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ABSTRACT

Language models continue to hallucinate despite increases in parameters, com-
pute, and data. We propose neural diversity — decorrelated parallel represen-
tations — as a principled mechanism that reduces hallucination rates at fixed
parameter and data budgets. While existing mitigation strategies largely target
accuracy, we provide the first formal tail bounds for hallucination probability in
ensembled language models, reframing it as a second-moment reliability problem
and explaining 96.2% of empirical reliability variation seen across parallel con-
figurations. We introduce ND-LoRA (Neural Diversity Low-Rank Adaptation),
combining parallel LoRA adapters with Barlow Twins regularization, and reduce
hallucinations by up to 25.6% (and 14.6% on average) while preserving general
accuracy. Ablations show LoRA adapters and regularization act synergistically,
causal interventions prove neurodiversity as the mediating factor and correlational
studies indicate scale: a 0.1% neural correlation increase is associated with a 3.8%
hallucination increase. Finally, task-dependent optimality emerges: different tasks
require different optimal amounts of neurodiversity. Together, our results high-
light neural diversity as a third axis of scaling — orthogonal to parameters and
data — to improve the reliability of language models at fixed budgets.
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Figure 1: Maximizing reliability requires optimal neural diversity. Varying the number of
decorrelated parallel representations P ∈ {1, 2, 4, 8} across 6 hallucination benchmarks (182,850
samples, LOWESS, 80% CI), we find a U-shaped curve where performance peaks at optimal P⋆

(∆P = P − P⋆) then degrades. Theorems 1 & 2 predict this precisely (R2 = 0.962, orange line)
— explaining 96.2% of empirical reliability variation — and enable principled architectural design
(ND-LoRA) that reduces hallucinations by 14.6% on average without degrading general capabilities.
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Category Task Best P⋆ Best Score ∆% Score Sig.

Hallucination

HaluEval (Dialog) 4 0.516 +12.8% ***
HaluEval (QA) 4 0.451 +23.4% ***
HaluEval (Summ) 4 0.502 +25.6% ***
MemoTrap v2 8 0.689 +8.8% ***
TruthfulQA (MC1) 2 0.269 +7.3%
TruthfulQA (MC2) 2 0.442 +9.5% *

Knowledge

NQ (8-shot) 1 0.066 –
NQ-swap 8 0.554 +0.8%
PopQA 1 0.111 –
TriviaQA (8-shot) 1 0.192 –

Table 1: Optimal neural diversity is task-dependent: hallucination tasks benefit from neural
diversity, knowledge tasks do not. De-aggregating Figure 1, hallucination benchmarks consistently
show large gains with increased diversity (up to 25.6%, HaluEval-Summ, P⋆ = 4), while knowledge
retrieval mostly peaks at P⋆ = 1. This asymmetry supports hallucination as a reliability problem
distinct from factual recall. Significance: *** p < 0.001, * p < 0.05.

1 INTRODUCTION

Despite scaling to trillions of parameters, language models hallucinate persistently (Lin et al., 2021).
This reliability crisis is acute for small language models — increasingly favored for edge and agen-
tic use cases (Zheng et al., 2025; Belcak et al., 2025) — whose compressed representations make
them especially vulnerable to hallucinations, with even well-resourced efforts like GPT-OSS 20B
exhibiting 91% hallucination rates on factual benchmarks (OpenAI, 2025).

Current hallucination mitigation strategies are largely empirically driven but theoretically un-
grounded and target average performance rather than tail risk. RLHF optimizes mean harmless-
ness (Bai et al., 2022), RAG improves average factual grounding (Niu et al., 2024), and contrastive
decoding enhances mean generation quality (Li et al., 2023b). While inference-time approaches
like self-consistency and LoRA ensembling (Wang et al., 2022; 2023) reduce hallucinations through
diverse sampling, they lack formal tail-probability guarantees. Similarly, parallel scaling methods
(Chen et al., 2025) target first-moment improvements in perplexity and task accuracy. Yet control-
ling catastrophic failures requires bounding the tails of P(hallucination), not just optimizing mean
behavior.

Formal ensemble theory exists but targets the wrong objective. Classical ensemble methods (Krogh
& Vedelsby, 1994) provide rigorous diversity theory to reduce mean generalization error E[loss], not
tail-probability bounds for hallucinations. Deep ensembles (Lakshminarayanan et al., 2017) quan-
tify uncertainty but lack hallucination-specific guarantees. Without explicit diversification, parallel
architectures suffer representational collapse (Jing et al., 2022), leaving reliability gains unrealized.

To our knowledge, we provide the first formal framework for hallucination probability tail bounds
in ensembled language models, reframing it as a second-moment reliability problem. Drawing on
portfolio theory (Markowitz, 1952), we prove that decorrelated parallel representations (neural di-
versity) reduce this tail bound and introduce ND-LoRA (Neural Diversity Low-Rank Adaptation)
to concretely demonstrate its hallucination reduction capabilities.

Our contributions are:

• Theoretical Linkage: We reframe hallucinations as a second-moment reliability problem
and prove (i) a portfolio-theoretic bound showing hallucination probability P(H) ∝ 1/P
with P decorrelated parallel representations (Theorem 1); and, (ii) non-monotonicity in
reliability scaling (Theorem 2), showing that excessive parallelism can degrade diversity
(and thus reliability) under common circumstances. We further show (iii) our theoretical
predictions achieve R2 = 0.962 in fitting empirical reliability gains (Figure 1), establishing
quantitative validation rare in neural hallucination research.

• Constructive Demonstration: We demonstrate empirical gains via ND-LoRA (parallel
LoRA + Barlow Twins decorrelation), which reduces hallucinations by up to 25.6% (and
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14.6% on average) at 1.00004× continued pretraining cost while preserving general capa-
bilities across 12 benchmarks (Table 1, 2).

• Mechanistic Analysis: We establish that neural diversity mediates hallucination in four
ways: (i) causality via perturbation (p < 0.001, Table 3), (ii) quantitative scale via cor-
relation (+0.1% diversity ⇔ -3.8% hallucination, Figure 3), (iii) super-linear effects via
ablation (Table 4), and (iv) task-dependent optima via scaling sweeps (Table 1).

Neural diversity represents a third scaling axis beyond parameters and data. While traditional scaling
asks “how big?” and data scaling “how much?”, diversity scaling asks “how different?” — crucial
for achieving reliability without massive computational investment.

2 A THEORY OF NEURAL DIVERSITY

Why don’t existing scaling methods improve reliability? Without explicit diversity mechanisms,
gradient descent drives parallel streams toward similar representations through representational col-
lapse (Jing et al., 2022), leaving reliability gains unrealized. We establish the first hallucination
tail bounds for ensembled language models, proving that neural diversity reduces hallucinations and
providing mathematical foundations for ND-LoRA.

Our strategy adapts portfolio theory to neural architecture design. Classical ensemble methods re-
duce mean error E[loss] through variance reduction (Krogh & Vedelsby, 1994), treating correlation
as a factor that limits accuracy gains. In contrast, portfolio theory manages tail risk — rare but catas-
trophic failures — by diversifying across correlated assets (Markowitz, 1952). We adapt the latter
framework to tail bound hallucination probability P(hallucination), where correlation becomes the
primary control variable for reliability rather than a secondary constraint on mean performance.

2.1 PRELIMINARIES

Modern language models hallucinate by fabricating facts, generating content inconsistent with in-
put, or creating unsupported claims (Maynez et al., 2020; Ji et al., 2023). While comprehensive
taxonomies exist (Huang et al., 2024), we model hallucinations through a simple signal-noise proxy
that captures the underlying reliability failure (Figure 1) while remaining analytically tractable.

