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Abstract

The rapid evolution of large language models001
(LLMs) represents a substantial leap forward in002
natural language understanding and generation.003
However, alongside these advancements come004
significant challenges related to the accountabil-005
ity and transparency of LLM outputs. Reliable006
source attribution is essential to adhering to007
stringent legal and regulatory standards, includ-008
ing those set forth by the General Data Protec-009
tion Regulation. Despite the well-established010
methods in source attribution within the com-011
puter vision domain, the application of robust012
attribution frameworks to natural language pro-013
cessing remains underexplored. To bridge014
this gap, we propose a novel and versatile015
TRansformer-based Attribution framework us-016
ing Contrastive Embeddings called TRACE that,017
in particular, exploits contrastive learning for018
source attribution. We perform an extensive019
empirical evaluation to demonstrate the per-020
formance and efficiency of TRACE in various021
settings and show that TRACE significantly im-022
proves the ability to attribute sources accurately,023
making it a valuable tool for enhancing the reli-024
ability and trustworthiness of LLMs.025

1 Introduction026

The recent era has seen a significant rise027

in the prevalence of large language models028

(LLMs) (Ouyang et al., 2022; Touvron et al., 2023)029

which have demonstrated an array of remarkable030

capabilities. However, studies (Huang et al., 2023;031

Liu et al., 2024; Wang et al., 2023a) have high-032

lighted a critical concern on the accountability of033

LLMs. Considering the widespread usage and such034

a concern, it has brought to the forefront a critical035

need for source attribution that involves identifying036

the specific training data that contributes to gen-037

erating part or all of an LLM’s output, which is038

crucial for legal and regulatory compliance and en-039

hances the reliability of LLMs. Various regulations040

mandate transparency and accountability in data041

usage, especially regarding intellectual property 042

and privacy. For instance, the General Data Pro- 043

tection Regulation (GDPR) in the European Union 044

requires that individuals have the right to be in- 045

formed when their personal data is used. Proper 046

source attribution ensures compliance with such 047

legal frameworks, mitigating the risk of legal dis- 048

putes and penalties. 049

A related topic would be that of membership in- 050

ference (MI) (Mireshghallah et al., 2022) whose 051

task is to determine whether a given piece of data 052

was used during the training of a machine learn- 053

ing model. While MI and source attribution share 054

some similarities, they differ significantly in their 055

granularity: MI typically only involves a binary 056

classification task and does not require identify- 057

ing a specific data provider. In contrast, source 058

attribution requires to identify one or more data 059

providers. 060

Though there are some studies on source attribu- 061

tion (Marra et al., 2018; Yu et al., 2022), a majority 062

of them are situated within the computer vision do- 063

main. Techniques developed for computer vision 064

tasks cannot be directly applied to LLMs due to the 065

fundamental differences in the data and model ar- 066

chitectures. To the best of our knowledge, effective 067

source attribution for LLMs still remains an open 068

and underexplored problem. 069

While numerous properties are important to a 070

source attribution framework, we identify accu- 071

racy, scalability, and interpretability as the most 072

crucial components. These three attributes are fun- 073

damental to ensuring the effectiveness and appli- 074

cability of the framework across various contexts. 075

Accuracy is essential to guaranteeing that the frame- 076

work consistently produces reliable results. Scal- 077

ability ensures that the framework can handle in- 078

creasing volumes of data and complexity without a 079

significant performance degradation, making it suit- 080

able for large-scale applications. Interpretability 081

is equally critical as it enables stakeholders to un- 082
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derstand and trust the attribution outcomes, hence083

