

000 NEURAL DIVERSITY REGULARIZES HALLUCINATIONS 001 IN SMALL LANGUAGE MODELS 002

003 **Anonymous authors**

004 Paper under double-blind review

005 ABSTRACT

006 Language models continue to hallucinate despite increases in parameters, com-
007 put, and data. We propose *neural diversity* — decorrelated parallel represen-
008 tations — as a principled mechanism that reduces hallucination rates at fixed
009 parameter and data budgets. While existing mitigation strategies largely target
010 accuracy, we provide the first formal tail bounds for hallucination probability in
011 ensembled language models, reframing it as a second-moment reliability problem
012 and *explaining 96.2% of empirical reliability variation* seen across parallel con-
013 figurations. We introduce ND-LoRA (Neural Diversity Low-Rank Adaptation),
014 combining parallel LoRA adapters with Barlow Twins regularization, and *reduce*
015 *hallucinations by up to 25.6% (and 14.6% on average)* while preserving general
016 accuracy. Ablations show LoRA adapters and regularization act synergistically,
017 causal interventions prove neurodiversity as the mediating factor and correlational
018 studies indicate scale: a 0.1% neural correlation increase is associated with a 3.8%
019 hallucination increase. Finally, task-dependent optimality emerges: different tasks
020 require different optimal amounts of neurodiversity. Together, our results high-
021 light neural diversity as a third axis of scaling — orthogonal to parameters and
022 data — to *improve the reliability of language models at fixed budgets*.

Category	Task	Best P_*	Best Score	$\Delta\%$ Score	Sig.
Hallucination	HaluEval (Dialog)	4	0.516	+12.8%	***
	HaluEval (QA)	4	0.451	+23.4%	***
	HaluEval (Summ)	4	0.502	+25.6%	***
	MemoTrap v2	8	0.689	+8.8%	***
	TruthfulQA (MC1)	2	0.269	+7.3%	
	TruthfulQA (MC2)	2	0.442	+9.5%	*
Knowledge	NQ (8-shot)	1	0.066	—	
	NQ-swap	8	0.554	+0.8%	
	PopQA	1	0.111	—	
	TriviaQA (8-shot)	1	0.192	—	

Table 1: **Optimal neural diversity is task-dependent: hallucination tasks benefit from neural diversity, knowledge tasks do not.** De-aggregating Figure 1, hallucination benchmarks consistently show large gains with increased diversity (up to 25.6%, HaluEval-Summ, P_* = 4), while knowledge retrieval mostly peaks at P_* = 1. This asymmetry supports hallucination as a reliability problem distinct from factual recall. Significance: *** $p < 0.001$, * $p < 0.05$.

1 INTRODUCTION

Despite scaling to trillions of parameters, language models hallucinate persistently (Lin et al., 2021). This reliability crisis is acute for small language models — increasingly favored for edge and agentic use cases (Zheng et al., 2025; Belcak et al., 2025) — whose compressed representations make them especially vulnerable to hallucinations, with even well-resourced efforts like GPT-OSS 20B exhibiting 91% hallucination rates on factual benchmarks (OpenAI, 2025).

Current hallucination mitigation strategies are largely empirically driven but theoretically ungrounded and target average performance rather than tail risk. RLHF optimizes mean harmlessness (Bai et al., 2022), RAG improves average factual grounding (Niu et al., 2024), and contrastive decoding enhances mean generation quality (Li et al., 2023b). While inference-time approaches like self-consistency and LoRA ensembling (Wang et al., 2022; 2023) reduce hallucinations through diverse sampling, they lack formal tail-probability guarantees. Similarly, parallel scaling methods (Chen et al., 2025) target first-moment improvements in perplexity and task accuracy. Yet controlling catastrophic failures requires bounding the tails of $\mathbb{P}(\text{hallucination})$, not just optimizing mean behavior.

Formal ensemble theory exists but targets the wrong objective. Classical ensemble methods (Krogh & Vedelsby, 1994) provide rigorous diversity theory to reduce mean generalization error $\mathbb{E}[\text{loss}]$, not tail-probability bounds for hallucinations. Deep ensembles (Lakshminarayanan et al., 2017) quantify uncertainty but lack hallucination-specific guarantees. Without explicit diversification, parallel architectures suffer *representational collapse* (Jing et al., 2022), leaving reliability gains unrealized.

To our knowledge, we provide the first formal framework for **hallucination probability tail bounds in ensembled language models**, reframing it as a second-moment reliability problem. Drawing on portfolio theory (Markowitz, 1952), we prove that decorrelated parallel representations (*neural diversity*) reduce this tail bound and introduce **ND-LoRA (Neural Diversity Low-Rank Adaptation)** to concretely demonstrate its hallucination reduction capabilities.

Our contributions are:

- **Theoretical Linkage:** We reframe hallucinations as a second-moment reliability problem and prove (i) a portfolio-theoretic bound showing hallucination probability $\mathbb{P}(\text{H}) \propto 1/P$ with P decorrelated parallel representations (Theorem 1); and, (ii) non-monotonicity in reliability scaling (Theorem 2), showing that excessive parallelism can degrade diversity (and thus reliability) under common circumstances. We further show (iii) our theoretical predictions achieve $R^2 = 0.962$ in fitting empirical reliability gains (Figure 1), establishing quantitative validation rare in neural hallucination research.
- **Constructive Demonstration:** We demonstrate empirical gains via ND-LoRA (parallel LoRA + Barlow Twins decorrelation), which reduces hallucinations by up to 25.6% (and

108 14.6% on average) at $1.00004 \times$ continued pretraining cost while preserving general capabilities across 12 benchmarks (Table 1, 2).
 109
 110

- 111 • **Mechanistic Analysis:** We establish that neural diversity mediates hallucination in four
 112 ways: (i) causality via perturbation ($p < 0.001$, Table 3), (ii) quantitative scale via cor-
 113 relation (+0.1% diversity \Leftrightarrow -3.8% hallucination, Figure 3), (iii) super-linear effects via
 114 ablation (Table 4), and (iv) task-dependent optima via scaling sweeps (Table 1).

115 Neural diversity represents a third scaling axis beyond parameters and data. While traditional scaling
 116 asks “how big?” and data scaling “how much?”, diversity scaling asks “how different?” — crucial
 117 for achieving reliability without massive computational investment.
 118

119 2 A THEORY OF NEURAL DIVERSITY

120 Why don’t existing scaling methods improve reliability? Without explicit diversity mechanisms,
 121 gradient descent drives parallel streams toward similar representations through *representational col-*
 122 *lapse* (Jing et al., 2022), leaving reliability gains unrealized. We establish the first hallucination
 123 tail bounds for ensembled language models, proving that neural diversity reduces hallucinations and
 124 providing mathematical foundations for ND-LoRA.
 125

126 Our strategy adapts portfolio theory to neural architecture design. Classical ensemble methods re-
 127 duce *mean error* $\mathbb{E}[\text{loss}]$ through variance reduction (Krogh & Vedelsby, 1994), treating correlation
 128 as a factor that limits accuracy gains. In contrast, portfolio theory manages *tail risk* — rare but cata-
 129 strophic failures — by diversifying across correlated assets (Markowitz, 1952). We adapt the latter
 130 framework to tail bound hallucination probability $\mathbb{P}(\text{hallucination})$, where correlation becomes the
 131 primary control variable for reliability rather than a secondary constraint on mean performance.
 132

133 2.1 PRELIMINARIES

134 Modern language models hallucinate by fabricating facts, generating content inconsistent with in-
 135 put, or creating unsupported claims (Maynez et al., 2020; Ji et al., 2023). While comprehensive
 136 taxonomies exist (Huang et al., 2024), we model hallucinations through a simple signal-noise proxy
 137 that captures the underlying reliability failure (Figure 1) while remaining analytically tractable.
 138

139 **Signal-noise model.** Let $x \in X$ be a query with oracle output $y_*(x) \in \mathbb{R}^V$ and corresponding
 140 hidden representation $z_*(x) \in \mathbb{R}^d$. Consider an architecture that employs P parallel computational
 141 pathways called *streams*, each processing the same input X through the same model but in perturbed
 142 ways. We model the hidden output of each stream as $Z_i = z_* + \varepsilon_i$ where $\varepsilon_i \in \mathbb{R}^d$ is centered noise
 143 with variance $\sigma_i^2 > 0$. The noise covariance $\Sigma \in \mathbb{R}^{P \times P}$ has entries $\Sigma_{ij} \triangleq \mathbb{E}[\langle \varepsilon_i, \varepsilon_j \rangle]$ with pairwise
 144 correlations $\rho_{ij} \triangleq \Sigma_{ij}/(\sigma_i \sigma_j)$ for $i \neq j$. We aggregate hidden representations via $\widehat{Z}_w = \sum_i w_i Z_i$
 145 with weights summing to one. For readability, we omit x where obvious and denote the average
 146 noise variance by $\bar{\sigma}^2 \triangleq \mathbb{E}[\sigma_i^2]$ and average correlation $\bar{\rho} \triangleq \mathbb{E}_{i < j}[\rho_{ij}]$.
 147

148 **High-dimensional structure.** High-dimensional representations exhibit predictable geometric
 149 regularity that we exploit for analysis. We assume: (i) *Lipschitz decoding*, where outputs $\widehat{Y}_w(x) =$
 150 $f(\widehat{Z}_w(x))$ and $y_*(x) = f(z_*(x))$ satisfy $\|f(z) - f(z')\|_2 \leq L\|z - z'\|_2$ for some $L > 0$; and,
 151 (ii) *norm concentration*, where $\|\tilde{z}_i(X)\|_2^2 \approx d$ with small relative variance for per-feature whitened
 152 representations \tilde{z}_i . Both properties are standard in high-dimensional probability (Vershynin, 2018)
 153 and neural network analysis (Fazlyab et al., 2019; Bartlett et al., 2017).
 154

