA is practical, outperforming state-of-the-art solutions. We
benchmark logistic regression classifiers for two datasets, while also building an
MLP classifier to train on MNIST, CIFAR-10, and CIFAR-100 datasets.
We build two flavors of OPA (1) from (threshold) key homomorphic PRF and
(2) from seed homomorphic PRG and secret sharing. The threshold Key homo-
morphic PRF addresses shortcomings observed in previous works that relied on
DDH and LWR in the work of Boneh et al. (CRYPTO, 2013), marking it as an
independent contribution to our work. Moreover, we also present new threshold
key homomorphic PRFs based on class groups or DCR or the LWR assumption.

1 Introduction

Minimizing interaction in Multiparty Computation (MPC) stands as a highly sought-after objective
in the field of secure computation. This is primarily because each communication round is costly, and
ensuring the liveness of participants, particularly in scenarios involving a large number of parties,
poses significant challenges. Unlike throughput, latency is now primarily constrained by physical
limitations, making it exceedingly difficult to reduce the time required for a communication round
substantially. Furthermore, non-interactive primitives offer increased versatility and are better suited
as foundational building blocks. However, any non-interactive protocol, which operates with a single
communication round, becomes susceptible to a vulnerability referred to as the “residual attack” [54]
where the server can collude with some clients and evaluate the function on as many inputs as they
wish revealing the inputs of the honest parties.
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In this work, we explore a natural “hybrid” model that sits between the 2-round and 1-round settings.
Specifically, our model allows for private aggregation, aided by a committee of members, where
the client only speaks once. This approach brings us closer to achieving non-interactive protocols
while preserving traditional security guarantees. Our specific focus is within the domain of secure
aggregation protocols, where a group of n clients Pi for i P rns hold a private value xi, wish to learn
the sum

ř

i xi without leaking any information about the individual xi. In this model, clients release
encoded versions of their confidential inputs xi to a designated committee of ephemeral members
and they go offline, they only speak once. Later, any subset of the ephemeral members can compute
these encodings by simply transmitting a single public message to an unchanging, stateless evaluator
or server. This message conveys solely the outcome of the secure aggregation and nothing else. Of
significant note, the ephemeral members are stateless, speak only once, and can change (or not) per
aggregation session. With that in mind, the committee members can be regarded as another subset
of clients who abstain from contributing input when they are selected to serve on the committee
during a current aggregation session. Each client/committee member communicates just once per
aggregation, eliminating the complexity of handling dropouts commonly encountered in multi-round
secure aggregation protocols. The security guarantee is that an adversary corrupting a subset of clients
and the committee members learn no information about the private inputs of honest clients, beyond
the sum of the outputs of these honest clients. We present a standard simulation-based security proof
against both a malicious server and a semi-honest server. We present extensions that offer stronger
security guarantees. See Section A for a comparison to other models.

Our main application is Federated Learning (FL) in which a server trains a model using data from
multiple clients. This process unfolds in iterations where a randomly chosen subset of clients (or a
set of clients based on the history of their availability) receives the model’s current weights. These
clients update the model using their local data and send back the updated weights. The server then
computes the average of these weights, repeating this cycle until model convergence is achieved. This
approach enhances client privacy by only accessing aggregated results, rather than raw data.

2 Our Contributions

We introduce OPA designed to achieve maximal flexibility by granting honest parties the choice to
speak once or remain silent, fostering dynamic participation from one aggregation to the next. This
diverges from prior approaches [17, 13, 62, 67, 52], which necessitate multiple interaction rounds and
the management of dropout parties to handle communication delays or lost connections in federated
learning.

Cryptographic Assumptions: We construct OPA protocols providing a suite of six distinct versions
based on a diverse spectrum of assumptions:

• Learning With Rounding (LWR) Assumption
• Learning with Errors (LWE) Assumption
• Hidden Subgroup Membership (HSMM) assumption where M is a prime integer.
• HSMM assumption where M “ pk for some prime p and integer k.
• HSMM assumption where M “ 2k

• HSMM assumption where M “ N where N is an RSA modulus (i.e., the DCR assumption)

Threat Model: OPA does not require any trusted setup for keys and for M being either a prime or
an exponent of prime, or the LWR assumption, we do not require any trusted setup of parameters
either. We allow the server to be maliciously corrupted, maliciously corrupt clients, and corrupt
up to a certain threshold t of the committee members where t is the corruption threshold for secret
reconstruction. Based on the CL framework we additionally strengthen the security to allow for the
compromise of all the committee members (while ensuring the server is not corrupt).

Variants: In Figure 1, we summarize our variants. We offer two variants1:

1Our construction based on seed-homomorphic PRG can also be built from a (length extended) key-
homomorphic PRF (KHPRF). However, such length-extended efficient KHPRFs, unlike seed-homomorphic
PRG, are only known from the random oracle model. See Section G for the instantiations. Note that the resulting
construction’s asymptotic performance will match the ones from seed-homomorphic PRG.
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Figure 1: Our Key Contributions. Here, n is the number of clients, and L is the length of the input
vector. Finally, “LR” refers to leakage-resilient. Note that the HSM assumption also subsumes the
DCR assumption.

• OPA: A variant that is built from seed-homomorphic PRG that is leakage resilient and any
secret sharing scheme. The resulting construction has the benefit of the committee doing
work that is independent of the vector length. However, the server receives the sum of the
keys of the honest parties, as leakage which requires this leakage to be simulatable.

• OPA1: We also present a variant built from threshold/distributed key-homomorphic PRF
where there is no leakage. In this case, the committee’s work is dependent on the length of
the input vector.

Other contributions:

• We build the first Key Homomorphic PRF based on the HSMM assumption. We later extend
it to the distributed key homomorphic setting by using a modified Shamir’s Secret Sharing
scheme but over integers.

• We extend the almost Key Homomorphic PRF based on the LWR assumption [19, 48]
using Shamir Secret Sharing over prime-order fields. In doing so, we fix gaps in the prior
Distributed Key Homomorphic PRF based on LWR, as proposed by Boneh et al. [19]

• We also extend Shamir Secret Sharing over Integers to a packed version which enables
packing more secrets in one succinct representation.

• We also present a malicious variant of OPA that empowers a server to detect a malicious
client that has inconsistent shares. Meanwhile, we extend OPA1 to the setting where all the
committee is corrupted but the server is honest. We want to ensure that the honest client’s
input is still hidden, even if the committee member gets the ciphertext.

• Of independent interest, we also build a seed homomorphic PRG from the HSMM assumption
for the most efficient secure aggregation protocol we present in the context of federated
learning.

Applications: Our motivating application is for Federated Learning (FL). The dynamic participation
feature of OPA, crucial for federated learning, facilitates secure federated learning, where participants
speak only once, streamlining the process significantly. Learning in the clear involves the client
receiving the global update from the server and responding with one message corresponding to the
new updates generated after the client has trained the model with its local data. In contrast, prior
works[17, 13] involve 8 rounds, and the work of [67] requires 7 rounds in total, including the setup.
Moreover, our protocols offer adaptive security. Our advantages extend beyond just round complexity.
See Section 2.1 and Tables 1 and 2 for a detailed comparison of asymptotics.

Implementation and Benchmarks: Our contributions also extend beyond the theoretical domain.
We implement OPA as a secure aggregation protocol and benchmark with several state-of-the-art
solutions [17, 13, 52, 67]. Specifically, we first implement OPA based on the CL framework with
M “ p. Importantly, our server computation time scales the best with a larger number of inputs where
our server takes ă 1s for computation even for larger number of clients (n “ 1000). Meanwhile, our
client running time is competitive for a small number of clients but offers significant gains for a larger
number of clients.
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Table 1: Total asymptotic computation cost for all rounds per aggregation with semi-honest security.
n denotes the total number of users, with committee size m and L is the length of the input vector.
The “Rounds” column indicates the number of rounds in the setup phase (on the left, if applicable)
and in each aggregation iteration (on the right). A “round of communication” refers to a discrete
step within a protocol during which a participant or a group of participants send messages to another
participant or group of participants, and participants from the latter group must receive these messages
before they can send their own messages in a subsequent round.“fwd” means that the server only
forwards the messages from the users. The second column in the User Aggregation phase refers to
the cost of the committee members.

Protocol
Rounds

Computation Cost
Server User

Setup Agg. Setup Agg. Setup Agg.

BIK+17[17] - 8 - Opn2Lq - Opn2
` nLq

BBG+20[13] - 8 - Opn log2 n ` nL lognq - Oplog2 n ` L lognq

Flamingo[67] 4 3 fwd OpnL ` n log2 nq Oplog2 nq OpL ` n lognq Opm2
` nq

LERNA [62] 1 1 1 fwd Oppκ ` nqL ` κ2
q Opκ2

q OpLq OpL ` nq

SASH[64] - 10 - OpL ` n2
q - OpL ` n2

q

OPA - 1 1 - OpnL ` m logmq - OpL ` mq Opnq

OPA1 - 1 1 - OpnL ` Lpm logmqq - OpL ` mLq OpnLq

Then we benchmark OPA based on the LWR assumption. OPALWR, which is based on the seed
homomorphic PRG, offers competitive server performance (with significant gains for larger L) when
compared to OPACL. Meanwhile, OPALWR outperforms the client performance of even OPACL. We
also compare the performance of our LWR construction with a naive solution where each client
secret-shares their inputs with the committee members. Our experiments show that OPALWR offers the
best numbers for the committee members, for large L.

To further demonstrate the feasibility of our protocol, we train a binary classification model using
logistic regression, in a federated manner, for two datasets. Our protocol carefully handles floating
point values (using two different methods of quantization - multiplying by a global multiplier vs
representing floating point numbers as a vector of integer values) and the resulting model is shown to
offer performance close to that of simply learning in the clear. We also train a neural-network-based
MLP classifier that was trained over popular machine learning datasets including MNIST, CIFAR-10,
and CIFAR-100. More details can be found in Section 4.

2.1 Detailed Contributions in Federated Learning

Next, we compare our protocol with all efficient summation protocols listed in Table 3, with a specific
focus on those that accommodate dynamic participation, a key feature shared by all federated learning
methodologies. Asymptotically, we look at the performance of OPA. In Tables 1 and 2, we list
the communication complexity, computational complexity, and round complexity per participant.
Notably, our protocols are setup-free, eliminating any need for elaborate initialization procedures.
Furthermore, they are characterized by a streamlined communication process, demanding just a single
round of interaction from the participants.

Asymptotic Comparison. More concretely, based on Table 1, our approach stands out by signifi-
cantly reducing the round complexity, ensuring that each participant’s involvement is limited to a
single communication round i.e. each participant speaks only once. That is, users speak once and
committee members speak once too. On the contrary previous works[17, 13]2 require 8 rounds and
the work of [67] requires 7 rounds in total, including the setup. This reduction in round complexity
serves as a significant efficiency advantage.

Despite our advantage in the round complexity, our advantages extend beyond just round complexity
(see Table 1). Notably, as the number of participants (n) grows larger, our protocol excels in terms of
computational complexity. While previous solutions exhibit complexities that are quadratic [17, 64]
or linearithmic [67] in n, our approach maintains a logarithmic complexity for the users which is
noteworthy when considering our protocol’s concurrent reduction in the number of communication

2[13] offer a weaker security definition from the other works: for some parameter α between r0, 1s, honest
inputs are guaranteed to be aggregated at most once with at least α fraction of other inputs from honest users.
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Table 2: Total received and sent asymptotic communication cost for all rounds per aggregation with
semi-honest security. n denotes the total number of users, m is the size of the committee, k the
security parameter, L the length of the input vector, and ℓ the bit length of each element.

Protocol

Communication Cost
Server User

Setup Agg. Setup Agg.

BIK+17[17] - OpnLℓ ` n2kq - OpLℓ ` nkq

BBG+20[13] - OpnLℓ ` nk lognq - OpLℓ ` k lognq

Flamingo[67] Opk lognq OpnLℓ ` nk log2 nq Opk lognq OpLℓ ` nk lognq Opm2
` n lognq

LERNA [62] - OpLnk ` m2
¨ kq Opκ2kq OpκL ` L logn ` kq OpLκ ` L logn ` kq

SASH [64] - OpnLℓ ` κ2kq - OpLℓ ` nkq

OPA - OpLn ` mq - OpkL ` mq Opnq

OPA1 - OpkLpn ` mqq - OpkpL ` mLqq OpkpnL ` Lqq

rounds. Furthermore, our committee framework demonstrates a linear relationship with n for the
committee members, a notable improvement compared to the linearithmic complexity and setup
requirement in the case of [67] which considers a steteful set of decryptors (committee),as opposed
to our stateless committee.3

When it comes to user communication and message sizes, previous solutions entail user complexities
that either scale linearly [17, 64] or linearithmically [67] with the number of participants (n) according
to Table 2. However, in our case, user communication complexity is reduced to a logarithmic level.
Our communication among committee members exhibits a linear relationship with n. Furthermore,
as the number of users n increases, the communication load placed on the server is also effectively
reduced in comparison to other existing protocols. That said, the above advantages underline the
scalability and efficiency of our protocols in the federated learning context which typically requires a
very large number of n and L.

The works of [17, 13, 67] address an active adversary that can provide false information regarding
which users are online on behalf of the server, by requiring users to verify the signatures of the
claimed online set. This approach introduces an additional two rounds into each protocol, resulting
in 10 rounds in [17, 13] and 5 rounds in [67] with 10 rounds of setup. The setup communication
complexity of [67] also increases to Opk log2 nq. In our work, we solve this issue without signatures.
Note that prior work often required a two-thirds honest majority for the malicious setting. One
can leverage this to instead introduce a gap between the reconstruction threshold r and corruption
threshold t. Specifically, if r ą pm` tq{2, then a malicious server can only reconstruct with respect
to a unique set and any other information is purely random information, unhelpful to the server.

Comparison with LERNA [62]. LERNA requires a fixed, stateful committee (like Flamingo) to
secret share client keys, whereas we support smaller, dynamic stateless committees that can change
in every round. Concretely, LERNA works by having each client (in the entire universe of clients, not
just for that iteration) secret-share the keys with the committee. Consequently, LERNA’s committee
needs to be much larger (214 members for κ “ 40 due to the number of shares they receive) and
tolerate fewer dropouts, compared to our approach. Furthermore, LERNA’s benchmarks assume
20K+ clients, while real-world deployments have 50-5000 clients per iteration. When the client
count is low, the committee has to do significantly more work to handle and store the required large
number of shares. That said, LERNA is not suitable for traditional FL applications. In the table, we
use the same notations, as for LERNA to refer to committee size by utilizing κ in the committee
calculations. LERNA could work for less than 16K parties but then the computation of committee
members increases significantly as the number of parties decreases. Even concrete costs require
the client to send 2GB of data during the setup phase (with 20K clients and L “ 50, 000). Per
iteration, the cost is 0.91 MB. For the same parameters, OPACL (the construction based on distributed
key-homomorphic PRF in CL framework), requires the client to send 5.6 MB (across both server
and committee, per iteration) As a result, LERNA only becomes cost-effective after more than 400
iterations, during which it requires a fixed, stateful, and a large committee to stay alive.

3Flamingo [67] employed decryptors which were a random subset of clients chosen by the server to interact
with it to remove masks from masked data that were sent by the larger set of clients. [67] lacks security
guarantees in the event of collusion among all decryptors.
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Figure 2: The OPA system model operates in iterations. Each iteration begins with the server sending
a message to initiate the process (Message 0). In response, clients train the model on their local
data, obtain updates, and mask the input. (Message 1): masked input is sent to the server, while
auxiliary information is transmitted (via encryption) to the committee, via the server. Upon receiving
the forwarded informationne, the committee members combines these into a single value. Finally,
this consolidated data is sent to the server (Message 2), concluding the iteration. Section 3 presents a
succinct overview of OPA.

Comparison with Willow [14]. Willow, a concurrent and independent work, requires a static,
stateful committee of clients. This is similar to LERNA but they can allow for much smaller sizes.
Each committee member is expected to sample a key pair and provide the public key to the clients.
Clients, with knowledge of this public key, can encrypt information to these committee members,
via the server. The server coordinates with the committee members to later aggregate. Note that this
is also similar to our setting where there exists a PKI, or some mechanism, to ensure that the client
can encrypt to the committee member and then route the message through the server. Unlike OPA,
Willow requires a one-round setup ceremony among the committee members to agree on the public
key. Specifically, they need to agree on the public key for threshold encryption and each committee
member holds a share of the decryption key. This setup phase implies either a static committee
or performing the setup phase, at each iteration, to support a dynamic committee. Furthermore, to
achieve security against a malicious server, they require another party (or a set of parties) called
verifier(s). In essence, the verifier certifies that the server has not behaved maliciously. Furthermore,
it appears that a verifier also needs to be stateful, across iterations, to ensure that the server does not
replay an old ciphertext.

3 Preliminaries and Overview

Notations. For a distribution X , we use xÐ$ X to denote that x is a random sample drawn from
the distribution X . We denote by u a vector and by A a matrix. For a set S we use xÐ$ S to denote
that x is chosen uniformly at random from the set S. By rns for some integer n, we denote the set
t1, . . . , nu.

Cryptographic Preliminaries. This is deferred to Section C. In Section C.1 we discuss seed-
homomorphic PRG and Section C.2, we discuss the definition and construction of secret-sharing
schemes over a field and over integers. In Section C.3, we present lattice-based assumptions. This is
followed by an exposition on the syntax and security definitions of various types of pseudorandom
functions through Sections C.4 and C.5. Finally, we introduce the CL Framework in Section C.6.

3.1 Overview of OPA

While we defer a rigorous exposition on the technical overview of our construction to Section B, we
now present the intuition behind our protocol. The communication flow is described in Figure 2.
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Figure 3: Client and Server Computation Time as a function of client count across different algorithms.

Every client needs to ensure the privacy of their input, therefore a client has to mask their input. In
iteration ℓ, if client i has input xi,ℓ, then it chooses a mask of the same length to “add” to the inputs.
Let the mask be maski,ℓ and the ciphertext is defined as cti,ℓ “ xi,ℓ `maski,ℓ. To ensure privacy,
we need the mask to be chosen, uniformly at random, from a large distribution. Furthermore, by
performing the addition with respect to a modulus M, we get the property that for a random maski,ℓ,
cti,ℓ is identically distributed to a random element from ZM. The client i sends cti,ℓ to the server.
This is Message 1a in Figure 2.

The server, upon receiving the ciphertexts, can simply add up the ciphertexts. This leaves it with
ř

i cti,ℓ “
ř

i xi,ℓ `
ř

i maski,ℓ. The goal of the server is to recover
ř

i xi,ℓ. Therefore, it requires
ř

i maski,ℓ to complete the computation. In works on Private Stream Aggregation [81, 15, 56, 48],
the assumption made is that

ř

i maski,ℓ “ 0. However, this requires all the clients to participate
which is a difficult requirement in federated learning. Instead, we enlist the help of the committee to
provide the server with

ř

i maski,ℓ, for only the participating clients.

Working with the Committee. Each client i, therefore, has to communicate information about its
respective maski,ℓ to the committee members. This is what we refer to as “Aux info”, and we route
it through the server, to the committee member, and the information is encrypted under the public key
of the respective committee member. This is Message 1b in Figure 2. This ensures that the server
cannot recover the auxiliary information. Eventually, each committee member “combines” the aux
info it has received to the server (Message 2 in Figure 2), with the guarantee that this is sufficient
to reconstruct

ř

i maski,ℓ. Our key cryptographic technique here is known as secret-sharing which
ensures that a secret s can be shared with a committee of m such that as long as r number of them
participate, the server can learn the secret s. The security of the secret is guaranteed even if the
server colludes with t committee members. We require t ď m´ 1. The additional property is that if
a committee member receives shares of two secrets s1, s2. Then, adding up these shares will help
reconstruct the secret s1 ` s2.