fostering transparency and facilitating informed de-084

cision making.085

This paper presents a novel TRansformer-086

based Attribution framework using Contrastive087

Embeddings (TRACE) to achieve source attribution088

while satisfying the above three important proper-089

ties. By detailing our methodology and presenting090

empirical results, we seek to demonstrate the accu-091

racy, scalability, and interpretability of TRACE.092

Our contributions can be summarized as follows:093

• We propose the novel TRACE framework based094

on contrastive learning, which is designed to095

achieve effective source attribution. TRACE096

differs from traditional contrastive learning by097

using source information as the label. Fig. 1098

illustrates the TRACE framework.099

• We have performed an extensive empirical100

evaluation of TRACE to demonstrate its accu-101

racy, scalability, and interpretability.102

2 Preliminaries103

Contrastive Learning and NT-Xent Loss. Con-104

trastive learning is a conventional technique com-105

monly used in representation learning (Arora et al.,106

2019; Hadsell et al., 2006). Its underlying idea is107

that similar objects should exhibit a closer distance108

in the embedding space while dissimilar objects109

should repel each other. This technique has been110

widely employed in computer vision tasks due to its111

convenient implementation to augment image input112

to form a self-supervised problem. Models using113

contrastive learning have achieved state-of-the-art114

performances (Cui et al., 2021; Tian et al., 2020).115

Apart from the attention it receives in computer116

vision, new approaches using contrastive learning117

in natural language processing (Meng et al., 2021;118

Wu et al., 2020) have also started gaining attention119

and showcasing great capabilities.120

Our TRACE framework assigns the same label to121

all the data from the same source, hence naturally122

forming a supervised contrastive learning problem.123

In particular, TRACE utilizes NT-Xent Loss (Sohn,124

2016) for supervised contrastive learning:125

L =
∑
i∈I

−1

|Pi|
∑
p∈Pi

log

(
exp (zi · zp/τ)∑

a∈Ai
exp (zi · za/τ)

)
126

where the set I (Pi ⊂ I) contains indices of the sen-127

tences in the given batch (sharing the same label as128

sentence i, but does not include i), Ai = I \{i}, zi 129

denotes the embedding of sentence i, and τ ∈ R+ 130

is a temperature parameter. Minimizing L would 131

maximize the similarity between embeddings (of 132

sentences) from the same source while minimizing 133

the similarity between embeddings from different 134

sources. 135

Sentence Encoder. Similar to the concepts 136

of Word2Vec (Mikolov et al., 2013) and 137

GloVe (Brochier et al., 2019) which produce 138

meaningful vector representations of words, such 139

techniques can be applied to larger text units 140

such as sentences. A straightforward way is to 141

take the average of word embeddings within a 142

sentence, but this often results in embeddings 143

that lack semantic depth. Several models have 144

been developed to address this issue, including 145

InferSent (Conneau et al., 2018), Universal 146

Sentence Encoder (Cer et al., 2018), and 147

Sentence-BERT (SBERT) (Reimers and Gurevych, 148

2019). Given its superior performance and 149

efficiency, SBERT is chosen to generate sentence 150

embeddings in TRACE. SBERT leverages a pre- 151

trained BERT network and utilizes Siamese and 152

triplet network structures to produce semantically 153

meaningful sentence embeddings. 154

3 TRACE Framework 155

3.1 Source-Specific Semantic Distillation 156

Projecting every piece of data from each provider 157

into the embedding space is desirable but would 158

incur considerable computational costs. Moreover, 159

it is prudent to recognize that not all information 160

carries equal importance: For example, sentences 161

that occur less frequently typically tend to be more 162

representative of the document. So, we propose 163

to extract principal sentences from each source 164

by leveraging the Term Frequency-Inverse Doc- 165

ument Frequency (TF-IDF) which is effective for 166

identifying significant sentences within documents. 167

It is generally recommended to select 10-20% of 168

the sentences, thereby striking a balance between 169

complexity and performance; these sentences are 170

subsequently defined as principal sentences. The 171

length of these sentences is specified by a param- 172

eter called WINDOW_SIZE. Section 4.7 presents an 173

ablation study examining the effect of different 174

WINDOW_SIZEs on accuracy. 175

SBERT (Reimers and Gurevych, 2019) has 176

proven effective in deriving high-quality sentence 177
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Figure 1: Illustration of TRACE framework.

