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Abstract
Visible-Infrared Person Re-identification (VI-ReID) is a challenging cross-modal
retrieval task due to significant modality differences, primarily caused by the
absence of detailed color information in the infrared modality. The development of
large foundation models like Large Language Models (LLMs) and Vision Language
Models (VLMs) motivates us to investigate a feasible solution to empower VI-
ReID performance with off-the-shelf large foundation models. To this end, we
propose a novel Text-enhanced VI-ReID framework driven by Large Foundation
Models (TVI-LFM). The basic idea is to enrich the representation of the infrared
modality with textual descriptions automatically generated by VLMs. Specifically,
we incorporate a pre-trained VLM to extract textual features from texts generated
by VLM and augmented by LLM, and incrementally fine-tune the text encoder to
minimize the domain gap between generated texts and original visual modalities.
Meanwhile, to enhance the infrared modality with extracted textual representations,
we leverage modality alignment capabilities of VLMs and VLM-generated feature-
level filters. This allows the text model to learn complementary features from
the infrared modality, ensuring the semantic structural consistency between the
fusion modality and the visible modality. Furthermore, we introduce modality
joint learning to align features of all modalities, ensuring that textual features
maintain stable semantic representation of overall pedestrian appearance during
complementary information learning. Additionally, a modality ensemble retrieval
strategy is proposed to leverage complementary strengths of each query modality to
improve retrieval effectiveness and robustness. Extensive experiments demonstrate
that our method significantly improves retrieval performance on three expanded
cross-modal re-identification datasets, paving the way for utilizing large foundation
models in downstream data-demanding multi-modal retrieval tasks.

1 Introduction
Person Re-Identification (ReID) aims to retrieve images of the same identity across different cameras,
which is an important task for intelligent surveillance and urban security [14, 62]. Although RGB-
based methods [22, 16, 8, 23, 33, 25, 69, 55, 47, 63, 68, 13] have shown promising results during
the daytime, their performance greatly diminishes at night, as RGB cameras fail to capture adequate
information about a person in low-light conditions. Infrared cameras can obtain pedestrian appearance
at dark environments. Therefore, Visible-Infrared Person Re-Identification (VI-ReID) is proposed to
match images of individuals captured by visible and infrared cameras, enabling 24-hour surveillance.
However, the absence of crucial information, such as color, in infrared images creates significant
differences between infrared and visible modalities, posing the major challenge for VI-ReID.
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Figure 1: Illustration of our idea. Existing methods rely on fixed manual annotation, complex archi-
tecture and prior-knowledge-based optimization to enrich infrared modality. Leading to significant
time and labor cost, additional parameters and data sensitivity. In contrast, our method employs VLM
and LLM to automatically generate dynamic text, improving the robustness against text variation;
fine-tunes a pre-trained VLM through aligning features across all modalities, enabling the framework
to create fusion features semantically consistent with visible modality in a parameter-free manner.

Most existing VI-ReID methods, such as supervised methods [59, 57, 20, 56, 28, 58, 11, 53, 60],
semi-supervised [39, 45] and unsupervised methods [51, 38, 37, 49, 50, 52, 48, 61], mainly focus on
mining modality-shared features, while paying less attention to complementing information absence
in the infrared modality, which limits further improvements in cross-modal retrieval performance.

In real scenarios, human descriptions are based on visible modality, providing rich detailed informa-
tion, such as color, which can serve as vital auxiliary clues. However, existing methods that utilize
auxiliary text descriptions [9] to enhance the infrared modality, as shown in Fig. 1, heavily rely on
human annotating to collect fixed text descriptions, leading to significant time and labor costs. More-
over, they depend on prior knowledge, such as pre-defined color vocabularies or hyper-parameters, to
design complex loss functions and modules with additional parameters for modality alignment and
fusion. This reliance leads to sensitivity to data variations and diminishes the effectiveness of the
fusion process.

Recent advancements in large foundation models [2], particularly LLMs and VLMs, show potential
for data-demanding multi-modal retrieval tasks. This motivates us to explore a feasible solution
to complement missing vital information with off-the-shelf large foundation models. To this end,
we propose a text-enhanced VI-ReID framework driven by large foundation models (TVI-LFM)
comprising Modality-Specific Caption (MSC), Incremental Fine-tuning Strategy (IFS), and Modality
Ensemble Retrieval (MER). The basic idea is to enrich infrared representations with generated
text, which is a cross-modality retrieval approach bolstered by heterogeneous text descriptions.
Specifically, MSC employs LLM to augment VLM-generated texts for dynamic descriptions of
visible and infrared images, reducing labor and time cost, and improving the model’s robustness
against text variation. Then, IFS incorporates a pre-trained VLM to extract features from text
generated by MSC, and incrementally fine-tunes the text encoder to minimize the domain gap
between the generated texts and the original visual modalities. To enhance the infrared modality
with extracted textual representations, IFS leverages modality alignment capabilities of VLMs and
VLM-generated feature-level filters to create a fusion modality. This allows the text model to learn
complementary features from the infrared modality, ensuring semantic structural consistency between
the fusion modality and the visible modality. Furthermore, IFS introduces modality joint learning to
align features of all modalities, ensuring that textual features maintain a stable semantic representation
of overall pedestrian appearance during complementary information learning. Additionally, MER is
introduced to leverage complementary strengths of each query modality to form ensemble queries,
further improving retrieval performance. Finally, by employing the above three modules for dynamic
text generation, semantic alignment, and the integration of complementary queries, our method
effectively addresses the information absence in the infrared modality, improving cross-modal
retrieval performance.

The main contributions can be summarized as follows:
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• We design a Text-enhanced VI-ReID framework driven by Large Foundation Models (TVI-LFM).
It enriches infrared representations with generated textual descriptions, effectively mitigating the
absence of critical information, e.g. color, in the infrared modality and significantly improving the
performance of cross-modal retrieval.