155 **Neural representations.** At a chosen design layer, each stream exposes a d -dimensional re-
 156 presentation $z_i(X)$. We whiten per-feature to obtain \tilde{z}_i with zero mean and identity covariance. For
 157 streams $i < j$, the cross-correlation matrix is $C^{(ij)} \triangleq \mathbb{E}[\tilde{z}_i \tilde{z}_j^\top] \in \mathbb{R}^{d \times d}$ whose diagonal entries
 158 measure same-feature similarity and off-diagonal entries capture cross-feature alignment. Finally,
 159 using the widely-exploited observation that trained networks exhibit locally linear behavior at their
 160 operating point (Goodfellow et al., 2015; Simonyan et al., 2014), we connect representations to noise
 161 via local linearity: $\xi_i = A\tilde{z}_i$ for a shared linear readout $A \in \mathbb{R}^{d \times d}$ with finite condition number κ .
 162

162 **Neural diversity index.** We define a simple cosine-based index to measure cross-stream diversity:
 163

$$164 \quad \mathcal{D} \triangleq \sqrt{\mathbb{E}_{i < j} \left[\frac{(\tilde{z}_i \cdot \tilde{z}_j)^2}{\|\tilde{z}_i\|^2 \|\tilde{z}_j\|^2} \right]}. \quad (1)$$

165
 166

167 Lower \mathcal{D} indicates greater neural diversity: $\mathcal{D} = 0$ means all streams are perfectly orthogonal, while
 168 $\mathcal{D} = 1$ means streams have suffered complete collapse.
 169

170 **Hallucinations.** We define the output error as $E_w \triangleq \|\hat{Y}_w(x) - y_\star(x)\|_F$, which is comparable
 171 to metrics like TruthfulQA-MC2 (Lin et al., 2021). For tolerance $\delta > 0$, the *hallucination event* is
 172 $H_\delta \triangleq \{E_w \geq \delta\}$. Our goal is to bound $\mathbb{P}(H_\delta)$ as a function of neural diversity \mathcal{D} across streams P .
 173

174 2.2 NEURAL DIVERSITY BOUNDS HALLUCINATION

175

176 Classical portfolio theory (Markowitz, 1952) gives the variance of an equally weighted portfolio of
 177 P assets with average variance $\bar{\sigma}^2$ and average pairwise correlation $\bar{\rho}$ as:
 178

$$179 \quad \text{Var}(Y) = \bar{\sigma}^2 \left(\frac{1 - \bar{\rho}}{P} + \bar{\rho} \right). \quad (2)$$

180

181 To use this observation for hallucinations, we must first connect neuron-level representations to
 182 portfolio-level noise correlations. Exploiting the fact that (i) our ensemble has one underlying model
 183 with aligned neuron-level representations and (ii) our model has geometric regularity in representa-
 184 tion and output, the following lemma establishes this mapping:
 185

186 **Lemma 1** (Average Correlation Bound). *Suppose there exists a constant $C_4 \geq 1$ such that
 187 $\mathbb{E}[\|\xi_i\|_2^4] \leq C_4 \sigma_i^4$ for all i . Then the average pairwise noise correlation satisfies*

$$188 \quad |\bar{\rho}| \leq C_* \mathcal{D}, \quad (3)$$

189 where $C_* \triangleq \sqrt{C_4} \kappa^2$ depends only on the kurtosis bound and the readout condition number κ .
 190

191 *Proof sketch.* We proceed in two steps: (1) Spectral bounds imply linear readout distorts cosines by
 192 at most κ^2 , so noise-space diversity $\mathcal{D}_\xi \leq \kappa^2 \mathcal{D}$. (2) Cauchy–Schwarz twice — inner products to
 193 cosines, then kurtosis — gives $|\rho_{ij}| \leq \sqrt{C_4} \mathcal{D}_{\xi,ij}$; averaging pairs completes the proof. \square
 194

195 We now have a direct path to tail-bound $\mathbb{P}(H_\delta)$ as a function of \mathcal{D} and P . For readability, we assume
 196 uniform weights $w_i = 1/P$ below but our approach can also be easily applied to arbitrary weights.
 197

198 **Theorem 1** (Hallucination Bound with Diversity). *For any tolerance $\delta > 0$,*

$$199 \quad \mathbb{P}(H_\delta) \leq \frac{\frac{1 - C_* \mathcal{D}}{P} + C_* \mathcal{D}}{\frac{1 - C_* \mathcal{D}}{P} + C_* \mathcal{D} + \text{SNR}}, \quad (4)$$

200
 201

202 where $\text{SNR} \triangleq \delta^2 / \bar{\sigma}^2$.
 203

204 *Proof sketch.* Lemma 1 bounds $|\bar{\rho}| \leq C_* \mathcal{D}$, linking noise variance to representational diversity.
 205 Plugging into Equation 2, applying Chebyshev and normalizing by $\bar{\sigma}^2$ yields the stated bound. \square
 206

207 This completes the first half of our theoretical result: Neural diversity mediates hallucination prob-
 208 ability. With perfect de-correlation ($\bar{\rho} = 0$), hallucination probability scales as $O(1/P)$ — more
 209 streams reduce hallucination risk. When streams collapse ($\bar{\rho} = 1$), the bound becomes independent
 210 of P , explaining why naive ensembling without diversification provides no reliability benefits.
 211

212 2.3 NON-MONOTONIC SCALING BEHAVIOR

213

214 Next, we demonstrate that under common circumstances, the hallucination bound follows a U-
 215 shaped curve — initially decreasing with higher P , but starts increasing eventually. Consider the
 case where the correlation itself increases with P , say, due to optimizer constraints:

216 **Theorem 2** (U-shaped Behavior). Suppose $\bar{\rho}(P) = \rho_0 + \beta(P - 1)^\gamma$ for constants $\rho_0 \in [0, 1]$,
 217 $\beta > 0$, $\gamma > 0$. Define

$$219 \quad v(P) \triangleq \text{Var}(E_w) = \bar{\sigma}^2 \left(\frac{1 - \bar{\rho}(P)}{P} + \bar{\rho}(P) \right), \quad B(P) \triangleq \frac{v(P)}{v(P) + \delta^2}. \quad (5)$$

221 Then $B(P)$ is U-shaped: there exists $P_* \geq 1$ minimizing $\mathbb{P}(\mathcal{H}_\delta)$, with P_* controlled by how fast
 222 $\bar{\rho}(P)$ degrades with P .
 223

224 *Proof sketch.* The hallucination bound $B(P)$ is monotonic in variance $v(P)$, so we analyze $v(P)$
 225 directly. There are two competing effects: the $1/P$ term drives variance down, while growing
 226 correlation $\bar{\rho}(P) = \rho_0 + \beta(P - 1)^\gamma$ eventually dominates. Differentiating shows $v'(P)$ changes
 227 sign exactly once, yielding a unique minimum P_* whose location depends β, γ and ρ_0 . \square
 228

229 This theorem establishes *non-monotonicity* — hallucination probability $\mathbb{P}(\mathcal{H}_\delta)$ actually *increases*
 230 for larger P , meaning reliability degrades. This is stronger than the well-known diminishing returns
 231 of ensembles (where improvement slows but continues). While ensemble theory also shows optimal
 232 size matches the number of class labels for accuracy-optimized classifiers (Bonab & Can, 2019),
 233 we prove and validate (Figure 1) that diversity can degrade in generative language models with
 234 excessive parallelism under common circumstances and also harm reliability.
 235

236 2.4 THEORETICAL VALIDATION

238 By measuring empirical diversity $\mathcal{D}(P)$ and plugging these values into Theorem 1’s bound, we
 239 achieve $R^2 = 0.962$ (Figure 1), explaining 96.2% of empirical reliability variation. This fit uses
 240 only two free parameters (C_* , SNR) shared across all tasks and observations, with $\mathcal{D}(P)$ fixed from
 241 empirical measurements. Theorem 2’s correlation growth model provides a mechanism for observed
 242 concavity: correlation grows as $O((P - 1)^\gamma)$, overwhelming the $O(1/P)$ diversification benefit.
 243 This alignment — rare in hallucination research where theory often lags empirics — validates our
 244 portfolio-theoretic framework.

245 Together, Theorem 1 and Theorem 2 show that (i) reducing \mathcal{D} reduces hallucinations and (ii) there
 246 exists an optimal P_* that minimizes hallucinations. Next, we show how to construct an architecture
 247 and training protocol to reduce \mathcal{D} and find P_* .
 248

249 3 ND-LoRA: A PRACTICAL DEMONSTRATION

Figure 2: **ND-LoRA schematic for $P = 4$ parallel streams.** Each stream receives independent LoRA adapters and learnable prefix tokens. The aggregator combines stream outputs with learnable weights, while Barlow Twins regularization incentivizes decorrelation between stream outputs.

We introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), a parameter-efficient method that demonstrates our theoretical framework for neural diversity regularization. ND-LoRA extends the ParScale architecture with stream-aware LoRA adapters and explicit decorrelation objectives. Figure 2 visually summarizes our approach.

3.1 ARCHITECTURE

Our implementation builds on ParScale with P parallel computation streams. Each stream $i \in \{1, \dots, P\}$ uses 48 learnable prefix tokens prepended to the input sequence that flow through all layers via the attention mechanism, along with stream-specific LoRA adapters applied at each layer:

$$h_i^{(\ell)} = \text{Layer}^{(\ell)}(h_i^{(\ell-1)} + B_i^{(\ell)} A_i^{(\ell)} h_i^{(\ell-1)}) \quad (6)$$

where $B_i^{(\ell)} \in \mathbb{R}^{d \times r}$, $A_i^{(\ell)} \in \mathbb{R}^{r \times d}$ are stream-specific LoRA matrices with rank r . The final output combines streams through a learned aggregator:

$$y = \text{LM_Head} \left(\sum_{i=1}^P w_i \cdot h_i^{(L)} \right) \quad (7)$$

where $w_i = (1 - \varepsilon) \cdot \text{softmax}(\text{MLP}([h_1^{(L)}, \dots, h_P^{(L)}]))_i + \varepsilon/P$ are dynamic weights with label smoothing ($\varepsilon = 0.1$) computed from the concatenated stream representations. This prevents attention collapse by ensuring minimum weight ε/P for each stream.

This architecture enables stream specialization while maintaining parameter efficiency. For $P = 2$ streams with rank-16 LoRA, we use approximately 29K trainable parameters per layer, comparable to a single rank-32 LoRA but with fundamentally different representational capabilities.