Optimizing Committee Performance. The solution laid out above requires the clients to “secret-
share” maski,ℓ. However, note that maski,ℓ is as long as xi,ℓ. Therefore, each committee member
will receive communication OpnLq where n is the number of clients and L is the length of the vector.
It also has to perform computation proportional to OpnLq. OPA reduces the burden of the committee
by introducing a succinct communication that is independent of L to the committee. We do so by
relying on a structured pseudorandom generator (PRG) which is called as “seed-homomorphic PRG”.
Recall that a PRG guarantees that one can send a small sd which can be later expanded to generate a
large vector by computing PRGpsdq with the guarantee that a random sd implies that the output also
looks random. A seed-homomorphic PRG ensures that PRGpsd1 ` sd2q “ PRGpsd1q ` PRGpsd2q.

4 Experiments

We benchmark OPACL (Construction 12) and OPALWR (Construction 1). Recall that the former is
based on threshold key-homomorphic PRF and where there is no leakage simulation needed, while
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the latter is based on seed-homomorphic PRG. We run our experiments on an Apple M1 Pro CPU
with 16 GB of unified memory, without any multi-threading or related parallelization. We use the
ABIDES simulation [25] to simulate real-world network connections. ABIDES supports a latency
model which is represented as a base delay and a jitter which controls the number of messages
arriving within a specified time. Our base delay is set to the “global” setting in ABIDES’s default
parameters (the range is 21 microseconds to 53 milliseconds), and use the default parameters for the
jitter. This framework was used to measure the performance of other prior work including [67, 52].

• Parameter Choices for OPALWR: OPALWR is parametrized by ρ, q, p. We use the LWE-
estimator [5] to estimate the security level. We follow the parameters similar to [48].
The value of 1{p is the error rate α in an LWE instance. Using the LWE estimator, we
set ρ :“ 1024. We set q to match the field used for Shamir’s Secret Sharing, which is
a 128-bit prime and set p “ 285. The hardness estimated is 2129. We do use Packed
Secret Sharing, for benchmarking the server and client computation cost. We pack it to
64, i.e., each committee member receives 64 shares. For reconstruction to hold we set
m “ 50, r “ 34. Assuming η “ δ “ 0.01, we can estimate that setting m “ 50, then the
PrrηC ` δC ą 1{3s ď 5 ¨10´5. This also satisfies the requirements of packed secret sharing
which will require that m ě 3{2 ¨ 1024{64. Recall that, for packed secret sharing, we can
set the corruption threshold to be r´ ρ where ρ is the number of secrets being packed. Here
ρ is 16. Note that this construction achieves committee performance independent of the
vector length and is the preferred one.

• Parameter Choices for OPACL: We rely on the BICYCL library [20] and use pybind to
convert the C++ code to Python. Our implementation will assume that the plaintext space is
Zp for a prime p. Our experiments will assume that m “ log n.

Microbenchmarking Secure Aggregation. Our first series of experiments is to run OPACL,OPALWR
to build a secure aggregation protocol for L “ 1. We also compare with existing work including
[17, 13, 52, 67]. We vary the offline rates, and the ability to group clients, along with increasing the
number of clients to study the performance of related work. Recall that the offline rate (denoted by
η) controls the number of clients who do not participate, despite being selected. Meanwhile, we
denote by g the size of the neighborhood or group. For [52], we set the input size to be bounded
by 104. Recall that [52] does not have efficient aggregate recovery and requires input bounding.
Also, [52] incurs a setup/offline client computation time of nearly 30ms, even for 100 clients. Our
implementation sets m “ tlogpnqu. As can be seen from Figure 3. The key takeaway from our
experiments is that our client and server performance outperforms all prior works.
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Performance of OPACL. OPACL’s server running time is less than 1 second - owing to a single round
protocol with support of efficient recovery of the aggregate. This outperforms all existing protocols.
Each committee member computes ă 1ms. OPACL assumes concurrent client communication to
committee and server. Note that OPACL scales linearly with the size of the input.

Performance of OPALWR. It is to be noted that the server performance matches that of OPACL’s
server performance. However, when aggregating longer vectors, which is the use-case for OPA,
OPALWR significantly outperforms OPACL, with the key savings coming from having to perform no
exponentiations. Meanwhile, the client’s performance in OPALWR is much better than OPACL, again
due to the lack of exponentiations. The communication cost for OPALWR are as follows:

• Client i to Server: L field elements
• Client i to Committee: k ¨m field elements where k is the number of elements being shared.

With naive secret sharing, this would be 1024. Instead, when we pack into 64 different
polynomials, k “ 64.

• Committee j to Server: k field elements
• Total Sent/Received per Client: L` k ¨m field elements
• Total Sent/Received by Server: nL`mk field elements
• Total Sent/Received per Committee Member: n ¨ k ` k field elements

In Section D, we describe the naive secret-sharing-based construction and also study the computation
cost of OPALWR with respect to this naive construction by micro-benchmarking the running times.
Our experiments indicate that the running time of the committee member is the best with OPALWR,
when compared to the naive solution. This is in addition to the improvement in the communication
cost. Recall that the motivating use case for avoiding the naive solution is improved performance of
the committee members, who are often other clients.

Benchmarking FL Models. To demonstrate OPACL’s viability for federated learning, we train a
logistic regression model on two skewed datasets. We show that OPACL performs very close to
learning in the clear, indicating feasibility for machine learning. As our goal was to show feasibility,
our experiments use one committee member for all n clients. We vary n and the number of iterations
for model convergence, measuring accuracy and Matthew’s Correlation Coefficient (MCC) [68]
which better evaluates binary classification with unbalanced classes.

• Adult Census Dataset: We first run experiments on the adult census income dataset from
[26, 55] to predict if an individual earns over $50,000 per year. The preprocessed dataset has
105 features and 45,222 records with a 25% positive class. We randomly split into training
and testing, with further splitting by the clients. First, we train in the clear with weights sent
to the server to aggregate. With 100 clients and 50 iterations, we achieve 82.85% accuracy
and 0.51 MCC. We repeat with OPACL, one committee member, and 100 clients. With
10 iterations, we achieve 82.38% accuracy and 0.48 MCC. With 20 iterations, we achieve
82% accuracy and 0.51 MCC. Our quantization technique divides weights into integer and
decimal parts (2 integer and 8 decimal values per weight). Training with 50 clients takes
under 1 minute per client per iteration with no accuracy loss. This quantization yields a
vector size of 1050 (10 per feature).

• We use the Kaggle Credit Card Fraud dataset [74], comprising 26 transformed principal
components and amount and time features. We omit time and use the raw amount, adding an
intercept. The goal is to predict if a transaction was indeed fraudulent or not. There are 30
features and 284,807 rows, with ă0.2% fraudulent. Weights are multiplied by 10,000 and
rounded to an integer, accounted for in aggregation. Figure 5 shows OPACL’s MCC versus
clear learning for varying clients and iterations. With the accuracy multiplier, OPACL’s MCC
is very close to clear learning and even outperforms sometimes. The highly unbalanced
dataset demonstrates OPACL can achieve strong performance even in challenging real-world
scenarios.

• We then train a vanilla multi-layer perceptron (MLP) classifier on three datasets: MNIST,
CIFAR-10, CIFAR-100. We quantize the weights by multiplying with 216. The MLP
accuracy, as a function of the iteration count, is plotted in Figure 4. Our experiments
demonstrate that OPACL preserves accuracy while ensuring the privacy of client data. Note
that vanilla MLP classifiers do not typically offer good performance for CIFAR datasets, but
note that the goal of our experiments was to show that OPACL does not impact accuracy.
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A Related Work

Multi-Round Private Summation. We begin by revisiting the concept outlined in [54]. The first
multi-round secure aggregation protocol, designed to enable a single server to learn the sum of inputs
x1, . . . , xn while hiding each input xi is based on the following idea. Each user i adds a mask ri to
their private input xi. This mask remains hidden from both the server and all other users it exhibits the
property of canceling out when combined with all the other masks, i.e.,

ř

iPrns ri “ 0. Subsequently,
each user forwards Xi “ xi ` ri to the server. By aggregating all the Xi values, the server is then
able to determine the sum of all xi. More specifically, to generate these masks, a common key
kij “ kji “ PRGpgsisj q is established by every pair of clients i, j. Here, gsi serves as an ephemeral
“public key” associated with each client i P rns. This public key is shared with all other clients during
an initial round, facilitated through the server. Importantly, the value si remains secret by each client
i. Then, each client i P rns computes the mask ri “

ř

jăi kij´
ř

jąi kij and due to the cancellation
property the server outputs

ř

i Xi “
ř

i xi. In this protocol, users are required to engage in multiple
rounds of communication, where each user communicates more than once. Moreover, the protocol
does not permit users to drop out from an aggregation iteration.

Non-Interactive Private Summation with trusted setup. If we were to require users to commu-
nicate only once in a protocol iteration, we encounter the challenge of mitigating residual attacks.
In a prior study conducted by [81], a solution based on DDH was proposed to mitigate residual
attacks by involving a trusted setup that assumes the generation of the common keys kij “ kji into
the protocol. However, it is important to highlight that this particular setup lacked the necessary
mechanisms to accommodate dropouts and facilitate dynamic participation for multiple aggregation
iterations. An additional limitation of this construction is the necessity of establishing a trusted setup
that can be utilized across multiple iterations. Furthermore, to ensure that the server is unable to
recover the masking key given a client’s masked inputs, the work relies on the DDH Assumption.
An unfortunate consequence is that the server has to compute the discrete logarithm to recover the
aggregate, a computationally expensive operation, particularly when dealing with large exponents.
Numerous other works within this framework have emerged, each relying on distinct assumptions,
effectively sidestepping the requirement for laborious discrete logarithm calculations. These include
works based on the DCR assumption [56, 15], and lattice-based cryptography [11, 48, 84, 83, 88].

Multi-Round Private Summation without Trusted Setup. A separate line of research endeavors to
eliminate the necessity for a trusted setup by introducing multi-round decentralized reusable setups
designed to generate masks while adhering to the crucial cancellation property. However, akin to the
previously mentioned approaches, these protocols come with a caveat—they do not accommodate
scenarios involving dropouts or dynamic user participation across multiple iterations. Dipsauce [22]
is the first to formally introduce a definition for a distributed setup PSA with a security model
based on k-regular graph, non-interactive key exchange protocols, and a distributed randomness
beacon [37, 47, 75] to build their distributed setup PSA. Meanwhile, the work of Nguyen et al. [71],
assuming a PKI (or a bulletin board where all the public keys are listed), computed the required Diffie-
Hellman keys on the fly to then build a one-time decentralized sum protocol which allowed the server
to sum up the inputs one-time, with their construction relying on class group-based cryptography. To
facilitate multiple iterations of such an aggregation, they combined their one-time decentralized sum
protocol with Multiclient Functional Encryption (MCFE) to build a privacy-preservation summation
protocol that can work over multiple rounds, without requiring a trusted setup and merely requiring a
PKI. Unfortunately, per iteration, the clients need to be informed of the set of users participating in
that round and unfortunately, they cannot drop out once chosen.
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Non-Interactive Private Summation with a collector. To circumvent the need for a trusted setup
and multi-round decentralized arrangements, an approach is presented in the work of [61] which
introduces an additional server known as the “collector”. The fundamental premise here is to ensure
that the collector and the evaluation server do not collude, thus effectively mitigating the risks
associated with residual attacks. This protocol does allow dynamic participation and dropouts per
iteration.

Multi-Round Private Summation with Dynamic Participation (aka Secure Aggregation). Secure
aggregation of users’ private data with the aid of a server has been well-studied in the context of
federated learning. Given the iterative nature of federated learning, dynamic participation is crucial.
It enables seamless integration of new parties and those chosen to participate in various learning
iterations, while also addressing the challenge of accommodating parties that may drop out during
the aggregation phase due to communication failures or delays. Furthermore, an important problem
in federated learning with user-constrained computation and wireless network resources is the
computation and communication overhead which wastes bandwidth, increases training time, and
can even impact the model accuracy if many users drop out. Seminal contributions by Bonawitz et
al. [17] and Bell et al. [13] have successfully proposed secure aggregation protocols designed to
cater to a large number of users while addressing the dropout challenge in a federated learning setting.
However, it’s important to note that these protocols come with a notable drawback—substantial round
complexity and overhead are incurred during each training iteration. Even in the extensive corpus
of research based on more complex cryptographic machinery (see [57] for a plethora of previous
works) such as threshold additive homomorphic encryption etc., these persistent drawbacks continue
to pose challenges. Notably, all follow up works [13, 62, 52, 67, 12, 64, 65] of [17] require multiple
rounds of interaction based on distributed setups. Secure aggregation protocols, with their adaptable
nature, hold relevance across a wide array of domains. They are applicable in various scenarios,
including ensuring the security of voting processes, safeguarding privacy in browser telemetry as
illustrated in [40], and facilitating data analytics for digital contact tracing, as seen in [6] besides
enabling secure federated learning.

It is also important to note that some of these works - ACORN [12] and RoFL [65] build on top
of the works of [17, 13] to tackle the problem of “input validation” using efficient zero-knowledge
proof systems. The goal is for the clients to prove that the inputs being encrypted are “well-formed”
to prevent poisoning attacks.RoFL allows for detection when a malicious client misbehaves, while
ACORN presents a non-constant round protocol to identify and remove misbehaving clients. We
leave it as a direction for future research on how to augment our protocol to also support input
validation. The above discussion is also summarized in Table 3, by looking at four properties (a)
whether the aggregate can be efficiently recovered, (b) whether it allows dynamic participation, (c)
whether it requires trusted setup or multi-round distributed setup, and (d) the security assumptions.

For completeness, we also compare with other communication models that bear similarities with
OPA in Section A.1.

A.1 OPA vs Other Communication/Computation Models

Shuffle Model. Note that our model bears similarities to the shuffle model, in which clients dispatch
input encodings to a shuffler or a committee of servers responsible for securely shuffling before the
data reaches the server for aggregation as in the recent work of Halevi et al. [53]. Nonetheless, it is
important to note that such protocols typically entail multiple rounds among the committee servers to
facilitate an efficient and secure shuffle protocol.

Multi-Server Secure Aggregation Protocols. It’s worth emphasizing that multi-server protocols, as
documented in [50, 41, 3, 76, 92], have progressed to a point where their potential standardization
by the IETF, as mentioned in [73], is indeed noteworthy. In the multi-server scenario, parties
can directly share their inputs securely among a set of servers, which then collaborate to achieve
secure aggregation. Some of the works in this domain include two-server solutions Elsa [77] and
SuperFL [92] or the generic multi-server solution Flag [10]. Unfortunately, in the case of federated
learning, which involves handling exceptionally long inputs, the secret-sharing approach becomes
impractical due to the increase in communication complexity associated with each input. Furthermore,
these servers are required to have heavy computation power and be stateful (retaining data/state from
iteration to iteration). Jumping ahead, in our protocol the ephemeral parties are neither stateful nor
require heavy computation.

18



Table 3: Comparison of Various Private Summation Protocols. TD stands for trusted dealer/trusted
setup, DS stands for multi-round distributed setup. Note that DS implies several rounds of interaction
while our protocol does not require any interaction. Here, efficient aggregate recovery refers to
whether the server can recover the aggregate efficiently. For example, [81, 15, 52] require some
restrictions on input sizes to recover the aggregate due to the discrete logarithm bottleneck.

Efficient Aggregate Dynamic
Participation

TD
vs
DS

Assumptions

[81] ✗ ✗ TD DDH

[56] ✓ ✗ TD DCR

[15] ✗/✓ ✗ TD DDH/DCR

[11] ✓ ✗ TD LWE/R-LWE

[85] ✓ ✗ TD R-LWE

[88] ✓ ✗ TD AES

[83] ✓ ✗ TD RLWE

[61] ✗ ✓ TD DCR

[48] ✓ ✗ TD LWR

[22] ✗ ✗ DS LWR

[17, 13] ✓ ✓ DS˚ DDH

[52] ✓ ✓ DS DDH

[67] ✓ ✓ DS DDH

[62] ✓ ✓ DS DDH

Our Work ✓ ✓ NA HSM, LWR, (R)LWE

Commmittee-Based MPC. Committee-based MPC is widely used for handling scenarios involving
a large number of parties. However, it faces a security vulnerability known as adaptive security,
where an adversary can corrupt parties after committee selection. The YOSO model, introduced by
Gentry et al. [36] proposes a model that offers adaptive security. In YOSO, committees speak once
and are dynamically changed in each communication round, preventing adversaries from corrupting
parties effectively. The key feature of YOSO is that the identity of the next committee is known only
to its members, who communicate only once and then become obsolete to adversaries. YOSO runs
generic secure computation calculations and aggregation can be one of them. However, its efficiency
is prohibitive for secure aggregation. In particular, the communication complexity of YOSO in
the computational setting scales quadratic with the number of parties n (or linear in n if the cost
is amortized over n gates for large circuits). Additionally, to select the committees, an expensive
role assignment protocol is applied. Like LERNA, in YOSO also specific sizes for the committee
need to be fulfilled to run a protocol execution. Last but not least, our protocol does not rely on any
secure role assignment protocol to choose the committees since even if all committee members are
corrupted, privacy is still preserved. Fluid MPC [38, 16] also considers committee-based general
secure computation. However, like YOSO, it is not practical. Unlike YOSO, it lacks support for
adaptive security.

Moreover, SCALES [2] considers ephemeral servers a la YOSO responsible for generic MPC
computations where the clients only provide their inputs. This approach is of theoretical interest as it
is based on heavy machinery such as garbling and oblivious transfer if they were to be considered for
the task of secure aggregation. Moreover, SCALES needs extra effort to hide the identities of the
servers which we do not require.

B Technical Overview

In this work, we focus on building a primitive, One-shot Private Aggregation (OPA), that enables
privacy-preserving aggregation of multiple inputs, across several aggregation iterations whereby a
client only speaks once on his will, per iteration.

Seed-Homomorphic PRG (SHPRG). A PRG G : KÑ Y is said to be seed-homomorphic if Gps1‘
s2q “ Gps1qbGps2q where p‘,Kq and pb,Yq are groups. We show how to build SHPRG from LWR
and LWE Assumption. Note that the former was known but the latter was not. For ease of exposition,
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we will focus on the LWR construction. For a randomly chosen AÐ$ ZLˆn
q , PRGLWR,Apsq “ tAsup

where p ă q. Unfortunately, this construction is only almost seed-homomorphic in that there is an
induced error. This is formally defined in Construction 4.

Secret Sharing over Finite Fields. In standard Shamir secret sharing [80], one picks a secret s and
generate a polynomial fpXq “

řr´1
i“0 ai ¨X

i where a0 “ s and a1, . . . , ar´1 are randomly chosen
from the field. Assuming there are m parties, the share for party i P rms is fpiq, and any subset of at
least r parties can reconstruct s and any subset of r ´ 1 shares are independently random. We can
lower the corruption threshold from r ´ 1 to t to obtain additional properties from the scheme. In
packed secret sharing [49], one can hide multiple secrets using a single polynomial.

One-shot Private Aggregation (based on SHPRG). With the needed background in place, we are
ready to build the new primitive called One-shot Private Aggregation. Critically, we want to empower
a client to speak once, per iteration, and help the server successfully aggregate long vectors (of length
L, say). To this end, we have the client communicate at the same time with the server and to a set of
committee members, via the server. We will assume that there is a PKI or a mechanism to retrieve the
public key of these committee members so that the communication to the committee can be encrypted.
These are m ephemerally chosen clients who are tasked with helping the server aggregate, for that
iteration. Flamingo [67, Figure 1, Lines 2-7] presents an approach on how to sample these committee
members using a randomness beacon such as [47]. Observe that the one-shot communication can be
leveraged to successfully avoid the complex setup procedures that were reminiscent of prior work.
Instead, the client i samples a seed from the seed space of the PRG, i.e., sdiÐ$ PRF.K. Then, the
PRG is expanded under this seed sdi and effectively serves as a mask for input xi,ℓ. Here ℓ is the
current iteration number. In other words, it computes cti,ℓ “ xi,ℓ ` PRG.Expandpsdiq. Intuitively,
the PRF security implies that the evaluation is pseudorandom and is an effective mask for the input.
Then, the client secret shares using standard Shamir’s Secret Sharing, sdi to get shares

!

sd
pjq

i

)

jPrms
.