representations. However, to enhance its suitabil-178

ity for TRACE, we propose several modifications179

inspired by the work of SimCLR (Chen et al., 2020).180

A key finding from SimCLR is that adding a non-181

linear projection head significantly improves the182

representation quality. Following this insight, we183

incorporate a projection network at the end of the184

traditional SBERT architecture. This projection net-185

work is trained together with the base SBERT model,186

thus encouraging the learned representations to be187

more discriminative in the embedding space.188

3.2 Supervised Contrastive Embedding189

Training for Source-Coherent Clustering190

Unlike the other contrastive learning frameworks191

in computer vision whose tasks are typically de-192

fined to be auto-regressive due to the availability of193

various data augmentation techniques to generate194

positive samples, TRACE aims to achieve source-195

coherent clustering. In our case, we already pos-196

sess the label of each sentence indicating its source.197

So, we can frame our task as a supervised con-198

trastive learning problem. The supervision is de-199

rived from the label information which corresponds200

to the source. Contrastive learning aligns with our201

objective to form clusters based on these various202

sources.203

SimCLR has demonstrated that NT-Xent Loss204

outperforms other contrastive loss functions such205

as logistic loss (Mikolov et al., 2013) and margin206

loss (Schroff et al., 2015). So, we employ NT-Xent207

Loss as the loss function for TRACE.208

3.3 Proximity-based Inference 209

Once the training phase is completed, we transition 210

to the inference stage where each data source is rep- 211

resented by its own set of contrastive embeddings. 212

At this stage, when a language model generates a re- 213

sponse, we employ the k-Nearest Neighbor (kNN) 214

algorithm to assign the response to the closest data 215

source in the embedding space, as demonstrated 216

in Fig. 2. This ensures accurate source attribution 217

by matching the generated response with its most 218

similar source representation. 219

However, responses generated by language mod- 220

els may not always be exclusively influenced by a 221

single data source: there could be instances where 222

information from multiple sources contributes to 223

the generated text. To consider this possibility, 224

we introduce the concept of multi-source attribu- 225

tion. Multi-source attribution acknowledges and 226

accounts for the potential influence of multiple data 227

sources on the generated response. 228

We have developed three different implementa- 229

tions for single-source attribution and multi-source 230

attribution, which allow users to select the most 231

appropriate inference method based on time con- 232

straints and the number of sources. Section 4 pro- 233

vides a comparison of these methods. 234

Hard kNN (Single-Source Attribution). Hard 235

kNN follows the traditional kNN algorithm closely. 236

Here, the attribution is determined by considering 237

the k embeddings that are closest in distance to 238

the query. The source that appears most frequently 239

among these k neighbors is assigned as the source 240

of the query. 241
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Figure 2: Illustration of the attribution step in TRACE framework.