• We propose IFS that fine-tunes a pre-trained VLM to align generated texts with original images.
It creates a fusion modality to learn complementary information from the infrared modality and
jointly align features across all modalities. It ensures stable semantic consistency of text and fusion
features with the visible modality during complementary information learning.

• We propose Modality Ensemble Retrieval that leverages the complementary strengths of all query
modalities to form ensemble queries, further improving the performance of cross-modality retrieval
bolstered by heterogeneous text descriptions.

• We introduce three extended VI-ReID datasets with VLM-generated textual descriptions for
every image. Extensive experiments on these expanded datasets demonstrate the competitive
performance of our TVI-LFM framework, paving the way for utilizing large foundation models in
downstream data-demanding multi-modal retrieval tasks.

2 Related Work
2.1 Visible-Infrared Person Re-Identification
VI-ReID aims to retrieve images across visible and infrared modalities, suffering from the absence of
critical information, e.g. color, in infrared modality. Previous methods [59, 4, 64, 27, 57] focus on
mining modality-shared information and optimizing features extracted by CNNs or Transformers
[54] but pay less attention to complementing the missing vital information in the infrared modality,
limiting the further improvements of the retrieval performance. Some methods [9, 5, 1] explore
auxiliary information compensation. Specifically, [9] uses coarse descriptions as textual identity
labels, while [5] and [1] integrate attribute embeddings with visual features. These methods heavily
rely on handcrafted annotations for each identity. Furthermore, they require prior knowledge, such as
hyper-parameters and pre-defined color vocabulary, to design complicated modules and loss. This
results in additional parameters and increases sensitivity to auxiliary data variations. In contrast, we
propose a framework that automatically expands dynamic textual descriptions for VI-ReID datasets
and fine-tunes a pre-trained VLM to align the generated texts with original images. By leveraging
VLM’s modality alignment capabilities and feature-level filters, it creates a fusion modality that
enables the text model to learn complementary features from the infrared modality, while maintaining
semantic consistency with the visible modality.

2.2 Large Foundation Model
Large foundation models [2], pre-trained on extensive datasets, have shown great potential in
downstream tasks. Recent advancements in VLMs like [44, 24, 34, 7, 26] and LLMs such as
[35, 3, 67, 41, 18], demonstrate remarkable data generation and text-visual alignment capabilities.
For instance, BLIP [24] excels at generating textual captions from images, and can be fine-tuned to
accommodate various image styles such as infrared images. Vicuna [67], pre-trained on extensive text
data, is great at customized text generation and understanding with prompts. CLIP [34]’s pre-training
on large-scale image-text pairs enables its basic capability to align text-image semantics. It can also
be fine-tuned on downstream cross-modal retrieval tasks [19]. Our approach integrates generative
VLMs and LLMs for automatic text generation and dynamic augmentation. And it incorporates a
pre-trained VLM into the VI-ReID system to extract features from texts and utilize them to enrich
infrared representations.

2.3 Multi-modal Analogical Reasoning in VI-ReID
As demonstrated in [30], language analogical reasoning in the language embedding space can be
represented using vector arithmetic. For example, the analogy “man is to woman as king is to ?” can
be solved by finding the word whose embedding vector is closest to:

v⃗“king” − v⃗“man” + v⃗“woman”. (1)
Subsequently, [21] investigates an identical regularity manifested in the multi-modal vector space.
For instance, the relationship can be expressed as:

v⃗image(blue car) − v⃗“blue” + v⃗“red” ≈ v⃗image(red car). (2)
We establish this property by aligning features across all modalities, subsequently mapping them into
a unified embedding space. This enables us to create fusion features in a parameter-free manner.
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Figure 2: Illustration of our TVI-LFM, including Modality-Specific Caption (MSC), Incremental Fine-
tuning Strategy (IFS), and Modality Ensemble Retrieval (MER). MSC utilizes fine-tuned VLMs as
modal-specific captioners and employs an LLM for augmentation. IFS fine-tunes a pre-trained VLM
to create fusion features semantically consistent with visible features. MER leverages the strengths
of all query modalities to form ensemble queries, thereby improving the retrieval performance.

3 Proposed Method
Task Setting. Humans can provide textual descriptions based on visible modality. Containing critical
information, such as colors, they can serve as auxiliary clues for identifying individuals. Therefore, we
propose the cross-modality retrieval bolstered by heterogeneous text descriptions. During inference,
each query sample consists of an infrared image Vir, a text description Tir generated from Vir, and a
randomly selected textual description Trgb of visible images for the same person. These elements
combine to form the query q = {Vir, Tir, Trgb}. The gallery, meanwhile, contains only visible
images represented as g = {Vrgb}. Then, compute similarity ranking lists based on each query and
all gallery representations as results.

Overview. Detailed in Fig. 2, TVI-LFM contains MSC, IFS and MER. MSC employs two fine-tuned
Blips [24] to automatically generate textual descriptions from visible/infrared images and utilizes
LLM for augmentation. IFS trains a VI-ReID backbone to extract vision features, and incrementally
fine-tunes a pre-trained CLIP [34] to align generated texts with original images. Then, it creates
a fusion modality to learn complementary features from the infrared modality and jointly align
features across all modalities. It ensures a stable semantic consistency of text and fusion features
with the visible modality during complementary information learning. Additionally, MER leverages
the strengths of each query modality, forming ensemble queries for more accurate retrieval.

3.1 Modal-Specific Caption (MSC)
MSC utilizes fine-tuned VLMs to automatically generate text from visible and infrared images and
employs an off-the-shelf LLM for textual augmentation, consequently creating dynamic descriptions
for VI-ReID datasets. This module reduces the time and labor cost of manual annotations and
increases the system’s robustness against auxiliary text variations.