Share sdpjq

i is sent to committee member j, via the server through an appropriate encryption algorithm.
Each committee member simply adds up the shares, using the linear homomorphism property of
Shamir’s secret sharing. After receiving from the clients for that round, the committee member j
sends the added shares, which corresponds to

řn
i“1 sd

pjq

i . The server can successfully reconstruct
from the information sent by the committee to get

řn
i“1 sdi. Note that adding up the ciphertext from

the clients results in
řn

i“1 cti,ℓ “
řn

i“1 xi,ℓ `
řn

i“1 PRG.Expandpsdiq. Key Homomorphism of the
PRF implies that

řn
i“1 PRG.Expandpsdiq “ PRG.Expand p

řn
i“1 sdiq. Note that the server, with the

reconstructed information, can compute PRG.Expand p
řn

i“1 sdiq and subtract it from
řn

i“1 cti,ℓ to
recover the intended sum. This is the core idea behind our construction. However, there are a few
caveats. First, the server recovers the sum of the keys

řn
i“1 sdi, which constitutes a leakage on the

seed of the PRG. In other words, we require a leakage-resilient, seed homomorphic PRG. Second, LWR
and the LWE based construction of seed homomorphic PRG are only almost seed homomorphic. Thus,
care needs to be taken to encode and decode to ensure that the correct sum is recovered. We show
that the LWR and LWE based schemes are key-homomorphic and leakage-resilient while describing the
necessary encoding and decoding algorithms for the input. A key benefit of this construction is that
the key shared with the committee is usually independent of the vector length. Our proof of security
is in the simulation-based paradigm against both a semi-honest and an active server.

One-shot Private Aggregation against Malicious Clients. Prior work to ensure the detection of
client misbehavior such as ACORN [12] requires the usage of verifiable secret sharing. Unfortunately,
this is an expensive process as the committee member is required to do at r exponentiations, per
client. Instead, we take an alternative route by designing a publicly verifiable secret-sharing scheme.
This employs SCRAPE [27] and combines it with a simple Σ-protocol. As a result, the server can
verify that given the commitment to shares, the shares are indeed a valid Shamir Secret Sharing.
Meanwhile, the committee member simply needs to verify if the commitment to the share matches its
encrypted share with the committee member raising an alarm should the check fail. This is a much
leaner verification process for the committee members.

CL Framework. We use the generalized version of the framework, as presented by Bouvier et
al. [20]. Broadly, there exists a group pG whose order is M ¨ ps where gcdpM, psq “ 1 and ps is unknown
while M is a parameter of the scheme. Then, pG admits a cyclic group F, generated by f whose order
is M. Consider the cyclic subgroup H which is generated by h “ xM, for a random x P pG. Then, one
can consider the cyclic subgroup G generated by g “ f ¨ h with G factoring as F ¨H. The order of
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G is also unknown. The HSMM assumption states that an adversary cannot distinguish between an
element in G and H, while a discrete logarithm is easy in F. Meanwhile, s̄, an upper bound for ps is
provided as input. Note that for M “ N where N is an RSA modulus, the HSMM assumption reduces
to the DCR assumption. Therefore, the HSMM assumption can be viewed as a generalization of the DCR
assumption.

Secret Sharing over Integers. Braun et al. [21] was the first to identify how to suitably modify
Shamir’s secret sharing protocol to ensure that the operations can work over a group of unknown
order, such as the ones we use on the CL framework. This stems from two reasons. The first is leakage
in that a share fpiq corresponding to some sharing polynomial f always leaks information about the
secret s, modi when the operation is over the set of integers. Meanwhile, the standard approach to
reconstruct the polynomial requires the computation of the Lagrange coefficients which involves
dividing by an integer, which again needs to be “reinterpreted” to work over the set of integers. The
solution to remedy both these problems is to multiply with an offset ∆ “ m! where m is the total
number of shares.

(Almost) Key Homomorphic Pseudorandom Functions. The concept of key homomorphic PRFs
(KH-PRFs) was introduced by [70], who demonstrated that Hpxqk is a secure KH-PRF under the
DDH assumption in the Random Oracle Model, where H is a hash function, k is the key, and x is
the input. [19] later constructed an almost KH-PRF under the Learning with Rounding assumption
[9], which was formally proven secure by [48]. Our work leverages almost KH-PRF constructions
from both LWR and LWE assumptions in the Random Oracle Model. Additionally, we present a novel
KH-PRF construction in the CL framework, yielding new constructions under the HSM assumption
(including DCR-based constructions). We adapt the DDH-based construction to the CL framework
and prove that F pk, xq “ Hpxqk, where kÐ$ K and H : t0, 1u

˚
Ñ H is modeled as a random oracle,

is a secure KH-PRF under the HSM assumption. This adaptation requires careful consideration of
appropriate groups, input spaces, and key spaces.

Distributed Key Homomorphic Pseudorandom Functions (KHPRF). [19] presented generic
constructions of Distributed PRFs from any KH-PRF using secret sharing techniques. However,
the CL framework’s use of groups with unknown order necessitates working over integer spaces.
While Linear Integer Secret Sharing [44] exists, it can be computationally expensive. Instead, we
utilize Shamir Secret Sharing over Integer Space as described by [21], refining it with appropriate
offsets to construct Distributed PRFs from our HSM-based construction. In other words, rather than
reconstructing the secret, the solution reconstructs a deterministic function of the secret which is
accounted for in the PRF evaluation. This induces complications in reducing the security of our
distributed key homomorphic PRF to that of the HSM-based KH-PRF. Finally, we demonstrate
that our construction maintains the key homomorphism property, allowing combinations of partial
evaluations of secret key shares to match the evaluation of the sum of keys at the same input point.

Building Distributed Key Homomorphic PRFs. [19] introduced a generic construction of dis-
tributed KHPRFs from almost key homomorphic PRFs. They proposed FLWRpk, xq :“ txHpxq,kyup
as an almost key homomorphic PRF, where q ą p are primes, kÐ$ Zρ

q , and H is a suitably defined
hash function. Their reduction to build a distributed PRF utilizes standard Shamir’s Secret Sharing
over fields, simplifying the process compared to integer secret sharing due to the prime nature of q
and p. However, their proposed construction contained shortcomings affecting both correctness and
security proofs. We will now provide a brief overview of these issues. An almost KH-PRF satisfies
F pk1 ` k2, xq “ F pk1, xq ` F pk2, xq ´ e for some error e. For the LWR construction, e P 0, 1.
However, this implies F pT ¨ k, xq “ T ¨ F pk, xq ´ eT where eT P 0, . . . , T ´ 1 for any integer T ,
leading to error growth and affecting Lagrange interpolation. The authors proposed multiplying by
an offset ∆ “ m! to bound the error and use rounding to mitigate its impact by ensuring that the error
terms are “eaten” up. However, their security reduction faces challenges when simulating partial
evaluations for unknown i˚. Lagrange interpolation with the "clearing out the denominator" technique
causes further error growth, necessitating additional rounding. Consequently, the challenger can only
provide

Y

∆F pkpiq

, xq
]

u
. Thus, their definition of partial evaluation function needs to be updated

to be consistent with what is simulatable. We identified further issues in their rounding choices.
Specifically, partial evaluations should be rounded down to u where tp{uu ą p∆ ` 1q ¨ r ¨ ∆ (r
being the reconstruction threshold). Moreover, their framework only addressed single-key PRFs, not
vector-key cases like LWR. We address these issues in our construction of a distributed, almost key
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homomorphic PRF based on LWR. We formally prove that FLWRpk, xq “
X

∆
X

∆ txHpxq,kypuu

\\

v
for

appropriate choices of u and v is a secure, distributed, almost key homomorphic, PRF.

One-shot Private Aggregation without Leakage Simulation. The construction of OPA1 is similar
to the earlier ones based on seed-homomorphic PRG. There exist the following differences:

• A client i has to sample L different keys. Each key in is used to evaluate the PRF at a point
ℓ and is used to mask the input xpinq

i .
• It then secret shares each of the L keys by running the DPRF.Share, the algorithm to

generate the shares of the DPRF key.
• Each share for committee member j is evaluated at ℓ. This evaluation is sent to the committee

member.
• Finally, the server runs DPRF.Combine to combine the information from the committee

members to get the PRF evaluation at ℓ under the sum of the keys, for each index in.
Combine is the algorithm that helps reconstruct the evaluation from partial evaluations.

Stronger Security Definitions and Construction. We also present a stronger security guarantee,
which was not provided by the committees of Lerna and Flamingo, whereby the committee members
can all collude and observe all encrypted ciphertexts and all auxiliary information, and cannot
mount an IND-CPA-style attack. Unfortunately, our current construction where the inputs are solely
blinded by the PRF evaluation, which is also provided to the committee members in shares, can be
unblinded by the committee leaking information about the inputs. We modify the syntax where each
label/iteration begins with the server, which has its secret key, advertising a “public key” for that
iteration (the keys for all iterations can also be published beforehand). The auxiliary information sent
by a client to the committee is a function of this public key while the actual ciphertext is independent
of this public key. Intuitively, this guarantees that the committee member’s information is “blinded”
by the secret key of the server and cannot be used to unmask the information sent by the client.
We now describe our updated construction. For each label ℓ, the server publishes F pk0, ℓq where
k0 is its public key. Then, the auxiliary information sent by the client is of the form F pk

pjq

i , ℓq

where k
pjq

i is the j-th share of the i-th clients key. Client i masks its input by doing fxi ¨ F pk0, ℓq
ki .

Committee member j combines the results to then send F p
řn

i“1 k
pjq

i , ℓq to the server. The server uses
Lagrange interpolation and its own key k0 to compute: F pk0

řn
i“1 ki, ℓq. Meanwhile, the server, upon

multiplying the ciphertexts gets Xℓ “ f
řn

i“1 xi,ℓ ¨ F pk0
řn

i“1 ki, ℓq. The recovery is straightforward
after this point.

B.1 Our Construction of One-shot Private Aggregation Scheme

The key idea behind our construction is that a seed-homomorphic PRG allows us to have a single seed,
much shorter than L, to mask all the L inputs. Then, one can simply secret-share the seed, which
reduces computation and communication. Our seed-homomorphic PRGs are in the standard model.
However, it is important to note that for the intended application of Federated Learning one might
have to rely on the random oracle model to thwart attacks such as those pointed out by Pasquini et
al. [72]. Though the underpinning idea of OPA is the combination of seed-homomorphic PRG and an
appropriate secret-sharing scheme, there are technical issues with presenting a generic construction.
We begin by presenting the construction based on the Learning with Rounding Assumption.

B.1.1 Construction of OPALWR

We now present OPALWR and prove its correctness and security. We rely on the seed-homomorphic
PRG (Construction 4) and combine it with Shamir’s Secret Sharing Scheme over Fq (Construction 6).
Construction 1. We present our construction in Figure 6.

Correctness. First, recall that Construction 4 is only almost seed homomorphic. In other words,

PRGpsd1 ` sd2q “ PRGpsd1q ` PRGpsd2q ` e

where e P t0, 1u.

For ease of presentation, our correctness proof is for L “ 1, but it extends to any arbitrary L.
Therefore, while the correctness of the Shamir’s Secret Sharing scheme guarantees that sdℓ, computed
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Protocol Construction of OPALWR

One-Time System Parameters Generation

Run pp Ð$ SS.Setupp1κ, 1t, 1r, 1mq

Run ppPRG Ð PRG.Genp1κc , 1κsq

Set pp “ pppPRG, t, r,mq

return Committee of size m and pp.

Data Encryption Phase by Client i in iteration ℓ

Sample sdi,ℓ Ð$ PRG.K, digi,ℓ Ð$ t0, 1u
log q

Compute px1, . . . , xLq Ð Encodepxiq
Compute maski,ℓ “ PRG.Expandpsdi,ℓq,mask1

i,ℓ :“ Hpdigi,ℓq

Compute cti,ℓ “ px1, . . . xLq ` maski,ℓ `mask1
i,ℓ

psdpjq

i qjPrms Ð$ SS.Sharepsdi,ℓ, t, r,mq

pdigpjq

i,ℓ qjPrms Ð$ SS.Sharepdigi,ℓ, t, r,mq

for j “ 1, . . . ,m do
auxpjq

i,ℓ Ð sdpjq

i , digpjq

i,ℓ

Send cti,ℓ to the Server
Send c

pjq

i,ℓ “ Encpkj pℓ, i, auxpjq

i,ℓ q to committee member j for each j P rms, via server.

Set Intersection Phase by Server in iteration ℓ

For j P rms, let Cpjq :“
!

i : c
pjq

i,ℓ was received by server
)

Let Cp0q :“ ti : cti,ℓwas received by the serveru
Compute C :“ XjPSYt0uCpjq // This is bit-wise AND operation of the r ` 1 bit strings.
assert |C| ě p1 ´ δqn

Send C,
!

c
pjq

i,ℓ

)

iPC
for every j in rms

Data Combination Phase by Committee Member j in iteration ℓ

Recover pi, ℓ,
!

auxpjq

i,ℓ “ psdpjq

i,ℓ , dig
pjq

i,ℓ q

)

q from
!

c
pjq

i,ℓ

)

iPC
Verify i P C and ℓ is the current iteration, else abort.
Compute AUXpjq

Ð
ř

iPC sdpjq

i,ℓ

Send AUXpjq,
!

digpjq

i,ℓ

)

iPC
to server

Data Aggregation Phase by Server in iteration ℓ

Let
!

AUXpjq

ℓ

)

jPS
, tcti,ℓuiPC be the inputs received by the server with |S| ě r.

Run sdℓ Ð SS.Reconstructp
!

AUXpjq

ℓ

)

jPS
q

AUXℓ “ PRG.Expandpsdℓq

for i P C do

digi,ℓ Ð SS.Reconstructp
!

digpjq

i,ℓ

)

jPS
q

Compute CTℓ Ð
ř

iPC cti,ℓ
Compute pX1, . . . , XLq “ CTℓ ´ AUXℓ´

ř

iPC Hpdigi,ℓq

Compute Xℓ Ð Decodeppp, pX1, . . . , XLqq

return Xℓ

Figure 6: Our Construction of OPA built from LWR-based Seed Homomorphic PRG pPRGq and
Shamir’s secret sharing scheme SS. Here, Encodepxi,ℓq :“ n¨xi,ℓ`1 and DecodepXiq :“ rXi{ns´1.
The lines are for security against an active server. The use of the second mask mask1

i,ℓ, as the output
of a H is for simulation proof, for an active server. We will model H as a programmable random oracle.

in S-Combine, is indeed
řn

i“1 sdi mod q, there is an error growth in AUXℓ. Specifically, we get that:

AUXℓ :“ PRG.Expand

˜

sdℓ “
n
ÿ

i“1

sdi,ℓ

¸

“

n
ÿ

i“1

PRG.Expandpsdi,ℓq ` e1
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where e1 P t0, . . . , n´ 1u. We know that Encodepxi,ℓq :“ n ¨ xi,ℓ ` 1.
n
ÿ

i“1

cti,ℓ ´ AUXℓ “

˜

n
ÿ

i“1

pxi,ℓ ¨ n ` 1q ` Expand psdi,ℓq

¸

´ Expand

˜

n
ÿ

i“1

sdi,ℓ,

¸

mod p

“ n ¨

n
ÿ

i“1

xi,ℓ ` n `

n
ÿ

i“1

Expandpsdi,ℓq ´ Expand

˜

n
ÿ

i“1

sdi,ℓ

¸

mod p

“ n ¨

n
ÿ

i“1

xi,ℓ ` n ` Expand

˜

n
ÿ

i“1

sdi,ℓ

¸

´ Expand

˜

n
ÿ

i“1

sdi,ℓ

¸

´ e1 mod p

“ n ¨

n
ÿ

i“1

xi,ℓ ` n ´ e1 mod p

X̄ℓ “ n ¨

n
ÿ

i“1

xi,ℓ ` n ´ e1

To make the last jump in the proof, we require:

0 ď n ¨
n
ÿ

i“1

xi,ℓ ` n´ e1 ă p

First, e1 ď n´ 1. This guarantees that: 0 ď n ¨
řn

i“1 xi,ℓ ` n´ e1. Now, if
řn

i“1 xi,ℓ ă pp´ nq{n
then we also get:

n ¨
n
ÿ

i“1

xi,ℓ ` n´ e1 ă p

Now, we show the correctness of Decode algorithm to recover
řn

i“1 xi,ℓ from X̄ℓ.

• X̄ℓ{n “
ř

xi,ℓ ` pn´ e1q{n

• 0 ď e1 ď n´ 1ñ 1{n ď pn´ e1q{n ď 1

• Therefore, rX̄ℓ{ns “
ř

xi,ℓ ` 1

Theorem 1. Let κs and κc be the statistical and computational security parameters. Let L be the
input dimension and n be the number of clients, that are polypκcq. Let δ be the dropout threshold
and η be the corruption threshold such that δ ` η ă 1. Then, there exists an efficient simulator Sim
such that for all K Ă rns such that |K| ď ηn, inputs X “ txi,ℓuiPnzK, and for all adversaries A
against Construction 1, that controls the server and the set of corrupted clients K, which behave
semi-honestly (resp. maliciously), the output of Sim is computationally indistinguishable from the
joint view of the server and the corrupted clients. Sim is allowed to query F ℓ

D,δpXq (defined in
Equation ??) once, per iteration.

Proof is deferred to Section H.
Remark 1 (Malicious Server and Inconsistent Updates). Recent work by Pasquini et al. [72] describes
an attack where the server can send different models to different client updates with the goal that the
model sent to a particular client can negate the training done by other clients on different models.
In our case, this attack can be easily remedied with no overhead. Rather than evaluating the PRG
with just the public matrix A, one can first compute a hash Hpmodelq, and multiply it with A. This
would ensure that the matrix used by the client is tied to the model update sent. If different clients
use different A, the seed homomorphism fails. This would make it difficult, for a malicious server
to send different models to different clients, to ensure that a particular client’s contributions are not
aggregated and therefore can be recovered. We can also simply switch to the key-homomorphic PRF
constructions described in Section G.

In Section I.1, we model security when the entire committee is corrupted and the committee, through
some attack, recovers the ciphertext of an honest client. The goal is to ensure that the input of the
honest client is still preserved. In this definition, the server is honest.

B.1.2 Construction of OPALWE

Construction 2. As alluded to before, OPALWE is largely similar to OPALWR with the following
differences:
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• While the seed of PRGLWE is psd, eq, we will only secret share sd. We will argue below that
the correctness still holds, for suitable definition of χ.

• The plaintext space for OPALWE, like the one for OPALWR, is Zp. Meanwhile the seed space
for both OPALWE and OPALWR will be Zq . Let ∆ :“ tq{pu.

• We will use Shamir’s Secret Sharing over q, as before, which is the seed space.

• There is a change in S-Combine. To compute AUXℓ, the server uses the reconstructed seed
sdℓ, and additionally sets the error component of the PRG seed to be 0.

• Encodepxi,ℓq :“ ∆ ¨ xi,ℓ

• DecodepXiq :“ rXi{∆s´ 1

Due to the similarities, we do not present the construction in its entirety. Meanwhile, we present the
proof of correctness and proof of security.

Correctness. First, observe that Construction 4 is only almost seed-homomorphic, i.e.

PRGppsd1 ` sd2, eq, ℓq “ PRGppsd1, e1q, ℓq ` PRGppsd2, e2q, ℓq ` e1

for some error e1. Indeed, assuming the correctness of Shamir’s Secret Sharing, we get that the server
computes:

AUXℓ :“ PRG.Expand

˜˜

n
ÿ

i“1

sdi, 0

¸

, ℓ

¸

:“ A ¨
n
ÿ

i“1

sdi

Meanwhile,
n
ÿ

i“1

cti,ℓ “

n
ÿ

i“1

pAsdi ` ei ` ∆ ¨ xi,ℓq

“ A
n
ÿ

i“1

sdi `

n
ÿ

i“1

ei `

n
ÿ

i“1

∆ ¨ xi,ℓ

Let Xℓ :“
n
ÿ

i“1

cti,ℓ ´ AUXℓ “

n
ÿ

i“1

ei `

n
ÿ

i“1

∆ ¨ xi,ℓ

Xℓ

∆
“

řn
i“1 ei
∆

`

n
ÿ

i“1

xi,ℓ

If
řn

i“1 ei ă ∆
2 , then r

Xℓ

∆ s “
řn

i“1 xi,ℓ ` 1. This shows the correctness of our algorithm.
Theorem 2. Let κs and κc be the statistical and computational security parameters. Let L be the
input dimension and n be the number of clients, that are polypκcq. Let δ be the dropout threshold
and η be the corruption threshold such that δ ` η ă 1. Then, there exists an efficient simulator Sim
such that for all K Ă rns such that |K| ď ηn, inputs X “ txi,ℓuiPnzK, and for all adversaries A
against Construction 2, that controls the server and the set of corrupted clients K, which behave
semi-honestly (resp. maliciously), the output of Sim is computationally indistinguishable from the
joint view of the server and the corrupted clients. Sim is allowed to query FD,δpXq

ℓ (defined in
Equation ??) once, per iteration.