Soft kNN (Multi-Source Attribution). To dif-242

ferentiate from traditional kNN where each query243

is assigned to a single source, we introduce soft244

kNN. Here, k represents the number of data sources245

rather than the number of closest neighbors. We246

rank the distances from the query to all other em-247

beddings and select them in ascending order of248

distance until k distinct sources are covered.249

Nearest Centroid (Single-Source Attribution).250

To reduce inference time, we employ the nearest251

centroid method. Here, the centroid of each cluster252

is calculated by adding the normalized embeddings253

within that cluster (i.e., corresponding to the sen-254

tences with the same label/source), as shown below.255

We then apply kNN using these centroids. This256

method significantly reduces inference time as it257

scales with the number of data providers rather258

than the volume of data from each source. We will259

demonstrate in the next section that this method260

maintains an impressively high accuracy.261

Given a cluster of embeddings z1, z2, . . . ,zk262

with the same label/source, a good representative263

of the cluster would be the centroid z̄ that maxi-264

mizes the sum of its cosine similarity with every265

normalized embedding zi for i = 1, . . . , k. Equiv-266

alently, z̄ minimizes the sum of its standard cosine267

distance with every normalized embedding:268

k∑
i=1

(
1− zi · z̄

∥zi∥∥z̄∥

)
= k −

k∑
i=1

zi · z̄
∥zi∥∥z̄∥

= k −

(
k∑

i=1

zi
∥zi∥

)
· z̄

∥z̄∥
≥ k −

∣∣∣∣∣
(

k∑
i=1

zi
∥zi∥

)
· z̄

∥z̄∥

∣∣∣∣∣
≥ k −

∥∥∥∥∥
k∑

i=1

zi
∥zi∥

∥∥∥∥∥
269

by Cauchy-Schwarz inequality. The equality holds270

when there exists some λ ∈ R such that 271

k∑
i=1

zi
∥zi∥

= λ
z̄

∥z̄∥
. 272

In other words, z̄ can be obtained by adding all 273

normalized embeddings and setting λ = 1: 274

z̄ =

k∑
i=1

zi
∥zi∥

. 275

4 Experiments 276

4.1 Experimental Setup 277

Data. We perform an extensive empirical evalua- 278

tion of TRACE using three datasets: booksum (Kryś- 279

ciński et al., 2022), dbpedia_14 (Zhang et al., 280

2015), and cc_news (Hamborg et al., 2017); a sum- 281

mary of these datasets can be found in Table 5 282

in the appendix. In the booksum dataset, we treat 283

different books as distinct data providers and vary 284

the number of data providers from 10, 25, 50, to 285

100 to demonstrate TRACE’s scalability to a large 286

number of data providers. Similarly, each class 287

in dbpedia_14 or each domain in cc_news is con- 288

sidered a separate data provider. In this section, 289

we primarily present the experimental results on 290

the booksum dataset with 25 data providers. Sec- 291

tion 4.6 provides additional results. 292

Model. Focusing primarily on the booksum 293

dataset, we evaluate the performance of TRACE 294

using three different LLMs of varying sizes: 295

t5-small-booksum (Raffel et al., 2020), 296

GPT-2 (Radford et al., 2019), and Llama-2 (Tou- 297

vron et al., 2023). The t5-small-booksum model 298

is readily available on Hugging Face,1 while GPT-2 299

1https://huggingface.co/cnicu/t5-small-booksum.
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and Llama-2 have been fine-tuned on a subset300

