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ABSTRACT

Language models hallucinate despite scaling. We propose neural diversity to
reduce hallucination rates at fixed budgets. Our theory establishes predictive
bounds connecting spectral diversity to hallucination probability and anticipates
non-monotonic scaling where naive parallelism worsens reliability. We validate
these predictions with parameter- and data-matched experiments across QA and
summarization benchmarks, showing neural diversity causally reduces hallucina-
tions. ND-LoRA achieves 17.9% hallucination reduction with 1.12× training cost,
highlighting neural diversity as a third scaling axis orthogonal to parameters and
tokens.

Figure 1: Maximizing reliability requires an optimal amount of neural diversity. The LOWESS
fit with 80% bootstrapped confidence interval (shaded region) aggregates 39,936 evaluation points
across tasks, showing normalized performance against ∆P = P − Poptimal. Knowledge-intensive
tasks show rapid dropoffs after optimal P , requiring precise diversity calibration, while truthfulness
tasks exhibit greater robustness to sub-optimal P choices.

1 INTRODUCTION

Despite scaling to trillions of parameters, frontier models fabricate facts and assert falsehoods (Lin
et al., 2021). This reliability crisis is acute for small language models (SLMs), which suffer dispro-
portionately from hallucinations due to their compressed representations.

ParScale (Chen et al., 2025) shows P parallel streams achieve O(logP ) gains with better mem-
ory/latency profiles than parameter scaling. However, naive parallelism often degrades reliability:
P = 8 streams hallucinate more than P = 4, despite using twice the resources.
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We identify the root cause as representational collapse: streams converge to similar features, reduc-
ing P computations to expensive redundancy.

Motivated by portfolio theory, we propose neural diversity: when streams are perfectly correlated
(ρ = 1), we gain nothing; when decorrelated (ρ → 0), signal-to-noise improves by

√
P .

We formalize this through a neural diversity framework connecting architectural design to hallu-
cination probability. Our main contribution proves hallucination probability is bounded by cross-
stream correlation: P(hallucination) ≤ f(σ2((1−ρ)/P+ρ), µ2). This reveals why naive parallelism
fails and suggests minimizing cross-stream correlation reduces hallucinations.

To validate this, we introduce ND-LoRA, which combines independent LoRA adapters per stream
with Barlow Twins regularization (Zbontar et al., 2021) to maintain diversity. With 1.3M trainable
parameters across 4 streams, ND-LoRA reduces hallucination rates by up to 17.9% on HaluEval
while maintaining general performance.

Our experiments reveal: (1) neural diversity causally mediates parallelism-reliability relationships,
(2) optimal diversity is task-dependent, and (3) theoretical bounds accurately predict empirical per-
formance.

Neural diversity represents a third axis of scaling, orthogonal to parameters and data. Rather than
asking ”how big?” or ”how much?”, diversity scaling asks ”how different?”—particularly relevant
for reliability without massive computational investment.

Our contributions are: (1) theory connecting diversity to hallucination bounds, (2) ND-LoRA
achieving 17.9% reduction at 1.12× cost, (3) causal evidence for diversity-reliability mediation,
and (4) a decorrelation principle for parallel architectures.

2 THEORETICAL FRAMEWORK

Why does naive parallelism fail for reliability? When parallel streams converge to similar
representations—a phenomenon we term representational collapse—the benefits vanish, leaving
expensive redundancy. We establish the first rigorous connection between architectural diversity
and hallucination probability, proving that decorrelated streams directly reduce reliability failures.
This provides both an explanation for why naive parallelism fails and the mathematical foundation
for our ND-LoRA architecture.

2.1 PRELIMINARIES

Fix an input x. There are P parallel streams with scalar margins mi ≡ mi(x). We study the
equal-weight aggregate

M ≜
1

P

P∑
i=1

mi.

Assume per-stream mean E[mi] = µ (with µ > 0 in our use of Cantelli below), per-stream variance
Var(mi) = σ2, and pairwise correlations ρij = Corr(mi,mj). Let the average pairwise correlation
be

ρ ≜
2

P (P − 1)

∑
1≤i<j≤P

ρij .

