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Abstract

The rapid evolution of large language models
(LLMs) represents a substantial leap forward in
natural language understanding and generation.
However, alongside these advancements come
significant challenges related to the accountabil-
ity and transparency of LLM outputs. Reliable
source attribution is essential to adhering to
stringent legal and regulatory standards, includ-
ing those set forth by the General Data Protec-
tion Regulation. Despite the well-established
methods in source attribution within the com-
puter vision domain, the application of robust
attribution frameworks to natural language pro-
cessing remains underexplored. To bridge
this gap, we propose a novel and versatile
TRansformer-based Attribution framework us-
ing Contrastive Embeddings called TRACE that,
in particular, exploits contrastive learning for
source attribution. We perform an extensive
empirical evaluation to demonstrate the per-
formance and efficiency of TRACE in various
settings and show that TRACE significantly im-
proves the ability to attribute sources accurately,
making it a valuable tool for enhancing the reli-
ability and trustworthiness of LLMs.

1 Introduction

The recent era has seen a significant rise
in the prevalence of large language models
(LLMs) (Ouyang et al., 2022; Touvron et al., 2023)
which have demonstrated an array of remarkable
capabilities. However, studies (Huang et al., 2023;
Liu et al., 2024; Wang et al., 2023a) have high-
lighted a critical concern on the accountability of
LLMs. Considering the widespread usage and such
a concern, it has brought to the forefront a critical
need for source attribution that involves identifying
the specific training data that contributes to gen-
erating part or all of an LLM’s output, which is
crucial for legal and regulatory compliance and en-
hances the reliability of LLMs. Various regulations
mandate transparency and accountability in data

usage, especially regarding intellectual property
and privacy. For instance, the General Data Pro-
tection Regulation (GDPR) in the European Union
requires that individuals have the right to be in-
formed when their personal data is used. Proper
source attribution ensures compliance with such
legal frameworks, mitigating the risk of legal dis-
putes and penalties.

A related topic would be that of membership in-
ference (M) (Mireshghallah et al., 2022) whose
task is to determine whether a given piece of data
was used during the training of a machine learn-
ing model. While MI and source attribution share
some similarities, they differ significantly in their
granularity: MI typically only involves a binary
classification task and does not require identify-
ing a specific data provider. In contrast, source
attribution requires to identify one or more data
providers.

Though there are some studies on source attribu-
tion (Marra et al., 2018; Yu et al., 2022), a majority
of them are situated within the computer vision do-
main. Techniques developed for computer vision
tasks cannot be directly applied to LLMs due to the
fundamental differences in the data and model ar-
chitectures. To the best of our knowledge, effective
source attribution for LLMs still remains an open
and underexplored problem.

While numerous properties are important to a
source attribution framework, we identify accu-
racy, scalability, and interpretability as the most
crucial components. These three attributes are fun-
damental to ensuring the effectiveness and appli-
cability of the framework across various contexts.
Accuracy is essential to guaranteeing that the frame-
work consistently produces reliable results. Scal-
ability ensures that the framework can handle in-
creasing volumes of data and complexity without a
significant performance degradation, making it suit-
able for large-scale applications. Interpretability
is equally critical as it enables stakeholders to un-



derstand and trust the attribution outcomes, hence
fostering transparency and facilitating informed de-
cision making.

This paper presents a novel TRansformer-
based Attribution framework using Contrastive
Embeddings (TRACE) to achieve source attribution
while satisfying the above three important proper-
ties. By detailing our methodology and presenting
empirical results, we seek to demonstrate the accu-
racy, scalability, and interpretability of TRACE.

Our contributions can be summarized as follows:

* We propose the novel TRACE framework based
on contrastive learning, which is designed to
achieve effective source attribution. TRACE
differs from traditional contrastive learning by
using source information as the label. Fig. 1
illustrates the TRACE framework.

* We have performed an extensive empirical
evaluation of TRACE to demonstrate its accu-
racy, scalability, and interpretability.

