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ABSTRACT
Recently, tensor Schatten 𝑝-norm has achieved impressive perfor-
mance for fast multi-view clustering [57]. This primarily ascribes
the superiority of tensor Schatten 𝑝-norm in exploring high-order
structure information among views. Whereas, 1) tensor Schatten
𝑝-norm treats different singular values equally, such that the larger
singular values corresponding to certain significant feature infor-
mation (i.e., prior information) have not been utilized fully; 2) ten-
sor Schatten 𝑝-norm also ignore ranking the core entries of core
tensor, which may contain noise information; 3) existing meth-
ods select fixed anchors or averagely update anchors to construct
the neighbor bipartite graphs, greatly limiting the flexibility and
expression of anchors. To break these limitations, we propose a
novel Improved Weighted Tensor Schatten 𝑝-Norm for Fast
Multi-view Graph Clustering (IWTSN-FMGC). Specifically, to
eliminate the interference of the first two limitations, we propose
an improved weighted tensor Schatten 𝑝-norm to dynamically rank
core tensor and automatically shrink singular values. To this end,
improved weighted tensor Schatten 𝑝-norm has the potential to
more effectively leverage low-rank structures and prior information,
thereby enhancing robustness compared to current tensor Schatten
𝑝-norm methods. Further, the designed adaptive neighbor bipartite
graph learning can more flexibly and expressively encode the lo-
cal manifold structure information than existing anchor selection
and averaged anchor updating. Extensive experiments validate our
effectiveness and superiority across multiple benchmark datasets.

CCS CONCEPTS
• Theory of computation → Theory and algorithms for ap-
plication domains; Unsupervised learning and clustering.
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1 INTRODUCTION
Recently, technological advancements have facilitated the collection
and storage of extensive data from diverse sources or feature extrac-
tors, resulting in the emergence of multi-view data [4, 26, 27, 32, 36].
For instance, a single news story could exist in various formats like
video, audio, or text. Meanwhile, each news could be also reported in
different languages across nations such as Chinese, English, Russian,
or French. Multi-view clustering (MVC) leverages the similarities be-
tween samples and views to effectively integrate the consistent and
complementary attributes of unlabeled multi-view data, thereby cat-
egorizing them into relevant clusters [2, 3, 38, 45, 52, 55]. MVC has
witnessed significant growth in recent times [1, 32, 35, 44, 48, 49].

Despite the myriad of MVC methods, scalability remains a para-
mount challenge in real-world large-scale applications [24, 25, 46,
61]. Current MVC methods often exhibit quadratic or cubic com-
plexity with respect to the number of instances n, posing significant
obstacles in handling extensive datasets [6, 7, 31, 33, 37]. To address
this challenge, the anchor graph strategy has emerged as an effec-
tive solution [5, 21, 47, 62]. Initially, it selects m independent anchor
points to comprehensively represent instances within each view.
The quality of these anchors significantly impacts performance
and is typically determined through random sampling, k-means, or
heuristic sampling strategies (such as VDA anchor selection [57]).
For instance, some studies leverage k-means operations and heuris-
tic sampling on individual views, then integrate the outcomes into
a consensus graph for final clustering results. However, these static
anchor selection strategies limit the expressiveness and flexibility
of anchors. In contrast, dynamic anchor learning methods aim to
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learn and optimize anchors alongside model variations, enhancing
both performance and adaptability.