Signal-noise model. Let x ∈ X be a query with oracle output y⋆(x) ∈ RV and corresponding
hidden representation z⋆(x) ∈ Rd. Consider an architecture that employs P parallel computational
pathways called streams, each processing the same input X through the same model but in perturbed
ways. We model the hidden output of each stream as Zi = z⋆ + εi where εi ∈ Rd is centered noise
with variance σ2

i > 0. The noise covariance Σ ∈ RP×P has entries Σij ≜ E[⟨εi, εj⟩] with pairwise
correlations ρij ≜ Σij/(σiσj) for i ̸= j. We aggregate hidden representations via Ẑw =

∑
i wiZi

with weights summing to one. For readability, we omit x where obvious and denote the average
noise variance by σ̄2 ≜ E[σ2

i ] and average correlation ρ̄ ≜ Ei<j [ρij ].

High-dimensional structure. High-dimensional representations exhibit predictable geometric
regularity that we exploit for analysis. We assume: (i) Lipschitz decoding, where outputs Ŷw(x) =

f(Ẑw(x)) and y⋆(x) = f(z⋆(x)) satisfy ∥f(z) − f(z′)∥2 ≤ L∥z − z′∥2 for some L > 0; and,
(ii) norm concentration, where ∥z̃i(X)∥22 ≈ d with small relative variance for per-feature whitened
representations z̃i. Both properties are standard in high-dimensional probability (Vershynin, 2018)
and neural network analysis (Fazlyab et al., 2019; Bartlett et al., 2017).

Neural representations. At a chosen design layer, each stream exposes a d-dimensional repre-
sentation zi(X). We whiten per-feature to obtain z̃i with zero mean and identity covariance. For
streams i < j, the cross-correlation matrix is C(ij) ≜ E

[
z̃iz̃

⊤
j

]
∈ Rd×d whose diagonal entries

measure same-feature similarity and off-diagonal entries capture cross-feature alignment. Finally,
using the widely-exploited observation that trained networks exhibit locally linear behavior at their
operating point (Goodfellow et al., 2015; Simonyan et al., 2014), we connect representations to noise
via local linearity: ξi = Az̃i for a shared linear readout A ∈ Rd×d with finite condition number κ.

3
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Neural diversity index. We define a simple cosine-based index to measure cross-stream diversity:

D ≜

√
E
i<j

[
(z̃i · z̃j)2
∥z̃i∥2∥z̃j∥2

]
. (1)

Lower D indicates greater neural diversity: D = 0 means all streams are perfectly orthogonal, while
D = 1 means streams have suffered complete collapse.

Hallucinations. We define the output error as Ew ≜ ∥Ŷw(x) − y⋆(x)∥F , which is comparable
to metrics like TruthfulQA-MC2 (Lin et al., 2021). For tolerance δ > 0, the hallucination event is
Hδ ≜ {Ew ≥ δ}. Our goal is to bound P(Hδ) as a function of neural diversity D across streams P .

2.2 NEURAL DIVERSITY BOUNDS HALLUCINATION

Classical portfolio theory (Markowitz, 1952) gives the variance of an equally weighted portfolio of
P assets with average variance σ̄2 and average pairwise correlation ρ̄ as:

Var(Y ) = σ̄2

(
1− ρ̄

P
+ ρ̄

)
. (2)

To use this observation for hallucinations, we must first connect neuron-level representations to
portfolio-level noise correlations. Exploiting the fact that (i) our ensemble has one underlying model
with aligned neuron-level representations and (ii) our model has geometric regularity in representa-
tion and output, the following lemma establishes this mapping:

Lemma 1 (Average Correlation Bound). Suppose there exists a constant C4 ≥ 1 such that
E[∥ξi∥42] ≤ C4 σ

4
i for all i. Then the average pairwise noise correlation satisfies

|ρ̄| ≤ C∗ D, (3)

where C∗ ≜
√
C4 κ

2 depends only on the kurtosis bound and the readout condition number κ.

Proof sketch. We proceed in two steps: (1) Spectral bounds imply linear readout distorts cosines by
at most κ2, so noise-space diversity Dξ ≤ κ2D. (2) Cauchy–Schwarz twice — inner products to
cosines, then kurtosis — gives |ρij | ≤

√
C4 Dξ,ij ; averaging pairs completes the proof.

We now have a direct path to tail-bound P (Hδ) as a function of D and P . For readability, we assume
uniform weights wi = 1/P below but our approach can also be easily applied to arbitrary weights.

Theorem 1 (Hallucination Bound with Diversity). For any tolerance δ > 0,

P(Hδ) ≤
1−C∗ D

P + C∗ D
1−C∗ D

P + C∗ D + SNR
, (4)

where SNR ≜ δ2/σ̄2.

Proof sketch. Lemma 1 bounds |ρ̄| ≤ C∗ D, linking noise variance to representational diversity.
Plugging into Equation 2, applying Chebyshev and normalizing by σ̄2 yields the stated bound.

This completes the first half of our theoretical result: Neural diversity mediates hallucination prob-
ability. With perfect de-correlation (ρ̄ = 0), hallucination probability scales as O(1/P ) — more
streams reduce hallucination risk. When streams collapse (ρ̄ = 1), the bound becomes independent
of P , explaining why naive ensembling without diversification provides no reliability benefits.

2.3 NON-MONOTONIC SCALING BEHAVIOR

Next, we demonstrate that under common circumstances, the hallucination bound follows a U-
shaped curve — initially decreasing with higher P , but starts increasing eventually. Consider the
case where the correlation itself increases with P , say, due to optimizer constraints:

4
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Theorem 2 (U-shaped Behavior). Suppose ρ̄(P ) = ρ0 + β(P − 1)γ for constants ρ0 ∈ [0, 1),
β > 0, γ > 0. Define

v(P ) ≜ Var(Ew) = σ̄2

(
1− ρ̄(P )

P
+ ρ̄(P )

)
, B(P ) ≜

v(P )

v(P ) + δ2
. (5)

Then B(P ) is U-shaped: there exists P⋆ ≥ 1 minimizing P(Hδ), with P⋆ controlled by how fast
ρ̄(P ) degrades with P .

Proof sketch. The hallucination bound B(P ) is monotonic in variance v(P ), so we analyze v(P )
directly. There are two competing effects: the 1/P term drives variance down, while growing
correlation ρ̄(P ) = ρ0 + β(P − 1)γ eventually dominates. Differentiating shows v′(P ) changes
sign exactly once, yielding a unique minimum P⋆ whose location depends β, γ and ρ0.

This theorem establishes non-monotonicity — hallucination probability P(Hδ) actually increases
for larger P , meaning reliability degrades. This is stronger than the well-known diminishing returns
of ensembles (where improvement slows but continues). While ensemble theory also shows optimal
size matches the number of class labels for accuracy-optimized classifiers (Bonab & Can, 2019),
we prove and validate (Figure 1) that diversity can degrade in generative language models with
excessive parallelism under common circumstances and also harm reliability.

2.4 THEORETICAL VALIDATION

By measuring empirical diversity D(P ) and plugging these values into Theorem 1’s bound, we
achieve R2 = 0.962 (Figure 1), explaining 96.2% of empirical reliability variation. This fit uses
only two free parameters (C∗, SNR) shared across all tasks and observations, with D(P ) fixed from
empirical measurements. Theorem 2’s correlation growth model provides a mechanism for observed
concavity: correlation grows as O((P − 1)γ), overwhelming the O(1/P ) diversification benefit.
This alignment — rare in hallucination research where theory often lags empirics — validates our
portfolio-theoretic framework.