VLM based Textual Generation. Currently, there are no publicly available large-scale VI-ReID
datasets with image-level text annotations. Thus, to reduce labor and time costs, we fine-tune two
VLMs to automatically generate text descriptions with critical information, such as color, for every
visible and infrared image. Consequently, we construct three expanded datasets: Tri-SYSU-MM01,
Tri-LLCM, and Tri-RegDB, each derived from the original datasets [46, 65, 31] respectively.

1) RGB Captioner: At the beginning, train a Blip [24] on a large-scale pedestrian image-text dataset
[40] as the RGB captioner, which is able to generate text descriptions for visible images.

2) IR Captioner: Then, randomly select visible and infrared images pairs in SYSU-MM01’s training
split for every identity, then apply the RGB captioner in step 1 to generate textual descriptions for
every visible image in these pairs. Then, remove color-related terms from these generated texts by
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regular expression filters, and build Infrared-Text (filtered) pairs dataset with filtered text descriptions
and corresponding infrared images in the same expanded visible-infrared image pairs. Finally we
fine-tune the Blip [24] in step 1 again on the Infrared-Text (filtered) dataset as the IR Captioner,
which is able to generate text descriptions without color for infrared images.

3) Text Expanding: Finally, utilize the two refined modality-specific captioners in former steps to
generate text descriptions for visible and infrared images.

The statistics and samples visualization of the expanded datasets Tri-LLCM, Tri-RegDB and Tri-
SYSU-MM01 are shown in Appendix A. Through this expansion process, the framework can
automatically generate text descriptions for VI-ReID datasets without large-scale manual annotations.

LLM based Textual Augmentation. To ensure that the framework can extract robust representations
from generated descriptions against text variations while preserving original semantics of sentences,
we propose the LLM-based textual augmentation module applied during the training stage. This
module regenerates diverse descriptions by rephrasing the original text for the same target. In detail,
given an original description T , the module employs an LLM to rephrase it, producing an augmented
textual description T ∗. The LLM is guided by the prompt “Rephrase the person’s description using
similar words, without changing the original semantics”. The augmentation is applied as follows:

T ∗ =

{
llm(T | Prompt), with probability p

T, with probability 1− p
, (3)

where p = 0.5 reflects that each description variant is equally probable. Utilizing the powerful
prompt-driven text generation capability of LLM, this approach diversifies the textual descriptions
while maintaining their original meanings. This forces the model to focus on the core information of
person appearance, thus enhancing the robustness of our system against text variation. Moreover,
we can also apply this augmentation method directly on existing frameworks involving text data
processing, without changing the original structure.

3.2 Incremental Fine-tuning Strategy (IFS)
IFS incrementally fine-tunes a CLIP [34] based on the frozen visual features extracted by a trained
VI-ReID backbone, to minimize the domain gap between the generated texts and original visual
modalities, namely, to align the complementary feature across vision and text, thereby creating fusion
features semantically consistent with visible modality. The detailed steps are as follow:

Features Extraction. IFS first utilizes the Channel Augmentation (CA) [57] strategy to train a dual-
stream ResNet-50 [15] as the VI-ReID backbone, detailed in Appendix B. Then, fix its parameters
and use this visual backbone to extract infrared features f I

ir and visible features f I
rgb. Meanwhile, IFS

incorporates a CLIP [34] to extract the features of visible images descriptions fT
rgb as "text features"

and the features of infrared images descriptions fT
ir as "filter features".

Semantic Filtered Fusion (SFF). Meanwhile, to enhance the infrared modality with the generated
texts, we propose the SFF module that leverages the text-visual alignment capability of VLM and
VLM-generated filter features to create fusion features.

Benefiting from the large-scale pre-training on image-text pairs, the VLM possesses powerful text-
visual alignment capability, ensuring that the features extracted from the generated texts contain the
same information as the features of original images. Therefore, we regard the text feature fT

rgb as an
alternative for the visible feature f I

rgb. Similarly, we use the filter feature fT
ir as an alternative for

the infrared feature f I
ir. Next, we formulate the complementary features for the infrared modality by

decomposing the visible feature f I
rgb and the text feature fT

rgb as:

f I
rgb = f I

ir + f I
comp, (4)

fT
rgb = fT

ir + fT
comp, (5)

where f I
comp denotes the visual complementary feature for the infrared modality. Similarly, fT

comp
denotes the textual complementary feature for the infrared modality. Finally, with Eq. (4), Eq. (5),
and the alignment of generated texts and original images benefiting from the pre-trained VLM, the
representation of fusion features fF with the same semantic structure as the visible modality can be
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Figure 3: The Visualization of SFF. With the aligned features of generated texts and original images,
SFF creates fusion features semantically consistent with visible modality by arithmetically adding
the textual complementary information for infrared modality to the infrared features.

derived, represented as:
f I
rgb = f I

ir + f I
comp

= f I
ir + (f I

rgb − f I
ir)

≈ f I
ir + (fT

rgb − fT
ir)

= f I
ir + fT

comp

≜ fF

. (6)

By leveraging the powerful text-visual alignment capability of VLM and VLM-generated filter
features, SFF approximates visual complementary features for infrared modality f I

rgb − f I
ir with the

textual complementary features for the infrared modality fT
rgb − fT

ir . Thus, the framework can create
fusion features by adding this textual complementary features to the infrared features, as shown in
Fig.3. This allows the text model to learn complementary features from the infrared modality, while
ensuring semantic structural consistency between the fusion modality and the visible modality.

Modality Joint Learning (MJL). Furthermore, MJL is proposed to optimize the pre-trained VLM.
It incrementally fine-tunes the CLIP based on the infrared and visible features extracted from the
frozen VI-ReID backbone trained before, thereby refining fusion features to be further aligned with
visible modality. This training strategy and its effectiveness on avoiding the conflicts during the
representations learning of visual and textual part are discussed in Appendix E.