of the booksum dataset. This setup allows us to301

assess the performance of TRACE across LLMs302

of different scales. In App. A, we provide more303

details about our experiments.304

4.2 Visualization of TRACE’s Embedding Space305

After training for 150 epochs on booksum, a visual-306

ization tool such as UMAP (McInnes et al., 2020) can307

be used to view the distribution of principal sen-308

tences. Fig. 3 shows that after the contrastive learn-309

ing step, the desired outcome has been achieved,310

i.e., data coming from the same source form clear311

and distinct clusters. This validates that our con-312

trastive learning successfully groups different data313

providers. Supposing the responses from an LLM314

are projected into the embedding space without315

incorporating the contrastive learning step, the re-316

sulting neighborhood exhibits chaos and it is chal-317

lenging to derive robust information. This fur-318

ther demonstrates the importance of the contrastive319

learning step.320

4.3 Accuracy321

Evaluating the accuracy of source attribution is322

particularly challenging due to the inherent diffi-323

culty in obtaining ground-truth test datasets. Even324

with a dataset, a language model, and specific in-325

puts, pinpointing the exact parts of the training data326

that influence a particular output remains complex.327

Here are the key reasons:328

1. Lack of Explicit Traceability. Language329

models like LLMs generate outputs based on330

patterns learned from vast amounts of data.331

However, these models do not provide explicit332

traceability back to the specific training data.333

This means we cannot directly observe which334

parts of the training data contribute to a given335

output.336

2. Intermixed Training Data. The training data337

for LLMs is often a massive, intertwined col-338

lection of texts from various sources. Dis-339

entangling these sources to identify the pre-340

cise contribution of each segment to the final341

output is nearly impossible due to the sheer342

volume and complexity.343

3. Influence of Pre-training Data. It is also344

likely that the model generates outputs based345

on data encountered during the pre-training346

stage, which comprises a vast and diverse cor- 347

pus. This pre-training data is often not fully 348

documented or accessible, making it difficult 349

to determine its influence on specific outputs 350

during fine-tuning or evaluation. 351

Due to these challenges, obtaining ground-truth 352

test datasets that accurately reflect the contribution 353

of specific training data to the outputs of LLMs 354

is exceedingly difficult. To address this issue, our 355

approach involves using training data where the 356

source is known. We then use this known source as 357

the ground-truth label and evaluate whether TRACE 358

can correctly determine the source. This allows us 359

to approximate the evaluation of source attribution 360

by leveraging the known origins of the specific 361

training data. 362

Single-Source Attribution Accuracy. In this 363

case, accuracy is simply defined as the number of 364

correct source attributions divided by the total num- 365

ber of attributions evaluated, the latter of which is 366

250 in our experimental setup. 367

Multi-Source Attribution Accuracy. In certain 368

settings, providing multiple sources and allowing 369

the user to determine the justification of the attribu- 370

tion is acceptable. For a successful soft kNN attri- 371

bution in such cases, the ground-truth source must 372

appear among the top-k sources returned by TRACE. 373

Using the same setup as that of single-source attri- 374

bution, we have evaluated TRACE on 250 instances. 375

Table 1 below shows the results: 376

Model
Soft kNN Hard kNN

Nearest Centroid
acc. top-3 acc. top-5 acc. k = 10 k = 20

t5 84.4% 95.3% 97.3% 84.4% 84.4%

GPT-2 81.3% 92.3% 94.0% 81.3% 81.3%

Llama-2 86.2% 96.1% 97.2% 86.2% 86.2%

Table 1: Source attribution accuracy for 25 data
providers on booksum dataset using TRACE.

It can be observed that the accuracy for mod- 377

els of different sizes remains consistently high and 378

significantly surpasses the random guess’ accuracy 379

of 4%. Another notable observation from the re- 380

sults is that varying the values of k in the hard 381

kNN approach has minimal impact on accuracy 382

and yields results identical to that of the nearest 383

centroid method, which we attribute to the highly 384

compact nature of the embeddings learned under 385

the TRACE framework. When a query is projected 386

into the embedding space, it becomes closely as- 387

sociated with its nearest neighbors regardless of 388
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Figure 3: Visualization (using UMAP) of the embedding space before (left) and after (right) contrastive learning.