Together, Theorem 1 and Theorem 2 show that (i) reducing D reduces hallucinations and (ii) there
exists an optimal P⋆ that minimizes hallucinations. Next, we show how to construct an architecture
and training protocol to reduce D and find P⋆.

3 ND-LORA: A PRACTICAL DEMONSTRATION

Input
Tokens

Stream #1
Prefix

Stream #1
LoRA

Stream #2
Prefix

Stream #2
LoRA

Stream #3
Prefix

Stream #3
LoRA

Stream #4
Prefix

Stream #4
LoRA

LM
Head

Output
Tokens

Barlow Twins
Regularization

BT = 1
P(P 1)

i j
Cij I 2

F

ND-LoRA Architecture (P=4)

Frozen
Shared

Backbone

Multi-Stream
Aggregator

Figure 2: ND-LoRA schematic for P = 4 parallel streams. Each stream receives independent
LoRA adapters and learnable prefix tokens. The aggregator combines stream outputs with learnable
weights, while Barlow Twins regularization incentivizes decorrelation between stream outputs.
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We introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), a parameter-efficient method
that demonstrates our theoretical framework for neural diversity regularization. ND-LoRA extends
the ParScale architecture with stream-aware LoRA adapters and explicit decorrelation objectives.
Figure 2 visually summarizes our approach.

3.1 ARCHITECTURE

Our implementation builds on ParScale with P parallel computation streams. Each stream i ∈
{1, . . . , P} uses 48 learnable prefix tokens prepended to the input sequence that flow through all
layers via the attention mechanism, along with stream-specific LoRA adapters applied at each layer:

h
(ℓ)
i = Layer(ℓ)(h(ℓ−1)

i +B
(ℓ)
i A

(ℓ)
i h

(ℓ−1)
i ) (6)

where B
(ℓ)
i ∈ Rd×r, A(ℓ)

i ∈ Rr×d are stream-specific LoRA matrices with rank r. The final output
combines streams through a learned aggregator:

y = LM Head

(
P∑
i=1

wi · h(L)
i

)
(7)

where wi = (1 − ε) · softmax(MLP([h(L)
1 , . . . , h

(L)
P ]))i + ε/P are dynamic weights with label

smoothing (ε = 0.1) computed from the concatenated stream representations. This prevents atten-
tion collapse by ensuring minimum weight ε/P for each stream.

This architecture enables stream specialization while maintaining parameter efficiency. For P = 2
streams with rank-16 LoRA, we use approximately 29K trainable parameters per layer, comparable
to a single rank-32 LoRA but with fundamentally different representational capabilities.

3.2 BARLOW TWINS REGULARIZATION

To encourage neural diversity, we apply Barlow Twins regularization across all pairs of streams
i < j at a pre-specified design layer ℓ⋆.

Let zi ∈ RB×T×d denote the hidden representations of stream i at the design layer for a batch of size
B and sequence length T . We first apply batch normalization and mean-centering to obtain whitened
features z̃i. We then calculate the cross-correlation matrices C(ij) ∈ Rd×d as in subsection 2.2 and
apply standard Barlow Twins (Zbontar et al., 2021) for each pair of streams i < j:

LBT = E
i<j

∥∥∥C(ij) − I
∥∥∥
F

(8)

The total training objective combines cross-entropy and decorrelation terms:

L = LCE + λBTLBT (9)

4 EXPERIMENTAL VALIDATION

We validate ND-LoRA through systematic hallucination reduction experiments using parameter-
and data-matched comparisons. We describe our full experimental setup in subsection A.5.

4.1 KEY RESULTS

Table 2 demonstrates ND-LoRA achieves substantial improvements on hallucination-sensitive
benchmarks while maintaining competitive general performance. ND-LoRA with P = 2 streams
achieves statistically significant improvements on HaluEval-Summarization (0.481* vs 0.400, p <
0.001, 8.1% absolute / 20.2% relative), TruthfulQA-MC2 (0.442* vs 0.403, p = 0.030, 3.9% abso-
lute / 9.5% relative) and MemoTrap (0.666* vs 0.634, p < 0.001, 3.2% absolute / 5.1% relative) vs
parameter-matched Qwen, validating our theoretical prediction.

Although ND-LoRA’s improvements specifically target reliability benchmarks, they preserve gen-
eral capabilities. Qwen slightly outperforms on Wikitext (0.778 vs. 0.784) and Natural Questions
(0.065 vs. 0.055), but ND-LoRA wins slightly on Winogrande (0.574 vs. 0.572).
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Model HaluEval MemoTrap TruthfulQA NQ Wikitext WG
ND-LoRA R16 (P=2) 0.481* 0.666* 0.442* 0.055 0.784 0.574
ParScale R32 (P=2) 0.439 0.638 0.412 0.059 0.793 0.564
Qwen LoRA R32 0.400 0.634 0.403 0.065 0.778 0.572

Table 2: Even at P = 2 streams, ND-LoRA achieves up to 20.2% relative hallucination reduc-
tion vs. parameter-matched baseline. Across hallucination benchmarks, ND-LoRA shows statis-
tically significant improvements (HaluEval-Summarization, MemoTrap, TruthfulQA-MC2) while
maintaining competitive Winogrande, NQ, and Wikitext BPB (lower is better) general-purpose ca-
pabilities. Baselines use higher LoRA ranks for parameter parity. * indicates p < 0.05.
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Figure 3: Reliability improves as neural diversity increases (lower D). Specifically, diversity
(D) is negatively correlated with HaluEval-Summarization performance (slope=-37.842, R²=0.237,
p=0.002), consistent with P(H) ∝ D in Theorem 1.

Parameter efficiency is evident comparing ND-LoRA R16 (P = 2) against Qwen2.5-0.5B LoRA
R32. Despite lower-rank adapters, ND-LoRA consistently outperforms the high-rank baseline on
hallucination tasks, demonstrating that architectural diversity provides more value at equal capacity.
This shows representational diversity, not parameter count, drives reliability gains in our experiment.

These findings establish neural diversity as a practical reliability mechanism. Consistent improve-
ments across hallucination benchmarks with preserved general performance suggest ND-LoRA ad-
dresses fundamental reliability challenges rather than metric-specific optimization. Figure 3 demon-
strates strong empirical correlation between neural diversity and performance, building intuition for
the causal relationship established in subsection 5.1.

4.2 TASK-DEPENDENT OPTIMALITY

Further, the optimal diversity is task-dependent. Table 1 reveals striking task-dependent sensitivity
patterns relative to the P = 1 baseline. Hallucination-focused tasks show the largest gains: HaluE-
val Summarization achieves +25.6% relative improvement at P = 4, HaluEval QA shows +23.4%
at P = 4, and TruthfulQA MC2 shows +9.5% at P = 2 while MemoTrap benefits from higher
diversity (P = 8, +8.8%). Notably, knowledge-intensive tasks like PopQA, TriviaQA and NQ
show no improvement over baseline, which is expected as ND-LoRA does not add new sources of
knowledge or try to improve recall of existing knowledge. This heterogeneity demonstrates that dif-
ferent tasks require different amounts of neural diversity to maximize reliability, with hallucination-
focused tasks generally benefiting most from decorrelated representations.