Proof deferred to Section H.

B.2 Security Against Malicious Clients

In this section, we will focus on a misbehaving client. Observe that the client can send inconsistent
shares to the committee. A standard approach would be for the client to rely on verifiable secret
sharing which would empower each committee member to verify if the share received by the
committee member is consistent with the commitments to the polynomial that was sent by the client.
However, this requires each client to perform n¨r exponentiations which can be expensive. Instead, we
take the approach of a modified publicly verifiable secret sharing scheme. This approach empowers
the server, which has more computation power, to verify if the sharing is consistent.

Our public verifiability will rely on a modification of SCRAPE [27]. SCRAPE test is done to check if
psd

p1q

i,ℓ , . . . , sd
pmq

i,ℓ q is a Shamir sharing over F of degree d “ r´ 1 (namely there exists a polynomial p
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of degree ď d such that ppiq “ si for i “ 1, . . . , n), one can sample wp1q, . . . , wpmq uniformly from
the dual code to the Reed-Solomon code formed by the evaluations of polynomials of degree ď d,
and check if

řm
i“1 w

piq ¨ sd
piq
i,ℓ “ 0 in F. If the test passes, then sd

p1q

i,ℓ , . . . , sd
pmq

i,ℓ are Shamir Shares,
except with probability 1{|F|.
Lemma 3 (SCRAPE Test [28]). Let F be a finite field and let d “ r ´ 1,m be parameters of the
Shamir’s Secret Sharing scheme such that 0 ď d ď m´ 2, and inputs sdp1q

i,ℓ , . . . , sd
pmq

i,ℓ P F. Define

vi :“
ś

jPrmsztiupi ´ jq´1 and let m˚pXq :“
řm´d´2

i“0 mi ¨X
i Ð$ FrXsďm´d´2 (i.e., a random

polynomial over the field of degree at most m´ d´ 2). Now, let w :“ pv1 ¨m
˚p1q, . . . , vn ¨m

˚pnqq

and s :“ psdp1q

i,ℓ , . . . , sd
pmq

i,ℓ q. Then,

• If there exists p P FrXsďd such that sdpiq
i,ℓ ,“ ppiq for all i P rns, then xw, sy “ 0.

• Otherwise, Prrxw, sy “ 0s “ 1{|F|.

Typically, we compute the polynomial m˚pXq by using the Fiat-Shamir transform over public values.
Then, the vector w is a public vector. One simply has to hide the vector s. As a result, we have proved
that the shares do lie on the same polynomial. Note that in standard Shamir’s Secret Sharing, we set
pp0q “ sdi,ℓ, i.e., the secret. Therefore, we will have to perform inner product over a vector of length
m` 1.

This results in the following additional steps on the part of the client, the committee member, and the
server. We detail only these additional steps.
Construction 3 (Detecting Malicious Client Behavior). Let H : t0, 1u

˚
Ñ Fm´d´2 where d “ r´ 1

be a hash function which is modeled as a random oracle. Let H1 : t0, 1u
˚
Ñ F be the hash function

used to generate the challenge. Let G be a group generated by g where Discrete Logarithm and DDH
is hard, and is of prime order q, the same as the order of the field for Shamir Secret Sharing.

• Client i does the following:

– Commit to sd
p0q

i,ℓ “ sdi,ℓ, sd
p1q

i,ℓ , . . . , sd
pmq

i,ℓ as Cpjq
s :“ gsd

pjq

i,ℓ .
– Generate the coefficients to polynomial m´ d´ 2 by using Fiat-Shamir transform. In

other words, get m0, . . . ,mm´d´2 Ð HpCp0q
s , . . . , C

pmq
s q

– Compute v0, . . . , vm as vi :“
ś

jPt0,...,muzipi´ jq´1.
– Compute w :“ pv0 ¨m

˚p0q, . . . , vm ¨m
˚pmqq

– Compute t :“ pt0, . . . , tmq Ð$ F
– Compute C

p0q

t , . . . , C
pmq

t as commitments to t0, . . . , tm where C
pjq

t :“ gtj

– Set r :“ xt,wy
– Compute c :“ H1pC

p0q
s , . . . , C

pmq
s , C

p0q

t , . . . , C
pmq

t ,w, rq

– Compute z0, . . . , zm where zi :“ ti ` c ¨ sd
piq
i,ℓ

– Set πi :“
´!

C
pjq
s

)

, r, z “ pz0, . . . , zmq, c
¯

• Server does the following:

– Upon receiving πi from client i, the server parses πi :“ p

!

C
pjq
s

)

, r, z “

pz0, . . . , zmq, c
– It computes w (similar to how the client does it). It then computes xw, zy. It checks to

see if this is equal to the value r sent by the client i.

– For each j “ 0, . . . ,m, compute C
pjq

t “ gzj ¨
´

C
pjq
s

¯´c

– Compute c1 “ H1pC
p0q
s , . . . , C

pmq
s , C

p0q

t , . . . , C
pmq

t ,w, rq
– Accept input from client i if c ““ c1.
– The server sends Cpjq

s to committee member j, along with the encrypted shares for
committee member j.

• Committee member j does the following:
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– Decrypt and recover the share sdpjq

i,ℓ . Verify that this matches the commitment forwarded
by the server.

It is easy to verify that an honest prover will satisfy the proof. This follows from the SCRAPE test
(Lemma 3) and also the completeness of the generalized Σ-protocol. Meanwhile, if there exists two
accepting transcripts z1, z2 corresponding to c1, c2, then one can extract a witness for sdp0q

i,ℓ , . . . , sd
pmq

i,ℓ .
This guarantees soundness. The zero-knowledge property follows by simply sampling a random z and
then setting the choice of the C

pjq

t by following the verification steps. Further, it can set r “ xz,wy.

B.3 One-shot Private Aggregation without Leakage Simulation

It is easy to observe that the server, in the previous constructions of OPA, recovers the sum of the
keys. This constitutes leakage of the honest clients’ keys. Consequently, our proofs relied on the
pseudorandomness, even contingent on this leakage. Furthermore, these constructions allowed the
generation of a new key, in every iteration.

We will now present a construction OPA1 such that: (a) a client’s keys can be reused across multiple
iterations, and, (b) the server does not get the sum of the keys but rather a function of pseudorandom
values, which can argued as itself being pseudorandom. The core technique we employ in this work
is a distributed, key-homomorphic PRF. We formally present constructions from the CL framework
in Section E. Specifically, we defer OPACL to the appendix in Section E.2. Similarly, we present
LWR based construction in Section F. Meanwhile, we broadly describe the intuition behind our
construction.

A distributed-key-homomorphic PRF has two specific algorithms: Eval which allows to evaluation of
the PRF with key ki at a point. While, P-Eval allows the PRF to be evaluated at a share of the key k

pjq

i
to get a partial evaluation. Therefore, in our construction, the clients mask a vector of inputs xi,ℓ by
computing a pseudorandom evaluation of DPRF.Evalpki,1, ℓ, . . . ,DPRF.Evalpki,L, ℓq. Meanwhile,
the auxiliary information send to the committee member will be P-Evalpk

pjq

i,k , ℓq for k “ 1, . . . , L

and j P rms. Then, the committee members combine by multiplying the auxiliary information. The
server then reconstructs on its end. Note that the server only computes DPRF.Evalp

řn
i“1 ki,k, ℓq for

k “ 1, . . . , L. This is a PRF evaluation and therefore the leakage is pseudorandom and can be easily
simulated, replacing it with random.

C Cryptographic Preliminaries

For completeness, we discuss secret sharing in Section C.2. We discuss pseudorandom functions in
Section C.4. We then introduce lattice-based cryptographic assumptions in Section C.3.

C.1 Seed Homomorphic PRG

C.1.1 Syntax and Security

Definition 1 (Seed Homomorphic PRG (SHPRG)). Consider an efficiently computable function
PRG : K Ñ Y where pK,‘q, pY,bq are groups. Then pPRG,‘,bq is said to be a secure seed
homomorphic pseudorandom generator (SHPRG) if:

• PRG is a secure pseudorandom generator (PRG), i.e., for all PPT adversaries A, there
exists a negligible function negl such that:

Pr

«

b “ b1
ppPRGÐ$ PRG.Gen, bÐ$ t0, 1u , sdÐ$ K

Y0 “ PRG.Expandpsdq, Y1Ð$ cY
b1 Ð$ ApYbq

ff

ď
1

2
` neglpκq

• For every sd1, sd2 P K, we have that PRG.Expandpsd1q b PRG.Expandpsd2q “

PRG.Expandpsd1 ‘ sd2q

In the construction below, we abuse notation and simply write PRGpsdq as a shorthand for
PRG.Expandpsdq
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C.1.2 Construction from LWR Assumption

Construction 4 (SHPRG from LWR Assumption). Let AÐ$ Zn1ˆL
q be the output of PRG.Gen, then

consider the following seed homomorphic PRG PRGLWR : t0, 1u
n1 Ñ t0, 1u

L where L ą n1 is
defined as PRGLWR,Apsd “ sq “ rAJ

¨ sup where q ą p with rxup “ rx ¨ p{qu for x P Zq .

This is almost seed homomorphic in that: PRGps1 ` s2q “ PRGps1q ` PRGps2q ` e where e P

t´1, 0, 1u
L

Theorem 4 (Leakage Resilience of Construction 4). Let PRGLWR be the PRG defined in Construction 4.
Then, it is leakage resilient in the following sense:
␣

PRGLWRpsdq mod p, sd` sd1 mod q : sd, sd1
Ð$ Zn1

q

(

«c

␣

y, sd` sd1 mod q : yÐ$ ZL
p , sd, sd

1
Ð$ Zn1

q

(

Proof deferred to Section H.

C.1.3 Construction from LWE Assumption

Construction 5 (SHPRG from LWE Assumption). Let AÐ$ ZLˆλ
q be the output of PRG.Gen.

Then, consider the following seed homomorphic PRG PRGLWE : Zλ
q ˆ χL Ñ ZL

q is defined as
PRGLWE,Aps, eq “ As` e

The proof of security is a direct application of the LWE Assumption. However, we now prove the
(almost) seed homomorphic property.

PRGLWE,Aps1, e1q “ As1 ` e1
PRGLWE,Aps2, e2q “ As2 ` e2

PRGLWE,Aps1, e1q ` PRGLWE,Aps2, e2q “ Aps1 ` s2q ` pe1 ` e2q “ Aps1 ` s2q ` e

where e ď e1 ` e2 ` 1.

Looking ahead, when we use this PRG to mask the inputs, we will do the following:
PRGLWE,Apsi, eiq “ Asi ` ei ` tq{pu ¨ xi where xi P Zm

p . Upon adding n such ciphertexts pmodqq,
we get:

A
n
ÿ

i“1

si ` e` tq{pu ¨

n
ÿ

i“1

xi

where e ď 1 `
řn

i“1 ei. Therefore, to eventually recover
řn

i“1 xi mod p from just the value of
řn

i“1 si, we will require ||e||8 ă
q
2p . Looking ahead, we will rely on the Hint-LWE Assumption 6 to

show that it is leakage resilient when we use it to build our aggregation tool.
Remark 2 (Construction based on Ring-LWE). One can also extend the above LWE construction to
the Ring-LWE [66] setting.

Recall the R-LWE Assumption. Let N be a power of two, and let m ą 0 be an integer. Let R be a
cyclotomic ring of degree N , and let Rq be its residue ring modulo q ą 0. Then, the following holds:

␣

pa,a ¨ k ` eq : aÐ$ Rm
q , kÐ$ Rq, eÐ$ χm

(

«c

␣

pa,uq : aÐ$ Rm
q ,uÐ$ Rm

q

(

This gives us the following construction: PRGR-LWEppk, eqq : ak ` e

C.2 Secret Sharing

A key component of threshold cryptography is the ability to compute distributed exponentiation
by sharing a secret. More formally, the standard approach is to compute gs for some g P G
where G is a finite group and s is a secret exponent that has been secret-shared among multiple
parties. This problem is much simpler when you assume that the group order is a publicly known
prime p which then requires you to share the secret over the field Zp. This was the observation of
Shamir [80] whereby a secret s can be written as a linear combination of

ř

iPS αisi mod p where
S is a set of servers that is sufficiently large and holds shares of the secret si and αi is only a
function of the indices in S. It follows that if each server provides gi “ gsi , then one can compute
gs “ g

ř

iPS αi¨si “
ś

iPS gαi
i . Formally, this is defined below.
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Construction 6 (Shamir’s Secret Sharing over Fq). Consider the following pt, r,mq Secret Sharing
Scheme where m is the total number of parties, t is the corruption threshold, r is the threshold for
reconstruction. Then, we have the following scheme:

• Shareps, t, r,mq: Sample a random polynomial fpXq P FqrXs of degree r ´ 1 such that
fp0q “ s. Then, return

␣

spjq :“ fpjq
(

jPrms

• CoeffpSq: On input of a set S “ ti1, . . . , ir, . . .u Ď rms of at least r indices, compute
λij “

ś

ζPrrsztju

iζ
iζ´ij

. Then, return
␣

λij

(

ijPti1,...,iru

• Reconstructp
␣

spjq
(

jPS : If |S| ě r, then output
ř

jPS λj ¨ s
pjq where tλju Ð CoeffpSq.

The correctness of the scheme guarantees that the secret s is correctly reconstructed.
Construction 7 (Packed Secret Sharing over Fq). Consider the following pt, r,mq Secret Sharing
Scheme where m is the total number of parties, t is the corruption threshold, r is the threshold for
reconstruction. Further, let ρ be the number of secrets being packed which are to be embedded at
points pos1, . . . , posρ where posi “ m` i. Here, t :“ r ´ ρ. Then, we have the following scheme:

PShareps “ ps1, . . . , sρq, t, r,mq
pr0, . . . , rr´ρ´1q Ð$ Fq

qpXq :“
r´ρ´1
ÿ

i“0

Xi
¨ ri

posi “ m ` i for i “ 1, . . . , ρ

for i P rρs do

LipXq :“
ź

jPrρszi

X ´ posj
posi ´ posj

¨ ∆

fpXq :“ qpXq

ρ
ź

i“1

pX ´ posiq `

ρ
ÿ

i“1

si ¨ LipXq

return
!

spiq
)

iPrms

Reconstructp
␣

spiq
(

iPSq

if |S| ă r return K

Parse S :“ ti1, . . . , it, . . .u

for k P rρs

for j P rts

Λij pXq :“
ź

ζPrtszj

iζ ´ X

iζ ´ ij

s1
k :“

ÿ

jPrts

Λij pm ` kq ¨ spjq

return s1 :“ ps1
1, . . . , s

1
ρq

Parameters.

• For reconstruction, we require r ă mp1 ´ δCq where δC is the dropout rate within the
committee.

• For security, we require that pr ´ ρq ą m ¨ ηC where ηC is the corruption rate.

Combining, we get m ą ρ{p1´ δC ´ ηCq. Recall that we need δC ` ηC ă 1{3, for byzantine fault
tolerance. In other words, setting m ě 3ρ{2 is sufficient.
Remark 3 (Optimizations for Packed Secret Sharing). Observe that the polynomial LipXq is only
dependent on points posi, which are the points where the secrets are embedded. This can be pre-
processed, and indeed, can be a part of the setup algorithm which distributes it to all the clients.
Furthermore, rather than naively reconstructing the Lagrange polynomial, one can also rely on FFT
techniques to achieve speed up.

Unfortunately, the above protocols do not extend to settings where the order of the group is not prime,
not publicly known, or even possibly unknown to everyone. In this setting, the work of Damgård and
Thorbek presents a construction to build Linear Integer Secret Sharing (LISS) schemes. In this work,
we rely on the simpler scheme that extends Shamir’s secret sharing into the integer setting from the
work of Braun et al. [21]. We also extend the Packed Secret Sharing scheme to this integer setting in
Construction 9.
Definition 2 (Secret Sharing over Z). A pt, r,mq Linear Integer Secret Sharing Scheme LISS is a tuple
of PPT algorithms LISS :“ pShare,GetCoeff,Reconstructq, with the following public parameters:
the statistical security parameter κs, the number of parties m, the corruption threshold t, and
reconstruction threshold r of secrets needed for reconstruction, the randomness bit length ℓr, the bit
length of the secret ℓs and the offset by which the secret is multiplied, denoted by ∆ “ m!, and the
following syntax:
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• ps1, . . . , smq Ð$ Shareps,m, r, tq: On input of the secret s, the number of parties m, and the
threshold t, the share algorithm outputs shares s1, . . . , sm such that party i receives si.

• tλiuiPS Ð GetCoeffpSq: On input of a set S of at least r indices, the GetCoeff algorithm
outputs the set of coefficients for polynomial reconstruction.

• s1 Ð ReconstructptsiuiPSq: On input of a set of secrets of at least r shares, the reconstruc-
tion algorithm outputs the secret s1.

We further require the following security properties.

• Correctness: For any m, κs, t, r, ℓs, ℓr P Z with t ă r ď m, and any set S Ď rms with
|S| ě r, for any s P Z such that s P r0, 2ℓsq the following holds:

Pr

„

s1 “ fpsq
ps1, . . . , smq Ð$ Shareps,m, r, tq

s1 Ð ReconstructptsiuiPSq

ȷ

where f is some publicly computable function, usually fpsq “ ∆2 ¨ s.

• Statistical Privacy [44]: We say that a pt, r,mq linear integer secret sharing scheme
LISS is statistically private if for any set of corrupted parties C Ă rms with |C| ď t,
and any two secrets s, s1 P r0, 2ℓsq and for independent random coins ρ, ρ1 such that
tsiuiPrms Ð$ Shareps; ρq, tsiu

1

iPrms Ð$ Shareps1; ρ1q we have that the statistical distance
between: tsi|i P Cu and ts1

i|i P Cu is negligible in the statistical security parameter κs.
Construction 8 (Shamir’s Secret Sharing over Z). Consider the following pt, r,mq Integer Secret
Sharing scheme where m is the number of parties, t is the corruption threshold, and r is the threshold
for reconstruction. Further, let κs be a statistical security parameter. Let ℓs be the bit length of the
secret and let ℓr be the bit length of the randomness. Then, we have the following scheme:

Shareps, t, r,mq

∆ :“ m!, s̃ :“ s ¨ ∆

pr1, . . . , rr´1q Ð$ r0, 2ℓr`κsq

fpXq :“ s̃ `

r´1
ÿ

i“1

ri ¨ Xi

return
!

spiq
“ fpiq

)

iPrms

GetCoeffpSq
if |S| ě r

for i P S do

Λi :“
ź

jPSztiu

xj

xj ´ xi
¨ ∆

return tΛiuiPS

Reconstructp
␣

spiq
(

iPSq

if |S| ě r

tΛiuiPS Ð GetCoeffpSq

s1 :“
ÿ

iPS
Λi ¨ spiq

return s1

We omit the proof of correctness as it is similar to the original Shamir’s Secret Sharing scheme.
However, we highlight the critical differences:

• Unlike Shamir’s Secret Sharing over fields, the secret here is already multiplied by the offset
∆. Therefore, any attempt to reconstruct can only yield s ¨∆

• However, note that the inverse of xj´xi which was defined over the field Zq might not exist
or be efficiently computable in a field of unknown order. Instead, we multiply the Lagrange
coefficients by ∆. Consequently, the reconstruction yields ∆ ¨ s̃ which equals s ¨∆2.