the specific value of k. This compactness suggests389

that the centroid of each cluster serves as an ex-390

cellent representative of the entire cluster. Conse-391

quently, relying solely on these centroids can signif-392

icantly reduce inference time. Even with 100 data393

providers as demonstrated in next subsection, the394

inference process remains almost instantaneous.395

4.4 Scalability396

Contemporary LLMs often necessitate substantial397

quantities of training data and the capability to398

manage a multitude of data providers. Hence, it399

is imperative to demonstrate the scalability of the400

TRACE framework under such settings. We assess401

the scalability of TRACE by selecting 10, 25, 50, and402

100 distinct books from the booksum dataset, while403

maintaining a consistent experimental configura-404

tion. The results in Table 2 indicate a diminishing405

trend in accuracy with an increasing number of data406

providers, which is expected as the task complex-407

ity grows. However, despite this challenge, TRACE408

exhibits a relatively high level of accuracy across409

all settings, thus affirming its scalability.410

4.5 Interpretability411

The TRACE framework not only delivers accurate412

source attribution but also provides interpretability413

by offering additional insights into the attribution414

process. This interpretability is crucial for under-415

standing the reasoning behind the model’s deci-416

sions and gaining confidence in its outputs. We417

illustrate the interpretability of TRACE using re-418

sponses from the t5-small-booksum model as a419

demonstration.420

Table 3 shows a summary of correctly421

attributed single-source responses from the 422

t5-small-booksum model. Each response is 423

paired with the nearest principal sentence from the 424

identified source. This pairing allows users to un- 425

derstand the specific evidence or context from the 426

source text that influences the model’s attribution 427

decision. 428

Moreover, TRACE offers interpretability 429

through the inclusion of different similarity 430

scores. These scores provide insights into the 431

model’s confidence levels regarding the attribution 432

outcomes. By examining the similarity scores, 433

users can gauge the strength of the connection 434

between the response and the identified source. 435

Overall, TRACE enhances interpretability by not 436

only delivering the final attribution outcomes but 437

also by providing supporting evidence from the 438

source text and indicating the model’s confidence 439

levels through similarity scores. This transparency 440

and insight into the attribution process empower 441

users to trust and understand the model’s outputs, 442

which makes TRACE a valuable tool for source attri- 443

bution tasks. 444

4.6 Additional Experimental Results 445

We conduct additional experiments to assess the 446

performance of TRACE on alternative datasets, 447

thereby evaluating its versatility. Table 4 summa- 448

rizes the results. For a consistent comparison, we 449

employ the same LLM across these datasets. 450

Our additional experiments affirm the adaptabil- 451

ity of the TRACE framework across various datasets, 452

thereby validating its applicability across various 453

knowledge domains and settings. 454
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n_books
t5 GPT2 Llama-2

acc. top-3 acc. top-5 acc. acc. top-3 acc. top-5 acc. acc. top-3 acc. top-5 acc.

10 87.5% 98.3% 99.4% 85.3% 96.8% 98.7% 88.2% 99.2% 99.5%
25 84.4% 95.3% 97.3% 81.3% 92.3% 94.0% 86.2% 96.1% 97.2%
50 73.1% 82.0% 84.0% 72.9% 82.9% 84.1% 70.3% 79.8% 82.2%
100 45.4% 74.8% 78.8% 49.0% 73.2% 77.7% 46.7% 76.8% 80.2%

Table 2: Source attribution accuracy for different no. of data providers on booksum dataset using TRACE.

Figure 4: Contrastive loss (left) and soft kNN accuracy (right) with different WINDOW_SIZEs. Note that the results
for hard kNN (regardless of the value of k) are identical to that of soft kNN when k = 1.

4.7 Ablation Study455

The most important factor in TRACE is the user-456

defined WINDOW_SIZE. If the WINDOW_SIZE is too457

small, the principal sentences cannot capture suf-458

ficient contextual information, hence deteriorating459

the performance. However, an exceedingly large460

WINDOW_SIZE will not only require more compu-461

tational resources and time to train but also the462

meaning will be diluted by other redundant infor-463

mation. This presents a natural trade-off between464

source attribution performance and computational465

efficiency. Therefore, in this subsection, we will an-466

alyze this trade-off and present the results in Fig. 4.467

It can be observed that a larger WINDOW_SIZE468

facilitates faster model convergence. However,469

model loss alone is not a comprehensive indicator470

of the clustering quality. So, we evaluate the source471

attribution accuracy on the test dataset. When the472

WINDOW_SIZE is set to 30, our TRACE framework473

achieves its highest accuracy. We hypothesize that474

this is primarily because the WINDOW_SIZE of 30 is475

sufficient to capture essential contextual informa-476

tion without excessively diluting it.477

5 Related Work478

Source Attribution. Though source attribution479

remains relatively underexplored in the domain of480

natural language processing, WASA (Wang et al.,481

2023b) stands out as a notable framework.2 Oper-482

2Note that neither the source code nor comprehensive de-
tails of the experimental setup have been provided in (Wang