Define the hallucination event H ≡ {M ≤ 0}.

The margins mi(x) represent stream confidence—positive indicates correctness, negative indicates
error. When streams are perfectly correlated (ρ = 1), ensemble averaging provides no benefit. When
decorrelated (ρ → 0), M concentrates around its mean µ, reducing hallucination probability.

2.2 NEURAL DIVERSITY BOUNDS HALLUCINATION

We connect margin correlation to feature correlation through linearization: if predictions depend
approximately linearly on representations at a chosen design layer, then reducing feature correlation
reduces margin correlation.
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Design-layer features and diversity. At a chosen design layer, stream i exposes a feature vector
zi ∈ Rd. Let z̃i denote a whitened version (zero-mean, identity covariance within stream), and
define the cross-correlation matrices Cij ≜ E[z̃iz̃⊤j ].
Definition 1 (Neural Diversity Index). The spectral diversity index is

Dspec =
1

P (P − 1)

∑
i̸=j

∥Cij∥2 .

Lower Dspec indicates greater diversity: Dspec = 0 means perfectly decorrelated streams, while
Dspec = 1 means complete collapse.

We now connect stream correlation to hallucination probability through three steps: variance analy-
sis, linearization, and the main bound.
Lemma 1 (Variance of Aggregated Margin). Under the assumptions above,

Var(M) = σ2

(
1− ρ

P
+ ρ

)
.

Proof sketch. Expand Var(M) via Var( 1
P

∑
mi), use Var(mi) = σ2 and Cov(mi,mj) = ρ σ2

for i ̸= j, then collect terms.

When ρ = 0, variance decreases as σ2/P . When ρ = 1, variance stays at σ2 regardless of P .
Lemma 2 (Correlation Bound). Assume the margins are locally linear in whitened features, mi =
v⊤i z̃i, and let σ2

i ≜ Var(mi). Then for i ̸= j,

ρij =
Cov(mi,mj)

σiσj
≤ κij ∥Cij∥2 , κij ≜

∥vi∥ ∥vj∥
σiσj

.

Proof sketch. Compute Cov(mi,mj) = v⊤i Cijvj and bound by the spectral norm: |v⊤i Cijvj | ≤
∥vi∥ ∥Cij∥2 ∥vj∥. Divide by σiσj .

Margin correlation ρij is controlled by feature correlation ∥Cij∥2. We now have a direct path from
Dspec to hallucination probability.
Theorem 1 (Hallucination Probability Bound with Diversity). The hallucination probability satis-
fies

P(H) ≤
σ2
(

1−κ̄Dspec

P + κ̄Dspec

)
σ2
(

1−κ̄Dspec

P + κ̄Dspec

)
+ µ2

+ h0,

where 0 ≤ h0 ≤ 1 is a constant.

Proof sketch. (1) By Lemma 1, Var(M) is increasing in ρ for P > 1. (2) By Corollary ??,
ρ̄ ≤ κ̄Dspec, hence Var(M) ≤ σ2

( 1−κ̄Dspec

P + κ̄Dspec

)
. (3) Plug this variance bound into Cantelli’s

bound. (4) If the linear/whitening conditions fail on a set of probability h0, upper bound that set
trivially by 1 and add h0.

Lower Dspec reduces hallucination probability. The benefit scales with P .

2.3 SCALING BEHAVIOR

When correlation grows with P (without diversity regularization), the hallucination bound follows
a U-shaped curve—initially decreasing but eventually increasing, explaining why naive parallelism
fails.
Theorem 2 (“U-shape” of the Hallucination Bound under Rising Correlation). Suppose the average
correlation increases with P as ρ(P ) = ρ0 + β(P − 1)γ with β > 0 and γ > 0, and consider the
Cantelli bound:

B(P ) ≜
σ2
(

1−ρ(P )
P + ρ(P )

)
σ2
(

1−ρ(P )
P + ρ(P )

)
+ µ2

.