7
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Task ∆D ∆ Score SE d p-value Sig. N
HaluEval-Summ 0.024 -0.005 0.010 0.007 1.6× 10−5 *** 512
MemoTrap v2 0.031 -0.003 0.010 0.000 8.2× 10−5 *** 512
TruthfulQA-MC2 0.025 -0.007 0.009 0.018 3.3× 10−7 *** 512

Table 3: Artificial corruption of neural diversity establishes statistical causality. Perturbing
neural diversity (∆D > 0) causes accuracy drops across tasks with high statistical significance
(p < 0.001) via paired t-tests with Fisher meta-analysis (N=4 sub-experiments × 128 samples each).

5 MECHANISTIC ANALYSIS

5.1 NEURAL DIVERSITY AS THE CAUSAL MEDIATOR

To establish causality beyond correlation, we perform artificial corruption interventions that directly
manipulate cross-stream similarity.

Experiment Design. Starting with a pre-trained ND-LoRA P = 4 model, we inject a corruption
hook at the RMSNorm layer that randomly substitutes the hidden state at randomly-chosen positions
in a given stream from another stream, perturbing D while preserving activation magnitudes. We
evaluate on a matched basis: each corrupted evaluation is paired with an uncorrupted baseline using
identical samples and resampling indices. Across 4 sub-experiments with different random seeds,
we collect N = 128 paired samples per task. This paired design maximizes statistical power by
controlling sample-level variance, analyzed via paired t-tests with Fisher meta-analysis.

Results. Table 3 provides statistically robust evidence that neural diversity causally affects per-
formance. All three tasks show highly significant accuracy drops (p < 0.001) when stream-level
substitution perturbs diversity (∆D ≈ 0.025). While effect sizes are modest (0.3% to 0.7% score
reduction) — likely because artificial stream substitution creates out-of-distribution corruption pat-
terns — the statistical significance establishes causality beyond correlational association.

5.2 ABLATIONS

To isolate the contributions of ND-LoRA, we systematically ablate ND-LoRA components at fixed
P = 4 streams. All variants maintain parameter parity through LoRA rank adjustments, enabling
fair comparison. We measure inference-time diversity (D) at the aggregation layer using evaluation
samples, quantifying actual cross-stream correlation during inference.

Table 4 reveals a super-linear combination: independent LoRA (+2.9%) and Barlow Twins (+1.4%)
sum to 4.3% but achieve 4.9% when combined (Stream LoRA-BT) — a 14% bonus. Targeting
KVQ attention amplifies this further by 2.6× to +12.8% (ND-LoRA at fixed P = 4; maximum
gains reach 14.6% when optimizing P per-task, see Table 1). Neither component alone suffices:
ParScale’s near-complete collapse (D = 0.9990) yields only +0.5%, while Stream LoRA without
regularization achieves +2.9%, both less than a quarter of ND-LoRA’s final impact. This establishes
that both architectural capacity and explicit regularization are necessary for full impact.

Notably, ParScale’s original work found prefix tuning superior to LoRA for mean loss (Table 6 in
Chen et al. 2025). However, stream-aware LoRA is necessary for reducing tail probability: even
with Barlow Twins, prefix tuning collapses streams (D = 0.9988), while stream-aware LoRA en-
ables decorrelation (D = 0.1530). This illustrates how second-moment objectives require different
architectural choices than first-moment objectives.

Counterintuitively, ND-LoRA achieves best performance (+12.8%) with higher D = 0.4112 than
Stream LoRA-BT’s 0.1530. This reveals that strategic localization to representational bottlenecks
matters more than maximizing global decorrelation: focusing LoRA and Barlow Twins on KVQ
attention modules provides 2.6× amplification. This further reinforces how second-moment objec-
tives differ architecturally from first-moment ones and, consistent with Table 1, that neural diversity
is a task-dependent resource requiring strategic allocation to critical computational pathways.
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Variant Streams LoRA Regul. Target D ∆% Score ∆ Cost
Standard 1 Single D All – 0.0% 1.0x / 1.0x
ParScale P Single D All 0.9990 +0.5% 1.00003x / 1.1x
ParScale-BT P Single D + BT All 0.9988 +1.4% 1.00003x / 1.1x
Stream LoRA P Stream D All 0.3544 +2.9% 1.00003x / 1.1x
Stream LoRA-BT P Stream D + BT All 0.1530 +4.9% 1.00004x / 1.1x
ND-LoRA P Stream D + BT KVQ 0.4112 +12.8% 1.00004x / 1.1x

Table 4: Ablations reveal super-linear combination of impact. Stream LoRA (+2.9%) and
Barlow Twins (+1.4%) combine super-linearly (+4.9%), and focusing on KVQ attention amplifies
to +12.8%. LoRA: single shared vs. P stream-aware adapters. Regularization: Dropout vs. Barlow
Twins. Target: All layers vs. KVQ attention only. D: Neural Diversity Index (lower is better). ∆%
Score: avg. change (hallucination benchmarks). Ablations shown at fixed P = 4 streams.

5.3 COMPUTATIONAL CONSIDERATIONS

Unlike P -model ensembles with P× pretraining cost, ND-LoRA achieves substantial reliability
gains at negligible overhead (1.00004× pretraining, 1.1× latency) given its single architecture. Par-
allelized 20M amortizes to ∼0.004% of 1T-token pretraining, frozen backbone makes gradients
nearly free, and ND-LoRA requires identical FLOPs to ParScale at inference. See subsection A.2.

5.4 PRACTICAL APPROXIMABILITY

While task-optimal P⋆ varies (Table 1), practitioners need not search exhaustively. Defaulting to
P = 4 achieves 96% of oracle performance across all benchmarks. Additionally, a simple router
(subsection A.7) achieves 97% by predicting P from prompt statistics, revealing a retrieval-vs-
verifiability tradeoff: question-dense prompts favor low P , while longer prompts favor higher P .

6 RELATED WORK

Hallucination in Language Models. Hallucinations represent a fundamental challenge in mod-
ern language models. Comprehensive surveys establish taxonomies that distinguish factuality vs.
faithfulness (Huang et al., 2024; Tonmoy et al., 2024). Theoretical work proves hallucinations are
mathematically inevitable in computable models under certain resource constraints (Xu et al., 2024;
Kalai & Vempala, 2024), with smaller models exhibiting particular severity on factual benchmarks
(Lin et al., 2021; Li et al., 2023a). Mechanistic investigations reveal hallucinations arise from in-
ternal representation failures (Yu et al., 2024), knowledge awareness limitations (Ferrando et al.,
2025), and attention pattern anomalies.

Mitigation has predominantly targeted average performance. Retrieval augmentation (RAG) incor-
porates external knowledge for factual grounding (Niu et al., 2024). RLHF improves alignment
(Bai et al., 2022), while constitutional AI enhances safety. Decoding methods use contrastive de-
coding (Li et al., 2023b) and classifier-free guidance (Sanchez et al., 2023). Critically, improving
E[error] does not guarantee improvements to P(hallucination), as tail events depend on variance and
correlation structure, not just central tendency.

Second-moment approaches exist but lack theoretical grounding: self-consistency reduces hallucina-
tions through diverse sampling (Wang et al., 2022) without formal tail-probability guarantees, while
deep ensembles provide uncertainty estimates (Lakshminarayanan et al., 2017) but not hallucination-
specific bounds. We provide the first formal tail bounds connecting neural diversity to hallucination
probability as a second-moment problem.