Existing anchor learning strategies could be broadly divided into
two categories [8, 18, 23]: The first one resembles the self-expressive
property, which reconstructs each sample by combining learned an-
chors linearly from the original data [50, 51]. Then, the connections
between samples and anchors produce a bipartite graph. Recent ad-
vancements in anchor-based multi-view clustering have stemmed
from this strategy. Different from the first one, the second a small
amount of neighbor bipartite graph learning methods to build the
bipartite graph by assigning each sample some nearest anchors as
neighbors, which could better capture the local manifold structure
than the first one [19]. However, note herein that existing adaptive
neighbor bipartite graph learning methods optimize anchors using
average values across iterations, potentially leading to the loss of
significant and flexible information. Adaptive neighbor bipartite
graph learning is sensitive to noise or outliers since noise and out-
liers can destroy the local manifold structure in anchor-sample
space. Moreover, these methods often overlook higher-order infor-
mation that could enhance anchor quality. Due to the effectiveness
of the tensor Schatten 𝑝-Norm in better approximating the target
rank than the tensor nuclear norm, one may use tensor Schatten
𝑝-Norm to explore the high-order information of bipartite graphs
[57]. However, existing tensor Schatten 𝑝-norm still suffer from the
following limitations: (1) existing tensor Schatten 𝑝-norm treats
singular values of tensor equally in each slice; (2) existing tensor
Schatten 𝑝-norm cannot exploit the low-rank property fully in the
core tensor space.

To address these issues, we proposed a novel fast local multi-
view clustering method, termed Improved Weighted Tensor Schat-
ten 𝑝-Norm for Fast Local Multi-view Clustering (IWTSN-FMGC).
IWTSN-FMGC learns the bipartite graph by an adaptive neighbor
bipartite graph learning, which usually better protects the localman-
ifold structure than the widely-used subspace self-representation
learning. And local manifold structure plays a significant role in
clustering. Our adaptive neighbor bipartite graph learning adap-
tively updates the anchors with orthogonal constraints rather than
averaging the value of anchors. Furthermore, our IWTSN-FMGC de-
velops a new IWTSN to consider the prior information of different
singular values. Then, IWTSN can also better exploit the low-rank
property of core tensor by further ranking the diagonal core entries
of core tensor. In this way, IWTSN of our IWTSN-FMGC could
enhance the robustness of the adaptive neighbor bipartite graph
learning to noise and outliers. Then, IWTSN-FMGC could learn
more robust neighbor bipartite graphs to average as a final bipartite
graph for obtaining the clustering results. In conclusion, this study
makes the following contributions:

• We propose a novel Improved Weighted Tensor Schatten
𝑝-Norm (IWTSN) to better rank the core tensor and take
advantage of the prior information from singular values,
enhancing robustness and validity compared to the widely-
used tensor Schatten 𝑝-norm [57]. Meanwhile, an elegant
solver is developed to optimize the proposed IWTSN.

• By seamlessly coupling adaptive neighbor bipartite graph
learning and IWTSN into a unified framework. Both proce-
dures negotiate with each other to enhance the quality and

robustness of neighbor bipartite graphs. Thus, the more re-
fined and robust neighbor bipartite graphs could be learned
to better capture the local manifold structure information.

• Through extensive experiments, the proposed method show-
cases its superiority over state-of-the-art methods.

2 RELATEDWORK
2.1 Neighbor Graph based MVC
Generally, adaptive neighbor graph learning learns a neighbor
graph by assigning a probability value to a sample as the neighbor
similarity of another one [39, 53]. In this way, the local manifold
structures between samples could be captured, which facilitates
the clustering partition [11]. Although effective, the time and space
complexities are cubic and quadratic to sample number, respectively.
Thus, these methods limit the application for large-scale tasks. Fur-
thermore, many advances employ the tensor nuclear norm or ten-
sor Schatten 𝑝-norm to further explore the high-order information
among neighbor graphs [19, 56, 57], i.e.,

min
L,Â

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1
D(x𝑟𝑖 , x

𝑟
𝑗 )𝑎

𝑟
𝑖 𝑗 + 𝛽 ∥L∥⊛ (1)

where the larger distance criterionD has the smaller similarity value
𝑎𝑖 𝑗 of similarity graph Â ∈ R𝑛×𝑛 [15] in the 𝑟 -th view. Control
parameter 𝛽 tunes the contribution between adaptive neighbor
graph learning and tensor constraints, such as tensor nuclear norm
∥L∥⊛ or tensor Schatten 𝑝-norm ∥L∥𝑝𝑠𝑝 [19, 54, 56, 57]. Regrettably,
these methods also suffer from time- and space- prohibitive. More
importantly, these methods cannot explore the high-order low-
rank property fully since they fail to take advantage of the prior
information of singular values in the core tensor space.