2 Preliminaries

Contrastive Learning and NT-Xent Loss. Con-
trastive learning is a conventional technique com-
monly used in representation learning (Arora et al.,
2019; Hadsell et al., 2006). Its underlying idea is
that similar objects should exhibit a closer distance
in the embedding space while dissimilar objects
should repel each other. This technique has been
widely employed in computer vision tasks due to its
convenient implementation to augment image input
to form a self-supervised problem. Models using
contrastive learning have achieved state-of-the-art
performances (Cui et al., 2021; Tian et al., 2020).
Apart from the attention it receives in computer
vision, new approaches using contrastive learning
in natural language processing (Meng et al., 2021;
Wau et al., 2020) have also started gaining attention
and showcasing great capabilities.

Our TRACE framework assigns the same label to
all the data from the same source, hence naturally
forming a supervised contrastive learning problem.
In particular, TRACE utilizes NT-Xent Loss (Sohn,
2016) for supervised contrastive learning:

P e
E_Z | 5] Zl . (ZaeAieXp(zi'za/T>>

iel " pep;

where the set I (P; C I) contains indices of the sen-
tences in the given batch (sharing the same label as

sentence 4, but does not include ), A; = I'\ {i}, z;
denotes the embedding of sentence i, and 7 € RT
is a temperature parameter. Minimizing £ would
maximize the similarity between embeddings (of
sentences) from the same source while minimizing
the similarity between embeddings from different
sources.

Sentence Encoder. Similar to the concepts
of Word2Vec (Mikolov et al., 2013) and
GloVe (Brochier et al., 2019) which produce
meaningful vector representations of words, such
techniques can be applied to larger text units
such as sentences. A straightforward way is to
take the average of word embeddings within a
sentence, but this often results in embeddings
that lack semantic depth. Several models have
been developed to address this issue, including
InferSent (Conneau et al., 2018), Universal
Sentence Encoder (Cer et al., 2018), and
Sentence-BERT (SBERT) (Reimers and Gurevych,
2019).  Given its superior performance and
efficiency, SBERT is chosen to generate sentence
embeddings in TRACE. SBERT leverages a pre-
trained BERT network and utilizes Siamese and
triplet network structures to produce semantically
meaningful sentence embeddings.

3 TRACE Framework

3.1 Source-Specific Semantic Distillation

Projecting every piece of data from each provider
into the embedding space is desirable but would
incur considerable computational costs. Moreover,
it is prudent to recognize that not all information
carries equal importance: For example, sentences
that occur less frequently typically tend to be more
representative of the document. So, we propose
to extract principal sentences from each source
by leveraging the Term Frequency-Inverse Doc-
ument Frequency (TF-IDF) which is effective for
identifying significant sentences within documents.
It is generally recommended to select 10-20% of
the sentences, thereby striking a balance between
complexity and performance; these sentences are
subsequently defined as principal sentences. The
length of these sentences is specified by a param-
eter called WINDOW_SIZE. Section 4.7 presents an
ablation study examining the effect of different
WINDOW_SIZEs on accuracy.

SBERT (Reimers and Gurevych, 2019) has
proven effective in deriving high-quality sentence
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Figure 1: Illustration of TRACE framework.

representations. However, to enhance its suitabil-
ity for TRACE, we propose several modifications
inspired by the work of SimCLR (Chen et al., 2020).
A key finding from SimCLR is that adding a non-
linear projection head significantly improves the
representation quality. Following this insight, we
incorporate a projection network at the end of the
traditional SBERT architecture. This projection net-
work is trained together with the base SBERT model,
thus encouraging the learned representations to be
more discriminative in the embedding space.

3.2 Supervised Contrastive Embedding
Training for Source-Coherent Clustering

Unlike the other contrastive learning frameworks
in computer vision whose tasks are typically de-
fined to be auto-regressive due to the availability of
various data augmentation techniques to generate
positive samples, TRACE aims to achieve source-
coherent clustering. In our case, we already pos-
sess the label of each sentence indicating its source.
So, we can frame our task as a supervised con-
trastive learning problem. The supervision is de-
rived from the label information which corresponds
to the source. Contrastive learning aligns with our
objective to form clusters based on these various
sources.