Theorem 5 ([21]). Construction 8 is statistically private provided ℓr ě ℓs`rlog2phmax ¨pt´1qqs`1
where hmax is an upper bound on the coefficients of the sweeping polynomial.

We refer the readers to the proof in [21, §B.1]. The key idea behind the proof is first to show that there
exists a “sweeping polynomial” such that at each of the points that the adversary has a share of, the
polynomial evaluates to 0 while at the point where the secret exists, it contains the offset ∆. Implicitly,
one can add the sweeping polynomial to the original polynomial whereby the sweeping polynomial
"sweeps" away the secret information that the adversary has gained knowledge of. Meanwhile, in
the later section, we present the proof for the generic construction that uses Shamir’s Packed Secret
Sharing over the integer space. This again uses the idea of a sweeping polynomial.
Construction 9 (Shamir’s Packed Secret Sharing over Z). Let m be the number of parties and ρ
be the number of secrets that are packed in one sharing. Further, let t denote the threshold for
reconstruction (implies that corruption threshold is t ´ ρ). Then, consider the following pm, t, ρq
Integer Secret Sharing Scheme with system parameters κs as the statistical security parameter, ℓs
is the bit length of the a secret, and let ℓr be the bit length of the randomness. Then, we have the
following scheme:
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PackedShareps “ ps1, . . . , sρq, t,mq
∆ :“ m!, s̃ :“ s ¨ ∆

pr0, . . . , rt´ρ´1q Ð$ r0, 2ℓr`κsq

qpXq :“
t´ρ´1
ÿ

i“0

Xi
¨ ri

posi “ m ` i for i “ 1, . . . , ρ

for i P rρs do

LipXq :“
ź

jPrρszi

X ´ posj
posi ´ posj

¨ ∆

fpXq :“ qpXq

ρ
ź

i“1

pX ´ posiq `

ρ
ÿ

i“1

s̃i ¨ LipXq

return
!

spiq
)

iPrms

Reconstructp
␣

spiq
(

iPSq

if |S| ă t return K

Parse S :“ ti1, . . . , it, . . .u

for k P rρs

for j P rts

Λij pXq :“
ź

ζPrtszj

iζ ´ X

iζ ´ ij
¨ p∆q

s1
k :“

ÿ

jPrts

Λij pm ` kq ¨ spjq

return s1 :“ ps1
1, . . . , s

1
ρq

Correctness. Observe that for all i “ 1, . . . , ρ, we have the following:

• Lipposiq “ ∆

• Ljpposiq “ ∆ for all j P rρs, j ‰ i

• fpposiq “ s̃i ¨∆ “ si ¨∆
2

Meanwhile, for λij pXq :“
ś

ζPrtszrjs

iζ´X
iζ´ij

, the polynomial we will be able to compute the polyno-

mial fpxq “
ř

jPrts λij ¨ s
pjq by correctness of Lagrange Interpolation. Consequently, fpposiq would

return si ¨∆
2. However, we compute Λij instead, by multiplying with ∆ to remove need for division.

Consequently, the resulting polynomial has ∆ multiplied throughout yielding a ∆3 as the total offset.

Definition 3 (Vector of Sweeping Polynomials). Let C Ă rms such that |C| “ t ´ ρ. Then, we
have a vector of sweeping polynomials, denoted by spCpXq “ psp1,C , . . . , spρ,Cq where spi,CpXq :“
řt´ρ

j“0 spi,j ¨ X
j P ZrXsďt´1 is the unique polynomial whose degree is at most t ´ 1 such that

spi,Cpm` iq “ ∆2, spi,Cpm` jq “ 0 for j P rρs, j ‰ i, and spi,Cpjq “ 0 for all j P C. Further, one
can define spmax as the upper bound for the coefficients for the sweeping polynomials, i.e., spmax :“
␣

spi,j |i P t1, . . . , ρu , j P t0, . . . , t´ 1u
(

Lemma 6 (Existence of Sweeping Polynomial). For any C Ă rms with |C| “ t ´ ρ, there exists
spC P pZrXsďt´ρq

ρ satisfying Definition 3.

Proof. For any i “ 1, . . . , ρ, we have that spi,Cpm ` iq “ ∆2 and spi,Cpjq “ 0 for j P C. Let
C :“ pi1, . . . , it´ρq. In other words, we can use these evaluations to construct a polynomial as
follows:

spi,CpXq :“ ∆2 ¨

t´ρ
ź

j“1

pX ´ ijq

pm` iq ´ ij
¨

ź

jPrρsztiu

pX ´ pm` jqq

pi´ jq

Note that i1, . . . , ij P rms and are distinct. Therefore,
śt´ρ

j“1pm ` iq ´ ij perfectly divides ∆ and
so does

ś

jPrρsztiupi´ jq, which implies that the coefficients are all integers. Further, the degree of
this polynomial is at most t ´ 1. Thus, spi,CpXq P ZrXst´1. This defines the resulting vector of
sweeping polynomials spC .

Theorem 7. Construction 9 is statistically private provided

ℓr ě ℓs ` rlog2pspmax ¨ pt´ 1q ¨ ρqs` 1

Proof. Let s, s1 P r0, 2ℓsqρ be two vectors of secrets. Then, s̃ :“ s ¨∆ and s̃1 :“ s1 ¨∆. Let C denote
an arbitrary subset of corrupted parties of size |C| “ t ´ ρ. Further, let us assume that s̃ is shared
using the polynomial fpXq as defined below:

fpXq :“ qpXq ¨
ρ
ź

k“1

pX ´ posiq `
ρ
ÿ

k“1

s̃i ¨ LkpXq
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where LkpXq :“
ś

jPrρsztku

X´posj
posk´posj

¨∆. and qpXq is a random polynomial of degree t´ ρ´ 1.

Now observe that the adversary see |C| “ t ´ ρ shares corresponding to fpijq for ij P C. By
Lagrange interpolation, this induces a one-to-one map from possible secrets to corresponding sharing
polynomials. Specifically, we can use the vector of sweeping polynomials, as defined in Definition 3
to explicitly map any secret vector s˚ to its sharing polynomial defined by fpXq ` xs˚ ´ s, spCpXqy

In other words, the sharing polynomial to share s˚ is defined by

f˚pXq “ fpXq `
ρ
ÿ

k“1

ps˚
k ´ skq ¨ spk,CpXq

One can verify the correctness. For example, to secret share s˚
1 , at position m` 1, we get:

f˚pm` 1q “ fpm` 1q `
ρ
ÿ

k“1

ps˚
k ´ skq ¨ spk,CpXq

Now, observe that fpm`1q “ s1 ¨ p∆
2q. Meanwhile, sp1,Cpm`1q “ ∆2 while spj,Cpm`1q “ 0 for

1 ă j ď ρ. This simplifies to: f˚pm` 1q “ s1 ¨∆
2 ` ps˚

1 ´ s1q ¨∆
2 “ s˚

1 ¨∆
2. However, while we

have an efficient mapping, note that f˚pXq could have coefficients that are not of the prescribed form,
i.e., coefficients do not lie in the range r0, 2ℓr`κsq. We will call the event good if the coefficients lie
in the range and bad even if one of the coefficients does not lie in the range.

Let us apply the above mapping to the secret s1 and we have the resulting polynomial:

f 1pXq “ fpXq `
ρ
ÿ

k“1

ps1
k ´ skq ¨ spk,CpXq

Now, observe that if f 1pXq was a good polynomial, then f 1pjq “ fpjq for every j P C. It follows
that if f 1 was good, then an adversary cannot distinguish whether the secret vector was s or s1.

We will now upper bound the probability that f 1 was bad in at least one of the coefficients. We
know that |s1

k ´ sk| P r0, 2
ℓsq for k “ 1, . . . , ρ. Further all coefficients of spk,CpXq are upper

bounded by spmax. Therefore, to any coefficient of fpXq, the maximum perturbation in value is:
2ℓs ¨ spmax ¨ ρ. Therefore, one requires that the original coefficients of f be sampled such that they
lie in r2ℓs ¨ spmax ¨ ρ, 2

ℓr`κs ´ 2ℓs ¨ spmax ¨ ρs. In other words, the probability that one coefficient of
f 1 is bad is:

2 ¨ 2ℓs ¨ spmax ¨ ρ

2ℓr`κs

There are t ´ 1 such coefficients. This gives us that the probability is ď 2´κs assuming that
ℓr ě ℓs ` rlog2pspmax ¨ pt´ 1q ¨ ρqs` 1

C.3 Lattice-Based Assumptions

In this section, we will look at constructions based on three different lattice-based assumptions.

C.3.1 Learning with Rounding Assumption

We will begin by defining the learning with rounding (LWR) assumption, which can be viewed as
a deterministic version of the learning with errors (LWE) assumption [78]. LWR was introduced by
Banerjee et al. [9].
Definition 4 (Learning with Rounding). Let ρ, q, pÐ$ LWRGenp1ρq with ρ, q, p P N such that q ą p.
Then, the Learning with Rounding assumption states that for all PPT adversaries A, there exists a
negligible function negl such that:

Pr

»

—

–

b “ b1

s, a0Ð$ Zρ
q ,

Y0 :“ txa0, syup
Y1Ð$ Zp, a1Ð$ Zρ

q

bÐ$ t0, 1u, b1 Ð$ Apab, Ybq

fi

ffi

fl

“
1

2
` neglpρq

where txup “ i where i ¨ tq{pu is the largest multiple of tq{pu that does not exceed x.
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C.3.2 Learning with Errors Assumption

Definition 5 (Learning with Errors Assumption (LWE)). Consider integers λ, L, q and a probability
distribution χ on Zq , typically taken to be a normal distribution that has been discretized. Then, the
LWEλ,L,q,χ assumption states that for all PPT adversaries A, there exists a negligible function negl
such that:

Pr

»

–b “ b1

AÐ$ ZLˆλ
q , xÐ$ Zλ

q , eÐ$ χL

y0 :“ Ax` e
y1Ð$ ZL

q , bÐ$ t0, 1u, b1 Ð$ ApA, ybq

fi

fl “
1

2
` neglpρq

Definition 6 (Hint-LWE [35, 46]). Consider integers λ, L, q and a probability distribution χ1 on Zq ,
typically taken to be a normal distribution that has been discretized. Then, the Hint-LWE assumption
states that for all PPT adversaries A, there exists a negligible function negl such that:

Pr

»

—

—

–

b “ b1

AÐ$ ZLˆλ
q ,kÐ$ Zλ

q , eÐ$ χ1L

rÐ$ Zλ
q , fÐ$ χ1L

y0 :“ Ak` e, y1Ð$ ZL
q , bÐ$ t0, 1u

b1 Ð$ ApA, pyb,k` r, e` fqq

fi

ffi

ffi

fl

“
1

2
` neglpκq

where κ is the security parameter.

Kim et al. [59] demonstrates that the Hint-LWE assumption is computationally equivalent to the
standard LWE assumption. In essence, this assumption posits that y0 maintains its pseudorandom
properties from an adversary’s perspective, even when provided with certain randomized information
about the secret and error vectors. Consider a secure LWE instance defined by parameters pλ,m, q, χq,
where χ represents a discrete Gaussian distribution with standard deviation σ. The corresponding
Hint-LWE instance, characterized by pλ,m, q, χ1q, where χ1 denotes a discrete Gaussian distribution
with standard deviation σ1, remains secure under the condition σ1 “ σ{

?
2. As a result, we can

decompose any e P χ into the sum e1 ` e2, where both e1 and e2 are drawn from χ1.

C.4 Pseudorandom Functions

Definition 7 (Pseudorandom Function (PRF)). A pseudorandom function family is defined by a tuple
of PPT algorithms PRF “ pGen,Evalq with the following definitions:

• ppPRFÐ$ Genp1κq: On input of the security parameter κ, the generation algorithm outputs
the system parameters required to evaluate the function F : KˆX Ñ Y where K is the key
space, X is the input space, and Y is the output space.

• y Ð Evalpk, xq: On input of x P X and a randomly chosen key kÐ$ K, the algorithm
outputs y P Y corresponding to the evaluation of F pk, xq.

We further require the following security property that: for all PPT adversaries A, there exists a
negligible function negl such that:

Pr

»

–b “ b1

bÐ$ t0, 1u , kÐ$ K
O0p¨q :“ F pk, ¨q,O1p¨q :“ UpYq

b1 Ð$ AObp¨q

fi

fl ď
1

2
` neglpκq

where UpYq outputs a randomly sampled element from Y .
Definition 8 ((γ)-Key Homomorphic PRF). Let PRF be a pseudorandom function that realizes an
efficiently computable function F : K ˆ X Ñ Y such that pK,‘q is a group. Then, we say that it is

• key homomorphic if: pY,bq is also a group and for every k1, k2 P K and every x P X we
get: Evalpk1, xq ˆ Evalpk2, xq “ Evalpk1 ‘ k2, xq.

• γ “ 1-almost key homomorphic if: Y “ Zp if for every k1, k2 P K and every x P X , there
exists an error e P t0, 1u we get: Evalpk1, xq ˆ Evalpk2, xq “ Evalpk1 ‘ k2, xq ` e.

C.5 Distributed Key Homomorphic PRF

Definition 9 (Distributed Key Homomorphic PRF (DPRF)). A pt,mq-Distributed PRF is a tuple of
PPT algorithms DPRF :“ pGen,Share,Eval,P-Eval,Combineq with the following syntax:
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• ppPRFÐ$ Genp1κ, 1t, 1mq: On input of the threshold t and number of parties m, and
security parameter κ, the Gen algorithm produces the system parameter ppPRF which is
impliclty consumed by all the other algorithms.

• kp1q, . . . , kpmq Ð$ Sharepk, t, r,mq: On input of the number of parties m, corruption thresh-
old t, reconstruction threshold r, and a key kÐ$ K, the share algorithm produces the key
share for each party.

• Y Ð Evalpk, xq: On input of the PRF key k and input x, the algorithm outputs y corre-
sponding to some pseudorandom function F : K ˆ X Ñ Y .

• yiÐ$ P-Evalpkpiq, xq: On input of the PRF key share kpiq, the partial evaluation algorithm
outputs a partial evaluation yi on input x P X .

• Y 1 Ð$ CombineptyiuiPSq: On input of partial evaluations yi corresponding to some subset
of shares S such that |S| ě t, the algorithm outputs Y 1.

We further require the following properties:

• Correctness: We require that the following holds for any m, t, r, κ P Z with t ă r ď m and
any set S Ď rms with |S| ě r, any input x P X :

Pr

»

–Y “ Y 1

ppPRFÐ$ Genp1κ, 1t, 1r, 1mq, kÐ$ K
␣

kpiq
(

iPrms
Ð$ Sharepkq,

␣

yi Ð P-Evalpkpiq, xq
(

iPS
Y 1 Ð CombineptyiuiPSq, Y “ Evalpk, xq

fi

fl “ 1

• Pseudorandomness with Static Corruptions: We require that for any integers t, r,m with
t ă r ď m, and for all PPT adversary A, there exists a negligible function negl such that:

Pr

»

—

—

—

—

—

—

–

b “ b1 ppPRFÐ$ Genp1κ, 1t, 1r, 1mq, kÐ$ K
|KY tj : pj, x˚q P Eu | ď t pst,Kq Ð$ ApppPRFq

␣

kpiq
(

iPrms
Ð$ Sharepk, t, r,m, q

pst, x˚q Ð$ AOEvalp
␣

kpiq
(

iPKq
bÐ$ t0, 1u, Y0Ð$ Evalpk, x˚q

Y1Ð$ UpYq, b1 Ð$ AOEvalpst, Ybq

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“ 1

where:

OEvalpi, xq

E :“ E Y tpi, xqu

return P-Evalpkpiq, xq

• Key Homomorphic: We require that if pK,‘q, pY,bq are groups such that:

– @ x P X ,@ k1, k2 P K,Evalpk1, xq b Evalpk2, xq “ Evalpk1 ‘ k2, xq, and

– @ x P X , @ k1, k2 P K,
!

k
pjq

b Ð$ Sharepkbq
)

jPrms,bPt1,2u
,

@ j P rms, y
pjq

1,2 :“
´

P-Evalpk
pjq

1 , xq b P-Evalpk
pjq

2 , xq
¯

, and @S Ď rms with |S| ě r,

Combine

ˆ

!

y
pjq

1,2

)

jPS

˙

“ Evalpk1 ‘ k2, xq

C.6 Class Groups Framework

Class group-based cryptography is a cryptographic technique that originated in the late 1980s, with
the idea that the class group of ideals of maximal orders of imaginary quadratic fields may be more
secure than the multiplicative group of finite fields [23, 69]. The CL framework was first introduced
by the work of Castagnos and Laguillaumie [32]. This framework operates on a group where
there exists a subgroup with support for efficient discrete logarithm construction. Subsequent works
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[33, 29, 30, 87, 21] have refined the original framework. The framework has been used in various
applications over the years [33, 29, 30, 91, 45, 51, 86, 21, 58]. Meanwhile, class group cryptography
itself has been employed in numerous applications [89, 90, 63, 18, 31, 34, 60, 24, 7, 1, 43, 42, 8].

Broadly, the framework is defined by two functions - CLGen,CLSolve with the former outputting a
tuple of public parameters. The elements of this framework are the following:

• Input Parameters: κc is the computational security parameter, κs is a statistical security
parameter, a prime p such that p ą 2κc , and uniform randomness ρ that is used by the
CLGen algorithm and is made public.

• Groups: pG is a finite multiplicative abelian group, G is a cyclic subgroup of pG, F is a
subgroup of G, H “ txp, x P Gu

• Orders: F has order p, pG has order p ¨ ps, G has order p ¨ s such that s divides ps and
gcdpp, psq “ 1, gcdpp, sq “ 1, H has order s and therefore G “ FˆH .

• Generators: f is the generator of F, g is the generator of G, and h is the generator of H
with the property that g “ f ¨ h

• Upper Bound: Only an upper bound s̄ of ps (and s) is provided.
• Additional Properties: Only encodings of pG can be recognized as valid encodings and s, ps

are unknown.
• Distributions: D (resp. Dp) be a distribution over the set of integers such that the distri-

bution tgx : xÐ$ Du (resp. tgxp : xÐ$ Dpu) is at most distance 2´κs from the uniform
distribution over G (resp. H).

• Additional Group and its properties: pGp “

!

xp, x P pG
)

, pG factors as pGp ˆ F.4 Let sω be

the group exponent of pGp. Then, the order of any x P pGp divides sω.5

Remark 4. The motivations behind these additional distributions are as follows. One can efficiently
recognize valid encodings of elements in pG but not G. Therefore, a malicious adversary A can run our
constructions by inputting elements belonging to pGp (rather than in H). Unfortunately, this malicious
behavior cannot be detected which allows A to obtain information on the sampled exponents modulo
sω (the group exponent of pGp). By requiring the statistical closeness of the induced distribution to
uniform in the aforementioned groups allows flexibility in proofs. Note that the assumptions do
not depend on the choice of these two distributions. Further, the order s of H and group exponent
sω of pGp are unknown and the upper bound s̄ is used to instantiate the aforementioned distribution.
Specifically, looking ahead we will set DH to be the uniform distribution over the set of integers
rBs where B “ 2κs ¨ s̄. Using Lemma 8, we get that the distribution is less than 2´κs away from
uniform distribution in H . In our constructions we will set κs “ 40. We will make this sampling
more efficient for our later constructions. We refer the readers to Tucker [87, §3.1.3, §3.7] for more
discussions about this instantiation. Finally, as stated we will also set pD “ D and pDH “ DH .