Deep Ensembles, Parallel Architectures & Inference-Time Scaling Deep ensembles provide un-
certainty estimates (Lakshminarayanan et al., 2017) with power-law scaling (Lobacheva et al., 2020)
for calibration and OOD detection. LLM ensembles benefit from explicit diversity optimization
(Tekin et al., 2024), while negative correlation learning demonstrates diversity must be actively en-
couraged (Liu & Yao, 1999). The “memory split advantage” shows ensembles of smaller models can
outperform single large models at fixed parameter budgets. Optimal size theory reveals weighted
voting exhibits diminishing returns due to correlation and overfitting (Bonab & Can, 2019), with

9
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predictions stabilizing at 5–10 models (Hernández-Lobato et al., 2013). These approaches require
multiple independent models, incurring P× training and inference costs.

Inference-time methods reduce hallucinations through diverse sampling and aggregation. Self-
consistency uses majority voting over multiple generations (Wang et al., 2022). Confidence-based
weighting uses intelligent aggregation (Taubenfeld et al., 2025), while contrastive decoding contrasts
expert and amateur models (Li et al., 2023b). These approaches require multiple forward passes at
inference time, whereas our training-time parallelism learns coordinated streams.

Self-ensembled parallel architectures like ParScale (Chen et al., 2025) break the multiplicative mem-
ory requirements of classical ensembles by using P perturbed computational pathways within a sin-
gle model. ParScale achieves O(logP ) general capability gains, modeling parallel streams with
correlation ρ in scaling laws L ∝ (N · P 1/α · [(P − 1)ρ + 1]−1/α)−α. This targets mean loss
for accuracy improvements, not hallucination probability. We directly build our demonstration on
ParScale, extending their theoretical framework and implementation to tail-bound hallucinations.

Theoretical Foundations. Modern portfolio theory (Markowitz, 1952) provides the mathemati-
cal foundation for understanding correlation-based risk reduction, with diversification principles
(Meucci, 2009) for ensemble variance analysis. Classical ensemble theory reduces mean error
E[loss] via variance decomposition (Dietterich, 2000). PAC-Bayesian bounds connect diversity to
minimax-optimal generalization (Ortega et al., 2022) and concentration inequalities showing corre-
lation reduction tightens tail bounds (Alquier, 2024). We link these frameworks to modern neural
networks to bound hallucination tail probabilities.

Redundancy Reduction. A rich history of diversification exists in self-supervised learning to avoid
training collapse and in PEFT methods for efficient specialization. Self-supervised approaches like
Barlow Twins (Zbontar et al., 2021) and VICReg (Bardes et al., 2022) use decorrelation to pre-
vent dimensional collapse (Jing et al., 2022). PEFT methods like LoRA (Hu et al., 2022) and
prefix-tuning (Li & Liang, 2021) enable model specialization under limited parameter budgets,
with BatchEnsemble and LoRA-Ensemble achieving diversity through parameterization (Wen et al.,
2020; Mühlematter et al., 2025). We adapt these methods for second-moment reliability guarantees.

7 DISCUSSION

At a time when the reliability of language models is becoming the critical barrier to real-world
deployment, we (i) provide the first formal framework to tail-bound hallucinations in ensembled
language models, demonstrating that neural diversity plays a critical role in reducing hallucinations;
and, (ii) using this technique, achieve up to 25.6% (and 14.6% on average) reduction in hallucination
rates at fixed parameter and data budgets at +0.004% pretraining cost. Neural diversity enables
reliability gains without massive compute scaling.

By reframing hallucinations as a second-moment problem — controlled through variance and cor-
relation rather than mean optimization — we open an under-explored research direction orthogonal
to existing approaches. While RLHF and RAG target first-moment improvements (average perfor-
mance), neural diversity targets tail probability through explicit decorrelation. This bridges port-
folio theory to neural reliability, a connection previously unexplored. The gap between extensive
first-moment research and nascent second-moment approaches (self-consistency, our work) suggests
substantial opportunity for reliability-focused methods grounded in tail-probability theory.

Our small-scale demonstration and mechanistic analysis validates the theoretical framework; scal-
ing to production models is straightforward given that continued training requires only +0.004%
additional overhead and P = 4 captures 96.2% of oracle performance. The task-dependent optimal
P⋆ in Table 1 reveals intriguing structure, suggesting deeper connections between task complexity,
knowledge recall vs. precision and neural diversity worthy of theoretical characterization.

Our work opens two immediate research directions: (i) Theoretical: characterizing optimal P⋆ as
a function of task properties — our U-shape theorem (Theorem 2) suggests information-theoretic
approaches. (ii) Practical: combining neural diversity (this work) with inference-time scaling (Snell
et al., 2024) for multiplicative reliability gains. Second-moment reliability is an essential frontier as
LLMs become critical infrastructure in high-stakes domains.
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A APPENDIX

A.1 FULL PROOFS

A.1.1 PROOF OF LEMMA 1

Proof. We proceed in two steps. First, we show that the shared linear readout A can at most distort
cosines between representations by a factor of κ2. Second, we convert bounded cosine alignment
between the error vectors ξi into a bound on average noise correlation.

Step 1: local linear readout and cosine distortion. Let σmin and σmax denote the minimal and
maximal singular values of A and κ = σmax/σmin its condition number. For any nonzero x, y ∈ Rd,
set u = Ax and v = Ay. Then

cos∠(u, v) =
⟨u, v⟩

∥u∥2 ∥v∥2
=

x⊤A⊤Ay

∥Ax∥2 ∥Ay∥2
.

By the spectral bounds on A⊤A, we have

|x⊤A⊤Ay| ≤ ∥A⊤A∥op |x⊤y| = σ2
max |x⊤y|

and
∥Ax∥2 ∥Ay∥2 ≥ σ2

min ∥x∥2 ∥y∥2.
Combining,

| cos∠(u, v)| ≤ σ2
max

σ2
min

|x⊤y|
∥x∥2 ∥y∥2

= κ2 | cos∠(x, y)|.

Squaring both sides yields
cos2 ∠(u, v) ≤ κ4 cos2 ∠(x, y). (10)

Apply this with x = z̃i(X) and y = z̃j(X). Under the local linear readout assumption we have
ξi(X) = Az̃i(X) and ξj(X) = Az̃j(X), so u = ξi(X) and v = ξj(X). Thus, for every pair (i, j)
and every input X with nonzero norms,

cos2 ∠
(
ξi(X), ξj(X)

)
≤ κ4 cos2 ∠

(
z̃i(X), z̃j(X)

)
.

Taking expectations over X gives

D2
ξ,ij ≜ E

X

[
cos2 ∠(ξi(X), ξj(X))

]
≤ κ4 E

X

[
cos2 ∠(z̃i(X), z̃j(X))

]
≜ κ4 D2

ij ,

where D2
ij denotes the pairwise cosine diversity in representation space. Averaging over pairs and

taking square roots yields

Dξ ≜
√

E
i<j

D2
ξ,ij ≤ κ2

√
E
i<j

D2
ij = κ2 D. (11)

Step 2: from cosine alignment to average correlation. We now bound the average correlation ρ̄
in terms of Dξ. Fix a pair (i, j) and write

X ≜ ⟨ξi, ξj⟩, B ≜ ∥ξi∥2 ∥ξj∥2.

Whenever B > 0,

cos∠(ξi, ξj) =
X

B
, D2

ξ,ij = E

[(
X

B

)2
]
.

Using Cauchy–Schwarz with U = X/B and V = B, we obtain

Σ2
ij =

(
E[X]

)2
=
(
E[UV ]

)2 ≤ E[U2] E[V 2] = D2
ξ,ij E

[
∥ξi∥22 ∥ξj∥22

]
.