SimCLR has demonstrated that NT-Xent Loss
outperforms other contrastive loss functions such
as logistic loss (Mikolov et al., 2013) and margin
loss (Schroff et al., 2015). So, we employ NT-Xent
Loss as the loss function for TRACE.

3.3 Proximity-based Inference

Once the training phase is completed, we transition
to the inference stage where each data source is rep-
resented by its own set of contrastive embeddings.
At this stage, when a language model generates a re-
sponse, we employ the k-Nearest Neighbor (kNN)
algorithm to assign the response to the closest data
source in the embedding space, as demonstrated
in Fig. 2. This ensures accurate source attribution
by matching the generated response with its most
similar source representation.

However, responses generated by language mod-
els may not always be exclusively influenced by a
single data source: there could be instances where
information from multiple sources contributes to
the generated text. To consider this possibility,
we introduce the concept of multi-source attribu-
tion. Multi-source attribution acknowledges and
accounts for the potential influence of multiple data
sources on the generated response.

We have developed three different implementa-
tions for single-source attribution and multi-source
attribution, which allow users to select the most
appropriate inference method based on time con-
straints and the number of sources. Section 4 pro-
vides a comparison of these methods.

Hard £NN (Single-Source Attribution). Hard
kNN follows the traditional NN algorithm closely.
Here, the attribution is determined by considering
the & embeddings that are closest in distance to
the query. The source that appears most frequently
among these k neighbors is assigned as the source
of the query.
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Figure 2: Illustration of the attribution step in TRACE framework.

Soft kNN (Multi-Source Attribution). To dif-
ferentiate from traditional kNN where each query
is assigned to a single source, we introduce soft
kNN. Here, k represents the number of data sources
rather than the number of closest neighbors. We
rank the distances from the query to all other em-
beddings and select them in ascending order of
distance until k£ distinct sources are covered.

Nearest Centroid (Single-Source Attribution).
To reduce inference time, we employ the nearest
centroid method. Here, the centroid of each cluster
is calculated by adding the normalized embeddings
within that cluster (i.e., corresponding to the sen-
tences with the same label/source), as shown below.
We then apply £NN using these centroids. This
method significantly reduces inference time as it
scales with the number of data providers rather
than the volume of data from each source. We will
demonstrate in the next section that this method
maintains an impressively high accuracy.

Given a cluster of embeddings z1, 29, ..., 2k
with the same label/source, a good representative
of the cluster would be the centroid z that maxi-
mizes the sum of its cosine similarity with every
normalized embedding z; for¢ = 1,. .., k. Equiv-
alently, Z minimizes the sum of its standard cosine
distance with every normalized embedding:
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by Cauchy-Schwarz inequality. The equality holds

when there exists some A € R such that
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In other words, z can be obtained by adding all
normalized embeddings and setting A = 1:
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4 Experiments

4.1 Experimental Setup

Data. We perform an extensive empirical evalua-
tion of TRACE using three datasets: booksum (Krys-
cinski et al., 2022), dbpedia_14 (Zhang et al.,
2015), and cc_news (Hamborg et al., 2017); a sum-
mary of these datasets can be found in Table 5
in the appendix. In the booksum dataset, we treat
different books as distinct data providers and vary
the number of data providers from 10, 25, 50, to
100 to demonstrate TRACE’s scalability to a large
number of data providers. Similarly, each class
in dbpedia_14 or each domain in cc_news is con-
sidered a separate data provider. In this section,
we primarily present the experimental results on
the booksum dataset with 25 data providers. Sec-
tion 4.6 provides additional results.

Model. Focusing primarily on the booksum
dataset, we evaluate the performance of TRACE
using three different LLMs of varying sizes:
t5-small-booksum (Raffel et al., 2020),
GPT-2 (Radford et al., 2019), and Llama-2 (Tou-
vron et al., 2023). The t5-small-booksum model
is readily available on Hugging Face,! while GPT-2

"https://huggingface.co/cnicu/t5-small-booksum.
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and Llama-2 have been fine-tuned on a subset
of the booksum dataset. This setup allows us to
assess the performance of TRACE across LLMs
of different scales. In App. A, we provide more
details about our experiments.

