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Abstract

In this paper, we address motion correction in image reconstruction. Patient motion,
including breathing, is a persistent problem in medical imaging. Cardiac motion is par-
ticularly enigmatic and often ignored, except in high-speed imaging modalities like MRI.
Motions may create artifacts to the extent that the image may have to be discarded. Since
the beginning of medical imaging, motion correction remained an important subcategory of
research. Motion corrections may be applied during or after tomographic image reconstruc-
tion. In this work, we considered motion as a Gaussian blur at the image level. Discrete
radon transform is applied to the blurred images to create corresponding noisy sinograms
that mimic real imaging scenarios. Our deep learning-based tool recovered accurately (1)
the blurring functions with an artificial convolutional neural network (CNN) directly from
the sinograms, and (2) successfully reconstructed (inverse radon transformed) the noise-free
images utilizing an adaptation of the convolutional encoder-decoder network (CED) from
the literature. Our work shows that neural networks are not only capable of eliminating
systematic noise in reconstruction but can also recover the noise model.
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1. Introduction

Motion is a source of major systematic noise in medical imaging. The thoracic motion
caused by respiration results in motion in organs in the torso is somewhere between 5-25
mm (Dawood et al., 2006). Random patient motion is also a nuisance factor, particularly
during a long scan. Cardiac motion is often beyond the temporal resolution limit of most
medical imaging modalities and appears as a blur because of its lower spatial amplitude
with respect to the size of the heart. These motions affect the usability of medical images
by degrading the generated image quality (Faranesh et al., 2013).

Detecting noise generated from motion and applying correction at the time of image
reconstruction has been attempted in the literature for a long time (Huang and Yu, 1992).
Possibly, the most successful motion correction software was designed by the Artificial Intel-
ligence in Medicine group from Cedars Sinai. Their tool, named MoCo (Matsumoto et al.,
2001), embedded with tomographic image reconstruction algorithms, is routinely deployed
by vendors. A similar software tool called STASYS (Bai et al., 2009) was subsequently
reported in the literature to have better performance addressing cardiac motion blur before
reconstruction, as our current work targets too. The SinoCor (Eiland et al., 2012), a patient
motion correction tool for SPECT (with rotating camera head) before reconstruction and at
the sinogram level, was developed by a different group. This included the motion blur bor-
rowing from the Richardson-Lucy algorithm invented in the context of astronomy (Hanisch
et al., 1996; Richardson, 1972; Lucy, 1974) and computational photography, to estimate the
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convolution function causing motion-blur, while denoising the image simultaneously. The
technique is very similar to our objective in this project. They used iterative statistical
fixed-point algorithm, whereas we train deep neural networks for the same purpose.

King et al. (King et al., 2012) applied dimension reduction to approximately model
respiratory motion, and Smith et al. (Smith et al., 2019) used a sparse approach in sampling
to recover the motion model. These works evince the difficulty in motion capture even in
modalities with high temporal resolution leading to sparse sampling.

In this work, we address motions, like that of cardiac motion, as symmetric Gaussian
blur and try to recover that directly from the motion affected blurred sinogram data. For
simplicity of fast experimentation, we used 2D synthetic data that may be easily extended to
realistic clinical or pre-clinical 3D data. Rather, we used different shapes (motivated by that
of the heart) and locations of the target object to prove the generalizability of our results.
For the recovery of ground truth motion function and the image, we trained a convolutional
neural network (CNN). Training phase needs large time but once trained, inferencing takes
very little time to produce target results. We not only recovered the ground truth motion
model (Gaussian function) accurately but also reconstructed the ground truth image from
the noisy sinogram. Two different CNN models are trained for our twin objectives: motion
model recovery and image reconstruction. Advantages from our method are: once trained,
our model is agnostic to any modality, subject to the assumption that timing resolution of
the modality is much lower compared to the motion frequency, which causes the motion to
appear as a blur. Another advantage is that we recover an abstract mathematical model
of the motion, the implication of which may be felt in diagnosis based on heart motion
(Puyol-Anton et al., 2017). As mentioned before, this is similar to the Richardson-Lucy
algorithm for motion recovery (Hanisch et al., 1996), but with CNN that has much faster
inferencing time than the former iterative algorithm.

In the next section, we provide how we generate training data and validate our results.
Actual methods of training and validation are described in section 3 and the results are
provided in section 4. The last section provides concluding discussion and points to the
future line of work in the project.

2. Data Generation

We first created four basic 2D shape-masks in 64x64 pixel window (fig 1), and then aug-
mented them by changing the positions (translation) and orientations (rotation) of these
images producing 2560 different images as ground truths. We used 8 different 2D 5 × 5
Gaussian filters to blur these images. Finally, the discrete Radon transform was applied to
those blurred images to produce blurred sinograms. Subsequently, Poisson noise is added
to the sinograms. Fig 2 shows this process. Totally, there are 2560 × 8 = 20480 blurred
sinograms created. We randomly chose 20000 of them to be the training set, and the rest
of them to be the validation set.