This method utilizes a classic ReID loss for fine-tuning, thereby eliminating the prior knowledge
reliance, such as hyper-parameters and pre-defined vocabulary, during optimization. The loss consists
of cross-entropy loss Lid and weighted regularized triplet loss Lwrt [59], represented as:

Ltotal = Lid(y, f
∗) + Lwrt(y, f

∗), f∗ ∈ {fT
rgb, f

I
rgb, f

I
ir, f

F }, (7)

where f I
rgb denotes the frozen visible feature, f I

ir denotes the frozen infrared feature, fT
rgb denotes

the trainable text feature, fF denotes the trainable fusion feature. During this process, MJL pulls
all these features of the same identity y together and pushes them away from features of different
identities, aligning the semantics across all modalities. Since we solely adjust the parameters of the
text encoder, this alignment can be regarded as refining both the text features fT

rgb and fusion features
fF , enabling them to learn representations equivalent to visible features f I

rgb, under the supervision
of the identity label y and with a regularization from fT

ir .

By aligning the textual complementary features for infrared modality fT
comp integrated in the fusion

features with the corresponding part f I
comp in the visible features, MJL effectively reduces the

discrepancy between fusion and visible modality. Additionally, it ensures the overall semantic
consistency of text features fT

rgb with visible features f I
rgb during complementary information learning,

which enables the following MER to form effective ensemble queries.

Thereby, considering the established two alignments above while taking into account the feature
decomposition in Eq. (4) and Eq. (5), the alignment between infrared features f I

ir and filter features
fT
ir can be derived and represented as:

f I
ir = f I

rgb − f I
comp

≈ fT
rgb − fT

comp

= fT
ir

. (8)
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Consequently, by establishing the alignment between f I
rgb and fT

rgb, and ensuring the alignment
between f I

ir and fT
ir , we successfully minimize the domain gap between the generated texts and

original visual modalities, namely, align each part of the visual and textual complementary features,
thereby enabling the alignment between fusion features fF and the visible features, leading to
improved retrieval accuracy.

According to Eq. (4) and Eq. (5), fT
rgb can be decomposed as trainable fT

ir and fT
comp, while fF can

be decomposed as frozen f I
ir and trainable fT

comp. Considering that frozen infrared features f I
ir also

participate in aligning with the text features fT
rgb and the fusion features fF , it can be regarded as a

regularization to constrain the complexity of textual complementary features fT
comp while aligning

with filter features fT
ir , enabling the framework to construct better fusion features.

3.3 Modality Ensemble Retrieval (MER)
MER aims to comprehensively utilize the complementary advantages and rich semantics in query
modalities mined from IFS to form ensemble query features fq for more accurate retrieval. The
ensemble query feature fq is represented as:

fq = (f I
ir + fT

rgb + fF )/3, (9)

where fusion features fF aim to provide a combined feature with semantic structure the same as the
visible features, serving as the primary matching modality. Infrared features f I

ir provide contiguous
visual semantics. Their similarity with visible images can serve as a supplementary reference for
texture and shape information. Text features fT

rgb, aligned with visible features in MJL, provide
descriptive information such as the color and the pattern of the clothes. The similarity between
text features and visible features serves as a reference for these key matching features. Therefore,
when encountering challenging scenarios that are hard to distinguish a person’s clothing or shape but
distinguishing color is feasible, or vice versa, the ensemble query features fq are able to leverage the
features of two modalities in addition to the primary matching contribution from fusion modality to
explore their similarities in visual texture and key attributes respectively. Thus, the similarity score
s is defined as the dot product of fq and frgb. Thus, the strengths of all query modalities can be
integrated into the final similarity score, consequently enhancing the accuracy against hard cases of
retrieval. In fact, by plugging Eq. (9) into the definition of the similarity score fq · frgb, an equivalent
definition as the similarity between two high-dimension features is derived, represented as:

s = ([f I
ir, f

T
rgb, f

F ] · [f I
rgb, f

I
rgb, f

I
rgb])/3. (10)

It is equivalent to increasing the feature dimension for retrieval but use ensemble features with less
dimensions and computational cost. Due to the larger distances between classes in higher dimensional
feature space, the models can more easily distinguish features of different identities in the ensemble
feature space, therefore utilizing ensemble queries can further improve the retrieval performance.

4 EXPERIMENTS
4.1 Experimental Settings
Datasets. We evaluate our framework on Tri-SYSU-MM01, Tri-RegDB, and Tri-LLCM. These
datasets with text descriptions for each visible and infrared image are expanded from the original
VI-ReID datasets [46, 65, 31], utilizing fine-tuned Blip [24] as captioner. The splits of the training
set and testing set for each dataset are available in Appendix D.

Evaluation Protocols. In line with established VI-ReID settings [59, 57], we assess the performance
of the infrared query and the fusion query using Rank-k matching accuracy, mean Average Precision
(mAP), and mean Inverse Negative Penalty (mINP) [59] within our TVI-LFM framework. To get
stable performance on Tri-SYSU-MM01 and Tri-LLCM, we evaluate our model 10 times with
random splits of the gallery set; as for Tri-RegDB, we evaluate our model on 10 trials with different
train/test splits and report the average performance on each dataset.

Implementation Overview. We utilize a dual-stream ResNet-50 [58] pre-trained on ImageNet [36]
as the visual backbone and a transformer in CLIP [34] as the textual encoder. Training involves visible
and infrared images alongside text descriptions generated by two modality-specialized fine-tuned
Blip [24] models. All text descriptions are augmented by vicuna-7b [67] with a random rephrasing
strategy. Incremental fine-tuning is applied by fixing the visual parameters while tuning the textual
part of the framework. All details are described in Appendix B.
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Table 1: Ablation study on fusion query (I + T → R) about each component on the performance of
Tri-SYSU-MM01 and Tri-LLCM datasets. Rank (R) at first accuracy (%), mAP(%), and mINP(%)
are reported.