4.2 Visualization of TRACE’s Embedding Space

After training for 150 epochs on booksum, a visual-
ization tool such as UMAP (Mclnnes et al., 2020) can
be used to view the distribution of principal sen-
tences. Fig. 3 shows that after the contrastive learn-
ing step, the desired outcome has been achieved,
i.e., data coming from the same source form clear
and distinct clusters. This validates that our con-
trastive learning successfully groups different data
providers. Supposing the responses from an LLM
are projected into the embedding space without
incorporating the contrastive learning step, the re-
sulting neighborhood exhibits chaos and it is chal-
lenging to derive robust information. This fur-
ther demonstrates the importance of the contrastive
learning step.

4.3 Accuracy

Evaluating the accuracy of source attribution is
particularly challenging due to the inherent diffi-
culty in obtaining ground-truth test datasets. Even
with a dataset, a language model, and specific in-
puts, pinpointing the exact parts of the training data
that influence a particular output remains complex.
Here are the key reasons:

1. Lack of Explicit Traceability. Language
models like LLMs generate outputs based on
patterns learned from vast amounts of data.
However, these models do not provide explicit
traceability back to the specific training data.
This means we cannot directly observe which
parts of the training data contribute to a given
output.

2. Intermixed Training Data. The training data
for LLLMs is often a massive, intertwined col-
lection of texts from various sources. Dis-
entangling these sources to identify the pre-
cise contribution of each segment to the final
output is nearly impossible due to the sheer
volume and complexity.

3. Influence of Pre-training Data. It is also
likely that the model generates outputs based
on data encountered during the pre-training

stage, which comprises a vast and diverse cor-
pus. This pre-training data is often not fully
documented or accessible, making it difficult
to determine its influence on specific outputs
during fine-tuning or evaluation.

Due to these challenges, obtaining ground-truth
test datasets that accurately reflect the contribution
of specific training data to the outputs of LLMs
is exceedingly difficult. To address this issue, our
approach involves using training data where the
source is known. We then use this known source as
the ground-truth label and evaluate whether TRACE
can correctly determine the source. This allows us
to approximate the evaluation of source attribution
by leveraging the known origins of the specific
training data.

Single-Source Attribution Accuracy. In this
case, accuracy is simply defined as the number of
correct source attributions divided by the total num-
ber of attributions evaluated, the latter of which is
250 in our experimental setup.

Multi-Source Attribution Accuracy. In certain
settings, providing multiple sources and allowing
the user to determine the justification of the attribu-
tion is acceptable. For a successful soft kNN attri-
bution in such cases, the ground-truth source must
appear among the fop-k sources returned by TRACE.
Using the same setup as that of single-source attri-
bution, we have evaluated TRACE on 250 instances.
Table 1 below shows the results:

Soft kNN Hard kNN

Model Nearest Centroid

acc.  top-3acc. top-5acc. | k=10 k=20
t5 ‘ 844%  95.3% 97.3% 84.4% 84.4%
GPT-2 ‘ 813%  92.3% 81.3%

|
94.0% |
\

81.3% |
Llama-2 | 86.2%  96.1%  972% 86.2% | 86.2%

Table 1: Source attribution accuracy for 25 data
providers on booksum dataset using TRACE.

It can be observed that the accuracy for mod-
els of different sizes remains consistently high and
significantly surpasses the random guess’ accuracy
of 4%. Another notable observation from the re-
sults is that varying the values of k in the hard
kNN approach has minimal impact on accuracy
and yields results identical to that of the nearest
centroid method, which we attribute to the highly
compact nature of the embeddings learned under
the TRACE framework. When a query is projected
into the embedding space, it becomes closely as-
sociated with its nearest neighbors regardless of
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Figure 3: Visualization (using UMAP) of the embedding space before (left) and after (right) contrastive learning.

the specific value of k. This compactness suggests
that the centroid of each cluster serves as an ex-
cellent representative of the entire cluster. Conse-
quently, relying solely on these centroids can signif-
icantly reduce inference time. Even with 100 data
providers as demonstrated in next subsection, the
inference process remains almost instantaneous.