3.2 BARLOW TWINS REGULARIZATION

To encourage neural diversity, we apply Barlow Twins regularization across all pairs of streams $i < j$ at a pre-specified design layer ℓ_* .

Let $z_i \in \mathbb{R}^{B \times T \times d}$ denote the hidden representations of stream i at the design layer for a batch of size B and sequence length T . We first apply batch normalization and mean-centering to obtain whitened features \tilde{z}_i . We then calculate the cross-correlation matrices $C^{(ij)} \in \mathbb{R}^{d \times d}$ as in subsection 2.2 and apply standard Barlow Twins (Zbontar et al., 2021) for each pair of streams $i < j$:

$$\mathcal{L}_{BT} = \mathbb{E}_{i < j} \|C^{(ij)} - I\|_F \quad (8)$$

The total training objective combines cross-entropy and decorrelation terms:

$$\mathcal{L} = \mathcal{L}_{CE} + \lambda_{BT} \mathcal{L}_{BT} \quad (9)$$

4 EXPERIMENTAL VALIDATION

We validate ND-LoRA through systematic hallucination reduction experiments using parameter- and data-matched comparisons. We describe our full experimental setup in subsection A.5.

4.1 KEY RESULTS

Table 2 demonstrates ND-LoRA achieves substantial improvements on hallucination-sensitive benchmarks while maintaining competitive general performance. ND-LoRA with $P = 2$ streams achieves statistically significant improvements on HaluEval-Summarization (0.481* vs 0.400, $p < 0.001$, 8.1% absolute / 20.2% relative), TruthfulQA-MC2 (0.442* vs 0.403, $p = 0.030$, 3.9% absolute / 9.5% relative) and MemoTrap (0.666* vs 0.634, $p < 0.001$, 3.2% absolute / 5.1% relative) vs parameter-matched Qwen, validating our theoretical prediction.

Although ND-LoRA’s improvements specifically target reliability benchmarks, they preserve general capabilities. Qwen slightly outperforms on WikiText (0.778 vs. 0.784) and Natural Questions (0.065 vs. 0.055), but ND-LoRA wins slightly on Winogrande (0.574 vs. 0.572).

Model	HaluEval	MemoTrap	TruthfulQA	NQ	Wikitext	WG
ND-LoRA R16 (P=2)	0.481*	0.666*	0.442*	0.055	0.784	0.574
ParScale R32 (P=2)	0.439	0.638	0.412	0.059	0.793	0.564
Qwen LoRA R32	0.400	0.634	0.403	0.065	0.778	0.572

Table 2: **Even at $P = 2$ streams, ND-LoRA achieves up to 20.2% relative hallucination reduction vs. parameter-matched baseline.** Across hallucination benchmarks, ND-LoRA shows statistically significant improvements (HaluEval-Summarization, MemoTrap, TruthfulQA-MC2) while maintaining competitive Winogrande, NQ, and Wikitext BPB (lower is better) general-purpose capabilities. Baselines use higher LoRA ranks for parameter parity. * indicates $p < 0.05$.

Figure 3: **Reliability improves as neural diversity increases (lower \mathcal{D}).** Specifically, diversity (\mathcal{D}) is negatively correlated with HaluEval-Summarization performance (slope=-37.842, $R^2=0.237$, $p=0.002$), consistent with $\mathbb{P}(\mathcal{H}) \propto \mathcal{D}$ in Theorem 1.

Parameter efficiency is evident comparing ND-LoRA R16 ($P = 2$) against Qwen2.5-0.5B LoRA R32. Despite lower-rank adapters, ND-LoRA consistently outperforms the high-rank baseline on hallucination tasks, demonstrating that architectural diversity provides more value at equal capacity. This shows representational diversity, not parameter count, drives reliability gains in our experiment.

These findings establish neural diversity as a practical reliability mechanism. Consistent improvements across hallucination benchmarks with preserved general performance suggest ND-LoRA addresses fundamental reliability challenges rather than metric-specific optimization. Figure 3 demonstrates strong empirical correlation between neural diversity and performance, building intuition for the causal relationship established in subsection 5.1.

4.2 TASK-DEPENDENT OPTIMALITY

Further, the optimal diversity is task-dependent. Table 1 reveals striking task-dependent sensitivity patterns relative to the $P = 1$ baseline. Hallucination-focused tasks show the largest gains: HaluEval Summarization achieves +25.6% relative improvement at $P = 4$, HaluEval QA shows +23.4% at $P = 4$, and TruthfulQA MC2 shows +9.5% at $P = 2$ while MemoTrap benefits from higher diversity ($P = 8$, +8.8%). Notably, knowledge-intensive tasks like PopQA, TriviaQA and NQ show no improvement over baseline, which is expected as ND-LoRA does not add new sources of knowledge or try to improve recall of existing knowledge. This heterogeneity demonstrates that different tasks require different amounts of neural diversity to maximize reliability, with hallucination-focused tasks generally benefiting most from decorrelated representations.

378	Task	$\Delta\mathcal{D}$	Δ Score	SE	d	p-value	Sig.	N
379	HaluEval-Summ	0.024	-0.005	0.010	0.007	1.6×10^{-5}	***	512
380	MemoTrap v2	0.031	-0.003	0.010	0.000	8.2×10^{-5}	***	512
381	TruthfulQA-MC2	0.025	-0.007	0.009	0.018	3.3×10^{-7}	***	512

383 **Table 3: Artificial corruption of neural diversity establishes statistical causality.** Perturbing
 384 neural diversity ($\Delta\mathcal{D} > 0$) causes accuracy drops across tasks with high statistical significance
 385 ($p < 0.001$) via paired t-tests with Fisher meta-analysis (N=4 sub-experiments \times 128 samples each).

388 5 MECHANISTIC ANALYSIS

391 5.1 NEURAL DIVERSITY AS THE CAUSAL MEDIATOR

393 To establish causality beyond correlation, we perform artificial corruption interventions that directly
 394 manipulate cross-stream similarity.

395 **Experiment Design.** Starting with a pre-trained ND-LoRA $P = 4$ model, we inject a corruption
 396 hook at the RMSNorm layer that randomly substitutes the hidden state at randomly-chosen positions
 397 in a given stream from another stream, perturbing \mathcal{D} while preserving activation magnitudes. We
 398 evaluate on a matched basis: each corrupted evaluation is paired with an uncorrupted baseline using
 399 identical samples and resampling indices. Across 4 sub-experiments with different random seeds,
 400 we collect $N = 128$ paired samples per task. This paired design maximizes statistical power by
 401 controlling sample-level variance, analyzed via paired t-tests with Fisher meta-analysis.

402 **Results.** Table 3 provides statistically robust evidence that neural diversity causally affects per-
 403 formance. All three tasks show highly significant accuracy drops ($p < 0.001$) when stream-level
 404 substitution perturbs diversity ($\Delta\mathcal{D} \approx 0.025$). While effect sizes are modest (0.3% to 0.7% score
 405 reduction) — likely because artificial stream substitution creates out-of-distribution corruption pat-
 406 terns — the statistical significance establishes causality beyond correlational association.

409 5.2 ABLATIONS

411 To isolate the contributions of ND-LoRA, we systematically ablate ND-LoRA components at fixed
 412 $P = 4$ streams. All variants maintain parameter parity through LoRA rank adjustments, enabling
 413 fair comparison. We measure inference-time diversity (\mathcal{D}) at the aggregation layer using evaluation
 414 samples, quantifying actual cross-stream correlation during inference.

415 Table 4 reveals a super-linear combination: independent LoRA (+2.9%) and Barlow Twins (+1.4%)
 416 sum to 4.3% but achieve 4.9% when combined (Stream LoRA-BT) — a 14% bonus. Targeting
 417 KVQ attention amplifies this further by $2.6 \times$ to +12.8% (ND-LoRA at fixed $P = 4$; maximum
 418 gains reach 14.6% when optimizing P per-task, see Table 1). Neither component alone suffices:
 419 ParScale’s near-complete collapse ($\mathcal{D} = 0.9990$) yields only +0.5%, while Stream LoRA without
 420 regularization achieves +2.9%, both less than a quarter of ND-LoRA’s final impact. This establishes
 421 that both architectural capacity and explicit regularization are necessary for full impact.

422 Notably, ParScale’s original work found prefix tuning superior to LoRA for mean loss (Table 6 in
 423 Chen et al. 2025). However, stream-aware LoRA is necessary for reducing tail probability: even
 424 with Barlow Twins, prefix tuning collapses streams ($\mathcal{D} = 0.9988$), while stream-aware LoRA en-
 425 ables decorrelation ($\mathcal{D} = 0.1530$). This illustrates how second-moment objectives require different
 426 architectural choices than first-moment objectives.

427 Counterintuitively, ND-LoRA achieves best performance (+12.8%) with *higher* $\mathcal{D} = 0.4112$ than
 428 Stream LoRA-BT’s 0.1530. This reveals that strategic localization to representational bottlenecks
 429 matters more than maximizing global decorrelation: focusing LoRA and Barlow Twins on KVQ
 430 attention modules provides $2.6 \times$ amplification. This further reinforces how second-moment objec-
 431 tives differ architecturally from first-moment ones and, consistent with Table 1, that neural diversity
 is a task-dependent resource requiring strategic allocation to critical computational pathways.

Variant	Streams	LoRA	Regul.	Target	\mathcal{D}	$\overline{\Delta\%}$ Score	Δ Cost
Standard	1	Single	D	All	–	0.0%	1.0x / 1.0x
ParScale	P	Single	D	All	0.9990	+0.5%	1.00003x / 1.1x
ParScale-BT	P	Single	D + BT	All	0.9988	+1.4%	1.00003x / 1.1x
Stream LoRA	P	Stream	D	All	0.3544	+2.9%	1.00003x / 1.1x
Stream LoRA-BT	P	Stream	D + BT	All	0.1530	+4.9%	1.00004x / 1.1x
ND-LoRA	P	Stream	D + BT	KVQ	0.4112	+12.8%	1.00004x / 1.1x

Table 4: **Ablations reveal super-linear combination of impact.** Stream LoRA (+2.9%) and Barlow Twins (+1.4%) combine super-linearly (+4.9%), and focusing on KVQ attention amplifies to +12.8%. *LoRA*: single shared vs. P stream-aware adapters. *Regularization*: Dropout vs. Barlow Twins. *Target*: All layers vs. KVQ attention only. \mathcal{D} : Neural Diversity Index (lower is better). $\overline{\Delta\%}$ *Score*: avg. change (hallucination benchmarks). Ablations shown at fixed $P = 4$ streams.