Apply Cauchy–Schwarz again to the norms and use the kurtosis bound:

E
[
∥ξi∥22 ∥ξj∥22

]
≤
√
E[∥ξi∥42] E[∥ξj∥42] ≤

√
C4σ4

i C4σ4
j = C4 σ

2
i σ

2
j .
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Combining,

Σ2
ij ≤ C4 D2

ξ,ij σ
2
i σ

2
j , ρ2ij =

Σ2
ij

σ2
i σ

2
j

≤ C4 D2
ξ,ij ,

so
|ρij | ≤

√
C4 Dξ,ij . (12)

Finally, average over pairs and apply Cauchy–Schwarz in the index space:

|ρ̄| =
∣∣∣∣ Ei<j

[ρij ]

∣∣∣∣ ≤ E
i<j

[|ρij |] ≤
√

C4 E
i<j

[Dξ,ij ] ≤
√

C4

√
E
i<j

D2
ξ,ij =

√
C4 Dξ.

Plugging equation 11 into this inequality gives

|ρ̄| ≤
√
C4 Dξ ≤

√
C4 κ

2 D = C∗ D,

with C∗ =
√
C4 κ

2, as claimed.

A.1.2 PROOF OF THEOREM 1

Proof. We work under the signal–noise model from the preliminaries. By Markowitz 1952,

Var

(
1

P

P−1∑
i=0

Xi

)
= σ̄2

(
1− ρ

P
+ ρ

)
where σ̄2 = 1

P

∑
i Var(Xi) is the average variance and ρ = Ei̸=j [Corr(Xi, Xj)] is the average

pairwise correlation.

From Lemma 1, we have
|ρ̄| ≤ C∗ D.

Substituting this into the variance expression yields

Var(Ew) ≤ σ̄2

(
1− C∗ D

P
+ C∗ D

)
,

which is exactly the claimed variance bound in Theorem 1.

By construction, the hallucination event is

Hδ ≜ {Ew ≥ δ}, δ > 0,

and we have already noted that E[Ew] = 0. Applying the one-sided Chebyshev inequality from the
preliminaries to the random variable Ew with mean 0 and variance v = Var(Ew) gives

P(Hδ) = P(Ew ≥ δ) ≤ v

v + δ2
=

Var(Ew)

Var(Ew) + δ2
.

Substituting Var(Ew) by its upper bound yields

P(Hδ) ≤
σ̄2
(
1−C∗ D

P + C∗ D
)

σ̄2
(
1−C∗ D

P + C∗ D
)
+ δ2

.

Dividing both numerator and denominator by σ̄2 matches the bound stated in Theorem 1.

A.1.3 PROOF OF THEOREM 2

Proof. Extend P to a real variable with domain P ≥ 1; the claim for integer P follows by restriction.

Under uniform weights wi = 1/P , the ensemble error variance can be written as

v(P ) ≜ Var(Ew) = σ̄2

(
1− ρ̄(P )

P
+ ρ̄(P )

)
,

with σ̄2 > 0 and
ρ̄(P ) = ρ0 + β(P − 1)γ , ρ0 ∈ [0, 1), β > 0, γ > 0.

The bound from the main text is

P(Hδ) ≤ B(P ) ≜
v(P )

v(P ) + δ2
, δ > 0.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Step 1: Reduction to v(P ). Define ϕ(x) ≜ x/(x+ δ2) for x ≥ 0. Then

ϕ′(x) =
δ2

(x+ δ2)2
> 0,

so ϕ is strictly increasing. Hence B(P ) = ϕ
(
v(P )

)
has the same extrema and monotonicity as

v(P ). Since σ̄2 > 0, it suffices to analyze

f(P ) ≜
v(P )

σ̄2
=

1− ρ̄(P )

P
+ ρ̄(P ).

Step 2: First derivative and unique critical point. For P > 1,

ρ̄′(P ) = βγ(P − 1)γ−1.

A direct calculation gives

f ′(P ) =
d

dP

(
1−ρ̄(P )

P + ρ̄(P )
)

=
β(P − 1)γ(Pγ + 1) + (ρ0 − 1)

P 2
≜

N(P )

P 2
.

We study N(P ).

At P = 1 we have
N(1) = β · 0γ(γ + 1) + (ρ0 − 1) = ρ0 − 1 < 0.

Differentiating N for P > 1 yields

N ′(P ) = βγ(γ + 1) · P · (P − 1)γ−1.

All factors on the right are strictly positive for P > 1, so N ′(P ) > 0 on (1,∞) and N is strictly
increasing. Moreover,

(P − 1)γ(Pγ + 1) ∼ γP γ+1 −−−−→
P→∞

∞,

so N(P ) → +∞ as P → ∞. By continuity and strict monotonicity, there exists a unique P⋆ > 1
such that N(P⋆) = 0.

Because P 2 > 0 for all P ≥ 1, the sign of f ′(P ) matches that of N(P ):

f ′(P )


< 0, 1 < P < P⋆,

= 0, P = P⋆,

> 0, P > P⋆.

Thus f (and hence v) is strictly decreasing on (1, P⋆) and strictly increasing on (P⋆,∞); P⋆ is the
unique global minimizer.

Step 3: U-shape of the hallucination bound. Since B(P ) = ϕ
(
v(P )

)
and ϕ is strictly increasing,

B′(P ) = ϕ′(v(P )) · v′(P ), ϕ′(v(P )) > 0,

so B inherits the same monotonicity: it is strictly decreasing on (1, P⋆), strictly increasing on
(P⋆,∞), and

B(P⋆) = min
P≥1

B(P ).

Therefore the upper bound on P(Hδ) is U-shaped in P with a unique global minimum at P⋆, deter-
mined by the parameters (ρ0, β, γ) governing ρ̄(P ).

A.2 TRAINING COST AND LATENCY ANALYSIS

This appendix provides a complete analysis of computational costs for ND-LoRA and baseline vari-
ants. Three key insights enable negligible overhead: (1) fine-tuning on 20M tokens amortizes to less
than 0.004% of 1T pretraining, (2) frozen backbone parameters make backward passes nearly free,
and (3) inference uses identical FLOPs to ParScale via dynamic LoRA swapping per stream.
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A.2.1 COST MODEL

Standard Fine-Tuning (P=1) Baseline. Consider a standard LoRA fine-tuning setup with 495M
backbone parameters frozen and 1.3M trainable adapter parameters. A typical training step consists
of:

• Forward pass: 1.0× computational cost through 495M parameters

• Backward pass: 2.0× computational cost through 495M parameters (typical 2:1 back-
ward:forward ratio)

• Total baseline: 3.0 cost units per training step

ND-LoRA (P=4) Fine-Tuning. With P = 4 parallel streams, ND-LoRA processes data through
multiple independent pathways:

• Forward pass: 4.0× cost (P parallel forward passes through full 495M model)

• Backward pass: 2.0 × (1.3Y/495Y) ≈ 0.005× cost (gradients only propagate through
1.3M trainable parameters after aggregation)

• Barlow Twins regularization: 1.6× cost (cross-correlation computation across P choose
2 streams and whitening)

• Prefix/aggregator overhead: 0.05× cost (additional trainable components)

• Total: 5.655 cost units per training step

Relative Training Cost. The training cost of ND-LoRA relative to standard fine-tuning is:

Relative cost =
5.655

3.0
= 1.888× (13)

This is substantially lower than the naive estimate of 4× because backward passes through frozen
parameters are essentially free.