I + T → R Tri-SYSU-MM01 Tri-LLCM
B SFF MJL LLM MER R1 mAP mINP R1 mAP mINP
✓ 72.52 69.15 55.93 52.63 58.82 55.43
✓ ✓ 77.00 73.73 61.50 54.73 60.95 57.64
✓ ✓ ✓ 83.97 80.40 69.46 56.76 63.58 60.35
✓ ✓ ✓ ✓ 84.17 80.72 70.02 57.13 64.06 60.72
✓ ✓ ✓ ✓ 84.88 81.32 70.57 57.09 63.87 60.62
✓ ✓ ✓ ✓ ✓ 84.90 81.47 70.85 58.19 65.08 61.83

4.2 Ablation Study
To thoroughly evaluate the effect of each component of our proposed method, we conduct compre-
hensive ablation studies on Tri-LLCM and Tri-SYSU-MM01. These studies involve gradually adding
the proposed modules to our baseline, systematically removing specific modules from our framework
and assessing their impact on performance. The overall experimental setup remained consistent, with
only the module under evaluation being modified.

Effect of Semantic Filtered Fusion. By leveraging text-visual modality alignment capability of
VLM and VLM-generated filter features, SFF fuses textual complementary information with infrared
features to create fusion features semantically consistent with visible modality. Compared to the
baseline, the method obtains a 4.48% Rank-1 improvement in Tri-SYSU-MM01 and a 2.10% Rank-1
improvement in Tri-LLCM, as shown in Table 1. The results demonstrate that the module effectively
integrates information from different modalities.

Effect of Modality Joint Learning. In cooperation with SFF, MJL aligns features across all
modalities to minimize the domain gap between the generated texts and original visual modalities,
thereby mitigating the fusion-visible modality difference. Based on the experimental results in Table 1
and compared to the baseline with SFF, adding MJL gains a significant enhancement of 6.97% Rank-1
improvement, 6.67% mAP improvement, and 7.96% mINP improvement in Tri-SYSU-MM01, and
2.03% Rank-1 improvement, 2.63% mAP improvement, and 2.71% mINP improvement in Tri-LLCM.
This result demonstrates the effectiveness of MJL, which greatly minimizes the modality gap.

Effect of Modality Ensemble Retrieval. MER leverages the complementary advantages of different
query modalities to construct ensemble query features thereby improving the retrieval accuracy.
The results demonstrate its effectiveness, in Table 1, incorporating MER provides an additional
improvement of 0.91% in Rank-1, 0.92% in mAP, and 1.11% in mINP in the Tri-SYSU-MM01
dataset over the baseline with MJL+SFF. Similarly, on the Tri-LLCM dataset, MER achieves 0.33%
Rank-1 improvement, 0.29% mAP improvement, and 0.27% mINP improvement.

Effect of LLM based Textual Augmentation. To extract robust text representations against text
variation, we implement LLM based augmentation module by randomly rephrasing the generated
descriptions for dynamic expression. As shown in Table 1, incorporating it further improves the
overall performance and robustness against text variation. It also works well with other modules,
achieving 84.90% Rank-1 and 58.19% Rank-1 in Tri-SYSU-MM01 and Tri-LLCM respectively.

4.3 Comparison with the State-of-the-art Methods
We present a comprehensive comparison of TVI-LFM against state-of-the-art methods on different
datasets as outlined in Table 2 and Table 3. Our evaluation includes a variety of metrics: Rank-1
(R-1), mean Average Precision (mAP), and mean Inverse Negative Penalty (mINP) [59]. For fair
comparison, we re-run YYDS on the proposed expanded datasets with the same image size: 288×144.

Performance on Tri-SYSU-MM01 Dataset As shown in Table 2, with the enhancement of generated
text, TVI-LFM greatly improves the performance of the VI-ReID backbone and outperforms all
previous methods under ’All Search’ and ’Indoor Search’ conditions. Specifically, TVI-LFM achieves
significant improvements in Rank-1, reaching 84.90% and 89.06% respectively, compared to the next
best result of 77.78% by PartMix [20] in All Search and 83.20% by SAAI [10] in Indoor Search.
Furthermore, in terms of mAP, TVI-LFM posts scores of 81.47% and 90.78%, which are substantial
increases from the previous high scores of 77.03% and 88.01%, respectively.
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Table 2: Comparison with the state-of-the-art methods on the proposed Tri-SYSU-MM01.
All Search Indoor Search

Methods Venue Type
R-1 mAP mINP R-1 mAP mINP

Zero-Padding [46] ICCV-17 14.80 15.95 - 20.58 26.92 -
HCML [56] AAAI-18 14.32 16.16 - 24.52 30.08 -
cmGAN [6] IJCAI-18 26.97 27.80 - 31.63 42.19 -
AlignGAN [43] ICCV-19 42.40 40.70 - 45.90 54.30 -
AGW [59] TPAMI-21 47.50 47.65 35.30 54.17 62.97 59.23
DDAG [58] ECCV-20 54.75 53.02 39.62 61.02 67.98 62.61
CM-NAS [12] ICCV-21 61.99 60.02 - 67.01 72.95 -
DART [53] CVPR-22 68.7 66.3 - 82.0 73.8 -
CAJ [57] ICCV-21 69.88 66.89 53.61 76.26 80.37 76.79
DEEN [65] CVPR-23 74.70 71.80 - 80.30 83.30 -
SAAI [10] ICCV-23 75.90 77.03 - 83.20 88.01 -
MSCLNet [64] ECCV-22 76.99 71.64 - 78.49 81.17 -
SGIEL [11] CVPR-23 77.12 72.33 - 82.07 82.95 -
PartMix [20] CVPR-23