5.3 COMPUTATIONAL CONSIDERATIONS

Unlike P -model ensembles with $P \times$ pretraining cost, ND-LoRA achieves substantial reliability gains at negligible overhead (1.00004 \times pretraining, 1.1 \times latency) given its single architecture. Parallelized 20M amortizes to $\sim 0.004\%$ of 1T-token pretraining, frozen backbone makes gradients nearly free, and ND-LoRA requires identical FLOPs to ParScale at inference. See subsection A.2.

5.4 PRACTICAL APPROXIMABILITY

While task-optimal P_* varies (Table 1), practitioners need not search exhaustively. Defaulting to $P = 4$ achieves 96% of oracle performance across all benchmarks. Additionally, a simple router (subsection A.7) achieves 97% by predicting P from prompt statistics, revealing a retrieval-vs-verifiability tradeoff: question-dense prompts favor low P , while longer prompts favor higher P .

6 RELATED WORK

Hallucination in Language Models. Hallucinations represent a fundamental challenge in modern language models. Comprehensive surveys establish taxonomies that distinguish factuality vs. faithfulness (Huang et al., 2024; Tonmoy et al., 2024). Theoretical work proves hallucinations are mathematically inevitable in computable models under certain resource constraints (Xu et al., 2024; Kalai & Vempala, 2024), with smaller models exhibiting particular severity on factual benchmarks (Lin et al., 2021; Li et al., 2023a). Mechanistic investigations reveal hallucinations arise from internal representation failures (Yu et al., 2024), knowledge awareness limitations (Ferrando et al., 2025), and attention pattern anomalies.

Mitigation has predominantly targeted average performance. Retrieval augmentation (RAG) incorporates external knowledge for factual grounding (Niu et al., 2024). RLHF improves alignment (Bai et al., 2022), while constitutional AI enhances safety. Decoding methods use contrastive decoding (Li et al., 2023b) and classifier-free guidance (Sanchez et al., 2023). Critically, improving $\mathbb{E}[\text{error}]$ does not guarantee improvements to $\mathbb{P}(\text{hallucination})$, as tail events depend on variance and correlation structure, not just central tendency.

Second-moment approaches exist but lack theoretical grounding: self-consistency reduces hallucinations through diverse sampling (Wang et al., 2022) without formal tail-probability guarantees, while deep ensembles provide uncertainty estimates (Lakshminarayanan et al., 2017) but not hallucination-specific bounds. We provide the first formal tail bounds connecting neural diversity to hallucination probability as a second-moment problem.

Deep Ensembles, Parallel Architectures & Inference-Time Scaling Deep ensembles provide uncertainty estimates (Lakshminarayanan et al., 2017) with power-law scaling (Lobacheva et al., 2020) for calibration and OOD detection. LLM ensembles benefit from explicit diversity optimization (Tekin et al., 2024), while negative correlation learning demonstrates diversity must be actively encouraged (Liu & Yao, 1999). The “memory split advantage” shows ensembles of smaller models can outperform single large models at fixed parameter budgets. Optimal size theory reveals weighted voting exhibits diminishing returns due to correlation and overfitting (Bonab & Can, 2019), with

486 predictions stabilizing at 5–10 models (Hernández-Lobato et al., 2013). These approaches require
 487 multiple independent models, incurring $P \times$ training and inference costs.
 488

489 Inference-time methods reduce hallucinations through diverse sampling and aggregation. Self-
 490 consistency uses majority voting over multiple generations (Wang et al., 2022). Confidence-based
 491 weighting uses intelligent aggregation (Taubenfeld et al., 2025), while contrastive decoding contrasts
 492 expert and amateur models (Li et al., 2023b). These approaches require multiple forward passes at
 493 inference time, whereas our training-time parallelism learns coordinated streams.
 494

495 Self-ensembled parallel architectures like ParScale (Chen et al., 2025) break the multiplicative mem-
 496 ory requirements of classical ensembles by using P perturbed computational pathways within a sin-
 497 gle model. ParScale achieves $O(\log P)$ general capability gains, modeling parallel streams with
 498 correlation ρ in scaling laws $L \propto (N \cdot P^{1/\alpha} \cdot [(P-1)\rho + 1]^{-1/\alpha})^{-\alpha}$. This targets mean loss
 499 for accuracy improvements, not hallucination probability. We directly build our demonstration on
 ParScale, extending their theoretical framework and implementation to tail-bound hallucinations.
 500

501 **Theoretical Foundations.** Modern portfolio theory (Markowitz, 1952) provides the mathemati-
 502 cal foundation for understanding correlation-based risk reduction, with diversification principles
 503 (Meucci, 2009) for ensemble variance analysis. Classical ensemble theory reduces mean error
 504 $\mathbb{E}[\text{loss}]$ via variance decomposition (Dietterich, 2000). PAC-Bayesian bounds connect diversity to
 505 minimax-optimal generalization (Ortega et al., 2022) and concentration inequalities showing corre-
 506 lation reduction tightens tail bounds (Alquier, 2024). We link these frameworks to modern neural
 507 networks to bound hallucination tail probabilities.
 508

509 **Redundancy Reduction.** A rich history of diversification exists in self-supervised learning to avoid
 510 training collapse and in PEFT methods for efficient specialization. Self-supervised approaches like
 511 Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2022) use decorrelation to pre-
 512 vent dimensional collapse (Jing et al., 2022). PEFT methods like LoRA (Hu et al., 2022) and
 513 prefix-tuning (Li & Liang, 2021) enable model specialization under limited parameter budgets,
 514 with BatchEnsemble and LoRA-Ensemble achieving diversity through parameterization (Wen et al.,
 515 2020; Mühlmaier et al., 2025). We adapt these methods for second-moment reliability guarantees.
 516

517 7 DISCUSSION

518 At a time when the reliability of language models is becoming the critical barrier to real-world
 519 deployment, we (i) provide the first formal framework to tail-bound hallucinations in ensembled
 520 language models, demonstrating that neural diversity plays a critical role in reducing hallucinations;
 521 and, (ii) using this technique, achieve up to 25.6% (and 14.6% on average) reduction in hallucination
 522 rates at fixed parameter and data budgets at +0.004% pretraining cost. Neural diversity enables
 523 reliability gains without massive compute scaling.
 524

525 By reframing hallucinations as a second-moment problem — controlled through variance and cor-
 526 relation rather than mean optimization — we open an under-explored research direction orthogonal
 527 to existing approaches. While RLHF and RAG target first-moment improvements (average perfor-
 528 mance), neural diversity targets tail probability through explicit decorrelation. This bridges port-
 529 folio theory to neural reliability, a connection previously unexplored. The gap between extensive
 530 first-moment research and nascent second-moment approaches (self-consistency, our work) suggests
 substantial opportunity for reliability-focused methods grounded in tail-probability theory.
 531

532 Our small-scale demonstration and mechanistic analysis validates the theoretical framework; scal-
 533 ing to production models is straightforward given that continued training requires only +0.004%
 534 additional overhead and $P = 4$ captures 96.2% of oracle performance. The task-dependent optimal
 535 P_* in Table 1 reveals intriguing structure, suggesting deeper connections between task complexity,
 knowledge recall vs. precision and neural diversity worthy of theoretical characterization.
 536

537 Our work opens two immediate research directions: (i) *Theoretical*: characterizing optimal P_* as
 538 a function of task properties — our U-shape theorem (Theorem 2) suggests information-theoretic
 539 approaches. (ii) *Practical*: combining neural diversity (this work) with inference-time scaling (Snell
 LLMs become critical infrastructure in high-stakes domains.
 540

540 REFERENCES

541
 542 Pierre Alquier. User-friendly introduction to pac-bayes bounds. *Foundations and Trends in Machine*
 543 *Learning*, 17(2):174–303, 2024.

544 Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones,
 545 Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harm-
 546 lessness from ai feedback. *arXiv preprint arXiv:2212.08073*, 2022.

547 Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance regularization
 548 for self-supervised learning. In *International Conference on Learning Representations*, 2022.

549
 550 Peter L. Bartlett, Dylan J. Foster, and Matus Telgarsky. Spectrally-normalized margin bounds for
 551 neural networks. In *Advances in Neural Information Processing Systems*, 2017.

552 Peter Belcak, Greg Heinrich, Shizhe Diao, Yonggan Fu, Xin Dong, Saurav Muralidharan,
 553 Yingyan Celine Lin, and Pavlo Molchanov. Small language models are the future of agentic
 554 ai, 2025.

555 Hamed Bonab and Fazli Can. Less is more: A comprehensive framework for the number of compo-
 556 nents of ensemble classifiers. *IEEE Transactions on Neural Networks and Learning Systems*, 30
 557 (9):2735–2745, 2019.

558 Mouxiang Chen, Binyuan Hui, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Jianling Sun, Junyang Lin, and
 559 Zhongxin Liu. Parallel scaling law for language models, 2025.

560
 561 Thomas G Dietterich. Ensemble methods in machine learning. *Multiple Classifier Systems*, pp.
 562 1–15, 2000.

563 Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient
 564 and accurate estimation of Lipschitz constants for deep neural networks. In *Advances in Neural*
 565 *Information Processing Systems*, 2019.

566 Javier Ferrando, Oscar Obeso, Senthooran Rajamanoharan, and Neel Nanda. Do i know this entity?
 567 knowledge awareness and hallucinations in language models. *arXiv preprint arXiv:2411.14257*,
 568 2025.

569 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
 570 examples. *arXiv preprint arXiv:1412.6572*, 2015.