We also have the following lemma from Castagnos, Imbert, and Laguillaumie [31] which defines
how to sample from a discrete Gaussian distribution.
Lemma 8. Let G be a cyclic group of order n, generated by g. Consider the random variable X
sampled uniformly from G; as such it satisfies PrrX “ hs “ 1

n for all h P G. Now consider the
random variable Y with values in G as follows: draw y from the discrete Gaussian distribution DZ,σ

with σ ě n
b

lnp2p1`1{ϵqq

π and set Y :“ gy . Then, it holds that:

∆pX,Y q ď 2ϵ

Remark 5. By definition, the distribution tgx : xÐ$ Du is statistically indistinguishable from
tgy : yÐ$ t0, . . . , p ¨ s´ 1uu. Therefore, it follows that tx mod p ¨ s : xÐ$ Du is statistically in-
distinguishable from tx : xÐ$ t0, . . . , p ¨ s´ 1uu. Similarly, tx mod s : xÐ$ Dpu is statistically
indistinguishable from tx : xÐ$ t0, . . . , s´ 1uu. Furthermore, sampling a value x corresponding to
D is statistically indistinguishable from the uniform distribution in t0, . . . , s´ 1u because s divides
p ¨ s.

4Recall that p and ps are co-prime.
5This follows from the property that the exponent of a finite Abelian group is the least common multiple of

its elements.
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Definition 10 (Class Group Framework). The framework is defined by two algorithms
pCLGen,CLSolveq such that:

• ppCL “ pp, κc, κs, s̄, f, h, pG,F.D,DH , pD, pDH , ρq Ð$ CLGenp1κc , 1κs , p; ρq

• The DL problem is easy in F, i.e., there exists a deterministic polynomial algorithm CLSolve
that solves the discrete logarithm problem in F:

Pr

«

x “ x1
ppCL “ Ð$ CLGenp1κc , 1κs , p; ρq
xÐ$ Z{pZ, X “ fx;
x1 Ð CLSolvepppCL, Xq

ff

“ 1

Definition 11 (Hard Subgroup Membership Assumption (HSMM) Assumption [33]). Let κ be a the
security parameter with prime p such that |p| ě κ. Let pCLGen,CLSolveq be the group generator
algorithms as defined in Definition 10, then the HSMM assumption requires that that HSMM problem be
hard in G even with access to the Solve algorithm. More formally, let D (resp. Dp) be a distribution
over the set of integers such that the distribution tgx : xÐ$ Du (resp. tgxp : xÐ$ Dpu) is at most
distance 2´κ from the uniform distribution over G (resp. H). Then, we say that the HSMM problem is
hard if for all PPT adversaries A, there exists a negligible function neglpκq such that:

Pr

»

—

—

–

b “ b1

ppCLÐ$ CLGenp1κc , 1κs , p; ρq
xÐ$ D, x1 Ð$ Dp

bÐ$ t0, 1u;Z0 “ gx;Z1 “ gx
1

p

b1 Ð$ ASolvepppCL,¨qpppCL, Zbq

fi

ffi

ffi

fl

ď
1

2
` neglpκq

When dealing with groups of known order, one can sample elements in a group G easily by merely
sampling exponents modulo the group order and then raising the generator of the group to that
exponent. Unfortunately, note that here neither the order of G (i.e., ps) nor that of H (i.e. s) is known.
Therefore, we instead use the knowledge of the upper-bound s̄ of s to instantiate the distributions D
and Dp respectively. This choice of choosing from the distributions D and Dp respectively allows for
flexibility of various proofs.

D Naive Construction of OPA

We present a naive construction that achieves our desired one-shot behavior. This construction is
built from Shamir’s Secret Sharing algorithm, as recalled in Construction 6. This shall serve as the
baseline construction.

• Setup: Simply runs the setup algorithm for the secret sharing algorithm SS

• Enc: Client i, with inputs xi secret shares the input, for each element in xi. In other words,
for i “ 1, . . . , L, do

!

x
pjq

i

)

jPrms
Ð$ SS.Sharepxi, t, r,mq

It sets ki :“ H, cti :“ H and aux
pjq

i :“
!

x
pjq

i

)L

i“1

• C-Combine: Committee member j, simply adds up all the shares it has received, element-
by-element.

AUXpjq
řn

i“1 aux
pjq

i

• S-Combine: Upon receiving from at least r committee members, it runs SS.Reconstructp
!

AUXpjq
)

jPS
q, element-by-element, to get the sum of vectors.

• Aggregate: The previous algorithm already gives the sum.

This algorithm has the following communication:

• Client i to Committee: L field elements per committee member for a total of mL field
elements.

• Client i to Server: 0
• Committee j to Server: L field elements.
• Total Sent/Received per Client: mL field elements.
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Protocol Naive Construction of OPA

One-Time System Parameters Generation

Run pp Ð$ SS.Setupp1κ, 1t, 1r, 1mq

Output Committee of size m.

Data Encryption Phase by Client i in iteration ℓ

Let xi,ℓ be the input of Client i in iteration ℓ.
for in “ 1, . . . , L do

cti,ℓ “ K,
!

auxpjq

i,ℓ rins

)

jPrms
Ð SS.Sharepxi,ℓrins, t,m, ℓq

Send cti,ℓ to the Server
Send auxpjq

i,ℓ to committee member j for each j P rms.

Set Identification Phase by Committee Member j in iteration ℓ

Let
!

auxpjq

i,ℓ

)

be the inputs received by Committee member j from Clients i P Cpjq

Send Cpjq to server // This can be a bit string of length n where i-th bit is 1 if i P Cpjq

Set Intersection Phase by Server in iteration ℓ

Let
!

Cpjq
)

jPS
be the client sets received from committee members j P S.

assert |S| ě r

Compute C :“ XjPSCpjq // This is bit-wise AND operation of the r bit strings.
Send C to committee members in S

Data Combination Phase by Committee Member j in iteration ℓ

Let
!

auxpjq

i,ℓ

)

be the inputs received by Committee member j from Clients i P C
for in “ 1, . . . , L do

Compute AUXpjq
rins Ð

ř

iPC auxpjq

i,ℓ rins

Send AUXpjq to server

Data Aggregation Phase by Server in iteration ℓ

for in “ 1, . . . , L do
Let

!

AUXpjq

ℓ rins

)

jPS
be the inputs received by the server with |S| ě t.

Run Xℓrins Ð SS.Reconstructp
!

AUXpjq

ℓ rins

)

jPS
q

Figure 7: Our Naive Construction of OPA using just a secret sharing scheme.

• Total Sent/Received by Server: mL field elements.
• Total Sent/Received per Committee Member: L` nL field elements.

Remark 6. It is important to make a few observations. This solution resembles a multi-server
solution where the clients simply secret-share the inputs with each server, and the servers collaborate
to recover the sum. However, this observation also implies that the role of the committee members,
while running a deterministic procedure, is proportional to the length of the input. This is undesirable
as these committee members are simply other clients and such a heavy computation is undesirable.

It is also to be noted that even a simple solution such as using a one-time pad to mask the input, and
then secret share the mask suffers from the same bottleneck as the mask has to be at least the length
of the input.

Computation Performance of OPALWR vs Naive Solution. We now list the computation costs that
were measured. Note that these experiments were done for L “ 1. The motivation behind these
experiments was to study how the two constructions fared across the computation time incurred by
the Naive Solution and OPALWR, without any optimizations including packed secret sharing.

Our experiments indicate that, in addition to the significant savings in communication cost, OPALWR
outperforms the Naive Solution when it comes to the performance of the committee. While the
the role of the committee is the same in both constructions, the cost of the committee for OPALWR
does not scale linearly with the input, while the naive solution incurs a linear growth cost. Further,
note that currently, OPALWR requires the committee to add shares of 211 elements. It is clear when
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Figure 8: Comparison of Running Times between OPALWR and the Naive Solution. Values that scale
linearly with n are marked with a slash on the entries.

aggregating vectors of lengthą 211, OPALWR will outperform the naive solution. Meanwhile, it seems
clear that OPALWR’s client cost which involves secret sharing the seed and then masking a vector of
length L will be slower than simply secret sharing a vector of length L. Similarly, the cost of simply
reconstructing the summed up vectors of length for the server in the naive solution will be better than
the multi-step process of OPALWR which includes reconstructing the seed, then evaluating the said
seed, before finally unmasking.

For completeness, we plot the server and client costs comparison in Figure 8. Note that we have
scaled the costs, in the case of the naive solution, by 100 (i.e., if the actual cost was 1 unit, we plotted
it as 100 units).

E Constructions in CL Framework

Construction 10 (PRF in CL Framework). Let pCLGen,CLSolveq be the class group framework as
defined in Definition 10. Then, let ppCLÐ$ CLGenp1κc , 1κsq. Further, let H : X Ñ H, H1 : X Ñ K
be a hash function. Then, consider the following definition of K “ DH ,X “ t0, 1u˚,Y “ H,
FCLpk, xq “ Hpxqk¨H1

px,1q.

Remark 7. Note that the order of H is unknown. Therefore, one has to rely on DH to hash into
H. Most recently, [79] showed how to hash into groups of unknown order to ensure that discrete
logarithm is unknown. However, for our applications, this is not a concern. Indeed, one can simply
compute the hash function as hH1

pxq where H 1pxq hashed in DH .

Theorem 9. Construction 10 is a secure PRF where H is modeled as a random oracle under the
HSMM assumption.

Proof. We denote the challenger by B. Let Sj be the event that the adversary wins in Hybridj for
each j P t0, . . . , 2u. Let qe (resp. qh) denote the number of evaluation queries (resp. hash oracle
queries) that the adversary makes. We use an analysis similar to the technique by Coron [39].

Hybrid0pκq: Corresponds to the security game as defined for the security of PRF. It follows that the
advantage of the adversary is

Adv0 “ 2 ¨ |PrrS0s ´ 1{2s “ AdvPRFA

Hybrid1pκq: This game is identical to Hybrid1 with the following difference. The challenger tosses
biased coin δt for each random oracle query Hptq. The biasing of the coin is as follows:
takes a value 1 with probability 1

qe`1 and 0 with probability qe
qe`1 . Then, one can consider

the following event E: that the adversary makes a query to the random oracle with xi as
an input where xi was one of the evaluation inputs and for this choice we have that δt was
flipped to 0.
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If E happens, the challenger halts and declares failure. Then, we have that:

Prr␣Es “

ˆ

qe
qe ` 1

˙qe

ě
1

epqe ` 1q

where e is the Napier’s constant. Finally, we get that:

PrrS1s “ PrrS0s ¨ Prr␣Es ě
PrrS0s

epqe ` 1q

Hybrid2pκq: This game is similar to Hybrid1 with the following difference: we modify the random
oracle outputs.

• If δt “ 0, the challenger samples wtÐ$ DH and sets Hptq “ hwt

• If δt “ 1, the challenger samples wtÐ$ DH , utÐ$ Z{MZ and sets Hptq “ hwt ¨ fut

Note that, under the HSM assumption, an adversary cannot distinguish between the two
hybrids. Therefore, we get:

|PrrS2s ´ PrrS1s| ď ϵHSMM

where ϵHSMM is the advantage that an adversary has in the HSMM game. Note that Hybrid2
corresponds to the case where the outputs are all random elements in G. Therefore, the
inputs are sufficiently masked and leak no information about the key. Therefore, PrrS2s “ 0
Then,

AdvPRFA ď pe ¨ pqe ` 1q ¨ ϵHSMM

Remark 8. Note that the above scheme is simply an adaptation of the famous DDH-based construc-
tion of a key-homomorphic PRF that was shown to be secure by Naor et al. [70]. It is easy to verify
that our construction is also key homomorphic as Hpxqpk1`k2q “ Hpxqk1 ¨Hpxqk2 .

E.1 Distributed PRF in CL Framework

We build our construction of Distributed PRF from the Linear Secret Sharing Scheme LISS :“
pShare,GetCoeff,Reconstructq with ppSS denoting the public parameters of the LISS scheme. We
specifically employ the Shamir Secret Sharing scheme over the Integers, as defined in [21].

Construction 11 (Distributed PRF in CL Framework). A pr,mq-Distributed PRF is a tuple of PPT
algorithms DPRF :“ pGen,Share,Eval,P-Eval,Combineq with the algorithms as defined in Figure 9.
For simplicity, in the construction below we will set the corruption threshold t “ r ´ 1. Though, the
construction also holds for a lower t.

Theorem 10. In the Random Oracle Model, if Construction 10 is a secure pseudorandom function if
Integer Secret Sharing is statistically private, then Construction 11 is pseudorandom in the static
corruptions setting.

Correctness. For a polynomial f P ZrXs, every fpiq leaks information about the secret s mod i
leading to a choice of polynomial f such that fp0q “ ∆ ¨ s. For our use case, the secret is the PRF key
k. Let us consider a set S “ ti1, . . . , iru of indices and corresponding evaluations of the polynomial
f at i1, . . . , ir giving us key shares: kpi1q, . . . , kpirq. To begin with, one can compute the Lagrange
coefficients corresponding to the set S as: @ i P S, λipXq :“

ś

jPSztiu
xj´X
xj´xi

. This implies that the

resulting polynomial is fpXq :“
řr

j“1 λij pXq ¨ k
pijq.

However, λipXq requires one to perform a division xj ´ xi which is undefined as H hashes to G
whose order is unknown. To avoid this issue, a standard technique is to instead compute coefficient
ΛipXq :“ ∆ ¨ λipxq. Thereby, the resulting polynomial that is reconstructed if f 1pXq “ ∆ ¨ fpXq “
řr

j“1 Λij pXq ¨ k
pijq. Consequently,

39



Protocol Distributed PRF

Genp1κ, 1r, 1mq

Parse κ “ pκs, κcq

Run ppCL Ð$ CLGenp1κc , 1κsq

Set ℓs :“ |M|

Sample H : X Ñ H
return ppPRF :“ pppCL, LISS.ppSS, Hq

Sharepk, r,mq

Run kp1q, . . . , kpmq
Ð$ LISS.Sharepk, r,mq

return kp1q, . . . , kpmq

Evalpk, xq

Compute Y “ Hpxq
∆3¨k

return Y

P-Evalpkpiq, xq

Compute yi “ Hpxq
∆¨kpiq

return yi

CombineptyiuiPSq

Run ΛiPS “ LISS.GetCoeffpSq

Compute Y 1
“

ś

iPS yΛi
i

return Y 1

Figure 9: Construction of Distributed PRF based on the LISS :“ pShare,GetCoeff,Reconstructq
scheme of [21], with ppSS denoting the public parameters of the LISS scheme. Recall that the offset
∆ :“ m! where m is the number of shares generated.

Hpxq∆
3

¨k “ Hpxq∆¨f 1
p0q “ Hpxq∆¨

řr
j“1 Λij

p0q¨kpijq

“

r
ź

j“1

´

Hpxq∆¨kpijq
¯Λij

p0q

“

r
ź

j“1

´

P-Evalpkpijq, xq
¯Λij

p0q

Thus, our protocol is correct.

Pseudrandomness. Next, we consider the pseudorandomness property of our construction.

Theorem 10. In the Random Oracle Model, if Construction 10 is a secure pseudorandom function if
Integer Secret Sharing is statistically private, then Construction 11 is pseudorandom in the static
corruptions setting.

Boneh et al. [19] showed that from any Key Homomorphic PRF (which Construction 10), one can
build a Distributed PRF. The proof of the following theorem follows the template of this scheme with
certain important adaptations as our secret sharing scheme is over integers. The proof technique is to
show that if there exists an adversary A that can break the DPRF security, one can then use it to build
an adversary B to break the pseudorandomness of our original PRF, as defined in Construction 10.
The idea behind the proof is for B, upon receiving choice of r ´ 1 corruptions as indices i1, . . . , ir´1,
to then choose a random index ir and implicitly set kpirq to be the PRF key chosen by its challenger.
Therefore, the B now has knowledge of r indices, with which it can sample the Lagrange coefficients
as before:

for j “ 1, . . . , r do
Λij pXq :“

śr
ζPt1,...,ruzj

iζ´X
iζ´ij

¨ p∆q

Now, B with knowledge of the keys for indices i1, . . . , ir´1 along with access to Oracle needs to
simulate valid responses to P-Eval queries for an unknown index. Call this index i˚. Then, we have:

P-Evalpkpi˚
q, xq : “ Hpxq∆¨kpi˚q

“ Hpxq
řr

j“1 Λij
pi˚

q¨kpijq

“ Hpxq
řr´1

i“1 Λij
pi˚

q¨kpijq

¨

´

Hpxqk
pirq

¯Λir pi˚
q

The last term is simulated using B’s own oracle access.
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Proof. Let A be a PPT attacker against the pseudorandomness property of DPRF, having advantage
ϵ.

A first chooses r ´ 1 indices K “ ti1, . . . , ir´1u where each index is a subset of t1, . . . ,mu. A
receives the shares of the keys kpi1q “ fpi1q, . . . , k

pir´1q “ fpir´1q (for unknown polynomial f
of degree r such that fp0q “ k ¨ ∆ with ∆ :“ ∆. Further, A has access to OEvalpi, xq receiving
P-Evalpki, xq ins response. Additionally, A expects to have oracle access to the random oracle H.

Using this attacker A, we now define a PPT attacker B which will break the pseudorandomness
property of Construction 10. Note that B is given access to the oracle that either outputs the real
evaluation of the PRF on key k˚ or a random value. Additionally, B expects to have oracle access to
the random oracle H.

• Setup: B does the following during Setup.

– Receive set S “ ti1, . . . , ir´1u from A.
– Next B generates the key shares and public key as follows:

* Sample kpi1q, . . . , kpir´1q P Z.
* B picks an index ir at random and implicitly sets the PRF key chosen by its

challenger as kpitq.
* Immediately, given the r indices, one can construct the secret sharing polynomial
f P ZrXs as described earlier, but instead recreating the polynomial f 1pXq using
the coefficients Λij pXq for j “ 1, . . . , r with kpitq being unknown to B and using
its challenger to simulate a response.

* B gives kpi1q, . . . , kpir´1q to A.

• Queries to H: B merely responds to all queries from A to H by using its oracle access to H.

• Queries to Partial Evaluation: B receives as query input, some choice of key index
specified by i˚ and input xj for i “ 1, . . . , Q. In response B does the following:

– Forward xj to its challenger. In response it implicitly receives P-Evalpkpirq, xjq, but
off by a factor of ∆ in the exponent. Call this hj,r.

– Compute: hj,i˚ “ Hpxjq
řr´1

i“1 Λij
pi˚

q¨kpijq

¨ phj,rq
Λir pi˚

q where B uses its own access to
hash oracle to get Hpxjq.

– It returns hj,i˚ to A.

• Challenge Query: On receiving the challenge input x˚, B does the following:

– Ensure that it is a valid input, i.e., there is no partial evaluation queries on x˚ at any
unknown index point.

– If not, B forwards to its challenger x˚. In response it implicitly receives
P-Evalpkpirq, x˚q, but off by a factor of ∆ in the exponent. Call this h˚.

– It also uses its oracle access to H to receive h “ Hpx˚q.

– It finally computes y “ Hpxjq
∆2

¨
řr´1

i“1 Λij
p0q¨kpijq

¨ ph˚q∆
2

¨Λir p0q and outputs y to A

• Finish: It forwards A’s guess as its own guess.

Analysis of the Reduction. Note that for the case when b “ 0, A expects to receive Hpx˚q∆
3

¨k

where k is defined at the point 0. So, we get:

Hpx˚q∆
3

¨kp0q

“ Hpx˚q∆
2

¨f 1
p0q “ Hpxq∆

2 řr
j“1 Λij

p0q¨kpijq

“ Hpxq∆
2 řr´1

i“1 Λij
p0q¨kpijq

¨

´

Hpxqk
pirq

¯∆2Λir p0q

This shows that the returned value y is consistent when b “ 0. Meanwhile, when b “ 1, h˚ is a
random element in the group and then y is a truly random value which means that B has produced a
valid random output for A. Similarly, when b “ 0, every response to partial evaluation is also done
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Protocol OPA1

System Parameters Generation

Run pp Ð$ CL.Genp1κ, 1t, 1r, 1mq

Server Initiating Iteration ℓ

Select n clients Cℓ.
Select m “ tlog2 nu-sized committee
Broadcast to n clients the committee.