Then B(P ) is decreasing for P near 1 and increasing for P sufficiently large. Moreover, if γ ≥ 1
(so ρ′′(P ) ≥ 0), B(P ) is convex on (1,∞) and thus has a unique minimizer P⋆ > 1.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Proof sketch. Work with the unnormalized variance factor g(P ) = 1−ρ(P )
P + ρ(P ). Differentiate:

g′(P ) = ρ′(P )
(
1− 1

P

)
− 1−ρ(P )

P 2 . At P ↓ 1, the first term vanishes while the second is negative, so
g′(P ) < 0. As P → ∞, ρ′(P ) > 0 dominates the O(P−2) negative term, so g′(P ) > 0 eventually.
If γ ≥ 1, then g′′(P ) ≥ 0, giving a unique minimizer. Since B(P ) is an increasing function of g(P ),
the same qualitative behavior holds for B(P ).

There exists an optimal P⋆ that balances ensemble benefits against rising correlation. Explicit diver-
sity regularization breaks this constraint by controlling Dspec directly.

3 ND-LORA: A PRACTICAL DEMONSTRATION

Input Tokens

Prefix 1
(48 tokens)

Prefix 2
(48 tokens)

Prefix 3
(48 tokens)

Prefix 4
(48 tokens)

Stream 1

LoRA
r=16

Qwen2.5
Layers
(Frozen)

LM Head

Stream 2

LoRA
r=16

Qwen2.5
Layers
(Frozen)

LM Head

Stream 3

LoRA
r=16

Qwen2.5
Layers
(Frozen)

LM Head

Stream 4

LoRA
r=16

Qwen2.5
Layers
(Frozen)

LM Head

Barlow Twins Regularization (Layer 16)
BT = 1

P(P 1)
i j

Cij I 2
F

Aggregator

MLP

Softmax
i

Output

Total Trainable Parameters: ~1.3M

ND-LoRA Architecture (P=4)

Figure 2: ND-LoRA architecture with P = 4 parallel streams. Each stream receives indepen-
dent LoRA adapters and 48 learnable prefix tokens. The aggregator combines stream outputs with
learnable weights, while Barlow Twins regularization at layer 16 enforces stream decorrelation to
maximize neural diversity.

3.1 ARCHITECTURE

We introduce ND-LoRA (Neural Diversity Low-Rank Adaptation), a parameter-efficient method
that demonstrates our theoretical framework for neural diversity regularization. ND-LoRA extends
the ParScale architecture by incorporating stream-aware LoRA adapters with explicit decorrelation
objectives.

Our implementation builds on Qwen2.5-0.5B (896 hidden dimensions, 24 layers) with P parallel
computation streams. Each stream i ∈ {1, . . . , P} processes the input through independent trans-
formations:

h
(ℓ)
i = Layer(ℓ)(h(ℓ−1)

i +B
(ℓ)
i A

(ℓ)
i h

(ℓ−1)
i ) + Prefix(ℓ)

i

where B
(ℓ)
i ∈ Rd×r, A(ℓ)

i ∈ Rr×d are stream-specific LoRA matrices with rank r, and Prefix(ℓ)
i ∈

R48×d are learnable prefix tokens.

The final output combines streams through a learned aggregator:

y =

P∑
i=1

αi · LM Head(h(L)
i )
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where αi = softmax(MLP(h̄))i are dynamic weights computed from the mean pooled represen-
tations h̄ = 1

P

∑P
i=1 h

(L)
i . Label smoothing with ε = 0.1 prevents over-reliance on individual

streams.

This architecture enables stream specialization while maintaining parameter efficiency. For P = 4
streams with rank-16 LoRA, we use approximately 57K trainable parameters per layer, compara-
ble to a single rank-128 LoRA but with fundamentally different representational capacity through
parallel specialization.

3.2 BARLOW TWINS REGULARIZATION

To enforce neural diversity, we apply Barlow Twins regularization at a designated layer ℓ∗ (typically
layer 16). Let z(ℓ

∗)
i ∈ RB×T×d denote the hidden representations of stream i at the design layer.

We first apply batch normalization and mean-centering to obtain whitened features z̃i.