I → R

77.78 74.62 - 81.52 84.38 -
YYDS [9] Arxiv-24 I + T → R 74.60 70.35 56.01 81.35 83.64 79.56
VI-ReID Backbone - I → R 69.89 66.74 53.34 76.91 80.64 76.70
TVI-LFM - I + T → R 84.90 81.47 70.85 89.06 90.78 88.39

Table 3: Comparison with the state-of-the-art methods on the proposed Tri-RegDB and Tri-LLCM.
Tri-RegDB Tri-LLCM

Methods Venue Type
R-1 mAP mINP R-1 mAP mINP

DDAG [58] ECCV-20 68.06 61.80 48.62 40.3 48.4 -
AGW [59] TPAMI-21 70.49 65.90 51.24 43.6 51.8 -
CAJ [57] ICCV-21 84.8 77.8 61.56 48.8 56.6 -
DART [53] CVPR-22 82.0 73.8 - 52.2 59.8 -
MMN [66] MM-21 87.5 80.5 - 52.5 58.9 -
DEEN [65] CVPR-23

I → R

89.5 83.4 - 54.9 62.9 -
YYDS [9] Arxiv-24 I + T → R 90.95 84.22 70.12 58.13 64.91 61.77
VI-ReID Backbone - I → R 89.51 83.51 69.65 53.53 59.77 56.40
TVI-LFM - I + T → R 91.38 85.92 72.73 58.19 65.08 61.83

Performance on Tri-RegDB and Tri-LLCM Dataset Table 3 outlines our method’s performance
on the two datasets. In the Tri-RegDB dataset, TVI-LFM obtains a Rank-1 of 91.38% and an mAP of
85.92%, higher than the prior top scores of 90.95% in Rank-1 and 84.22% in mAP by YYDS. In the
Tri-LLCM dataset, our method leads with a Rank-1 of 58.19% and an mAP of 65.08%, surpassing
the prior top scores of 58.13% in Rank-1 and 64.91% in mAP, both held by YYDS.

4.4 Visualization

Feature Distribution Visualization. To explore the reason why our method is effective, we utilize
t-SNE [42] 2D feature space and visualize cosine distances of the intra-class and inter-class features
on Tri-SYSU-MM01 dataset. From the (a) to (d) in Fig. 4, the t-SNE feature distribution shows that
our method greatly enhances the ability of distinguishing features from different identities with text
and reduces extreme outliers of the same identity and samples with too large cross-modal discrepancy.
For the feature distance distribution shown in Fig. 4 (e-h), which corresponds to the 2D t-SNE
[42] feature distribution, the inter-class and intra-class distance distributions are increasingly well
separated, particularly noting that the excessive intra-class distance is also significantly reduced.

Retrieval Result. To intuitively present the performance of our method, we visualize some retrieval
results of the VI-ReID backbone, baseline and our method on the Tri-SYSU-MM01 dataset in
Appendix C. For the same query image, our method significantly enhances retrieval performance
utilizing generated descriptions compared to baseline and VI-ReID backbone.
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(e) Initial Distance (f) VI-ReID Backbone Distance (g) Baseline Distance (h) TVI-LFM Distance

(a) Initial Distribution (b) VI-ReID Backbone Distribution (c) Baseline Distribution (d) TVI-LFM Distribution

Figure 4: First row (a-d) shows the t-SNE feature distribution of the 20 randomly selected identities,
triangles means infrared features (w/wo textual enhancement), circles means visible features. Differ-
ent colors indicate different identities. Figures in the second row (e-h) represent the intra-class (blue)
and inter-class (green) distances of infrared features (w/wo textual fusion) and visible features.

5 Conclusion
To alleviate the absence of detailed color information in the infrared modality, this paper presents a VI-
ReID framework driven by Large Foundation Models (TVI-LFM) to enrich the infrared representation
with VLM-generated textual descriptions, which is a cross-modality retrieval approach bolstered
by heterogeneous text descriptions. To enhance the infrared modality with text, MSC utilizes one
off-the-shelf LLM to augment VLM-generated text descriptions. Then, IFS incorporates a pre-trained
VLM to extract features from generated texts, and incrementally fine-tunes the text encoder to align
generated texts and original visual modalities. To enhance the infrared modality with extracted textual
representations, IFS leverages modality alignment capabilities of VLMs and VLM-generated feature-
level filters to create fusion modality. This allows the text model to learn complementary features
from the infrared modality, ensuring semantic structural consistency between the fusion modality
and the visible modality. Furthermore, IFS introduces modality joint learning to align features of all
modalities, maintaining a stable semantic representation of overall pedestrian appearance for text
features, during complementary information learning. Additionally, MER leverages complementary
strengths of query modalities to form ensemble queries, further improving retrieval performance.
Extensive experiments on three expanded VI-ReID datasets demonstrate that our method achieves
a competitive performance, paving the way for utilizing large foundation models in downstream
data-demanding multi-modal retrieval tasks.

limitations and future research
While the proposed TVI-LFM shows promising performance, the retrieval accuracy hinges on text
quality, and the performance on hard datasets, such as LLCM[65], still have rooms for improvement.
High-quality text enhances retrieval accuracy by improving text-vision correspondences during
training and providing precise information for infrared compensation during inference. Therefore,
for future improvements, 1) more advanced generative models; 2) image augmentations during
generator fine-tuning; 3) progressive generation strategies focusing on fine-grained attributes, could
be introduced to enhance text quality, thereby improving the accuracy of cross-modality retrieval
bolstered by heterogeneous textual descriptions.
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A Details of Expanded Datasets

a man with hair, 
wearing a half -
sleeved t - shirt that 
he paired with 
pants. he has 
matched his 
clothes with shoes. 
he is carrying a bag 
on his shoulder.

a man with short black
hair wearing a half 
sleeve length dark 
green round - neck t -
shirt paired with black
full - length jeans pants 
has worn black casual 
shoes. he is also 
wearing glasses.