4.4 Scalability

Contemporary LL.Ms often necessitate substantial
quantities of training data and the capability to
manage a multitude of data providers. Hence, it
is imperative to demonstrate the scalability of the
TRACE framework under such settings. We assess
the scalability of TRACE by selecting 10, 25, 50, and
100 distinct books from the booksum dataset, while
maintaining a consistent experimental configura-
tion. The results in Table 2 indicate a diminishing
trend in accuracy with an increasing number of data
providers, which is expected as the task complex-
ity grows. However, despite this challenge, TRACE
exhibits a relatively high level of accuracy across
all settings, thus affirming its scalability.

4.5 Interpretability

The TRACE framework not only delivers accurate
source attribution but also provides interpretability
by offering additional insights into the attribution
process. This interpretability is crucial for under-
standing the reasoning behind the model’s deci-
sions and gaining confidence in its outputs. We
illustrate the interpretability of TRACE using re-
sponses from the t5-small-booksum model as a
demonstration.

Table 3 shows a summary of correctly

attributed single-source responses from the
t5-small-booksum model. Each response is
paired with the nearest principal sentence from the
identified source. This pairing allows users to un-
derstand the specific evidence or context from the
source text that influences the model’s attribution
decision.

Moreover, TRACE offers interpretability
through the inclusion of different similarity
scores. These scores provide insights into the
model’s confidence levels regarding the attribution
outcomes. By examining the similarity scores,
users can gauge the strength of the connection
between the response and the identified source.

Overall, TRACE enhances interpretability by not
only delivering the final attribution outcomes but
also by providing supporting evidence from the
source text and indicating the model’s confidence
levels through similarity scores. This transparency
and insight into the attribution process empower
users to trust and understand the model’s outputs,
which makes TRACE a valuable tool for source attri-
bution tasks.

4.6 Additional Experimental Results

We conduct additional experiments to assess the
performance of TRACE on alternative datasets,
thereby evaluating its versatility. Table 4 summa-
rizes the results. For a consistent comparison, we
employ the same LLLM across these datasets.

Our additional experiments affirm the adaptabil-
ity of the TRACE framework across various datasets,
thereby validating its applicability across various
knowledge domains and settings.



t5 GPT2 Llama-2
n_books . . .
acc.  top-3acc. top-H acc. acc.  top-3acc. top-H acc. acc.  top-3acc. top-H acc.
10 87.5% 98.3% 99.4% 85.3% 96.8% 98.7% 88.2% 99.2% 99.5%
25 84.4% 95.3% 97.3% 81.3% 92.3% 94.0% 86.2% 96.1% 97.2%
50 73.1% 82.0% 84.0% 72.9% 82.9% 84.1% 70.3% 79.8% 82.2%
100 45.4% 74.8% 78.8% 49.0% 73.2% 77.7% 46.7% 76.8% 80.2%

Table 2: Source attribution accuracy for different no. of data providers on booksum dataset using TRACE.

Loss vs. Epoch for Different Window Sizes
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Figure 4: Contrastive loss (left) and soft kNN accuracy (right) with different WINDOW_SIZEs. Note that the results
for hard kNN (regardless of the value of k) are identical to that of soft \NN when k& = 1.

4.7 Ablation Study

The most important factor in TRACE is the user-
defined WINDOW_SIZE. If the WINDOW_SIZE is too
small, the principal sentences cannot capture suf-
ficient contextual information, hence deteriorating
the performance. However, an exceedingly large
WINDOW_SIZE will not only require more compu-
tational resources and time to train but also the
meaning will be diluted by other redundant infor-
mation. This presents a natural trade-off between
source attribution performance and computational
efficiency. Therefore, in this subsection, we will an-
alyze this trade-off and present the results in Fig. 4.