Data Encryption Phase by Client i in iteration ℓ

Input: xi,ℓ “ px
p1q

i,ℓ , . . . , x
pLq

i,ℓ q

Sample ki,1, . . . , ki,L Ð$ DPRF.K
for in “ 1, . . . , L do

h
pinq

i,ℓ “ DPRF.Evalpki,in, ℓq

Compute ctpinq

i,ℓ “ f
x

pinq

i,ℓ ¨ h
pinq

i,ℓ

Compute
!

kpjq

i,in

)

jPrms
Ð$ DPRF.Sharepki,in, t, r,mq

For j P rms, set
!

auxpj,inq

i,ℓ

)

“ DPRF.P-Evalpkpjq

i,in, ℓ

Send ctp1q

i,ℓ , . . . , ct
pLq

i,ℓ to the Server

Send auxpj,1q

i,ℓ , . . . , auxpj,Lq

i,ℓ to committee member j @j P rms, via Server appropriately encrypted

Set Intersection Phase by Server in iteration ℓ

For j P rms, let Cpjq :“
!

i : c
pjq

i,ℓ was received by server
)

Let Cp0q :“ ti : cti,ℓwas received by the serveru
Compute C :“ XjPSYt0uCpjq // This is bit-wise AND operation of the r ` 1 bit strings.
assert |C| ě p1 ´ δqn

Send C,
!

c
pjq

i,ℓ

)

iPC
for every j in rms

Data Combination Phase by Committee Member j in iteration ℓ

Input:
!

auxpj,1q

i,ℓ , . . . , auxpj,Lq

i,ℓ

)

iPC
for in “ 1, . . . , L do

pAUXpj,inq
q Ð biPCpauxpj,inq

i,ℓ q

Send AUXpj,1q, . . . ,AUXpj,Lq to Server

Data Aggregation Phase by Server in iteration ℓ

Input:
"

!

AUXpj,inq

ℓ

)

jPS
,
!

ctpinq

i,ℓ

)

iPC

*

inPrLs

, |S| ě t.

for in “ 1, . . . , L do
Run AUXpinq

ℓ Ð DPRF.Combinep

!

AUXpj,inq

ℓ

)

jPS
q

Run X
pinq

ℓ Ð CLSolveppp, pAUXpinq

ℓ q
´1

¨
ś

iPC ctpinq

i,ℓ q

return
!

X
pinq

ℓ

)

inPrLs

Figure 10: In this figure, we present the modified steps for OPA1. For simplicity, we present only the
semi-honest construction. For malicious security, we augment similarly with a second mask.

consistently by correctness of the underlying secret sharing scheme. Meanwhile, when b “ 1, we can
rely on the statistical privacy preserving guarantee of the underlying secret sharing scheme to argue
that the difference that the adversary can notice is statistically negligible. This concludes the proof
where B can only succeed with advantage ϵ.

E.2 Construction of One-shot Private Aggregation without Leakage Simulation in CL
Framework

Construction 12. We present the construction of One-shot Private Aggregation without Leakage
Simulation, in the CL Framework in Figure 10.

F Construction from LWR

F.1 Distributed PRF from LWR

Let us revisit Construction 14. First, observe that the key space is from Zρ
q which implies that the

order of K is known. Further, the computation occurs over a group whose structure and order is
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Protocol Distributed PRF from Learning with Rounding Assumption

Genp1κ, 1t, 1mq

Parse κ “ pρq

Run ppLWR “ pρ, q, pq Ð$ LWRGenp1ρq

Set ℓs :“ |q|

Set u such that tp{uu ą p∆ ` 1qt∆
Set v such that tu{vu ą ∆t
Sample H : X Ñ Zρ

q

return ppPRF :“ pppLWR, ppSS, H, uq

Sharepk P Zρ
q , t,mq

for i “ 1, . . . , ρ do
kp1q

i , . . . , kpmq

i Ð$ SS.SecretSharepki, t,mq

return
!

kpjq
“ pkpjq

1 , . . . , kpjq
ρ

)

jPrms

Evalpk, xq

Compute Y “

Y

∆
Y

∆ txHpxq, kyup

]

u

]

v
return Y

P-Evalpkpiq, xq

Compute yi “

Z

∆
Y

xHpxq, kpiq
y

]

p

^

u
return yi

CombineptyiuiPSq

Run λiPS “ SS.CoefFpSq

Compute Y 1
“

X
ř

iPS ∆λi ¨ yi
\

v

return Y 1

Figure 11: Construction of Distributed PRF based on the Secret Sharing scheme of Construction 6
where SS “ pSecretShare,Coeffq with ppSS denoting the public parameters of the secret sharing
scheme.

known. This is a departure from the construction based on the HSMM assumption. Consequently,
by assuming that both p and q are primes, one can avoid integer secret sharing but instead rely on
traditional Shamir’s Secret Sharing over a field, which we defined earlier (see Construction 6).

We saw earlier that Construction 14 was only almost key homomorphic, i.e.:

F pk1 ` k2, xq “ F pk1, xq ` F pk2, xq ` e

where e P t0, 1u. It also follows that:

T ¨ F pk1, xq “ F pT ¨ k0, xq ´ eT

where eT P 0, . . . , T . This becomes a cause for concern as, in the threshold construction using
the Shamir Secret Sharing over the field as shown in Construction 6, one often recombines by
multiplying with a Lagrange coefficient λij . Unfortunately, multiplying the result by λij implies
that the error term eλij

P t0, . . . , iju. The requirement is that this error term should not become
“too large”. However, interpreting Lagrange coefficients as elements in Zp results in the error term
failing to be low-norm leading to error propagation. To mitigate this, we use techniques quite similar
to Construction 8 by essentially clearing the denominator by multiplying with ∆ :“ m!. This is a
technique made popular by the work of Shoup [82] and later used in several other works including in
the context of lattice-based cryptography by Agrawal et al. [4] and later to construct a distributed
key homomorphic PRF from any almost key homomorphic PRF by Boneh et al. [19]. 6 Then, the
combine algorithm will simply multiply all partial evaluations with ∆ as well.

Construction 13 (Distributed Almost Key Homomorphic PRF from LWR). A pt,mq-Distributed PRF
is a tuple of PPT algorithms DPRF :“ pGen,Share,Eval,P-Eval,Combineq with the algorithms as
defined in Figure 11.

Issues with the Construction from Boneh et al. [19, §7.1.1]. As remarked earlier, their generic
construction suffers from issues stemming from their security reduction. Specifically, their security
reduction proceeds similarly to the proof of Theorem 10 and requires B to answer honest evaluation
queries for key indices for which it does not know the actual key share. Their explanation suggests
that we again use the “clearing out the denominator” trick by multiplying with ∆. However, the issue
is that the resulting response will be of the form ∆ ¨ F pki˚ , xq for i˚, unknown to B. Consequently,
one has to change the partial evaluation response to also include this offset to ensure the correctness
of reduction. This would imply that the Combine algorithm will multiply with ∆ again, which would
thus result in the actual Eval algorithm having an offset of ∆2. Furthermore, the partial evaluation
algorithm should also have to round down to the elements in r0, u´ 1s for the same reason that the
Combine algorithm required this fix.

6However, their generic construction is incorrect, owing to issues in their security proof which is not entirely
sketched out. We fix the issues in our construction.
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Correctness.
Y

∆ txHpxq,kqyup
]

u
“

—

—

—

–∆

[

ρ
ÿ

z“1

Hpx, zq ¨ kz

_

p

ffi

ffi

ffi

fl

u

“

—

—

—

–∆

—

—

—

–

ρ
ÿ

z“1

Hpx, zq
ÿ

ijPti1,...,itu

λijs
pijq
z

ffi

ffi

ffi

fl

p

ffi

ffi

ffi
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–∆
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ÿ
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ρ
ÿ
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z

ffi

ffi

ffi

fl

p

ffi

ffi

ffi

fl
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–∆
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—
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ÿ

ijPti1,...,itu

xHpxq, λij kpijq
y

ffi

ffi

ffi

fl

p

ffi

ffi

ffi

fl

u

“

—

—

—

–∆

¨

˝et `
ÿ

ijPti1,...,itu

Y

λij xHpxq,kpijq
y

]

p

˛

‚

ffi

ffi

ffi

fl

u

“

—

—

—

–∆

¨

˝et `
ÿ

ijPti1,...,itu

eλij
` λij

Y

xHpxq,kpijq
y

]

p

˛

‚

ffi

ffi

ffi

fl

u

“

—

—

—

–∆

¨

˝et `
ÿ

ijPti1,...,itu

eλij

˛

‚`
ÿ

ijPti1,...,itu

∆ ¨ λij

Y

xHpxq,kpijq
y

]

p

ffi

ffi

ffi

fl

u

“

—

—

—

–

ÿ

ijPti1,...,itu

∆ ¨ λij

Y

xHpxq,kpijq
y

]

p

ffi

ffi

ffi

fl

u

The last step follows provided the error term is small. Recall that et P t0, . . . , tu and eλij
P

␣

0, . . . , λij

(

. Now observe that we multiply with ∆ and λij has a maximum value ∆. Therefore,
∆ ¨ eλij ă ∆2. Therefore, the size of the error term is ď t ¨∆ ` t ¨∆2. Therefore, provided u is
chosen such that tp{uu ą p∆` 1q ¨ t ¨∆, then the last step is correct. Now, we have:

Y

∆ txHpxq,kqyup
]

u
“

—

—

—

–

ÿ

ijPti1,...,itu

∆ ¨ λij

Y

xHpxq,kpijq
y

]

p

ffi

ffi

ffi

fl

u

Therefore,

Y

∆
Y

∆ txHpxq,kqyup
]

u

]

v
“

—

—

—

–∆

—

—

—

–

ÿ

ijPti1,...,itu

∆ ¨ λij

Y

xHpxq,kpijq
y

]

p

ffi

ffi

ffi

fl

u

ffi

ffi

ffi

fl

v

“

—

—

—

–∆

¨

˝et `
ÿ

ijPti1,...,itu

λij

Z

∆ ¨
Y

xHpxq,kpijq
y

]

p

^

u

˛

‚

ffi

ffi

ffi

fl

v

“

—

—

—

–∆

¨

˝et `
ÿ

ijPti1,...,itu

λijP-Evalpk
ij , xq

˛

‚

ffi

ffi

ffi

fl

v

“

—

—

—

–

ÿ

ijPti1,...,itu

λij ¨∆ ¨ P-Evalpk
pijq, xq

ffi

ffi

ffi

fl

v

“ Combinep
!

P-Evalpkpijq, xqijPti1,...,itu

)

q

provided tu{vu ą t∆.
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Pseudorandomness. The proof of pseudorandomness follows the outline of the proof of Theorem 10
but with some important differences. First, we do not rely on integer secret sharing but rather plain
secret sharing over the field. Therefore, the Lagrange coefficients correspond to λij . Or more
formally, to respond to a partial evaluation query at point xj with target key index i˚, the adversary B
does the following:

• Use its oracle to get partial evaluation on xj at it, which we call as hj,t.
• Then, use Lagrange coefficients but with suitably multiplying with ∆ to compute the correct

distribution by rounding down to u. The choice of u guarantees that the response is correct.

For challenge query, it simply does two rounding down, first to u and then to v.

Verification of Almost Key Homomorphism. Let k1,k2 be two keys that are shared. Now, let the
key shares received by some party ij be kpijq

1 and kpijq

2 . Then,

P-Evalpkpijq

1 , xq ` P-Evalpkpijq

2 , xq “

Z

∆
Y

xHpxq,kpijq

1 y

]

p

^

u

`

Z

∆
Y

xHpxq,kpijq

2 y

]

p

^

u

“

Z

∆
Y

xHpxq,kpijq

1 y

]

p
`∆

Y

xHpxq,kpijq

2 y

]

p

^

u

´ e1

“

Z

∆
Y

xHpxq,kpijq

1 y ` xHpxq,kpijq

2 y

]

p

^

u

´ 2e1

“ P-Evalpkpijq

1 ` kpijq

2 , xq ´ 2e1

It follows that for n such keys:
n
ÿ

i“1

P-Evalpkpijq

i , xq “ P-Evalp
n
ÿ

i“1

kpijq

i , xq ´ n ¨ e1

This shows that the P-Eval is almost key-homomorphic. Consequently, one can verify that the whole
Eval procedure is almost key homomorphic for the appropriate error function. To do this, recall that
from correctness of our algorithm:

Sharepk,m, tq “
!

kpiq
)

iPrms
,Combinep

!

Evalpkpijq, xq
)

iPti1,...,itu
“ Evalpk, xq

In other words, for k1,k2 P K, Sharepk1,m, tq “
!

kpiq
1

)

iPrms
and Sharepk2,m, tq “

!

kpiq
2

)

iPrms
,

we will have for i P rms, Evalpkpiq
1 , xq,Evalpkpiq

2 , xq “ Evalpkpiq
1 ` kpiq

2 , xq ´ 2 ¨ e1.

F.2 One-shot Private Aggregation Construction based on LWR Assumption

We build OPA based on the LWR Assumption, building it based on the Key Homomorphic, Distributed
PRF as presented in Construction 14. However, our construction is largely different from the
template followed to build OPA from the HSMM assumption. This is primarily because of the growth
in error when combining partial evaluations. Specifically, will get that P-Evalp

řn
i“1 kpjq

i , xq “
řn

i“1 P-Evalpk
pj
i , xq ` e where e P t0, . . . , n´ 1u where n is the number of clients participating

for that label. This would require us to round down to a new value u1 such that tu{u1u ą n ´ 1.
Therefore, while we still employ the underlying functions of the distributed, key-homomorphic PRF
based on LWR, we have to open up the generic reduction. For simplicity, we detail the construction
for L “ 1. Then, these are the differences:

• As done fore Construction 1, the input is encoded as xi ¨ n` 1.
• Specifically, the client’s share to the committee will only be the first level of the evaluation,

i.e., rounded down to p.
• Then, committee member j will then add the shares up, multiply with the offset, and then

round down to u. We will show that provided tp{uu ą ∆ ¨ n, this is consistent with
P-Evalp

řn
i“1 kpjq

i , xq.
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• The decoding algorithm is also similar to the one from Construction 1.

Recall that DPRF correctness requires that tp{uu ą t ¨∆ ` t ¨∆2, and so one just needs tp{uu ą

maxpt ¨∆` t ¨∆2, n ¨∆q. Then, one can rely on the correctness of DPRF as shown below to argue
that when the server runs DPRF.Combine, the output is Evalp

řn
i“1 ki, xq.

Correctness. We showed how the output of the server’s invocation of DPRF.Combine is
Evalp

řn
i“1 ki, xq. Now, let us look at the remaining steps:

Xℓ “

n
ÿ

i“1

cti,ℓ ´ AUXℓ “

n
ÿ

i“1

pxi,ℓ ˚ n` 1q ` Evalpki, ℓq ´ Evalp
n
ÿ

i“1

ki, ℓq mod v

“ n ¨
n
ÿ

i“1

xi,ℓ ` n`
n
ÿ

i“1

Evalpki, ℓq ´ Evalp
n
ÿ

i“1

ki, ℓq mod v

“ n ¨
n
ÿ

i“1

xi,ℓ ` n` Evalp
n
ÿ

i“1

ki, ℓq ´ Evalp
n
ÿ

i“1

ki, ℓq ´ en´1 mod v

“ n ¨
n
ÿ

i“1

xi,ℓ ` n´ en´1 mod v

“ n ¨
n
ÿ

i“1

xi,ℓ ` n´ en´1

For the last step to hold, we need that

0 ď n ¨
n
ÿ

i“1

xi,ℓ ` n´ en´1 ă v

en´1 the small value is 0 and the largest value is n´ 1 which requires that
řn

i“1 xi,ℓ ă pv ´ nq{n.
Note that we already require tp{uu ą n∆, tu{vu ą t∆ ùñ tp{vu ą nt∆2. In other words,
ř

xi ă
p

n2t∆2 . Finally, X 1
ℓ “ n ¨

řn
i“1 xi,ℓ ` n and that completes the remaining steps.

G Constructions of Leakage Resilient Key-Homomorphic Pseudorandom
Functions

G.1 Construction from LWR Assumption

We also have the construction from Boneh et al. [19] of an almost Key Homomorphic PRF from
LWR in the Random Oracle model which was later formally proved secure by Ernst and Koch [48]
with γ “ 1.
Construction 14 (Key Homomorphic PRF from LWR). Let H : X Ñ Zρ

q . Then, define the efficiently
computable function FLWR : Zρ

q ˆ X Ñ Zp as txHpxq,kyup. FLWR is an almost key homomorphic PRF
with γ “ 1.
Construction 15 (Length Extended Key-Homomorphic from LWR). Let FLWR be the function as
defined in Construction 14. Then, consider FL

LWR :“ pFLWRpk, px, 1qq, . . . FLWRpk, px, Lqqq.

It is easy to see that Construction 15 is a secure pseudorandom function. An adversary that can break
the security of Construction 15 can be used to break the security of Construction 14.
Theorem 11 (Leakage Resilience of Construction 15). Let PRF be the PRF defined in Construction 15.
Recall that PRF.K “ Zρ

q . Then, it is leakage resilient in the following sense:

tPRFpk, xq, pk` rq mod q : k, rÐ$ Ku «c tY, pk` rq mod q : Y Ð$ Y, k, rÐ$ Ku

Proof. The proof proceeds through a sequence of hybrids.

Hybrid0pκq: The left distribution is provided to the adversary. In other words, the adversary gets:

tPRFpk, xq, pk` rq mod q : k, rÐ$ Ku
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Hybrid1pκq: In this hybrid, we replace pk` rq mod q with a uniformly random value k1 Ð$ K.
␣

PRFpk, xq, k1 : k, k1 Ð$ K
(

Note that pk` rq mod q and k1 are identically distributed. Therefore, the Hybrid0,Hybrid1
are identically distributed.

Hybrid2pκq: In this hybrid, we will replace the PRF computation with a random value from the
range.

␣

Y , k1 : Y Ð$ Y, k1 Ð$ K
(

Under the security of the PRF, we get that Hybrid1,Hybrid2 are computationally indistin-
guishable.

Hybrid3pκq: We replace k1 with pk` rq mod q.

tY, pk` rq mod q : Y Ð$ Y, k, rÐ$ Ku

As argued before Hybrid2,Hybrid3 are identically distributed.

Note that Hybrid3 is the right distribution from the theorem statement. This completes the proof.

G.2 Learning with Errors Assumption

Construction 16 (Key Homomorphic PRF from LWE). Let HA : X Ñ ZLˆλ
q . Then, define the

efficiently computable function FLWE : pZλ
q ˆ χLq ˆ X Ñ ZL

q as FLWEppk, eq, xq :“ HApxqk ` e.
FLWE is an almost key homomorphic PRF.
Remark 9. We note that it has been shown that one can also sample x from the same distribution as
e. This is known as the short-secret LWE assumption and was employed in the encryption scheme
of Lyubashevsky et al. [66]. An immediate consequence of this assumption is that one can set A’s
dimension m to be much smaller than what is required for the LWE assumption.

Similar to the LWR construction, we need to show that the PRF based on LWE assumption is also
leakage resilient. Unfortunately, a similar proof technique does not work because the construction
also suffers from leakage on the error vector which are usually Gaussian secrets. Instead, we rely on
the following assumption:

H Deferred Proofs

Theorem 4 (Leakage Resilience of Construction 4). Let PRGLWR be the PRG defined in Construction 4.
Then, it is leakage resilient in the following sense:
␣

PRGLWRpsdq mod p, sd` sd1 mod q : sd, sd1
Ð$ Zn1

q

(

«c

␣

y, sd` sd1 mod q : yÐ$ ZL
p , sd, sd

1
Ð$ Zn1

q

(

Proof. The proof proceeds through a sequence of hybrids.

Hybrid0pκq: The left distribution is provided to the adversary. In other words, the adversary gets:
␣

PRGLWRpsdq mod p, sd` sd1 mod q : sd, sd1
Ð$ Zn1

q

(

Hybrid1pκq: In this hybrid, we replace sd` sd1 mod q with a uniformly random value sd2
Ð$ Zn1

q .
␣

PRGLWRpsdq mod p, sd2 : sd, sd2
Ð$ Zn1

q

(

Note that psd ` sd1
q mod q and sd2 are identically distributed. Let us assume that there

exists a leakage function oracle L that can be queried with an input sd, for which it either
outputs sd ` sd1 mod q for a randomly sampled sd1

Ð$ Zn1
q or outputs s1 Ð$ Zn1

q . If one
could distinguish between hybrids Hybrid0,Hybrid1, then one could distinguish between
the outputs of the leakage oracle, but the outputs are identically distributed. Therefore, the
Hybrid0,Hybrid1 are identically distributed. Therefore, the Hybrid0,Hybrid1 are identi-
cally distributed.
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Hybrid2pκq: In this hybrid, we will replace the PRG computation with a random value from the
range.