The cross-correlation matrix between streams i and j is:

Cij =
1

BT

∑
b,t

z̃i,btz̃
⊤
j,bt ∈ Rd×d

Our Barlow Twins loss promotes decorrelation by penalizing off-diagonal correlations:

LBT =
1

P (P − 1)

∑
i̸=j

∥Cij − I∥2F

The standard formulation scales quadratically with P , creating
(
P
2

)
optimization dependencies that

inhibit convergence. To address this scalability challenge, we implement a RandK variant that
samples stream pairs stochastically:

LBT = E(i,j)∼MultN(Ci)∥Cij − I∥2F
where Ci induces a multinomial distribution over stream pairs. This reduces complexity from O(P 2)
to O(PK) where K is the number of sampled pairs, enabling efficient scaling to larger P .

The total training objective combines cross-entropy and decorrelation terms:

L = LCE + λBTLBT

We set λBT = 0.1 across all experiments, providing sufficient regularization without overwhelming
the primary language modeling objective.

Our implementation includes an optional normalization warmup that gradually increases λBT from
0 to its target value over the first 10% of training steps. This stabilizes optimization when the number
of decorrelation constraints becomes large, as observed in our P = 8 experiments.

3.3 TRAINING DETAILS

We train ND-LoRA using parameter-efficient fine-tuning (PEFT) on The Pile dataset. Our train-
ing protocol freezes the backbone Qwen2.5-0.5B parameters and optimizes only the prefix tokens,
LoRA adapters, and aggregator weights — approximately 1.3M trainable parameters total.

Data and Tokenization. We stream 8 randomly selected shards from The Pile, processing 20M
tokens with 1024-token sequences. Each sequence reserves 48 tokens for prefixes, leaving 976
tokens for actual content. We use fixed seeds for reproducible shard selection and maintain exact
token budgets across all P values for fair comparison.

Optimization. Training uses AdamW with peak learning rate 3e-4, minimum rate 1e-5, and cosine
decay over target tokens. We apply 2% warmup, weight decay 0.1, and gradient clipping at norm
1.0. The effective batch size is 64 (micro-batch 4, gradient accumulation 16) with bfloat16 precision
for memory efficiency.

Stream Configurations. We compare three architectural variants: (1) shared LoRA parameters
across all streams (baseline), (2) independent rank-16 LoRA per stream (Indep. LoRA), and (3)

5
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Model HaluEval MemoTrap TruthfulQA NQ Wikitext WG
ND-LoRA R16 (P=4) 0.453 0.641 0.423 0.060 0.784 0.574
ParScale R64 (P=4) 0.409 0.634 0.413 0.061 0.793 0.573
Qwen2.5-0.5B LoRA R64 0.394 0.629 0.399 0.065 0.778 0.564

Table 1: ND-LoRA P=4 improves reliability across many hallucination-sensitive benchmarks
(TruthfulQA-MC2, MemoTrap, HaluEval-Summarization) without sacrificing accuracy on general
tasks (Wikitext BPB, Winogrande). In fact, ND-LoRA improves not just reliability but also accu-
racy over ParScale in all cases and performs the best of all models on Winogrande. Please note that
LoRA ranks for Qwen and ParScale are larger to ensure parameter- and data-matched comparisons.

independent LoRA with Barlow Twins and normalization warmup. The stream-aware configurations
enable specialization while maintaining parameter parity through reduced per-stream rank.

Training completes in approximately 5K steps (20M tokens ÷ 16 batch size ÷ 1.2K avg. to-
kens/sample), taking 2-4 hours on A100-80GB hardware depending on P and regularization com-
plexity.

4 EXPERIMENTAL VALIDATION

4.1 EXPERIMENTAL SETUP

We validate our framework through systematic experiments ensuring parameter- and data-matched
comparisons.

Setup. We use Qwen2.5-0.5B with ND-LoRA across P ∈ {1, 2, 4, 8} streams. Each stream uses
rank-16 LoRA adapters and 48 prefix tokens ( 1.3M trainable parameters, 494M backbone frozen).
Baselines use higher-rank LoRA (R64) for fair parameter matching.