It can be observed that a larger WINDOW_SIZE
facilitates faster model convergence. However,
model loss alone is not a comprehensive indicator
of the clustering quality. So, we evaluate the source
attribution accuracy on the test dataset. When the
WINDOW_SIZE is set to 30, our TRACE framework
achieves its highest accuracy. We hypothesize that
this is primarily because the WINDOW_SIZE of 30 is
sufficient to capture essential contextual informa-
tion without excessively diluting it.

5 Related Work

Source Attribution. Though source attribution
remains relatively underexplored in the domain of
natural language processing, WASA (Wang et al.,
2023b) stands out as a notable framework.> Oper-

Note that neither the source code nor comprehensive de-
tails of the experimental setup have been provided in (Wang

ating on the principle of watermarking, WASA em-
beds distinct source identifiers within the training
data to ensure that responses convey pertinent data
provider information. However, WASA necessitates
extensive manipulation of training data and train-
ing the entire LLLM from scratch, which is a time-
consuming process given their sizes. In contrast,
TRACE distinguishes itself by being model-agnostic,
i.e., requiring no knowledge about the model. This
characteristic enhances efficiency and adaptability.
In the context of identifying information sources
for quotes, Quobert (Vaucher et al., 2021) is a
minimally supervised framework designed for ex-
tracting and attributing quotations from extensive
news corpora. Additionally, Spangher et al. (2023)
have developed robust models for identifying and
attributing information in news articles. However,
these approaches are primarily focused on specific
domains such as news. In contrast, TRACE is de-
signed to handle knowledge across a wide range
of domains and hence provides a more generalized
and versatile solution for source attribution tasks.

Information Retrieval. A related topic to our
work here is information retrieval. Traditional re-
trieval techniques like BM25 (Robertson et al.,
1994) hinge heavily on frequency-based rules
which prove to be inadequate when dealing with
responses that share semantic similarities without
significant lexical overlap. More contemporary

et al., 2023b), making a fair comparison with WASA infeasible.



Response

Nearest Principal Sentence

Morel is in Sheffield, and he feels guilty towards
Dawes, who is suffering and despairing, too. And
besides, they had met in Nottingham in a way
that is more or less responsible.

on his knees, feeling so awkward in presence of
big trouble. Mrs. Morel did not change much.
She stayed in Sheffield

But Emma thought at least it would turn out so.
Mrs. Elton was first seen at church: but although
devotion might be interrupted, curiosity could
not be satisfied by a bride in. Pew, and it must be
left for the visits in form which were then paid, to
settle whether she was very pretty indeed, or only
rather pretty at all.

or any thing just to keep my boot on.” Mr. Elton
looked all happiness at this proposition; and noth-
ing could exceed

to marry Lord Warburton. Isabel enquired. “Your
uncle’s not an English nobleman,” said Mrs.
Touchett in her smallest, sparest voice. The girl
asked if the correspondent of the Interviewer was
to take the party to London under Ralph’s escort.
It was just the sort of plan, she said, that Miss
Stackpole would be sure to suggest, and Isabel
said that she did right to refuse him then.

he told Ralph he’s engaged to be married.” “Ah,
to be married!” Isabel mildly exclaimed. “Unless
he breaks it off. He seemed

Table 3: Sample responses with correct single-source attribution from t5-small-booksum model.

Dataset ‘ Data Providers Ee1 S(;ft:kl;N Ee5 |k :Hlagd klljli 20 Nearest Centroid
booksum | 10 | 853% 96.8% 98.7% | 85.3% \ 85.3%
dbpedia_14 | 10 | 882% 94.1% 97.2% | 88.2% \ 88.2%
booksum | 25 [ 813% 923% 94.0% | 81.3% \ 81.3%
cc_news | 25 | 83.1% 90.8% 92.1% | 83.1% \ 83.1%

Table 4: Source attribution accuracy on dbpedia_14 and cc_news datasets using TRACE.

methods, such as ANCE (Xiong et al., 2020) and
Contriever (Izacard et al., 2022), opt for generat-
ing compact, dense representations of documents
rather than long, sparse ones. Thus, they tend to
achieve better results.