A.2.2 AMORTIZATION OVER PRETRAINING

To contextualize fine-tuning costs, we amortize over typical pretraining budgets. Given:

• Pretraining: 1T tokens at 1.0× cost = 1T token-equivalents

• Fine-tuning: 20M tokens at 1.888× cost = 37.8M token-equivalents

• Total: (1T + 37.8Y)/1T = 1.0000378 ≈ 1.00004×

The amortized cost is less than 0.004% incremental overhead over the full training lifecycle.

A.2.3 ALL VARIANTS DURING FINE-TUNING

Table 5 shows the complete cost breakdown for all ablation variants. The key differences are:

• Shared vs. Stream-Aware LoRA: Stream-aware adapters add 0.04× prefix overhead

• Barlow Twins: Adds 1.6× (full BT) or 0.1× (ParScale-BT with simpler correlation)

• All P=4 variants: Incur 4.0× forward pass cost but only 0.005× backward cost

A.2.4 INFERENCE LATENCY

At inference, all P > 1 variants exhibit 1.1× latency relative to standard models:

• Parameter parity: All variants maintain identical total parameter counts by adjusting
LoRA rank

• Parallel processing: P streams process in parallel; latency dominated by slowest stream +
aggregation

17
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Variant Forward Backward BT Other Total Relative
Standard 1.0 2.0 0.0 0.0 3.0 1.000×
ParScale 4.0 0.005 0.0 0.01 4.015 1.337×
ParScale-BT 4.0 0.005 0.1 0.01 4.155 1.384×
Indep. LoRA 4.0 0.005 0.0 0.05 4.055 1.352×
ND-LoRA 4.0 0.005 1.6 0.05 5.655 1.885×

Table 5: Fine-tuning cost breakdown (20M tokens). Forward: P parallel passes through 495M
backbone. Backward: single pass through 1.3M trainable parameters. BT: Barlow Twins correlation
computation. Other: prefix/aggregator overhead. Relative: cost relative to 3.0× standard baseline.

• Dynamic loading: Different LoRA adapters are dynamically loaded per stream without
duplication

• Aggregation overhead: Lightweight MLP aggregator adds ∼10% latency

The 1.1× factor is consistent across ParScale, ParScale-BT, Indep. LoRA, and ND-LoRA because
inference does not involve Barlow Twins regularization and all parameter operations are equivalent.

A.2.5 SUMMARY

• Training overhead: 1.89× (not 4×) due to free backward passes through frozen parameters
• Amortized cost: ≤ 0.004% when amortized over 1T-token pretraining
• Inference latency: 1.1× across all P ≥ 1 variants with parameter matching
• Practical impact: Negligible computational overhead for 25.6% hallucination reduction

A.3 LORA MODULE ABLATIONS

To understand which components of ND-LoRA contribute most to hallucination reduction, we per-
form targeted ablations by removing LoRA adapters from specific module types. We compare the
full ND-LoRA baseline against two variants:

• No MLP: removing LoRA from MLP projections (gate proj, up proj, down proj)
while keeping attention LoRA

• No Attention: removing LoRA from attention projections (q proj, k proj, v proj,
o proj) while keeping MLP LoRA

Task ∆% No MLP ∆% No Attention
HaluEval Dialog -1.7% -0.6%
HaluEval QA +16.8% -1.8%
HaluEval Summarization -5.3% -27.0%
MemoTrap v2 +2.5% +0.9%
NQ (8-shot) +11.7% -1.7%
PopQA -0.8% -0.8%
TriviaQA (8-shot) -5.0% -6.9%
TruthfulQA MC1 +3.1% +2.4%
TruthfulQA MC2 +0.2% +1.4%

Table 6: LoRA module ablation results (relative percentage changes from baseline). Evaluations
performed on N=1024 samples per task.

A.4 USE OF LARGE LANGUAGE MODELS

Large language models were used as a compilation tool to assist with writing and organizing sec-
tions of this paper, including literature review synthesis, section structuring, LaTeX formatting, and
co-generation of experimental code. All technical content, experimental design, theoretical contri-
butions, and scientific claims are the authors’ original work. The models served primarily to improve
clarity, organization, and implementation of our ideas rather than generate novel scientific insights.
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A.5 EXPERIMENTAL SETUP

Model and Architecture. We use Qwen2.5-0.5B (896 hidden dimensions, 24 layers) with ND-
LoRA across P ∈ {1, 2, 4, 8} parallel streams applied to QKV self-attention modules and a design
layer of 20 for de-correlation loss. Each stream uses independent rank-16 LoRA adapters and 48
prefix tokens, totaling 5-20M trainable parameters with 495M backbone frozen. Baseline methods
use higher-rank LoRA (R32-R128) for parameter matching.

Training Protocol. Models train on 20M tokens from The Pile (8 random shards, fixed seeds). We
use 1024-token sequences, AdamW optimization (peak lr 3e-4, cosine decay, 2% warmup), batch
size 64, bfloat16 precision. Training completes in ∼5K steps (∼30 min. on A100).

Evaluation Benchmarks. We evaluate across: (1) Hallucination-sensitive: TruthfulQA (Lin et al.,
2021), HaluEval (Li et al., 2023a), MemoTrap (McKenzie et al., 2023); (2) Knowledge-intensive:
Natural Questions (Kwiatkowski et al., 2019), TriviaQA (Joshi et al., 2017), PopQA (Mallen et al.,
2023); (3) General capability: Wikitext BPB (Merity et al., 2017), Winogrande (Sakaguchi et al.,
2020). This tests if neural diversity improves reliability without sacrificing general performance.

Neural Diversity Measurement. We compute D at the final RMSNorm layer by first whitening
representations per feature dimension across batch and sequence positions (zero mean, unit vari-
ance), then computing pairwise cosine similarity between streams. This is equivalent to the Barlow
Twins cross-correlation formulation (Eq. 2 in Zbontar et al. (2021)) when features are whitened.

Statistical Methodology. We evaluate significance using McNemar’s test for binary classification
tasks and two-tailed bootstrap tests with 10,000 samples for other tasks. Improvements marked with
* are significant at p < 0.05.

A.6 COMPLETE BENCHMARK RESULTS

Tables 7–9 provide comprehensive results across P ∈ {1, 2, 4, 8} configurations with parameter-
matched P = 1 baselines. This complete view demonstrates the thoroughness of our evaluation and
enables independent verification of claims in the main text.

Evaluation Qwen LoRA ParScale ND-LoRA
HE Dialog 0.458 0.453 0.513
HE QA 0.365 0.337 0.406
HE Summ 0.400 0.439 0.481
MemoTrap 0.634 0.638 0.666
NQ-8 0.065 0.059 0.055
TQA-8 0.188 0.185 0.160
TF-MC1 0.251 0.259 0.269
TF-MC2 0.403 0.412 0.442
NQ-swap 0.550 0.546 0.528
PopQA 0.111 0.109 0.101
Wikitext BPB 0.775 0.797 0.797
Winogrande 0.572 0.564 0.574

Table 7: Benchmark results for P = 2 (Qwen R32) parameter-matched models.

A.7 AN INTERPRETABLE ROUTER FOR OPTIMAL NUMBER OF STREAMS

To demonstrate that the task-optimal P⋆ patterns in Table 1 reflect real structure rather than arbitrary
variation, we train a simple interpretable router that predicts optimal P⋆ from prompt features alone.
While more complex routers could improve performance, we prioritize simplicity and interpretabil-
ity to understand the underlying structure.