571 Daniel Hernández-Lobato, Gonzalo Martínez-Munoz, and Alberto Suárez. How large should en-
 572 sembles of classifiers be? *Pattern Recognition*, 46(5):1323–1336, 2013.

573 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 574 and Weizhu Chen. Lora: Low-rank adaptation of large language models. In *International Con-
 575 ference on Learning Representations*, 2022.

576 Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong
 577 Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, et al. A survey on hallucination in large language
 578 models: Principles, taxonomy, challenges, and open questions. *ACM Transactions on Information*
 579 *Systems*, 2024.

580 Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Yejin Bang, De-
 581 long Chen, Wenliang Dai, et al. Survey of hallucination in natural language generation. *ACM*
 582 *Computing Surveys*, 55(12):1–38, 2023.

583 Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional collapse in
 584 contrastive self-supervised learning. *arXiv preprint arXiv:2110.09348*, 2022.

585
 586 Mandar Joshi, Eunsol Choi, Daniel Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
 587 supervised challenge dataset for reading comprehension. In *Proceedings of the 55th Annual Meet-
 588 ing of the Association for Computational Linguistics*, pp. 1601–1611, 2017.

589 Adam Tauman Kalai and Santosh S. Vempala. Calibrated language models must hallucinate. *arXiv*
 590 *preprint arXiv:2311.14648*, 2024.

594 Anders Krogh and Jesper Vedelsby. Neural network ensembles, cross validation, and active learning.
 595 *Advances in Neural Information Processing Systems*, 7, 1994.
 596

597 Tom Kwiatkowski, Jennimaria Palomaki, Olivia Redfield, Michael Collins, Ankur Parikh, Chris
 598 Alberti, Danielle Epstein, Illia Polosukhin, Jacob Devlin, Kenton Lee, Kristina Toutanova, Llion
 599 Jones, Matthew Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob Uszkoreit, Quoc Le, and Slav
 600 Petrov. Natural questions: A benchmark for question answering research. *Transactions of the*
 601 *Association for Computational Linguistics*, 7:452–466, 2019.

602 Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable predic-
 603 tive uncertainty estimation using deep ensembles. *Advances in Neural Information Processing*
 604 *Systems*, 30, 2017.

605 Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun Nie, and Ji-Rong Wen. Halueval: A large-
 606 scale hallucination evaluation benchmark for large language models. In *Proceedings of the 2023*
 607 *Conference on Empirical Methods in Natural Language Processing*, pp. 6449–6464, 2023a.

608

609 Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
 610 *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics*, pp.
 611 4582–4597, 2021.

612 Xiang Lisa Li, Ari Holtzman, Daniel Fried, Percy Liang, Jason Eisner, Tatsunori Hashimoto, Luke
 613 Zettlemoyer, and Mike Lewis. Contrastive decoding: Open-ended text generation as optimization.
 614 In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics*, pp.
 615 12286–12312, 2023b.

616

617 Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
 618 falsehoods. In *Advances in Neural Information Processing Systems*, volume 34, pp. 20136–20148,
 619 2021.

620 Yong Liu and Xin Yao. Ensemble learning via negative correlation. *Neural Networks*, 12(10):
 621 1399–1404, 1999.

622

623 Ekaterina Lobacheva, Nadezhda Chirkova, Maxim Kodryan, and Dmitry Vetrov. On power laws in
 624 deep ensembles. In *Advances in Neural Information Processing Systems*, volume 33, pp. 2375–
 625 2385, 2020. arXiv:2007.08483.

626

627 Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das, Daniel Khashabi, and Hannaneh Hajishirzi.
 628 When not to trust language models: Investigating effectiveness of parametric and non-parametric
 629 memories. In *Proceedings of the 61st Annual Meeting of the Association for Computational*
 630 *Linguistics*, 2023.

631

632 Harry Markowitz. Portfolio selection. *The Journal of Finance*, 7(1):77–91, 1952.

633

634 Joshua Maynez, Shashi Narayan, Bernd Bohnet, and Ryan McDonald. On faithfulness and factuality
 635 in abstractive summarization. In *Proceedings of the 58th Annual Meeting of the Association for*
 636 *Computational Linguistics*, pp. 1906–1919, 2020.

637

638 Ian R. McKenzie, Alexander Lyzhov, Michael Pieler, Alicia Parrish, Aaron Mueller, Ameya Prabhu,
 639 Euan McLean, Aaron Kirtland, Alexis Ross, Alisa Liu, Andrew Gritsevskiy, Daniel Wurgafit, De-
 640 rik Kauffman, Gabriel Recchia, Jiacheng Liu, Joe Cavanagh, Max Weiss, Sicong Huang, Xudong
 641 Shen, Tom Tseng, Tomasz Korbak, Yuhui Zhang, Zhengping Zhou, Najoung Kim, Samuel R.
 642 Bowman, and Ethan Perez. Inverse scaling: When bigger isn’t better. *Transactions on Machine*
 643 *Learning Research*, 2023. arXiv:2306.09479.

644

645 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 646 models. *arXiv preprint arXiv:1609.07843*, 2017.

647

648 Attilio Meucci. *Risk and Asset Allocation*. Springer Finance. Springer, 2009.

649

650 Dominik J. Mühlematter, Michelle Halbheer, Alexander Becker, Dominik Narnhofer, Helge Aasen,
 651 Konrad Schindler, and Mehmet Ozgur Turkoglu. Lora-ensemble: Efficient uncertainty modelling
 652 for self-attention networks. *arXiv preprint arXiv:2405.14438*, 2025.

648 Cheng Niu, Yuanhao Wu, Juno Zhu, Siliang Xu, Kashun Shum, Randy Zhong, Juntong Song, and
 649 Tong Zhang. Ragtruth: A hallucination corpus for developing trustworthy retrieval-augmented
 650 language models. *arXiv preprint arXiv:2401.00396*, 2024. arXiv:2401.00396.

651

652 OpenAI. gpt-oss-120b & gpt-oss-20b model card. *arXiv preprint arXiv:2508.10925*, 2025.

653 Luis A. Ortega, Rafael Cabañas, and Andres Masegosa. Diversity and generalization in neural
 654 network ensembles. In Gustau Camps-Valls, Francisco J. R. Ruiz, and Isabel Valera (eds.), *Pro-
 655 ceedings of The 25th International Conference on Artificial Intelligence and Statistics*, volume
 656 151 of *Proceedings of Machine Learning Research*, pp. 11720–11743. PMLR, 28–30 Mar 2022.

657

658 Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
 659 sarial winograd schema challenge at scale. In *Proceedings of the AAAI Conference on Artificial
 660 Intelligence*, volume 34, pp. 8732–8740, 2020.

661 Guillaume Sanchez, Honglu Fan, Alexander Spangher, Elad Levi, Pawan Sasanka Ammana-
 662 manchi, and Stella Biderman. Stay on topic with classifier-free guidance. *arXiv preprint
 663 arXiv:2306.17806*, 2023.

664

665 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
 666 sualising image classification models and saliency maps. *arXiv preprint arXiv:1312.6034*, 2014.

667 Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
 668 can be more effective than scaling model parameters. *arXiv preprint arXiv:2408.03314*, 2024.

669

670 Amir Taubenfeld, Tom Sheffer, Eran Ofek, Amir Feder, Ariel Goldstein, Zorik Gekhman, and Gal
 671 Yona. Confidence improves self-consistency in llms. In *Findings of the Association for Com-
 672 putational Linguistics: ACL 2025*, pp. 20090–20111. Association for Computational Linguistics,
 673 2025. doi: 10.18653/v1/2025.findings-acl.1030.

674 Selim Furkan Tekin, Fatih Ilhan, Ege Karakose, and Mert Kobas. Llm-topla: Efficient llm ensemble
 675 by maximising diversity. In *Findings of the Association for Computational Linguistics: EMNLP
 676 2024*, pp. 5627–5642, 2024.

677 S. M Towhidul Islam Tonmoy, S M Mehedi Zaman, Vinija Jain, Anku Rani, Vipula Rawte, Aman
 678 Chadha, and Amitava Das. A comprehensive survey of hallucination mitigation techniques in
 679 large language models. *arXiv preprint arXiv:2401.01313*, 2024.

680

681 Roman Vershynin. *High-Dimensional Probability: An Introduction with Applications to Data Sci-
 682 ence*. Cambridge University Press, 2018.

683

684 Xi Victoria Wang, Alexander Ororbia, Karthik Kini, and Yi Lu. Lora ensembles for large language
 685 model fine-tuning. *arXiv preprint arXiv:2310.00035*, 2023.

686

687 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 688 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 689 In *Advances in Neural Information Processing Systems*, volume 35, pp. 3714–3727, 2022.

690

691 Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: An alternative approach to efficient
 692 ensemble and lifelong learning. In *International Conference on Learning Representations*, 2020.

693

694 Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is inevitable: An innate limitation of
 695 large language models. *arXiv preprint arXiv:2401.11817*, 2024.

696

697 Lei Yu, Meng Cao, Jackie Chi Kit Cheung, and Yue Dong. Mechanistic understanding and mitiga-
 698 tion of language model non-factual hallucinations. *arXiv preprint arXiv:2403.18167*, 2024.

699

700 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. Barlow twins: Self-supervised
 701 learning via redundancy reduction. In *Proceedings of the 38th International Conference on Ma-
 702 chine Learning*, pp. 12310–12320. PMLR, 2021.

703

704 Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, and Jiming Chen. A review on
 705 edge large language models: Design, execution, and applications, 2025.

A APPENDIX

A.1 FULL PROOFS

A.1.1 PROOF OF LEMMA 1

Proof. We proceed in two steps. First, we show that the shared linear readout A can at most distort cosines between representations by a factor of κ^2 . Second, we convert bounded cosine alignment between the error vectors ξ_i into a bound on average noise correlation.