ating on the principle of watermarking, WASA em- 483

beds distinct source identifiers within the training 484

data to ensure that responses convey pertinent data 485

provider information. However, WASA necessitates 486

extensive manipulation of training data and train- 487

ing the entire LLM from scratch, which is a time- 488

consuming process given their sizes. In contrast, 489

TRACE distinguishes itself by being model-agnostic, 490

i.e., requiring no knowledge about the model. This 491

characteristic enhances efficiency and adaptability. 492

In the context of identifying information sources 493

for quotes, Quobert (Vaucher et al., 2021) is a 494

minimally supervised framework designed for ex- 495

tracting and attributing quotations from extensive 496

news corpora. Additionally, Spangher et al. (2023) 497

have developed robust models for identifying and 498

attributing information in news articles. However, 499

these approaches are primarily focused on specific 500

domains such as news. In contrast, TRACE is de- 501

signed to handle knowledge across a wide range 502

of domains and hence provides a more generalized 503

and versatile solution for source attribution tasks. 504

Information Retrieval. A related topic to our 505

work here is information retrieval. Traditional re- 506

trieval techniques like BM25 (Robertson et al., 507

1994) hinge heavily on frequency-based rules 508

which prove to be inadequate when dealing with 509

responses that share semantic similarities without 510

significant lexical overlap. More contemporary 511

et al., 2023b), making a fair comparison with WASA infeasible.
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Response Nearest Principal Sentence
Morel is in Sheffield, and he feels guilty towards
Dawes, who is suffering and despairing, too. And
besides, they had met in Nottingham in a way
that is more or less responsible.

on his knees, feeling so awkward in presence of
big trouble. Mrs. Morel did not change much.
She stayed in Sheffield

But Emma thought at least it would turn out so.
Mrs. Elton was first seen at church: but although
devotion might be interrupted, curiosity could
not be satisfied by a bride in. Pew, and it must be
left for the visits in form which were then paid, to
settle whether she was very pretty indeed, or only
rather pretty at all.

or any thing just to keep my boot on.” Mr. Elton
looked all happiness at this proposition; and noth-
ing could exceed

to marry Lord Warburton. Isabel enquired. “Your
uncle’s not an English nobleman,” said Mrs.
Touchett in her smallest, sparest voice. The girl
asked if the correspondent of the Interviewer was
to take the party to London under Ralph’s escort.
It was just the sort of plan, she said, that Miss
Stackpole would be sure to suggest, and Isabel
said that she did right to refuse him then.

he told Ralph he’s engaged to be married.” “Ah,
to be married!” Isabel mildly exclaimed. “Unless
he breaks it off. He seemed

Table 3: Sample responses with correct single-source attribution from t5-small-booksum model.

Dataset Data Providers
Soft kNN Hard kNN

Nearest Centroid
k = 1 k = 3 k = 5 k = 10 k = 20

booksum 10 85.3% 96.8% 98.7% 85.3% 85.3%

dbpedia_14 10 88.2% 94.1% 97.2% 88.2% 88.2%

booksum 25 81.3% 92.3% 94.0% 81.3% 81.3%

cc_news 25 83.1% 90.8% 92.1% 83.1% 83.1%

Table 4: Source attribution accuracy on dbpedia_14 and cc_news datasets using TRACE.