We fit a simple regression on two features, trained on just 10 samples per task with oracle P labels:

P̂ = clip
(
0.196 logW − 2.283Q+ 3.321

)
(14)
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Evaluation Qwen LoRA ParScale ND-LoRA
HE Dialog 0.464 0.459 0.516
HE QA 0.341 0.322 0.451
HE Summ 0.394 0.409 0.502
MemoTrap 0.629 0.634 0.635
NQ-8 0.065 0.061 0.059
TQA-8 0.191 0.185 0.172
TF-MC1 0.245 0.253 0.262
TF-MC2 0.399 0.413 0.416
NQ-swap 0.554 0.542 0.535
PopQA 0.110 0.110 0.106
Wikitext BPB 0.778 0.793 0.795
Winogrande 0.564 0.573 0.577

Table 8: Benchmark results for P = 4 (Qwen R64) parameter-matched models.

Evaluation Qwen LoRA ParScale ND-LoRA
HE Dialog 0.460 0.465 0.475
HE QA 0.344 0.335 0.370
HE Summ 0.379 0.416 0.450
MemoTrap 0.630 0.639 0.689
NQ-8 0.066 0.063 0.059
TQA-8 0.192 0.182 0.171
TF-MC1 0.251 0.256 0.259
TF-MC2 0.407 0.414 0.424
NQ-swap 0.551 0.540 0.554
PopQA 0.110 0.109 0.103
Wikitext BPB 0.778 0.779 0.784
Winogrande 0.569 0.577 0.568

Table 9: Benchmark results for P = 8 (Qwen R128) parameter-matched models.
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where Q is the ratio of interrogative to declarative sentences, W measures prompt length in words,
and clip(·) snaps predictions to the nearest valid P ∈ {1, 2, 4, 8}. This two-feature router achieves
96.8% of oracle performance on held-out samples averaged across all tasks.

The learned coefficients reveal an interpretable trade-off between knowledge retrieval and verifia-
bility. The negative weight on interrogative sentence ratio indicates that question-dense prompts —
where success depends on precise recall of stored knowledge — benefit from lower P values that
maximize focus from a single stream. Conversely, the positive weight on word count reflects that
longer prompts — where success depends on cross-checking claims against provided context —
require higher P for diverse verification across streams. More broadly, tasks prioritizing retrieval
favor low diversity, while tasks prioritizing verifiability favor high diversity.

A.8 LORA HYPERPARAMETERS AS POTENTIAL CONFOUNDS

A natural concern is whether ND-LoRA’s improvements stem from LoRA hyperparameter choices
rather than neural diversity per se. We consider three potential confounds: (i) expressivity: P parallel
rank-R adapters yield P × R total parameters, so improvements might reflect capacity rather than
diversity; (ii) alpha scaling: different α/r ratios affect update magnitudes and could change which
solutions are reachable; and (iii) optimization dynamics: higher-rank adapters might converge to
different basins.

Expressivity. This confound is addressed by parameter matching in the main text (Table 2): base-
lines use higher-rank single LoRA (R32–R128) to match ND-LoRA’s total parameter count, yet
ND-LoRA still outperforms on hallucination benchmarks.

Alpha scaling. We conducted a sensitivity analysis varying single-LoRA rank from R16 to R128
under two alpha strategies: constant scaling (α/r = 2) and constant alpha (α = 32). Results in
Table 10 show that constant-scaling single-LoRA is not a suitable baseline for two reasons. First,
the only monotonic trend observed is degradation of general capabilities: Wikitext perplexity in-
creases from 0.776 to 0.795 bits per byte (+2.4%), TriviaQA-8 drops from 19% to 17% (-11%), and
NQ-8 drops from 7% to 5% (-29%) as rank increases from R16 to R128. Second, hallucination
benchmark performance is unstable across this 8× rank variation: while some pairwise differences
are statistically significant, they’re unstable across both rank and benchmarks (e.g. HE-Dialog vs.
HE-QA within R64). We therefore use fixed α = 32 baselines, which provide stable reference
points without the capability degradation observed under constant scaling. Importantly, ND-LoRA
remains statistically significantly better than both baseline types — all winners stay winners — and
using constant-scaling baselines would in fact create additional ND-LoRA wins (e.g. Wikitext BPB,
NQ-8 and Winogrande P = 8).

Metric R16 R32 R64 R128

HE Dialog 0.46±0.01 0.46±0.01 0.49±0.01 0.45±0.01
HE QA 0.37±0.01 0.37±0.01 0.34±0.01 0.36±0.01
HE Summ 0.41±0.01 0.46±0.01 0.48±0.01 0.41±0.01
MemoTrap 0.64±0.03 0.63±0.03 0.63±0.03 0.64±0.03
TF-MC1 0.25±0.03 0.25±0.03 0.24±0.03 0.24±0.03
TF-MC2 0.41±0.03 0.40±0.03 0.39±0.03 0.40±0.03

NQ-8 0.07±0.01 0.06±0.01 0.06±0.01 0.05±0.01
NQ-swap 0.55±0.01 0.55±0.01 0.55±0.01 0.54±0.01
PopQA 0.11±0.01 0.11±0.01 0.11±0.01 0.11±0.01
TQA-8 0.19±0.01 0.18±0.01 0.18±0.01 0.17±0.01
Wikitext BPB 0.776 0.781 0.790 0.795
Winogrande 0.56±0.03 0.57±0.03 0.58±0.03 0.56±0.03

α/r 2.00 2.00 2.00 2.00

Table 10: Constant scaling α/r = 2: α varies with rank. Hallucination metrics are noisy but many
general-capability metrics degrade monotonically (e.g. Wikitext BPB 0.776 → 0.795, NQ-8 0.07 →
0.05), making this an unsuitable baseline.
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Metric R16 R32 R64 R128

HE Dialog 0.46±0.01 0.46±0.01 0.46±0.01 0.46±0.01
HE QA 0.37±0.01 0.37±0.01 0.34±0.01 0.34±0.01
HE Summ 0.41±0.01 0.40±0.01 0.39±0.01 0.38±0.01
MemoTrap 0.64±0.03 0.63±0.03 0.63±0.03 0.63±0.03
TF-MC1 0.25±0.03 0.25±0.03 0.24±0.03 0.25±0.03
TF-MC2 0.41±0.03 0.40±0.03 0.40±0.03 0.41±0.03

NQ-8 0.07±0.01 0.07±0.01 0.06±0.01 0.07±0.01
NQ-swap 0.55±0.01 0.55±0.01 0.55±0.01 0.55±0.01
PopQA 0.11±0.01 0.11±0.01 0.11±0.01 0.11±0.01
TQA-8 0.19±0.01 0.19±0.01 0.19±0.01 0.19±0.01
Wikitext BPB 0.776 0.775 0.778 0.778
Winogrande 0.56±0.03 0.57±0.03 0.56±0.03 0.57±0.03

α/r 2.00 1.00 0.50 0.25

Table 11: Constant α = 32: scaling varies with rank. Most metrics are stable alongside general
capabilities, helping rule out expressivity and optimization dynamics as confounds.

Optimization dynamics. Under fixed alpha (α = 32), general capabilities remain stable across 8×
rank variation: Wikitext BPB is flat (0.775–0.778) and Winogrande accuracy is statistically indis-
tinguishable (0.56–0.57) across R16–R128 (Table 11). If optimization dynamics differed meaning-
fully across rank (e.g. higher-rank adapters converging to different loss basins) we would expect
divergence on these general capability metrics. The observed stability indicates that fixed-alpha
configurations converge to similar solutions regardless of rank, ruling out optimization dynamics as
a confound for ND-LoRA’s hallucination improvements.
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