Step 1: local linear readout and cosine distortion. Let σ_{\min} and σ_{\max} denote the minimal and maximal singular values of A and $\kappa = \sigma_{\max}/\sigma_{\min}$ its condition number. For any nonzero $x, y \in \mathbb{R}^d$, set $u = Ax$ and $v = Ay$. Then

$$\cos \angle(u, v) = \frac{\langle u, v \rangle}{\|u\|_2 \|v\|_2} = \frac{x^\top A^\top Ay}{\|Ax\|_2 \|Ay\|_2}.$$

By the spectral bounds on $A^\top A$, we have

$$|x^\top A^\top Ay| \leq \|A^\top A\|_{\text{op}} |x^\top y| = \sigma_{\max}^2 |x^\top y|$$

and

$$\|Ax\|_2 \|Ay\|_2 \geq \sigma_{\min}^2 \|x\|_2 \|y\|_2.$$

Combining,

$$|\cos \angle(u, v)| \leq \frac{\sigma_{\max}^2}{\sigma_{\min}^2} \frac{|x^\top y|}{\|x\|_2 \|y\|_2} = \kappa^2 |\cos \angle(x, y)|.$$

Squaring both sides yields

$$\cos^2 \angle(u, v) \leq \kappa^4 \cos^2 \angle(x, y). \quad (10)$$

Apply this with $x = \tilde{z}_i(X)$ and $y = \tilde{z}_j(X)$. Under the local linear readout assumption we have $\xi_i(X) = A\tilde{z}_i(X)$ and $\xi_j(X) = A\tilde{z}_j(X)$, so $u = \xi_i(X)$ and $v = \xi_j(X)$. Thus, for every pair (i, j) and every input X with nonzero norms,

$$\cos^2 \angle(\xi_i(X), \xi_j(X)) \leq \kappa^4 \cos^2 \angle(\tilde{z}_i(X), \tilde{z}_j(X)).$$

Taking expectations over X gives

$$\mathcal{D}_{\xi,ij}^2 \triangleq \mathbb{E}_X [\cos^2 \angle(\xi_i(X), \xi_j(X))] \leq \kappa^4 \mathbb{E}_X [\cos^2 \angle(\tilde{z}_i(X), \tilde{z}_j(X))] \triangleq \kappa^4 \mathcal{D}_{ij}^2,$$

where \mathcal{D}_{ij}^2 denotes the pairwise cosine diversity in representation space. Averaging over pairs and taking square roots yields

$$\mathcal{D}_\xi \triangleq \sqrt{\mathbb{E}_{i < j} \mathcal{D}_{\xi,ij}^2} \leq \kappa^2 \sqrt{\mathbb{E}_{i < j} \mathcal{D}_{ij}^2} = \kappa^2 \mathcal{D}. \quad (11)$$

Step 2: from cosine alignment to average correlation. We now bound the average correlation $\bar{\rho}$ in terms of \mathcal{D}_ξ . Fix a pair (i, j) and write

$$X \triangleq \langle \xi_i, \xi_j \rangle, \quad B \triangleq \|\xi_i\|_2 \|\xi_j\|_2.$$

Whenever $B > 0$,

$$\cos \angle(\xi_i, \xi_j) = \frac{X}{B}, \quad \mathcal{D}_{\xi,ij}^2 = \mathbb{E} \left[\left(\frac{X}{B} \right)^2 \right].$$

Using Cauchy–Schwarz with $U = X/B$ and $V = B$, we obtain

$$\Sigma_{ij}^2 = (\mathbb{E}[X])^2 = (\mathbb{E}[UV])^2 \leq \mathbb{E}[U^2] \mathbb{E}[V^2] = \mathcal{D}_{\xi,ij}^2 \mathbb{E} [\|\xi_i\|_2^2 \|\xi_j\|_2^2].$$

Apply Cauchy–Schwarz again to the norms and use the kurtosis bound:

$$\mathbb{E} [\|\xi_i\|_2^2 \|\xi_j\|_2^2] \leq \sqrt{\mathbb{E} [\|\xi_i\|_2^4] \mathbb{E} [\|\xi_j\|_2^4]} \leq \sqrt{C_4 \sigma_i^4 C_4 \sigma_j^4} = C_4 \sigma_i^2 \sigma_j^2.$$

756 Combining,

$$758 \quad \Sigma_{ij}^2 \leq C_4 \mathcal{D}_{\xi,ij}^2 \sigma_i^2 \sigma_j^2, \quad \rho_{ij}^2 = \frac{\Sigma_{ij}^2}{\sigma_i^2 \sigma_j^2} \leq C_4 \mathcal{D}_{\xi,ij}^2,$$

759 so

$$760 \quad |\rho_{ij}| \leq \sqrt{C_4} \mathcal{D}_{\xi,ij}. \quad (12)$$

762 Finally, average over pairs and apply Cauchy–Schwarz in the index space:

$$763 \quad |\bar{\rho}| = \left| \mathbb{E}_{i < j} [\rho_{ij}] \right| \leq \mathbb{E}_{i < j} [|\rho_{ij}|] \leq \sqrt{C_4} \mathbb{E}_{i < j} [\mathcal{D}_{\xi,ij}] \leq \sqrt{C_4} \sqrt{\mathbb{E}_{i < j} \mathcal{D}_{\xi,ij}^2} = \sqrt{C_4} \mathcal{D}_{\xi}.$$

765 Plugging equation 11 into this inequality gives

$$767 \quad |\bar{\rho}| \leq \sqrt{C_4} \mathcal{D}_{\xi} \leq \sqrt{C_4} \kappa^2 \mathcal{D} = C_* \mathcal{D},$$

768 with $C_* = \sqrt{C_4} \kappa^2$, as claimed. \square

770 A.1.2 PROOF OF THEOREM 1

772 *Proof.* We work under the signal–noise model from the preliminaries. By Markowitz 1952,

$$773 \quad \text{Var} \left(\frac{1}{P} \sum_{i=0}^{P-1} X_i \right) = \bar{\sigma}^2 \left(\frac{1-\rho}{P} + \rho \right)$$

776 where $\bar{\sigma}^2 = \frac{1}{P} \sum_i \text{Var}(X_i)$ is the average variance and $\rho = \mathbb{E}_{i \neq j} [\text{Corr}(X_i, X_j)]$ is the average
777 pairwise correlation.

778 From Lemma 1, we have

$$779 \quad |\bar{\rho}| \leq C_* \mathcal{D}.$$

781 Substituting this into the variance expression yields

$$782 \quad \text{Var}(E_w) \leq \bar{\sigma}^2 \left(\frac{1-C_* \mathcal{D}}{P} + C_* \mathcal{D} \right),$$

784 which is exactly the claimed variance bound in Theorem 1.

785 By construction, the hallucination event is

$$787 \quad H_\delta \triangleq \{E_w \geq \delta\}, \quad \delta > 0,$$

788 and we have already noted that $\mathbb{E}[E_w] = 0$. Applying the one-sided Chebyshev inequality from the
789 preliminaries to the random variable E_w with mean 0 and variance $v = \text{Var}(E_w)$ gives

$$790 \quad \mathbb{P}(H_\delta) = \mathbb{P}(E_w \geq \delta) \leq \frac{v}{v + \delta^2} = \frac{\text{Var}(E_w)}{\text{Var}(E_w) + \delta^2}.$$

793 Substituting $\text{Var}(E_w)$ by its upper bound yields

$$794 \quad \mathbb{P}(H_\delta) \leq \frac{\bar{\sigma}^2 \left(\frac{1-C_* \mathcal{D}}{P} + C_* \mathcal{D} \right)}{\bar{\sigma}^2 \left(\frac{1-C_* \mathcal{D}}{P} + C_* \mathcal{D} \right) + \delta^2}.$$

797 Dividing both numerator and denominator by $\bar{\sigma}^2$ matches the bound stated in Theorem 1. \square

799 A.1.3 PROOF OF THEOREM 2

800 *Proof.* Extend P to a real variable with domain $P \geq 1$; the claim for integer P follows by restriction.

802 Under uniform weights $w_i = 1/P$, the ensemble error variance can be written as

$$803 \quad v(P) \triangleq \text{Var}(E_w) = \bar{\sigma}^2 \left(\frac{1-\bar{\rho}(P)}{P} + \bar{\rho}(P) \right),$$

805 with $\bar{\sigma}^2 > 0$ and

$$807 \quad \bar{\rho}(P) = \rho_0 + \beta(P-1)^\gamma, \quad \rho_0 \in [0, 1], \beta > 0, \gamma > 0.$$

808 The bound from the main text is

$$809 \quad \mathbb{P}(H_\delta) \leq B(P) \triangleq \frac{v(P)}{v(P) + \delta^2}, \quad \delta > 0.$$

810 **Step 1: Reduction to $v(P)$.** Define $\phi(x) \triangleq x/(x + \delta^2)$ for $x \geq 0$. Then

$$811 \quad 812 \quad 813 \quad \phi'(x) = \frac{\delta^2}{(x + \delta^2)^2} > 0,$$

814 so ϕ is strictly increasing. Hence $B(P) = \phi(v(P))$ has the same extrema and monotonicity as
815 $v(P)$. Since $\bar{\sigma}^2 > 0$, it suffices to analyze
816

$$817 \quad 818 \quad 819 \quad f(P) \triangleq \frac{v(P)}{\bar{\sigma}^2} = \frac{1 - \bar{\rho}(P)}{P} + \bar{\rho}(P).$$

820 **Step 2: First derivative and unique critical point.** For $P > 1$,

$$821 \quad 822 \quad \bar{\rho}'(P) = \beta\gamma(P - 1)^{\gamma-1}.$$

823 A direct calculation gives

$$824 \quad 825 \quad 826 \quad 827 \quad f'(P) = \frac{d}{dP} \left(\frac{1 - \bar{\rho}(P)}{P} + \bar{\rho}(P) \right) \\ = \frac{\beta(P - 1)^\gamma(P\gamma + 1) + (\rho_0 - 1)}{P^2} \triangleq \frac{N(P)}{P^2}.$$

828 We study $N(P)$.

829 At $P = 1$ we have

$$830 \quad N(1) = \beta \cdot 0^\gamma(\gamma + 1) + (\rho_0 - 1) = \rho_0 - 1 < 0.$$

832 Differentiating N for $P > 1$ yields

$$833 \quad 834 \quad N'(P) = \beta\gamma(\gamma + 1) \cdot P \cdot (P - 1)^{\gamma-1}.$$

835 All factors on the right are strictly positive for $P > 1$, so $N'(P) > 0$ on $(1, \infty)$ and N is strictly
836 increasing. Moreover,

$$837 \quad (P - 1)^\gamma(P\gamma + 1) \sim \gamma P^{\gamma+1} \xrightarrow{P \rightarrow \infty} \infty,$$

839 so $N(P) \rightarrow +\infty$ as $P \rightarrow \infty$. By continuity and strict monotonicity, there exists a unique $P_* > 1$
840 such that $N(P_*) = 0$.