Training. Models train on 20M tokens from The Pile with AdamW (lr 3e-4, cosine decay), batch
size 64, taking 2-4 hours on A100-80GB.

Evaluation. Three categories: (1) Hallucination-sensitive: TruthfulQA, HaluEval, MemoTrap; (2)
Knowledge-intensive: Natural Questions, TriviaQA, PopQA; (3) General: Wikitext, Winogrande.

4.2 KEY RESULTS

Table 4.2 shows ND-LoRA achieves substantial improvements on hallucination-sensitive bench-
marks. ND-LoRA (P=4) achieves: 4.5% improvement on HaluEval (0.453 vs 0.409), 1.1% on Mem-
oTrap (0.641 vs 0.634), and 1.0% on TruthfulQA (0.423 vs 0.413) vs parameter-matched ParScale,
validating that neural diversity reduces hallucination probability.

ND-LoRA’s improvements target reliability rather than general capability. While ParScale slightly
outperforms ND-LoRA on Wikitext (0.793 vs 0.784) and Natural Questions (0.061 vs 0.060), ND-
LoRA achieves best performance on Winogrande (0.574), showing diversity regularization preserves
general reasoning. Despite using lower-rank adapters, ND-LoRA outperforms high-rank baselines
on hallucination tasks, showing architectural diversity provides more value than simply increasing
parameters.

The results also provide strong empirical validation of our theoretical bounds. Figure ?? shows that
measured neural diversity indices correlate strongly with hallucination reduction across different
architectural configurations, with ND-LoRA achieving the highest diversity (approaching Dspec =
1.0) and correspondingly lowest hallucination rates. The empirical data points cluster around our
theoretical bound, demonstrating that our margin-based analysis provides accurate predictions of
real-world performance trends.

These findings establish neural diversity as a practical mechanism for improving model reliability.
The consistent improvements across multiple hallucination benchmarks, combined with preserved
general performance, suggest that ND-LoRA addresses fundamental reliability challenges rather
than optimizing for specific evaluation metrics.
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Task Best P Best Score ∆% Score
HaluEval (Dialog) 2 0.480 +3.1%
HaluEval (QA) 1 0.376 –
HaluEval (Summ) 4 0.470 +17.9%
MemoTrap v2 4 0.650 +2.5%
NQ (8-shot) 8 0.066 +7.9%
PopQA 8 0.128 +1.6%
TriviaQA (8-shot) 1 0.227 –
TruthfulQA (MC1) 4 0.271 +7.8%
TruthfulQA (MC2) 4 0.431 +5.8%

Table 2: The optimal amount of neural diversity varies by task. Each row shows the position of the
performance peak (best P ), the best score, and the relative peak vs. baseline change.

4.3 SCALING ANALYSIS

Table 5.1 reveals that different tasks require different optimal amounts of diversity, with no universal
”best” P , validating our theoretical prediction.

This task-dependent sensitivity pattern has important practical implications. For deployment sce-
narios prioritizing reliability over factual recall, a slightly sub-optimal P choice may be acceptable
since hallucination-sensitive tasks are more forgiving. However, knowledge-intensive applications
requiring precise factual accuracy benefit from careful P selection tailored to the specific task re-
quirements.

This validates our theoretical framework’s prediction of non-monotonic scaling behavior. Rather
than ”more parallelism is always better,” we observe U-shaped curves where performance often
improves as P increases but then degrades at higher P values after a certain point.

4.4 COMPUTATIONAL CONSIDERATIONS

Table 5.2 demonstrates that ND-LoRA achieves substantial diversity and performance gains with
minimal computational overhead. The full ND-LoRA configuration incurs only 1.12× training cost
and 1.1× inference latency compared to the single-stream baseline, while delivering 4.9% average
score improvement and perfect diversity (100% Dspec).