In order to simulate the shape of the heart, we created another data set which contains
different annular elliptical rings. These images are generated by two different ellipse func-
tions: the outer ellipse and the inner ellipse. By changing the center, the width, and the
height, we got 640 different images (fig 3). Then we did the same augmentation operations
as before for this dataset that is included for training and validation along with the previous
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Figure 1: Four basic shapes.

Figure 2: Steps to create a noisy blurred sinogram. (From left to right) Based on the real
image, we used Gaussian filter to blur it to get a blurred image. Then, Radon
transform this blurred image to create the blurred sinogram. Finally, by adding
Poisson noise we get the noisy blurred sinogram that is used as input.

abstract shapes. The size of this new data set is 25600. We randomly chose 25000 of them
to be the training set, and the rest of them to be the testing set.

Figure 3: Annular elliptical rings. They are generated by two ellipse functions. The outer
ellipse is fixed. By changing the center, the width and the height of the inner
ellipse, we get different images to simulate hearts.

3. Methods

Say, f is the Gaussian filter, g is the image, s is the sinogram, R is the Radon transform,
and ∗ is the notation for the convolution operation, then the equation we used to generate
the sinogram s is:

s = R(f ∗ g) (1)
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Our problem is: given an s, can we recover f and g by training a deep learning model. We
developed and trained two independent neural networks to: 1) learn to recover the filter f
from a motion-blurred sinogram; and 2) learn to reconstruct the noise free image g from
the motion-blurred sinogram.

3.1. Neural Network Model

3.1.1. Motion function recovery

A convolutional neural network (CNN) was used to recover the motion function. It was
trained to extract the filter from the blurred sinogram. It contains 3 convolutional layers
and two dense layers (fig 4). The number of the epoch is 20, batch size 50. The optimization
function is Adam (Kingma and Ba, 2014), and the loss function is the mean squared error.

Figure 4: Convolutional neural network. It’s used to extract the filter from the sinogram.

3.1.2. Image reconstruction from noisy blurred sinogram

For this experiment, we used the convolutional encoder-decoder architecture (CED, fig 5
(Häggström et al., 2019)). The number of the epoch is 100. Batch size is 50, optimization
function is Adam, and the loss function is MSE.

Figure 5: CED to reconstruct the image from a noisy blurred sinogram.
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Figure 6: A sample result. Compare the real filter and the estimated filter. The third one
shows the absolute difference between the real filter and the estimated filter.

Figure 7: Image reconstruction with adapted CED. Annular elliptical ring on the last row
simulates shapes of hearts. First row shows the ground truths. Second row shows
the reconstructions. Third row is the difference between the ground truth images
and the reconstruction images.
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4. Results

4.1. Extract the filter from motion-blurred sinogram

We used mean squared error to measure the model loss. After 100 epochs, the training
loss is 1.4249e-6 (RMS = 1.1937e-3), and the validation loss is 1.6612e-5 (RMS = 4.0758e-
3). Each epoch of training takes approximately 3 sec on our machine (CPU is Intel(R)
Core(TM) i7-9700K @ 3.60GHz. GPU is Nvidia Titan Xp. RAM is 32 GB). Fig 6 shows
one sample result of the estimated filter (from the model output) compared to the ground
truth filter.

4.2. Reconstruction from noisy motion-blurred sinogram

We trained the network on a GPU node on a cluster with the dataset which contains the
ellipse rings. The configuration of this GPU node is: 2 x 10 core Intel Xeon @ 2.30GHz,
131GB of RAM, 4 x Nvidia Tesla K40m. After 100 epochs, the training loss is 4.0035e-
04 (RMS = 0.02001), and the testing loss is 1.928e-4 (RMS = 0.01825). Training time is
24302.638 seconds, and the average reconstruction time per image is 2.710e-3 seconds.

5. Conclutions

According to our results, we believed the neural networks have a great potential to recover
motion model and reconstruct images from motion-blurred sinograms. It can improve the
reconstruction process in nuclear imaging such as PET, SPECT, and CT, for example, for
noise reduction. It also provides a fast way to reconstruct the image in place of iterative
reconstruction methods, though it takes much more time to train the network.

In order to avoid motion generated noise, respiratory and cardiac gating methodologies
have been developed. They are quite useful for static imaging protocols with radiotracers
and contrast agents, where tracer agent-concentrations are allowed to stabilize in body and
imaging takes place after some wait time. However, in dynamic imaging protocols, which
provide better quantitative and diagnostic information (El Fakhri et al., 2009), and where
imaging starts immediately after injection to study the pharmacokinetics of the imaging
agent, gating techniques are not as effective as in static imaging. Our proposed technique
will be very useful in dynamic imaging as the trained neural network will incorporate the
motion model. In the near future we want to develop such motion corrected dynamic image
reconstruction deep learning models.

Finally, our technique needs to be validated with real data. Availability of large real
training dataset is a challenge. We believe, combination of synthetic data and limited
amount of available patient data will provide quality training. Another challenge is the
adaptability of a model for individualized patient. However, motion model’s topological
shape is expected to be very similar for all patients. If we train our network to learn
different convolution functions with different shapes, then such a trained model may be
robust enough to recognize an individualized motion function and inference correctly. This
is another direction where our near future efforts will be directed.
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