841 Because $P^2 > 0$ for all $P \geq 1$, the sign of $f'(P)$ matches that of $N(P)$:

$$842 \quad 843 \quad 844 \quad 845 \quad f'(P) \begin{cases} < 0, & 1 < P < P_*, \\ = 0, & P = P_*, \\ > 0, & P > P_*. \end{cases}$$

846 Thus f (and hence v) is strictly decreasing on $(1, P_*)$ and strictly increasing on (P_*, ∞) ; P_* is the
847 unique global minimizer.

849 **Step 3: U-shape of the hallucination bound.** Since $B(P) = \phi(v(P))$ and ϕ is strictly increasing,

$$850 \quad 851 \quad B'(P) = \phi'(v(P)) \cdot v'(P), \quad \phi'(v(P)) > 0,$$

853 so B inherits the same monotonicity: it is strictly decreasing on $(1, P_*)$, strictly increasing on
854 (P_*, ∞) , and

$$855 \quad B(P_*) = \min_{P \geq 1} B(P).$$

856 Therefore the upper bound on $\mathbb{P}(H_\delta)$ is U-shaped in P with a unique global minimum at P_* , deter-
857 mined by the parameters (ρ_0, β, γ) governing $\bar{\rho}(P)$. \square

859 A.2 TRAINING COST AND LATENCY ANALYSIS

861 This appendix provides a complete analysis of computational costs for ND-LoRA and baseline vari-
862 ants. Three key insights enable negligible overhead: (1) fine-tuning on 20M tokens amortizes to less
863 than 0.004% of 1T pretraining, (2) frozen backbone parameters make backward passes nearly free,
and (3) inference uses identical FLOPs to ParScale via dynamic LoRA swapping per stream.

864 A.2.1 COST MODEL
865866 **Standard Fine-Tuning (P=1) Baseline.** Consider a standard LoRA fine-tuning setup with 495M
867 backbone parameters frozen and 1.3M trainable adapter parameters. A typical training step consists
868 of:869

- 870 • **Forward pass:** $1.0 \times$ computational cost through 495M parameters
- 871 • **Backward pass:** $2.0 \times$ computational cost through 495M parameters (typical 2:1 back-
872 ward:forward ratio)
- 873 • **Total baseline:** 3.0 cost units per training step

874 **ND-LoRA (P=4) Fine-Tuning.** With $P = 4$ parallel streams, ND-LoRA processes data through
875 multiple independent pathways:876

- 877 • **Forward pass:** $4.0 \times$ cost (P parallel forward passes through full 495M model)
- 878 • **Backward pass:** $2.0 \times (1.3Y/495Y) \approx 0.005 \times$ cost (gradients only propagate through
879 1.3M trainable parameters after aggregation)
- 880 • **Barlow Twins regularization:** $1.6 \times$ cost (cross-correlation computation across P choose
881 2 streams and whitening)
- 882 • **Prefix/aggregator overhead:** $0.05 \times$ cost (additional trainable components)
- 883 • **Total:** 5.655 cost units per training step

884 **Relative Training Cost.** The training cost of ND-LoRA relative to standard fine-tuning is:
885

886
$$\text{Relative cost} = \frac{5.655}{3.0} = 1.888 \times \quad (13)$$

887 This is *substantially lower* than the naive estimate of $4 \times$ because backward passes through frozen
888 parameters are essentially free.

889 A.2.2 AMORTIZATION OVER PRETRAINING

890 To contextualize fine-tuning costs, we amortize over typical pretraining budgets. Given:

891

- 892 • **Pretraining:** 1T tokens at $1.0 \times$ cost = 1T token-equivalents
- 893 • **Fine-tuning:** 20M tokens at $1.888 \times$ cost = 37.8M token-equivalents
- 894 • **Total:** $(1T + 37.8Y)/1T = 1.0000378 \approx 1.00004 \times$

895 The amortized cost is **less than 0.004%** incremental overhead over the full training lifecycle.

900 A.2.3 ALL VARIANTS DURING FINE-TUNING

901 Table 5 shows the complete cost breakdown for all ablation variants. The key differences are:

902

- 903 • **Shared vs. Stream-Aware LoRA:** Stream-aware adapters add $0.04 \times$ prefix overhead
- 904 • **Barlow Twins:** Adds $1.6 \times$ (full BT) or $0.1 \times$ (ParScale-BT with simpler correlation)
- 905 • **All P=4 variants:** Incur $4.0 \times$ forward pass cost but only $0.005 \times$ backward cost

911 A.2.4 INFERENCE LATENCY

912 At inference, all $P > 1$ variants exhibit $1.1 \times$ **latency** relative to standard models:913

- 914 • **Parameter parity:** All variants maintain identical total parameter counts by adjusting
915 LoRA rank
- 916 • **Parallel processing:** P streams process in parallel; latency dominated by slowest stream +
917 aggregation

Variant	Forward	Backward	BT	Other	Total	Relative
Standard	1.0	2.0	0.0	0.0	3.0	1.000x
ParScale	4.0	0.005	0.0	0.01	4.015	1.337x
ParScale-BT	4.0	0.005	0.1	0.01	4.155	1.384x
Indep. LoRA	4.0	0.005	0.0	0.05	4.055	1.352x
ND-LoRA	4.0	0.005	1.6	0.05	5.655	1.885x

Table 5: Fine-tuning cost breakdown (20M tokens). *Forward*: P parallel passes through 495M backbone. *Backward*: single pass through 1.3M trainable parameters. *BT*: Barlow Twins correlation computation. *Other*: prefix/aggregator overhead. *Relative*: cost relative to 3.0x standard baseline.

- **Dynamic loading:** Different LoRA adapters are dynamically loaded per stream without duplication
- **Aggregation overhead:** Lightweight MLP aggregator adds $\sim 10\%$ latency

The $1.1\times$ factor is consistent across ParScale, ParScale-BT, Indep. LoRA, and ND-LoRA because inference does not involve Barlow Twins regularization and all parameter operations are equivalent.

A.2.5 SUMMARY

- **Training overhead:** $1.89\times$ (not $4\times$) due to free backward passes through frozen parameters
- **Amortized cost:** $\leq 0.004\%$ when amortized over 1T-token pretraining
- **Inference latency:** $1.1\times$ across all $P \geq 1$ variants with parameter matching
- **Practical impact:** Negligible computational overhead for 25.6% hallucination reduction

A.3 LORA MODULE ABLATIONS

To understand which components of ND-LoRA contribute most to hallucination reduction, we perform targeted ablations by removing LoRA adapters from specific module types. We compare the full ND-LoRA baseline against two variants:

- *No MLP*: removing LoRA from MLP projections (`gate_proj`, `up_proj`, `down_proj`) while keeping attention LoRA
- *No Attention*: removing LoRA from attention projections (`q_proj`, `k_proj`, `v_proj`, `o_proj`) while keeping MLP LoRA

Task	$\Delta\%$ No MLP	$\Delta\%$ No Attention
HaluEval Dialog	-1.7%	-0.6%
HaluEval QA	+16.8%	-1.8%
HaluEval Summarization	-5.3%	-27.0%
MemoTrap v2	+2.5%	+0.9%
NQ (8-shot)	+11.7%	-1.7%
PopQA	-0.8%	-0.8%
TriviaQA (8-shot)	-5.0%	-6.9%
TruthfulQA MC1	+3.1%	+2.4%
TruthfulQA MC2	+0.2%	+1.4%

Table 6: LoRA module ablation results (relative percentage changes from baseline). Evaluations performed on N=1024 samples per task.

A.4 USE OF LARGE LANGUAGE MODELS

Large language models were used as a compilation tool to assist with writing and organizing sections of this paper, including literature review synthesis, section structuring, LaTeX formatting, and co-generation of experimental code. All technical content, experimental design, theoretical contributions, and scientific claims are the authors' original work. The models served primarily to improve clarity, organization, and implementation of our ideas rather than generate novel scientific insights.

972 A.5 EXPERIMENTAL SETUP
973

974 **Model and Architecture.** We use Qwen2.5-0.5B (896 hidden dimensions, 24 layers) with ND-
975 LoRA across $P \in \{1, 2, 4, 8\}$ parallel streams applied to QKV self-attention modules and a design
976 layer of 20 for de-correlation loss. Each stream uses independent rank-16 LoRA adapters and 48
977 prefix tokens, totaling 5-20M trainable parameters with 495M backbone frozen. Baseline methods
978 use higher-rank LoRA (R32-R128) for parameter matching.

979 **Training Protocol.** Models train on 20M tokens from The Pile (8 random shards, fixed seeds). We
980 use 1024-token sequences, AdamW optimization (peak lr 3e-4, cosine decay, 2% warmup), batch
981 size 64, bfloat16 precision. Training completes in ~ 5 K steps (~ 30 min. on A100).

982 **Evaluation Benchmarks.** We evaluate across: (1) *Hallucination-sensitive*: TruthfulQA (Lin et al.,
983 2021), HaluEval (Li et al., 2023a), MemoTrap (McKenzie et al., 2023); (2) *Knowledge-intensive*:
984 Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), PopQA (Mallen et al.,
985 2023); (3) *General capability*: Wikitext BPB (Merity et al., 2017), Winogrande (Sakaguchi et al.,
986 2020). This tests if neural diversity improves reliability without sacrificing general performance.

987 **Neural Diversity Measurement.** We compute \mathcal{D} at the final RMSNorm layer by first whitening
988 representations per feature dimension across batch and sequence positions (zero mean, unit vari-
989 ance), then computing pairwise cosine similarity between streams. This is equivalent to the Barlow
990 Twins cross-correlation formulation (Eq. 2 in Zbontar et al. (2021)) when features are whitened.