␣

y, sd2 : yÐ$ ZL
p , sd

2
Ð$ Zn1

q

(

Under the security of the PRG, we get that Hybrid1,Hybrid2 are computationally indistin-
guishable.

Hybrid3pκq: We replace sd2 with psd` sd1
q mod q.

␣

y, psd` sd1
q mod q : yÐ$ ZL

p , sd, sd
2
Ð$ Zn1

q

(

As argued before Hybrid2,Hybrid3 are identically distributed.

Note that Hybrid3 is the right distribution from the theorem statement. This completes the proof.

Theorem 1. Let κs and κc be the statistical and computational security parameters. Let L be the
input dimension and n be the number of clients, that are polypκcq. Let δ be the dropout threshold
and η be the corruption threshold such that δ ` η ă 1. Then, there exists an efficient simulator Sim
such that for all K Ă rns such that |K| ď ηn, inputs X “ txi,ℓuiPnzK, and for all adversaries A
against Construction 1, that controls the server and the set of corrupted clients K, which behave
semi-honestly (resp. maliciously), the output of Sim is computationally indistinguishable from the
joint view of the server and the corrupted clients. Sim is allowed to query F ℓ

D,δpXq (defined in
Equation ??) once, per iteration.

Proof. We will prove the theorem statement by defining a simulator Sim, through a sequence of
hybrids such that the view of the adversary A between any two subsequent hybrids are computationally
indistinguishable. Let H “ rnszK, which are the set of honest clients. Further, let C “ rnszD where
D is the set of dropout clients.

It is important to note that the server is semi-honest. Therefore, it is expected to compute the set
intersection of online clients C, as expected. In other words, all committee members (and specifically
the honest committee members) receive the same C. This is an important contrast from active
adversaries as a corrupt and active server could deviate from expected behavior and send different
Cpjq, for different committee members. This could help it glean some information about the honest
clients.

We now sketch the proof below:

Hybrid0pκq: This is the real execution of the protocol where the adversary A is interacting with the
honest parties.

Hybrid1pκq: In this hybrid, we will rely on the security of the secret sharing scheme to do two things:

• On the one-hand, all corrupt committee members receive a random share from the
honest client’s seed. Note that there can be only a maximum of t corrupt committee
members. By appropriately choosing m, conditioned on η, we can guarantee that this
holds with overwhelming probability. Then, for an honest client i, these are the shares
denoted by

!

sd
pjq

i

)

jPrmsXK
and are generated randomly.

• On the other hand, all the honest committee members receive a valid share of the honest
client’s seeds. However, each honest client i need to generate this from a polynomial
ppXq that satisfies pp0q “ sdi, while also ensuring ppjq “ sd

pjq

i for j P rms XK. Note
that this is a polynomial time operation and is similar to the way packed secret sharing
is done where multiple secrets are embedded at distinct points of the polynomial. See
Construction 7 for how to build such a polynomial.

It is clear that by relying on the privacy of the secret sharing scheme, Hybrid0,Hybrid1 are
indistinguishable for the adversary.

Hybrid2pκq: In this hybrid, we change the definition of the last honest party’s ciphertext. WLOG, let n
be the last honest party in C. Then, we will set ctn :“ PRG.Expandpsdℓq`xτ´

ř

iPCXH cti.
Here, xτ is the sum of the honest clients inputs. Note that we are still in the hybrid where
Sim knows all the inputs.

48



It is clear that Hybrid1,Hybrid2 are identically distributed, by the almost seed-
homomorphism property of PRG, provided Sim chooses the inputs for the honest parties
such that they sum up to the value in xτ .

Hybrid3pκq: Again, without loss of generality, let client 1 be the first honest client in CXH . We will
modify the way ct1,ℓ is generated. We will set it as ct1,ℓ :“ x1,ℓ ` u where uÐ$ PRG.Y .

Hybrid2,Hybrid3 are indistinguishable, provided Theorem 4 holds. In the reduction, we
will implicitly set sd1 ` sdn to be the leakage obtained from the Theorem 4’s challenger. In
this hybrid, Sim still continues to know all the inputs. If it was a real PRG output, then we
can simulate Hybrid2, while simulating Hybrid3 in the random case.

Hybrid4pκq: In this hybrid, we will replace ct1,τ :“ u1 for u1 Ð$ PRG.Y . It is clear that
Hybrid3,Hybrid4 are identically distributed.

At this point, observe that we have successfully replace the first honest client’s ciphertext, with a
uniformly random value that is independent of its input. Sim will continue to do this modification for
every non-dropout honest client i P C XH . This leaves the clients with all-but-the-last honest clients’
ciphertext to be independent of the input, while leaving the last honest client’s ciphertext to be only a
function of the sum of the inputs, which can be obtained by Sim’s query to the functionality. Sim
beings its interaction with the functionality. After all the honest clients have provided inputs to the
trusted party T , in Step ??, Sim does not instruct any corrupted client to abort but rather set their
inputs to be 0. Then in Step ??, Sim does not abort the server. Therefore, in Step ??, Sim will learn
the sum of the honest parties inputs. Denote it as xℓ, which is also the sum of the inputs of the honest,
surviving clients. With this information, Sim uses the last hybrid to interact with the adversary A,
who’s expecting the real world interaction. This will enable Sim to run A internally. This is crucial to
ensure that Sim can get the output of A, in the real world, which might depend on its view (including
the output) of the server. This view will, in turn, depend on the the honest clients’ inputs. Since Sim
sets the honest inputs, in this internal execution, to match the sum of inputs in the real world, we can
guarantee that the output of A in the internal simulation is indistinguishable from A’s interaction in
the real world by the aforementioned hybrid arguments.

Proof of Security against Active Server. Our constructions so far have relied on providing security
against a semi-honest server. Note that, as shown in the proof of security for Theorems 1, we can use
the functionality query to obtain the sum of all the honest non-drop out clients, as before.

In the semi-honest setting, it is easy to see that the set C, with respect to which aggregation is
performed, includes all the honest, non-dropout clients’ inputs. Therefore, querying the functionality,
Sim does indeed get the sum of all the honest clients’ inputs that are also included in the summation
in the real world. This is imperative to ensure that Sim, when internally invoking A, can get the
output of A which should be indistinguishable from A’s output in the real world. Specifically, this
output of A (in either the internal invocation or the actual execution) will depend on the view which
consists of the output of the server. Therefore, if the output of the server in the real world does not
include any of these honest clients’ inputs, then the output produced by the internal invocation of A
can be different from that in the real world.

Let us look at the case when the server is corrupted. Such a server can mount an attack whereby the
real-world execution of the protocol may exclude inputs of some of those honest parties but actually
included in the output of the ideal functionality. The proof of malicious security is tricky in this
setting. Specifically, a malicious server can drop clients after seeing the honest input. This is an issue
in the simulation as the simulator has to generate the masked inputs for the honest clients without
knowing which of them would be dropped later.

Prior works, beginning with that of Bonawitz et al. [17] have relied on using signatures to ensure that
a malicious server does not compromise the privacy of an honest user. Fortunately, for OPA, we can
rely on the one-shot nature of communication flow to secure messages and avoid using signatures.

As before, let K denote the corrupted clients. Then, HCli :“ rnszK is the set of honest clients,
HCom :“ rmszK is the set of honest committee members. Let KCli :“ rns X K denote the corrupted
clients and KCom :“ rms X K denotes the corrupted committee members.

Note that we do not rely on signatures. To achieve a protocol with signatures, there needs to be
an additional round of communication between the committee members and the server. First, the
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server forwards the message to the committee members. Then, the committee members responds
with their set Cpjq, which is also duly signed. Then, the server performs the intersection and contacts
the committee member with this intersection along with signatures. A committee member then only
aggregates if there are pm` tq{2 valid signatures.

Our focus is to ensure that the committee members only speaks once. In other words, our construction
currently has the server identify Cpjq, for each j P rms, based on the information it has received from
the client. Then, the server forwards the message to the committee member along with its computed
intersection. This setting allows the server to selectively forward shares to committee member and
also choose different sets for different committee members. We will show that if r ą pm ` tq{2
where r is the reconstruction threshold in the committee and t is the corruption threshold, then the
server doing so will receive meaningless information. Formally, we will show that there does not
exist two sets of users C ‰ C1 such that the server can reconstruct the shares over these two sets.

Observe that the server controls t committee members. We require each honest committee member to
participate once, per iteration. This is easily enforced as the share from the honest client encrypts,
along with the share for the honest committee member, also the identity of the honest client and
the iteration count. Therefore, a server cannot replay the same share, in another iteration. With this
guarantee, a malicious server, in order to reconstruct the shares of two distinct sets C, C1, will require
the cooperation of at least r ´ t honest users, while there are r ´ t honest users present. We will
therefore need 2pr´ tq ą m´ t. Or, r ą pm` tq{2. This ensures that the server can only effectively
reconstruct with respect to a unique set C and H˚ is the set of honest users in this set. Note that the
above inequality holds for r “ 2 ˚m{3, t ă m{3. Indeed, prior works such as Bonawitz et al. [17]
and most recently LERNA [62] also tolerated only upto a m{3 corruption threshold.

While we have shown that there is a unique set H˚ of honest users, H˚ is only revealed after all the
honest clients have sent their inputs. Therefore, the simulator, during its internal execution of A,
needs to be able to generate the masked inputs for the honest users and it only knows the sum of all
the honest clients that have not dropped out. This set may be distinct from H˚. Therefore, we need
a way for the simulator to generate masked inputs, independent of the sum of the inputs, and then
ensure that the correct sum is computed during reconstruction.

The simulator does the following:

• For every honest client that hasn’t dropped out, i.e., for all i P HCli, the simulator does the
following:

– Samples digi,ℓÐ$ t0, 1ulog q

– Samples sdi,ℓÐ$ PRG.K
– It computes mask1

i,ℓ :“ Hpdigi,ℓ
– Computes maski,ℓ “ PRG.Expandpsdi,ℓq

– Sets cti,ℓ :“ maski,ℓ `mask1
i,ℓ

– Like shown in proof of Theorem 1, the shares of sdpjq

i,ℓ , dig
pjq

i,ℓ for corrupt committee
members j P KCom are chosen at random. Meanwhile, the shares for the honest
committee members are to be sampled in the second phase, with a specific purpose.
However, the server still expects an encryption of shares from honest client to honest
committee members. Therefore, it simply encrypts some random shares for the honest
committee members too and sends it to the server.

– It sends to A, cti,ℓ and sd
pjq

i,ℓ and dig
pjq

i,ℓ for j P rms, which is encrypted appropriately.

• This concludes the client phase of the operation. Then, comes the interaction with the
committee. Note that the simulator is also required to simulate the honest committee
member j.

• The simulator, which has received Cpjq for each honest committee member j does the check
to make sure that there exists at least r ´ t such committee members with the same Cpjq.
We will call this client set as C, while calling the set of these committee members to be
Cgood. Meanwhile, it records those committee members with a different Cpjq. We will call
this as some set Cbad. Looking ahead, for those honest committee members in Cbad, the
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shares of the honest clients that are to be added up is going to be random values. Note that
|Cbad| ď m´ r.

• The simulator now operates in two phases for honest committee member j P HCom. First is
the share generation phase for honest clients i. It does the following:

– If j P Cbad, then for honest client i P Cpjq X HCli, set sdpjq

i,ℓ , dig
pjq

i,ℓ to be random values.
– Now, the simulator computes the shares for all honest clients i to j P Cgood. These are

valid shares of sdi,ℓ, digi,ℓ subject to the constraint that random values were fixed for
those j P Cbad where i P Cpjq, and for those j P KCom.

– The honest committee member j receives from A, sdpjq

i,ℓ and dig
pjq

i,ℓ for i P Cpjq. Note
that the maximum number of prefixed values is m ´ r ` t, and by our constraint
r ą m´ r` t which guarantees that these prefixed values cannot uniquely determine a
polynomial of degree r.

• The second phase, is the combination phase. It responds, as expected, subject to the set Cpjq

that it receives.

• Sim now queries the functionality. First, it provides rnszC as the set of dropped out clients.
Then, it sends for those corrupted clients KX C, input as 0 to the functionality. In response,
it gets

ř

CXH xi,ℓ. Call this xH .

• Sim now picks i˚ P H˚. It programs the random oracle by setting Hpdigi˚,ℓq “ xH ´

mask1
i˚,ℓ.

• Sim continues to respond, on behalf of the honest committee member, as expected.

• Finally, A (which controls the server) will make queries to random oracle and it answers as
expected. Sim outputs whatever A outputs at the end.

We will now need to show that the above simulation is indistinguishable from the real world execution
that A expects when it is internally run. The hybrids proceeds as follows:

Hybrid0pκq: This is the real world execution.

Hybrid1pκq: In this execution, we replace the shares sent by the honest client i to honest committee
member j, which are encrypted under pkj with a random value. Under the semantic
security of this encryption scheme, we can guarantee that this is indistinguishable from
the previous hybrid. Meanwhile, these honest committee members (which the simulator
controls) will receive the shares directly from the simulator. The view of A, in this hybrid,
is indistinguishable from the real world execution, under the semantic security of the
encryption scheme.

Hybrid2pκq: We will rely on the security of the secret sharing scheme to sample the shares for the
honest clients, similar to Hybrid1 of semi-honest security. For those j P KCom, the shares
are randomly chosen. Furthermore, for those j P Cbad also the shares are randomly chosen.
Finally, for those j P Cgood it gets a valid share subject to those previously chosen random
values. This is similar to Hybrid1 in the proof of semi-honest security.

Hybrid3pκq: In this hybrid, for all those honest clients i that are not in C, we will set cti,ℓ “
maski,ℓ`mask1

i,ℓ, effectively setting the input to be 0. Observe that the view of A remains
unchanged as these honest clients inputs were never incorporated in the final sum anyway.
Furthermore, if any of these i P Cpjq for j P Cbad, the shares from these honest clients i to
these j are completely random and independent of maski,ℓ and mask1

i,ℓ.

Hybrid4pκq: In this hybrid, we pick an honest surviving client i˚ P H˚. It sets the inputs for all
i ‰ i˚ P H˚ to be 0. Then sets xi˚,ℓ to be the sum of all the i P H˚. Call this sum as xH .
Observe that the values are still correlated and pseudorandom.

Hybrid5pκq: In this hybrid, we will program Hpdigi˚,ℓq “ xH ´mask1
i˚,ℓ, while setting cti˚,ℓ “

maski˚,lab `mask1
i˚,ℓ. Note that because digi˚,ℓ is chosen uniformly at random from q

values where q is a large prime. The probability of collision is negligible. There is only
negligible difference in the view of A.
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Hybrid6pκq: In this hybrid, we will set cti,ℓ for i ‰ i˚ to be some random term in the ciphertext
space. Then, we will set cti˚,ℓ “ Hpdigi˚,ℓq ´

ř

i‰i˚ cti,ℓ.

Note that under the leakage resilience property of the seed-homomorphic PRG, we can
conclude that the two hybrids are computationally indistinguishable.

Hybrid7pκq: In this hybrid, we will replace cti,ℓ “ maski,ℓ `mask1
i,ℓ for i ‰ i˚.

Observe that this last hybrid is exactly what the simulator produces. This concludes the proof.

Theorem 2. Let κs and κc be the statistical and computational security parameters. Let L be the
input dimension and n be the number of clients, that are polypκcq. Let δ be the dropout threshold
and η be the corruption threshold such that δ ` η ă 1. Then, there exists an efficient simulator Sim
such that for all K Ă rns such that |K| ď ηn, inputs X “ txi,ℓuiPnzK, and for all adversaries A
against Construction 2, that controls the server and the set of corrupted clients K, which behave
semi-honestly (resp. maliciously), the output of Sim is computationally indistinguishable from the
joint view of the server and the corrupted clients. Sim is allowed to query FD,δpXq

ℓ (defined in
Equation ??) once, per iteration.

Proof. The proof proceeds similar to that of Theorem 1, through a sequence of hybrids. However,
there are a few differences. Construction 5 has the error vector eÐ$ χ. However, we will replace
e “ e1 ` f1 where e1, f1

Ð$ χ1, the distribution present in Hint-LWE Assumption (see Definition 6).
The hybrid descriptions are similar, so we only specify the differences:

• In Hybrid2 we will set:

ctn,ℓ “ A ¨ sdℓ ´
ÿ

iPpCXHqztnu

cti ` eℓ `∆xℓ

• We will argue that Hybrid2,Hybrid3 are indistinguishable under Hint-LWE Assumption.
We will sketch the reduction now.

– Recall that, from the Hint-LWE Challenge, we get pA,u˚, s˚ :“ s` r, e˚ :“ e1 ` f1
q.

– As done for the LWR construction, we will set the s1 ` sn “ s˚, the leakage on key.
– For generating ct1,ℓ we will use u˚, while also sampling a separate f1Ð$ χ1. This

gives us: ct1,ℓ “ u˚ ` f1
n,ℓ `∆ ¨ x1,ℓ

– We will set ctn,ℓ :“ A¨sdℓ´
ř

iPpCXHqztnu
cti`e˚`

ř

iPpCXHqzt1u
pe1

i,ℓ`f1
i,ℓq`∆¨xℓ

– When u˚ is the real sample, then ct1,ℓ satisfies Hybrid2’s definition. Meanwhile, the
ctn,ℓ is also correctly simulated. Similarly, the case when it a random sample.

The proof of security against malicious server also follows that of the previous theorem.

I Extensions of One-shot Private Aggregation

I.1 Security Against Committee Members

Hitherto, we have only considered the indistinguishability of information from the perspective
of the server. However, one can consider the requirement to hold for even corrupt committee
members. Specifically, should their entire committee collude (or at least t of them), then the client’s
input remains hidden. It is easy to observe that Figure 10 does not satisfy the stronger security
definition. Specifically, if we had a single committee member, then the auxiliary information (which
is available to the committee member) simply masks the input and therefore can be unmasked. Thus,
to accommodate security against collusion of all committee members we modify OPA syntax and
construction to include a key from the server to keep client privacy. Informally, we do the following:

• First, the server or the aggregator has a secret key as well. This is denoted by k0.
• Second, for each label ℓ, the server first publishes a “public key”, as a function of the

following algorithm aux0,ℓ Ð PublicKeyGenpk0, ℓq
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• Third, the encrypt procedure takes into account this auxiliary information, i.e.,
ˆ

cti,ℓ,
!

aux
pjq

i,ℓ

)

jPrms

˙

Ð$ Encppp, ki, xi, aux0,ℓ, t,m, ℓq. In other words,the server pub-

lishes the public key and then the client can begin encrypting to a label.
• Fourth, the decrypt procedure takes k0 as input too.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The paper sets out to solve a critical problem in prior work on secure aggrega-
tion. In this work, we demonstrate how to reduce the synchronization by employing one
additional party. We demonstrate experiments to show competitive performance over prior
work. In addition, we also train machine learning models to justify that our protocol can be
used for its intended purpose.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
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Answer: [Yes]
Justification: We have a conclusion paragraph that draws attention to some of the limitations
while identifying how they can be remedied in future work.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper introduces all the necessary theoretical framework and assumptions
for security of the construction. There’s detailed proof deferred to the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The protocols are well detailed, including the parameter settings for our
classifier.
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Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [NA]
Justification: Unfortunately, there was no support for supplementary material upload. How-
ever, we are happy to furnish the anonymized code for interested reviewers.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Clear tabulation provided.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: Does not apply. We report mean of 30 iterations.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Clear details provided for reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Code of Ethics compliant.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We focus on privacy-preserving federated learning which guarantees privacy
of client-held data.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Does not apply for us.
Guidelines:

• The answer NA means that the paper poses no such risks.
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• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We specify the details for all the five datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets are being released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our project does not involve any human subjects.

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Per the above question, we do not have any human subjects and therefore IRB
approvals are not needed.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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