2.2 Neighbor Bipartite Graph based MVC
To alleviate these limitations, neighbor bipartite graph construc-
tion is proposed. Neighbor bipartite graph A𝑟 ∈ R𝑚×𝑛 of 𝑟 -th
view is constructed by linking their vertices by defining sample
sets X𝑟 ∈ R𝑑×𝑛 and anchor sets B̂𝑟 ∈ R𝑑×𝑚 . Vertices represent
the relationship between𝑚 anchors and 𝑛 samples [28, 29, 62, 63]
in 𝑑-dimension space. Anchors are typically strategically selected
from the original space to approximate all samples. Different strate-
gies are then employed to construct the bipartite graph for clus-
tering. Due to its efficiency, various methodologies have made
promising progress in recent years, with anchor learning strategies
broadly categorized into subspace graph construction and neighbor
graph construction. Unlike subspace graph construction, neighbor
graph construction emphasizes preserving locality, assuming that
the primary high-dimensional feature space exists within a lower-
dimensional manifold. Consequently, neighbor graph construction
often excels in preserving the low-dimensional manifold structure.
Specifically, for the 𝑖-th sample, the 𝑗-th anchor is connected as a
neighbor with a probability represented by 𝑎𝑖 𝑗 . Intuitively, shorter
distances between anchor-node pairs correspond to higher proba-
bilities 𝑎𝑖 𝑗 , and vice versa, as explained by

min
A𝑟

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1
D(b̂𝑟𝑖 , x

𝑟
𝑗 )𝑎

𝑟
𝑖 𝑗 s.t.(A

𝑟 )⊺1 = 1,A𝑟 ≥ 0 (2)
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With the different criteria D, Eq. (2) captures the local manifold
structures in different criterion spaces [19, 35, 55]. b̂𝑖 denotes the
𝑖-th anchor, and In Eq. (2), anchors are selected using k-means
[13] or heuristic sampling methods [10, 22, 57]. These anchors
remain fixed throughout the optimization process, known as static
anchor selection, which limits their expressiveness and flexibility.
Some researchers explore dynamic anchor learning, optimizing
anchors alongside model variations. However, anchors learned
from them are optimized using average values across iterations [1],
still limiting the diversity and flexibility of anchors.

3 METHODOLOGY
3.1 Notations and Preliminaries
Notations and definitions of tensor and matrix Schatten 𝑝-norm
and rank approximation [6, 57] are as follows.

Vectors and their components are denoted by bold lowercase
letters (k and 𝑘𝑖 𝑗 ). Matrices are represented by bold uppercase
letters (K), while tensors are indicated by bold calligraphy letters
(K). For simplicity, we use the notation K (:, :, 𝑘) as K𝑘 or K𝑘 .
The fast Fourier transformation (FFT) and its inverse along the
third dimension of tensor K are expressed as K 𝑓 = fft(K, [ ], 3)
and K = ifft(K 𝑓 , [ ], 3), respectively. The block vectorization
operation bvec(K) concatenates allK𝑙 matrices into a single matrix
in R𝐼1𝐼3×𝐼2 , while its inverse, fold(bvec(K)), restores the original
tensor K. Additionally, block circulant matrix is bcirc(K), and
block diagonal matrix is bdiag(K 𝑓 ) [6].
Definition 1 (Tensor Product): Tensor product between two ten-
sors K ∈ R𝐼1×𝐼2×𝐼3 and Y ∈ R𝐼2×𝐼4×𝐼3 is represented as

K ∗ Y = fold(bcirc(K)bvec(Y)) (3)

Definition 2 (Tensor Singular Value Decomposition, 𝑡-SVD):
𝑡-SVD of a tensor K with dimensions 𝐼1 × 𝐼2 × 𝐼3 is denoted as

K = UK ∗ AK ∗ VK
⊺ (4)