While information retrieval and TRACE both use
dense representations to measure text similarity,
they differ in objectives and applications. Informa-
tion retrieval aims to rank relevant documents for a
user’s query. In contrast, TRACE focuses on identi-
fying and attributing the original source of specific
information, hence ensuring accurate credit and
authenticity.

Membership Inference Attack. The concept of
membership inference attack was first introduced
by Shokri et al. (2017). The primary objective of
this attack is to ascertain whether a specific piece
of information was part of the training data for a
given machine learning model. Various assump-
tions about the available information lead to dif-
ferent attack models. For instance, some models
assume access to hard labels (Li and Zhang, 2021),
the model’s confidence scores (Watson et al., 2022;
Mattern et al., 2023), or the internal parameters
of the model (Leino and Fredrikson, 2020). Wei

et al. (2024) have achieved membership inference
by inserting watermarks into data. Despite the vari-
ations, these attacks fundamentally seek to answer
a binary question, i.e., whether the information was
included in the training dataset or not.

In contrast, source attribution entails mapping
the response to distinct and specific sources rather
than simply determining the presence or absence
of the data in the training set. Additionally, TRACE
adheres to a black-box setting: It does not require
access to internal information such as confidence
scores or model parameters. Instead, TRACE only
necessitates the output from a LLM.

6 Conclusion

This paper describes a novel TRACE framework
which effectively achieves source attribution. By
selecting principal sentences and projecting them
into the embedding space via source-coherent con-
trastive learning, TRACE enhances the interpretabil-
ity of responses generated by LLMs. This enhance-
ment also conforms to regulations that aim to pro-
tect the privacy of users. After evaluating TRACE
on various datasets, we have demonstrated the ac-
curacy and effectiveness of our framework.



Limitations. Our experiments are subject to
some limitations that can be addressed in the future
work to ensure a comprehensive interpretation of
results. Firstly, the balanced distribution of data
across different sources may impact the final in-
ference of TRACE given its reliance on the kNN
algorithm. This uniformity in data volume may not
be representative of real-world settings, which po-
tentially limits the generalizability of our findings.
Secondly, information within each source is quite
distinct with no overlapping data. Future works
can verify the setting where data sources contain
similar information. These limitations underscore
the importance of future research in addressing
such challenges to enhance the robustness of TRACE
across varied data environments.

Ethical Considerations. Our TRACE framework
introduces a method for achieving source attribu-
tion. Utilizing this framework, a malicious ac-
tor may potentially identify the sources of data
providers and reveal sensitive information about
them. Therefore, the application of TRACE within
this context necessitates meticulous handling to
mitigate privacy concerns.
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A Experimental Setup

Data Preparation. From booksum, we have ran-
domly selected subsets of 10, 25, 50, and 100
books. From dbpedia_14, we chose 10 distinct
classes. Additionally, we have extracted text sam-
ples from 25 diverse domains within the cc_news
dataset.

Before proceeding with the analysis, we have
performed standard preprocessing steps which in-
clude converting all text to lowercase and removing
punctuation to ensure uniformity and cleanliness
in the data.

Model. For sentence embedding, we have
opted for SBERT (Reimers and Gurevych,
2019). Leveraging the pre-trained model

xIlm-r-distilroberta-base-paraphrase-vi
that is readily accessible on Hugging Face, we
have fine-tuned it within our TRACE framework.
Moreover, we have augmented the model with
additional feed-forward layers which serve as
the projection network. The dimension for the
embeddings is set as 64.

Training Details. The hyperparameters utilized
in our experimental setup are configured as follows:
the learning rate is 1 x 1072, the batch size is 64,
the number of epochs is 150, and the temperature
in the NT-Xent Loss is 0.1. Notably, all train-
ing procedures are conducted on a single NVIDIA
L40 GPU, obviating model or data parallelism tech-
niques. The results were obtained by averaging the
outcomes of three executions, each with a different
random seed.

Statistic booksum dbpedia_14 cc_news

Number of Documents
Languages Covered
Domains

405 (books)
English
Books

560,000
English
Encyclopedic

149,954,415
English
News

Table 5: Statistics of booksum, dbpedia_14, and
cc_news datasets.
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