991 **Statistical Methodology.** We evaluate significance using McNemar’s test for binary classification
992 tasks and two-tailed bootstrap tests with 10,000 samples for other tasks. Improvements marked with
993 * are significant at $p < 0.05$.

995 996 A.6 COMPLETE BENCHMARK RESULTS

997 Tables 7–9 provide comprehensive results across $P \in \{1, 2, 4, 8\}$ configurations with parameter-
998 matched $P = 1$ baselines. This complete view demonstrates the thoroughness of our evaluation and
999 enables independent verification of claims in the main text.

Evaluation	Qwen LoRA	ParScale	ND-LoRA
HE Dialog	0.458	0.453	0.513
HE QA	0.365	0.337	0.406
HE Summ	0.400	0.439	0.481
MemoTrap	0.634	0.638	0.666
NQ-8	0.065	0.059	0.055
TQA-8	0.188	0.185	0.160
TF-MC1	0.251	0.259	0.269
TF-MC2	0.403	0.412	0.442
NQ-swap	0.550	0.546	0.528
PopQA	0.111	0.109	0.101
Wikitext BPB	0.775	0.797	0.797
Winogrande	0.572	0.564	0.574

1014 Table 7: Benchmark results for $P = 2$ (Qwen R32) parameter-matched models.
1015
10161017 A.7 AN INTERPRETABLE ROUTER FOR OPTIMAL NUMBER OF STREAMS
1018

1019 To demonstrate that the task-optimal P_* patterns in Table 1 reflect real structure rather than arbitrary
1020 variation, we train a simple interpretable router that predicts optimal P_* from prompt features alone.
1021 While more complex routers could improve performance, we prioritize simplicity and interpretabil-
1022 ity to understand the underlying structure.

1023 We fit a simple regression on two features, trained on just 10 samples per task with oracle P labels:
1024

$$1025 \hat{P} = \text{clip}(0.196 \log W - 2.283Q + 3.321) \quad (14)$$

1026

1027

1028

1029

1030

1031

1032

1033

Evaluation	Qwen LoRA	ParScale	ND-LoRA
HE Dialog	0.464	0.459	0.516
HE QA	0.341	0.322	0.451
HE Summ	0.394	0.409	0.502
MemoTrap	0.629	0.634	0.635
NQ-8	0.065	0.061	0.059
TQA-8	0.191	0.185	0.172
TF-MC1	0.245	0.253	0.262
TF-MC2	0.399	0.413	0.416
NQ-swap	0.554	0.542	0.535
PopQA	0.110	0.110	0.106
Wikitext BPB	0.778	0.793	0.795
Winogrande	0.564	0.573	0.577

Table 8: Benchmark results for $P = 4$ (Qwen R64) parameter-matched models.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

Evaluation	Qwen LoRA	ParScale	ND-LoRA
HE Dialog	0.460	0.465	0.475
HE QA	0.344	0.335	0.370
HE Summ	0.379	0.416	0.450
MemoTrap	0.630	0.639	0.689
NQ-8	0.066	0.063	0.059
TQA-8	0.192	0.182	0.171
TF-MC1	0.251	0.256	0.259
TF-MC2	0.407	0.414	0.424
NQ-swap	0.551	0.540	0.554
PopQA	0.110	0.109	0.103
Wikitext BPB	0.778	0.779	0.784
Winogrande	0.569	0.577	0.568

Table 9: Benchmark results for $P = 8$ (Qwen R128) parameter-matched models.

1073

1074

1075

1076

1077

1078

1079

1080 where Q is the ratio of interrogative to declarative sentences, W measures prompt length in words,
 1081 and $\text{clip}(\cdot)$ snaps predictions to the nearest valid $P \in \{1, 2, 4, 8\}$. This two-feature router achieves
 1082 96.8% of oracle performance on held-out samples averaged across all tasks.

1083 The learned coefficients reveal an interpretable trade-off between *knowledge retrieval* and *verifiability*. The negative weight on interrogative sentence ratio indicates that question-dense prompts —
 1084 where success depends on precise recall of stored knowledge — benefit from lower P values that
 1085 maximize focus from a single stream. Conversely, the positive weight on word count reflects that
 1086 longer prompts — where success depends on cross-checking claims against provided context —
 1087 require higher P for diverse verification across streams. More broadly, tasks prioritizing retrieval
 1088 favor low diversity, while tasks prioritizing verifiability favor high diversity.

1089

1090 1091 A.8 LORA HYPERPARAMETERS AS POTENTIAL CONFOUNDS

1092

1093 A natural concern is whether ND-LoRA’s improvements stem from LoRA hyperparameter choices
 1094 rather than neural diversity *per se*. We consider three potential confounds: (i) *expressivity*: P parallel
 1095 rank- R adapters yield $P \times R$ total parameters, so improvements might reflect capacity rather than
 1096 diversity; (ii) *alpha scaling*: different α/r ratios affect update magnitudes and could change which
 1097 solutions are reachable; and (iii) *optimization dynamics*: higher-rank adapters might converge to
 1098 different basins.

1099

1100 **Expressivity.** This confound is addressed by parameter matching in the main text (Table 2): base-
 1101 lines use higher-rank single LoRA (R32–R128) to match ND-LoRA’s total parameter count, yet
 1102 ND-LoRA still outperforms on hallucination benchmarks.

1103

1104 **Alpha scaling.** We conducted a sensitivity analysis varying single-LoRA rank from $R16$ to $R128$
 1105 under two alpha strategies: constant scaling ($\alpha/r = 2$) and constant alpha ($\alpha = 32$). Results in
 1106 Table 10 show that constant-scaling single-LoRA is not a suitable baseline for two reasons. First,
 1107 the only monotonic trend observed is *degradation* of general capabilities: Wikitext perplexity in-
 1108 creases from 0.776 to 0.795 bits per byte (+2.4%), TriviaQA-8 drops from 19% to 17% (-11%), and
 1109 NQ-8 drops from 7% to 5% (-29%) as rank increases from $R16$ to $R128$. Second, hallucination
 1110 benchmark performance is unstable across this $8\times$ rank variation: while some pairwise differences
 1111 are statistically significant, they’re unstable across both rank and benchmarks (e.g. HE-Dialog vs.
 1112 HE-QA within R64). We therefore use fixed $\alpha = 32$ baselines, which provide stable reference
 1113 points without the capability degradation observed under constant scaling. Importantly, ND-LoRA
 1114 remains statistically significantly better than both baseline types — all winners stay winners — and
 1115 using constant-scaling baselines would in fact create additional ND-LoRA wins (e.g. Wikitext BPB,
 1116 NQ-8 and Winogrande $P = 8$).

1117

Metric	R16	R32	R64	R128
HE Dialog	0.46±0.01	0.46±0.01	0.49±0.01	0.45±0.01
HE QA	0.37±0.01	0.37±0.01	0.34±0.01	0.36±0.01
HE Summ	0.41±0.01	0.46±0.01	0.48±0.01	0.41±0.01
MemoTrap	0.64±0.03	0.63±0.03	0.63±0.03	0.64±0.03
TF-MC1	0.25±0.03	0.25±0.03	0.24±0.03	0.24±0.03
TF-MC2	0.41±0.03	0.40±0.03	0.39±0.03	0.40±0.03
NQ-8	0.07±0.01	0.06±0.01	0.06±0.01	0.05±0.01
NQ-swap	0.55±0.01	0.55±0.01	0.55±0.01	0.54±0.01
PopQA	0.11±0.01	0.11±0.01	0.11±0.01	0.11±0.01
TQA-8	0.19±0.01	0.18±0.01	0.18±0.01	0.17±0.01
Wikitext BPB	0.776	0.781	0.790	0.795
Winogrande	0.56±0.03	0.57±0.03	0.58±0.03	0.56±0.03
α/r	2.00	2.00	2.00	2.00

1120

1121

1122 Table 10: Constant scaling $\alpha/r = 2$: α varies with rank. Hallucination metrics are noisy but many
 1123 general-capability metrics degrade monotonically (e.g. Wikitext BPB 0.776 → 0.795, NQ-8 0.07 →
 1124 0.05), making this an unsuitable baseline.

1125

1126

1127

1128

1129

1130

1131

1132

1133

Metric	R16	R32	R64	R128
HE Dialog	0.46±0.01	0.46±0.01	0.46±0.01	0.46±0.01
HE QA	0.37±0.01	0.37±0.01	0.34±0.01	0.34±0.01
HE Summ	0.41±0.01	0.40±0.01	0.39±0.01	0.38±0.01
MemoTrap	0.64±0.03	0.63±0.03	0.63±0.03	0.63±0.03
TF-MC1	0.25±0.03	0.25±0.03	0.24±0.03	0.25±0.03
TF-MC2	0.41±0.03	0.40±0.03	0.40±0.03	0.41±0.03
NQ-8	0.07±0.01	0.07±0.01	0.06±0.01	0.07±0.01
NQ-swap	0.55±0.01	0.55±0.01	0.55±0.01	0.55±0.01
PopQA	0.11±0.01	0.11±0.01	0.11±0.01	0.11±0.01
TQA-8	0.19±0.01	0.19±0.01	0.19±0.01	0.19±0.01
Wikitext BPB	0.776	0.775	0.778	0.778
Winogrande	0.56±0.03	0.57±0.03	0.56±0.03	0.57±0.03
α/r	2.00	1.00	0.50	0.25

Table 11: Constant $\alpha = 32$: scaling varies with rank. Most metrics are stable alongside general capabilities, helping rule out expressivity and optimization dynamics as confounds.

Optimization dynamics. Under fixed alpha ($\alpha = 32$), general capabilities remain stable across 8× rank variation: Wikitext BPB is flat (0.775–0.778) and Winogrande accuracy is statistically indistinguishable (0.56–0.57) across R16–R128 (Table 11). If optimization dynamics differed meaningfully across rank (e.g. higher-rank adapters converging to different loss basins) we would expect divergence on these general capability metrics. The observed stability indicates that fixed-alpha configurations converge to similar solutions regardless of rank, ruling out optimization dynamics as a confound for ND-LoRA’s hallucination improvements.