Where two tensors UK ∈ R𝐼1×𝐼1×𝐼3 and VK ∈ R𝐼2×𝐼2×𝐼3 are
orthogonal, and tensor SK ∈ R𝐼1×𝐼2×𝐼3 is 𝑓 -diagonal.
Definition 3 (∥K∥⊛ Tensor Nuclear Norm [41]: Tensor nuclear
norm ∥K∥⊛ represents the summation of singular values across all
frontal slices of K 𝑓 , articulated as

∥K∥⊛ =

𝐼3∑︁
𝑙=1

∥K𝑙
𝑓
∥⊛ =

min(𝐼1,𝐼2 )∑︁
𝑖=1

𝐼3∑︁
𝑙=1

|A𝑙
𝑓
(𝑖, 𝑖) | (5)

where A𝑙
𝐾
is obtained from Eq. (4).

Definition 4x (Matrix Schatten 𝑝-Norm (𝑝 ∈ [0, 1])) [58] The
matrix Schatten 𝑝-norm is defined as

∥K∥𝑆𝑝 =


∥K∥𝑆1 = ∥K∥∗ =

∑min{𝐼1,𝐼2 }
𝑖=1 𝛿𝑖 (K), 𝑝 = 1

(∑min{𝐼1,𝐼2 }
𝑖=1 𝛿

𝑝

𝑖
(K))

1
𝑝 , 0 < 𝑝 < 1

∥K∥𝑆0 = rank(K), 𝑝 = 0

(6)

where rank(·) denotes the operation that calculates the rank of
a matrix. When addressing the minimization problem outlined in
Eq. (6), it becomes evident that the Schatten 𝑝-norm ∥K∥𝑆𝑝 with
0 < 𝑝 < 1 provides a more effective approach to approximating the
rank compared to the nuclear norm ∥K∥∗.

3.2 Improved weight tensor Schatten 𝑝-norm
By substituting the matrix nuclear norm defined in Definition 3
with the matrix Schatten 𝑝-Norm as defined in Definition 4, we
arrive at the subsequent formulation:
Definition 5 (𝑡-SVD-based Tensor Schatten 𝑝-Norm, 𝑡-TSN
[57]) denotes as

∥K∥𝑝𝑠𝑝 =

𝑛3∑︁
𝑘=1

K𝑘
𝑓

𝑝
𝑠𝑝

=

min(𝑛1,𝑛2 )∑︁
𝑖=1

𝑛3∑︁
𝑘=1

���K𝑘
𝑓
(𝑖, 𝑖)

���𝑝 (7)

Inspired by Definition 4, employing tensor Schatten 𝑝-norm with
0 < 𝑝 < 1 enables a more effective exploration of the low-rank
characteristics compared to 𝑡-TNN [14]. As outlined in [57], the
subsequent derivation is as follows:

min
K

𝜂∥K∥𝑝𝑠𝑝 + 1
2
∥K − L∥2𝐹 (8)

which is solved via the generalized soft-thresholding algorithm
[65]. Generally, smaller eigenvalues typically encapsulate less dis-
criminative information than their larger counterparts [9, 57]. This
motivates the development of weighted tensor Schatten 𝑝-norm as

∥K∥𝑝𝝎,𝑠𝑝 =

𝐼3∑︁
𝑘=1

𝜔𝑘𝑗 ∗ 𝜃
𝑝

𝑗
(K𝑘
𝑓
) (9)

Here, 𝜃𝑝
𝑗
(K𝑘
𝑓
) and 𝜔𝑘

𝑗
represent the 𝑗-th singular value and its cor-

responding weight of K𝑘
𝑓
, respectively. We determine the weights

by inversely scaling them with respect to the singular values, rea-
soning that larger singular values should undergo less shrinkage.
To achieve this, we update (𝜔𝑘

𝑗
)𝑡+1 = 1

(𝜃𝑝
𝑗
(K𝑘

𝑓
) )𝑡+𝜖 using the previ-

ous iteration of 𝜃𝑝
𝑗
(K𝑘
𝑓
) during optimization, where 𝑡 denotes the

iteration number and 𝜖 represents a small constant. Consequently,
Eq. (9) is transformed into

min
K

𝜂∥K∥𝑝𝝎,𝑠𝑝 + 1
2
∥K − L∥2𝐹

=min
K𝑓

𝐼3∑︁
𝑘=1

𝜂 ∗ 𝜔𝑘𝑗 ∗ 𝜃
𝑝

𝑗
(K𝑘
𝑓
) + 1

2
∥K𝑘

𝑓
− L𝑘

𝑓
∥2𝐹

(10)