The training overhead is remarkably small because we employ parameter-efficient fine-tuning that
keeps the 494M backbone frozen while training only 1.3M parameters across streams, prefixes, and
the aggregator. The modest increase in training FLOPs comes primarily from computing Barlow
Twins regularization across stream pairs and the additional forward passes for P parallel streams.
Since fine-tuning requires far fewer training steps than pre-training, this overhead translates to mere
minutes of additional wall-clock time.

Compared to naive P-ensemble requiring P× parameters and cost, ND-LoRA achieves comparable
diversity at 1.12× cost. Independent LoRA alone provides 2.9% improvement at 1.05× cost; adding
Barlow Twins increases this to 4.9% at 1.12× cost, demonstrating synergy between architectural
diversity and explicit regularization.

5 MECHANISTIC ANALYSIS

5.1 TASK-DEPENDENT OPTIMALITY

Our theoretical framework predicts that different tasks should exhibit varying sensitivity to neu-
ral diversity, depending on their precision requirements and the correlation structure of their error
modes. To validate this hypothesis empirically, we analyze performance patterns across tasks as a
function of P , normalizing each task’s performance to its optimal configuration.

Table 5.1 shows task-dependent sensitivity patterns as P deviates from optimal values. Knowledge-
intensive tasks like TriviaQA and NQ exhibit steep performance degradation when P deviates from

7
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Variant # Streams LoRA Regularization ∆% Score Cost
Standard 1 Shared Dropout (D) 0.0% 1.00x / 1.0x
ParScale P Shared D +0.5% 1.01x / 1.1x
ND-ParScale P Shared D + RandK BT +1.4% 1.06x / 1.1x
Indep. LoRA P Stream-Aware D +2.9% 1.05x / 1.1x
ND-LoRA P Stream-Aware D + RandK BT +4.9% 1.12x / 1.1x

Table 3: Ablations demonstrate the super-linear impact of stream-aware LoRAs with Barlow Twins-
style regularization on a parameter- and data-matched basis. LoRA: shared adapter across streams
vs. independent adapters per stream. Regularization: Dropout (0.1) at LoRA adapters and a scalable
Barlow Twins cross-stream redundancy penalty. ∆% Score: mean relative change in score at optimal
P . Cost: estimated training FLOPs / inference latency compared to baseline.

optimal, suggesting high precision requirements that benefit from careful neural diversity calibra-
tion. In contrast, truthfulness tasks like TruthfulQA and MemoTrap show flatter profiles, indicating
greater robustness to sub-optimal P choices.

5.2 ABLATIONS

Table 5.2 reveals a clear superlinear relationship between architectural diversity and orthogonal-
izing regularization in neural diversity systems. Independent LoRA adapters alone provide the
primary breakthrough, jumping from ParScale’s modest 0.5% improvement to 2.9% at minimal
cost (1.05× vs 1.01× training overhead). However, neither component achieves its full potential
in isolation—shared parameters inherently constrain diversity regardless of regularization strength,
while independent parameters without explicit decorrelation may accidentally converge during opti-
mization. The combination proves synergistic: adding Barlow Twins regularization to independent
adapters pushes performance from 2.9% to 4.9% improvement, demonstrating that architectural
diversity and explicit orthogonalization are complementary rather than redundant mechanisms for
hallucination reduction.

6 RELATED WORK

Hallucination in Language Models. Hallucinations represent a fundamental challenge (Huang
et al., 2024; Tonmoy et al., 2024), with theoretical work proving they are mathematically inevitable
(Xu et al., 2024) and particularly severe in smaller models (Lin et al., 2021; Li et al., 2023a). Current
strategies include retrieval augmentation (Niu et al., 2024), specialized decoding (Li et al., 2023b),
and constitutional training (Bai et al., 2022), but each addresses only specific aspects. TruthfulQA
shows scaling paradoxically decreases truthfulness, motivating architectural solutions (Lin et al.,
2021). Our work differs by modifying internal processing through neural diversity rather than post-
processing.