a lady with brown lengthy 
open hair, carrying an 
existing complete - sleeved 
white jacket, paired with 
blue jeans pants as well as 
white shoes, sporting an 
existing black sling bag on 
top of her right shoulder.

a lady with shoulder -
period open hair, 
sporting an existing 
complete - sleeved top, 
paired with denims 
pants in addition to 
sneakers, sporting an 
current sling bag on 
pinnacle of her proper.

a boy with short black hair 
wearing half sleeves round 
- neck sea blue t - shirt 
paired with black cargo 
shorts followed by a pair 
of brown and white
graphic shoes, carrying a 
black backpack on his 
shoulders.

a boy with short 
hair, wearing a half 
- sleeved round -
neck t - shirt, and 
shorts paired with 
casual shoes. he is 
wearing a backpack 
on his shoulder.

a man with black hair, 
wearing a black full 
sleeves oversized coat that 
he paired with light blue 
denim jeans. he has 
matched his clothes with 
brown shoes.",

a man with short 
hair wearing a full 
sleeve length jacket 
and printed shirt 
inner paired with 
full - length jeans 
pants has worn 
boots.",

Figure 5: Visualization of the data samples selected from the expanded three datasets.

Table 4: Dataset statistics
Datasets #ID #RGB #IR #Text

Tri-LLCM 1064 25626 21141 46767
Tri-RegDB 412 4120 4120 8240

Tri-SYSU-MM01 491 30071 15792 45863

All the fine-tuning process of VLMs can be found in documentations from huggingface: https:
//huggingface.co/docs/transformers/main/en/tasks/image_captioning.

The generator model we use refers to the official implementation released in huggingface: https:
//huggingface.co/Salesforce/blip-image-captioning-large.

B Implementation Details
We implement our framework in PyTorch [32] utilizing a single NVIDIA RTX 3090 GPU for training.
For visual backbone training, it takes about 9GB memory for training and about 3GB memory for
testing, about 9 hours are needed for training on Tri-SYSU-MM01 and Tri-LLCM, about 1 hour
for smaller Tri-RegDB. For incremental fine-tuing, it takes about 5GB memory for training and
about 3GB memory for testing, about 1 hour are needed for fine-tuning on Tri-SYSU-MM01 and
Tri-LLCM, about 10 miniutes for smaller Tri-RegDB. Each batch consists of 8 identities, with each
identity containing 4 visible images, 4 infrared images, 4 text descriptions generated from visible
images, and 4 text descriptions generated from infrared images. All input images are resized to 3 ×
288 × 144, with full augmentation strategy the same as CAJ [57]. All text descriptions are generated
by two modality-specialized fine-tuned VLMs and augmented by the proposed LLM rephrasing
augmentation with a probability of 0.5, here we use vicuna-7b [67] as our LLM model, use Blip
[24] as our VLM model, whose tuning process can be found in Sec. 3.1. We employ a dual-stream
resnet50 model [58] pre-trained on ImageNet [36] as the visual backbone and a transformer model
with parameters derived from CLIP [34] as the textual backbone. For incrementally fine-tuning our
TVI-LFM, at first, we should get an available well-trained visual backbone. Here we utilize the
augmentation method [57] to train the visual backbone for 120 epochs by cross-entropy loss and
weighted regularized triplet loss, finally get the well-trained visual backbone. Then we integrate
the well-trained VI-ReID model and fine-tune the text encoder from CLIP [34] and a simple ReID
bottleneck [29] applied for each feature for 20 epochs. We use the Adam [17] for optimization. For
the Tri-SYSU-MM01 and Tri-LLCM datasets, in both visual and textual parts, the learning rate is set
to 3.5e-4 and the weight decay to 5e-4. For the Tri-RegDB dataset, the learning rate for the visual
part is 2e-3 with weight decay of 5e-4, and for the textual part, the learning rate is 1e-5 with weight
decay of 4e-5. The learning rate rises up to the initial value by a linear warm-up scheme for the first
10 epochs, then decays by a linear scheme with a decay-factor of 0.1 at the milestones of 40, 60, and
100 epochs.
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C Retrieve Result Examples w/wo Text

a boy with short black
hair wearing a round 
neck, short sleeves red t -
shirt with grey jogger 
pants, paired with green
shoes, and a black bag on 
his back.

N/A

a boy with short black
hair wearing a round 
neck, short sleeves red t -
shirt with grey jogger 
pants, paired with green
shoes, and a black bag on 
his back.

Baseline

TVI-LFM

VI-ReID
Backbone

a man with black hair, wearing 
a green half sleeves t - shirt 
that he paired with dark black 
colour full length jeans. he has 
matched his clothes with dark 
black colour shoes.

N/A

a man with black hair, wearing 
a green half sleeves t - shirt 
that he paired with dark black 
colour full length jeans. he has 
matched his clothes with dark 
black colour shoes.

Baseline

TVI-LFM

VI-ReID
Backbone

Figure 6: Visualization of the rank-5 retrieval results obtained by the VI-ReID backbone, the baseline,
and our method on the proposed Tri-SYSU-MM01.

The VI-ReID backbone and the baseline still includes misidentifications. But our method fully
leverages complementary information from textual data, significantly enhancing retrieval performance
through semantic filtered fusion.
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D Assets Details
This section provides the necessary details for the data assets utilized in our research: SYSU-MM01,
LLCM, and RegDB.

• SYSU-MM01 [46]

– Source and Citation: The SYSU-MM01 dataset was created by researchers at Sun
Yat-sen University (SYSU). Ancong Wu, et al. “RGB-IR Person Re-Identification by
Cross-Modality Similarity Preservation” (2020) is the seminal paper associated with
this dataset.

– data splits: The training set contains 22,258 visible images and 11,909 infrared images
of 395 identities. The testing set contains 96 identities, with 3,803 infrared images for
query and 301 (single-shot) randomly selected visible images as the gallery set.