In contrast to the tensor Schatten 𝑝-norm, our weight tensor Schat-
ten 𝑝-norm excels in capturing prior information by applying less
shrinkage to larger singular values and dynamically updating their
associated weights in each iteration. Although effective, Eq. (10)
ignores ranking the diagonal core entries of core tensor, where the
low-rank structure of core tensor is not fully extracted. To better ex-
ploit the low-rank structures hidden in the core tensor and alleviate
the noise influence, Eq. (10) further becomes to

min
K

𝜂∥K∥𝑝
I𝜔,𝑠𝑝

+ 1
2
∥K − L∥2𝐹 (11)

We devise a new solver for Eq. (11) by using Theorem 3, Theorem
4, and Lemma 1. Note herein that our IWTSN encompasses both
the tensor nuclear norm and the tensor Schatten 𝑝-norm as special
cases.
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3.3 Adaptive Neighbor Bipartite Graph Learning
Given multi-view data {X𝑟 }𝑣

𝑟=1 ∈ R𝑑𝑟 ×𝑛 , we extend the formula-
tion presented in Eq. (2) to incorporate adaptive neighbor bipartite
graph learning. This extension enables the learning of the anchor
matrix B𝑟 ∈ R𝑙×𝑚 and neighbor bipartite graph A𝑟 ∈ R𝑚×𝑛 within
the 𝑙-dimension space of 𝑟 -th latent view.

min
B𝑟 ,W𝑟 ,A𝑟

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥b𝑟𝑖 − (W𝑟 )⊺x𝑟𝑗 ∥
2
𝐹𝑎
𝑟
𝑖 𝑗 + 𝛼 ∥A𝑟 ∥2𝐹

s.t.(A𝑟 )⊺1 = 1,A𝑟 ≥ 0, (W𝑟 )⊺W𝑟 = I𝑚

(12)

where Tr(·) is the trace operation. Applying orthogonal constraints
to the projection matrices {W𝑟 }𝑣

𝑟=1 ∈ R𝑑𝑟 ×𝑙 and anchor matrices
can improve the discriminative power. 𝛼 is a control parameter to
tune the neighbor number around each sample. That is, adjusting
the parameter 𝛼 ≥ 0 can modulate the structure of the bipartite
graph, as stated in Proposition 1 below:

Proposition 1: By manipulating 𝛼 , a balance between two extreme
bipartite graph configurations can be achieved:

• Sparse bipartite graphs: each vertex is connected to only one
other vertex.

• Complete bipartite graphs: all vertices are interconnected with
uniform edge weight 1/𝑚.

In summary, Proposition 1 elucidates the continuum between
sparsity and completeness in bipartite graph configuration through
𝛼 manipulation. The proof of Proposition 1 refers to [40].

3.4 Objective Function Formulation
Although adaptive neighbor bipartite graph learning of Eq. (12) can
protect the local structure of data, Eq. (12) is sensitive to noise [11].
Thus, we seamlessly integrate IWTSN of Eq. (9) and Eq. (12) into a
unified framework to enhance robustness of bipartite graph, i.e.,

min
B𝑟 ,W𝑟 ,
A𝑟 ,A

𝛾

𝑣∑︁
𝑟=1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥b𝑟𝑖 − (W𝑟 )⊺x𝑟𝑗 ∥
2
𝐹𝑎
𝑟
𝑖 𝑗 + 𝛼 ∥A𝑟 ∥2𝐹 + ∥A∥I𝜔,𝑆𝑝

s.t.(A𝑟 )⊺1 = 1,A𝑟 ≥ 0, (W𝑟 )⊺W𝑟 = I𝑚, (B𝑟 )⊺B𝑟 = I𝑚,

A = Ψ(A1, · · · ,A𝑣)
(13)

where 𝛾 , 𝛽 , and 𝛼 are the control parameters to balance the contri-
butions of respective terms. Ψ(·) denotes tensor stacking function.