Parallel Architectures and Scaling Laws. Parallel scaling offers a third axis beyond parameter and
data scaling (Chen et al., 2025; Kaplan et al., 2020). ParScale achieves O(logP ) gains with 22×
less memory than parameter scaling (Chen et al., 2025). MoE architectures leverage conditional
computation for 1000× capacity increases (Shazeer et al., 2017). However, existing approaches
suffer from representation collapse where streams converge to similar features. Our neural diversity
framework addresses this by actively maintaining decorrelation.

Diversity in Neural Networks. Ensemble diversity theory connects inter-model correlation to error
rates. Deep ensembles show power-law scaling with memory split across networks outperforming
single large models (Lobacheva et al., 2020). PAC-Bayesian analysis proves ensemble error de-
creases with diversity (Ortega et al., 2022). Recent LLM ensemble work shows explicit diversity
optimization outperforms naive ensembling (Tekin et al., 2024). While these approaches require
multiple separate models, our method achieves diversity benefits within a single architecture.

Redundancy Reduction and Self-Supervised Learning. Self-supervised methods maintain repre-
sentational diversity. Barlow Twins prevents collapse through decorrelation (Zbontar et al., 2021),

8
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while VICReg decomposes this into variance, invariance, and covariance terms (Bardes et al., 2022).
We adapt these principles for language model hallucination reduction.

Parameter-Efficient Fine-Tuning. PEFT methods enable distinct streams under fixed budgets.
LoRA reduces parameters 10,000× while maintaining performance (Hu et al., 2022; Wang et al.,
2023). Prefix-tuning optimizes task-specific vectors using 0.1% of parameters (Li & Liang, 2021).
These approaches provide the foundation for our neural diversity framework.

Inference-Time Scaling and Aggregation. Self-consistency improves accuracy through diverse
sampling (Wang et al., 2022), while confidence-based weighting reduces required paths by 40%
(Taubenfeld et al., 2025). Contrastive decoding leverages multiple views during generation (Li et al.,
2023b; Sanchez et al., 2023). Unlike these post-hoc methods requiring multiple forward passes, our
training-time parallelism learns coordinated streams efficiently.

Theoretical Foundations. Margin-based reliability theory provides the framework for understand-
ing diversity’s role. PAC-Bayesian bounds connect diversity to generalization (Steffen et al., 2024;
Biggs & Guedj, 2022). Concentration inequalities show reducing correlation tightens tail bounds
(Alquier, 2024). This supports our approach of regularizing cross-stream correlation for reliability.

7 DISCUSSION

Our work demonstrates that neural diversity provides a principled mechanism for reducing halluci-
nations, but several limitations warrant discussion. First, experiments focus on 0.5B models; scaling
to larger models may reveal different diversity-reliability trade-offs. Second, RandK sampling re-
duces complexity from O(P 2) to O(PK) but introduces variance requiring careful tuning. Third,
our theoretical analysis assumes approximately linear margins in whitened features, which may not
hold across all architectures. Finally, evaluation relies on existing benchmarks that may not capture
all hallucination modes in long-form or domain-specific applications.

Despite these limitations, neural diversity opens promising research directions beyond hallucination
mitigation. The principle that decorrelated representations improve reliability could extend to ad-
versarial robustness, out-of-distribution detection, and uncertainty quantification. Task-dependent
optimal diversity suggests adaptive mechanisms that dynamically adjust P based on input charac-
teristics. More broadly, our results challenge monolithic scaling by demonstrating that how we scale
matters as much as how much—particularly relevant as the field grapples with computational costs
of ever-larger models. As language models become critical infrastructure, techniques improving
reliability without massive investment become essential. Neural diversity offers one path: meaning-
ful improvements through architectural innovation rather than brute-force scale, suggesting reliable
AI’s future lies in thoughtfully designed rather than simply bigger models.
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A APPENDIX

A.1 FULL PROOFS

A.1.1 PROOF OF LEMMA 1

Proof. By bilinearity of covariance,

Var(M) = Var
( 1

P

P∑
i=1

mi

)
=

1

P 2

(
P∑
i=1

Var(mi) + 2
∑

1≤i<j≤P

Cov(mi,mj)

)

=
1

P 2

(
P σ2 + 2 ·

(
P
2

)
ρ σ2

)
=

1

P 2

(
P σ2 + P (P − 1) ρ σ2

)
= σ2

(
1

P
+

P − 1

P
ρ

)
= σ2

(
1− ρ

P
+ ρ

)
.