methods, such as ANCE (Xiong et al., 2020) and512

Contriever (Izacard et al., 2022), opt for generat-513

ing compact, dense representations of documents514

rather than long, sparse ones. Thus, they tend to515

achieve better results.516

While information retrieval and TRACE both use517

dense representations to measure text similarity,518

they differ in objectives and applications. Informa-519

tion retrieval aims to rank relevant documents for a520

user’s query. In contrast, TRACE focuses on identi-521

fying and attributing the original source of specific522

information, hence ensuring accurate credit and523

authenticity.524

Membership Inference Attack. The concept of525

membership inference attack was first introduced526

by Shokri et al. (2017). The primary objective of527

this attack is to ascertain whether a specific piece528

of information was part of the training data for a529

given machine learning model. Various assump-530

tions about the available information lead to dif-531

ferent attack models. For instance, some models532

assume access to hard labels (Li and Zhang, 2021),533

the model’s confidence scores (Watson et al., 2022;534

Mattern et al., 2023), or the internal parameters535

of the model (Leino and Fredrikson, 2020). Wei536

et al. (2024) have achieved membership inference 537

by inserting watermarks into data. Despite the vari- 538

ations, these attacks fundamentally seek to answer 539

a binary question, i.e., whether the information was 540

included in the training dataset or not. 541

In contrast, source attribution entails mapping 542

the response to distinct and specific sources rather 543

than simply determining the presence or absence 544

of the data in the training set. Additionally, TRACE 545

adheres to a black-box setting: It does not require 546

access to internal information such as confidence 547

scores or model parameters. Instead, TRACE only 548

necessitates the output from a LLM. 549

6 Conclusion 550

This paper describes a novel TRACE framework 551

which effectively achieves source attribution. By 552

selecting principal sentences and projecting them 553

into the embedding space via source-coherent con- 554

trastive learning, TRACE enhances the interpretabil- 555

ity of responses generated by LLMs. This enhance- 556

ment also conforms to regulations that aim to pro- 557

tect the privacy of users. After evaluating TRACE 558

on various datasets, we have demonstrated the ac- 559

curacy and effectiveness of our framework. 560
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Limitations. Our experiments are subject to561

some limitations that can be addressed in the future562

work to ensure a comprehensive interpretation of563

results. Firstly, the balanced distribution of data564

across different sources may impact the final in-565

ference of TRACE given its reliance on the kNN566

algorithm. This uniformity in data volume may not567

be representative of real-world settings, which po-568

tentially limits the generalizability of our findings.569

Secondly, information within each source is quite570

distinct with no overlapping data. Future works571

can verify the setting where data sources contain572

similar information. These limitations underscore573

the importance of future research in addressing574

such challenges to enhance the robustness of TRACE575

across varied data environments.576

Ethical Considerations. Our TRACE framework577

introduces a method for achieving source attribu-578

tion. Utilizing this framework, a malicious ac-579

tor may potentially identify the sources of data580

providers and reveal sensitive information about581

them. Therefore, the application of TRACE within582

this context necessitates meticulous handling to583

mitigate privacy concerns.584
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A Experimental Setup 757

Data Preparation. From booksum, we have ran- 758

domly selected subsets of 10, 25, 50, and 100 759

books. From dbpedia_14, we chose 10 distinct 760

classes. Additionally, we have extracted text sam- 761

ples from 25 diverse domains within the cc_news 762

dataset. 763

Before proceeding with the analysis, we have 764

performed standard preprocessing steps which in- 765

clude converting all text to lowercase and removing 766

punctuation to ensure uniformity and cleanliness 767

in the data. 768

Model. For sentence embedding, we have 769

opted for SBERT (Reimers and Gurevych, 770

2019). Leveraging the pre-trained model 771

xlm-r-distilroberta-base-paraphrase-v1 772

that is readily accessible on Hugging Face, we 773

have fine-tuned it within our TRACE framework. 774

Moreover, we have augmented the model with 775

additional feed-forward layers which serve as 776

the projection network. The dimension for the 777

embeddings is set as 64. 778

Training Details. The hyperparameters utilized 779

in our experimental setup are configured as follows: 780

the learning rate is 1× 10−5, the batch size is 64, 781

the number of epochs is 150, and the temperature 782

in the NT-Xent Loss is 0.1. Notably, all train- 783

ing procedures are conducted on a single NVIDIA 784

L40 GPU, obviating model or data parallelism tech- 785

niques. The results were obtained by averaging the 786

outcomes of three executions, each with a different 787

random seed. 788

Statistic booksum dbpedia_14 cc_news

Number of Documents 405 (books) 560,000 149,954,415
Languages Covered English English English
Domains Books Encyclopedic News

Table 5: Statistics of booksum, dbpedia_14, and
cc_news datasets.
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