– URL: The dataset can be accessed through a GitHub repository: https://github.
com/wuancong/SYSU-MM01 , where users must agree to the data release agreement.

– License: We cannot find out the license SYSU-MM01 uses, but the author requires
signing the usage agreement notice and contact him through e-mail to get the dataset.
The detailed usage agreement refers to the github url mentioned above.

• LLCM [65]

– Source and Citation: The LLCM dataset was introduced by researchers from Xiamen
University. Yukang Zhang and Hanzi Wang’s paper “Diverse Embedding Expansion
Network and Low-Light Cross-Modality Benchmark for Visible-Infrared Person Re-
identification” (2023) discusses this dataset.

– data splits: The training set contains 30,921 images of 713 identities, and the test set
contains 13,909 images of 351 identities.

– URL: The dataset is available on GitHub https://github.com/ZYK100/LLCM.

– License: CC-BY 4.0

– Code: We use its code for feature visualization.

• RegDB [31]

– Source and Citation: The RegDB dataset was developed at Dongguk University from
the paper named "Person Recognition System Based on a Combination of Body Images
from Visible Light and Thermal Cameras".

– data splits: The training set contains 206 identities and the testing set contains 206
identities. There are 10 visible images and 10 infrared images for each person.

– URL: We can only find the paper’s doi https://doi.org/10.3390/s17030605

– License: CC-BY 4.0

E Discussion of Incremental Fine-tuning Strategy
To optimize the whole framework, we first train a simple VI-ReID backbone, then incrementally
fine-tune the VLM textual encoder based on the well-trained frozen backbone to inherit its visual
perception capability and integrate text information for infrared modality compensation. If we
train the whole framework from scratch, as shown in the Table 5 above, the performance of the
VI-ReID backbone suddenly declines by 5.43% and 4.24% in Rank-1 in the two datasets respectively,
indicating the loss of visual perception capability, thereby the performance textually enhanced task
(I + T → R) is also affected, with a decline of 0.14% Rank-1 in Tri-SYSU-MM01 and 1.66%
Rank-1 in Tri-LLCM. This demonstrates the importance of incrementally fine-tuning strategy, which
avoids the potential performance influence caused by conflicts of modeling visual features and textual
enhanced infrared features optimization.
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Table 5: The impact of incrementally fine-tuning the framework based on a frozen, well-trained visual
backbone versus training from scratch is evaluated for two scenarios: infrared query (I → R) and
fusion query (I +T → R) on the performance of Tri-SYSU-MM01 and Tri-LLCM. To specifically
analyze the influence on visual perception capability and fusion feature modeling, we exclude the
MER strategy from the fusion query to eliminate the effect of combining original features from both
the infrared modality and text modality.

I → R
Tri-SYSU-MM01 Tri-LLCM

R1 mAP mINP R1 mAP mINP
VI-ReID Backbone 69.89 66.74 53.34 53.53 59.77 56.40

From Scratch 64.46↓5.43 61.31↓5.43 46.94↓6.40 49.29↓4.24 55.78↓3.99 52.12↓4.28

I + T → R
Tri-SYSU-MM01 Tri-LLCM

R1 mAP mINP R1 mAP mINP
TVI-LFM 84.17 80.72 70.02 57.13 64.06 60.72

From Scratch 84.03↓0.14 79.85↓0.87 68.06↓1.97 55.47↓1.66 62.23↓1.83 58.86↓1.86

F Broader Impacts
Our TVI-LFM framework offers significant advancements in urban security by enhancing person re-
identification in low-light conditions, boosting surveillance effectiveness. It automates text generation
from IR and RGB images, reducing annotation workload and improving text robustness, aiding
multi-modal research and smart security system development. However, it’s crucial to address
environmental impact concerns related to large models’ energy consumption and the privacy risks
associated with re-identification technology. Governments and regulatory bodies must enact stringent
regulations to prevent misuse and ensure identification accuracy to avoid societal disruptions.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We demonstrate clearly our main claim that leveraging large foundation models
to generate dynamic textual modalities effectively addresses the lack of critical information,
such as color, in infrared modality. The experimental results across all three expanded
VI-ReID datasets show great improvements on the accuracy of our proposed cross-modality
retrieval bolstered by heterogeneous text descriptions.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss the limitation in the Sec. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: We don’t have proofs.

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper provides a clear and comprehensive description of the proposed
TVI-LFM architecture in Sec. 3 and Fig. 2, the method of expanding the existing open-
source dataset in Sec. 3.1 as well as the complete implementation details of constructing the
whole framework in Appendix B, training and testing, along with the detailed steps of the
experiments in Sec. 4. This ensures the replicability of our experimental results.

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
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(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release our data and code soon in https://github.com/WHU-HZY/
TVI-LFM.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All of experimental settings are shown in Sec. 4.1, while the analysis of
experiments results can be found in Ablation Study in Sec. 4.2 and Comparison with
state-of-the-art methods in Sec. 4.3.
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Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We don’t have error bars, but in order to get stable performance, we evaluate
our model for 10 times with random split of the gallery set in all experiments on Tri-SYSU-
MM01 and Tri-LLCM datasets; for RegDB we evaluate our model on the 10 trials with
different training/testing splits, and finally we report our model’s average performance on
each dataset, the same as existing related works did.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: All the details can be found in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the Broader Impacts in Appendix F

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The pretrained language model [67] mentioned above we used are safe and
come from open source community, and we don’t post any new pre-trained language model.

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes of course, we cite the author and owners for all used assets. And we also
respect and follow all the license and terms of use explicitly mentioned. The detail of data
and code assets we used are shown in Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
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Justification: All the documentations of original datasets can be viewed at the github urls in
Appendix D. Documentations and statistics of the expanded data will also be provided at
this paper’s github url.

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work didn’t relate to any crowdsourcing and research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve human participants.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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