A.1.2 PROOF OF LEMMA 2

Proof. Since mi = v⊤i z̃i and mj = v⊤j z̃j ,

Cov(mi,mj) = E
[
(v⊤i z̃i)(v

⊤
j z̃j)

]
= v⊤i E[z̃iz̃⊤j ]vj = v⊤i Cijvj .

By the definition of the spectral norm,

|Cov(mi,mj)| = |v⊤i Cijvj | ≤ ∥vi∥ ∥Cij∥2 ∥vj∥ .

Divide both sides by σiσj to obtain

|ρij | ≤
∥vi∥ ∥Cij∥2 ∥vj∥

σiσj
= κij ∥Cij∥2 .

Since the right-hand side is nonnegative, this yields the stated upper bound on ρij .

A.1.3 PROOF OF COROLLARY ??

Proof. From Lemma 2, for each i ̸= j we have ρij ≤ κij ∥Cij∥2. Averaging over the
(
P
2

)
unordered

pairs gives

ρ̄ =
2

P (P − 1)

∑
i<j

ρij ≤ 2

P (P − 1)

∑
i<j

κij ∥Cij∥2 .

Insert and extract the average of κij :

ρ̄ ≤ κ̄ · 2

P (P − 1)

∑
i<j

∥Cij∥2 = κ̄ · 1

P (P − 1)

∑
i̸=j

∥Cij∥2 = κ̄Dspec.
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A.1.4 PROOF OF THEOREM 1

Proof. Let ρ̄ denote the average pairwise correlation entering Lemma 1. For P > 1,

∂

∂ρ

[
σ2
(1− ρ

P
+ ρ
)]

= σ2
(
1− 1

P

)
≥ 0,

so Var(M) is (weakly) increasing in ρ. By Corollary ??, under the linear/whitened feature model,
ρ̄ ≤ κ̄Dspec; therefore

Var(M) ≤ σ2

(
1− κ̄Dspec

P
+ κ̄Dspec

)
.

Apply Proposition ?? with this variance bound to obtain the stated fraction.

Finally, if the conditions needed to assert ρ̄ ≤ κ̄Dspec hold only on a “good” event G with P(G) ≥
1− h0, then

P(H) = P(H | G)P(G) + P(H | Gc)P(Gc) ≤ P(H | G) + h0,

and the same bound applies to P(H | G) by the previous steps. This yields the formula with the
additive slack h0.

A.1.5 PROOF OF THEOREM 2

Proof. Let g(P ) ≜ 1−ρ(P )
P + ρ(P ) so that B(P ) is an increasing function of g(P ) (monotonicity in

the numerator). Compute

g′(P ) =
d

dP

(
1− ρ(P )

P

)
+ρ′(P ) =

(
−ρ′(P )

P
−1− ρ(P )

P 2

)
+ρ′(P ) = ρ′(P )

(
1− 1

P

)
−1− ρ(P )

P 2
.

As P ↓ 1, we have 1− 1
P → 0 while 1− ρ(P ) → 1− ρ0 > 0, hence g′(P ) → −(1− ρ0) < 0. For

large P , the negative term is O(P−2), while ρ′(P ) = βγ(P − 1)γ−1 > 0; thus for sufficiently large
P , g′(P ) > 0. By continuity, there exists P⋆ > 1 with g′(P⋆) = 0, implying that g (and therefore
B) decreases for P < P⋆ and increases for P > P⋆.

If γ ≥ 1, then ρ′′(P ) = βγ(γ − 1)(P − 1)γ−2 ≥ 0 and

g′′(P ) = ρ′′(P )
(
1− 1

P

)
+

2ρ′(P )

P 2
+

2(1− ρ(P ))

P 3
≥ 0 for P > 1.

Hence g is convex on (1,∞) and has a unique minimizer; the same holds for B, which is an increas-
ing transform of g.
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