3.5 Optimization
In order to tackle Eq. (13), we introduce an auxiliary variable K

to enhance the separability of the equation. Subsequently, we re-
formulate Eq. (13) as the augmented Lagrangian function outlined
below.

min
B𝑟 ,W𝑟 ,
A𝑟 ,Y,K

𝛾

𝑣∑︁
𝑟=1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥b𝑟𝑖 − (W𝑟 )⊺x𝑟𝑗 ∥
2
𝐹𝑎
𝑟
𝑖 𝑗 + 𝛼 ∥A𝑟 ∥2𝐹

+ ∥K∥I𝜔,𝑆𝑝 + 𝜇

2
∥A − K + Y

𝜇
∥2𝐹

s.t. A𝑟 ≥ 0, (A𝑟 )⊺1 = 1, (W𝑟 )⊺W𝑟 = I𝑚, (B𝑟 )⊺B𝑟 = I𝑚,

A = Ψ(A1, · · · ,A𝑣),A = K

(14)

The optimization problem described by Eq. (14) can be effectively
tackled using an alternating iterative algorithm, which is outlined
as follows.
▷ Step-1: Solving A with B, W, Y and K fixed. Optimizing A
becomes to

min
𝑎𝑟
𝑖 𝑗
≥0,(a𝑟 )⊺1=1

𝛾

𝑣∑︁
𝑟=1

𝑚∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥b𝑟𝑖 − (W𝑟 )⊺x𝑟𝑗 ∥
2
𝐹𝑎
𝑟
𝑖 𝑗

+ 𝛼 ∥A𝑟 ∥2𝐹 + 𝜇

2
∥A𝑟 − K𝑟 + Y𝑟

𝜇
∥2𝐹

(15)

Let ∥b𝑖𝑟 − (W𝑟 )⊺x 𝑗𝑟 ∥2
𝐹
= 𝑑𝑟

𝑖 𝑗
, by eliminating irrelevant variables

for the 𝑟 -th view, Eq. (15) changes to

min
𝑎𝑟
𝑖 𝑗
≥0,(a𝑟

𝑗
)⊺1=1

∥𝑎𝑟𝑖 𝑗 − 2
1
2 𝜇𝑓

𝑟
𝑖 𝑗
− 1

2𝛾𝑑
𝑟
𝑖 𝑗

(𝛼 + 𝜇
2 )

∥2𝐹 (16)

In this context, 𝑓 𝑟
𝑖 𝑗

represents an element of F𝑟 , defined as F𝑟 =

T𝑟 − Y𝑟
𝜇 . Subsequently, the update process for a𝑟 is transformed

into a column-wise operation as

min
a𝑗

a𝑗 − â𝑗
2
𝐹
, s.t. ∀𝑖 𝑗, a𝑗1 = 1, 𝑎𝑖 𝑗 ≥ 0 (17)

where â𝑟
𝑗
=

1
2 𝜇f

𝑟
𝑗
− 1

2𝛾d
𝑟
𝑗

(𝛼+𝜇 ) . Each column a𝑗 could be optimized via the
following Theorem 1.
Theorem1.With arbitrary 𝑣 vectors {â𝑗 }𝑣𝑗=1, we obtain the following
closed-form solution a∗

𝑗

a∗𝑗 = arg min
a𝑗

a𝑗 − â𝑗
2
𝐹
, s.t. a⊺

𝑗
1 = 1, a𝑗 ≥ 0 (18)

whose proof refers to [42].
▷ Update-2: SolvingW with A, B, Y and K fixed. In this case,
W-subproblem of Eq. (14) can be written as

max
W𝑟

Tr((W𝑟 )⊺E𝑟 ) s.t.W𝑟 (W𝑟 )⊺ = I𝑘 , (19)

where E𝑟 = X𝑟 (A𝑟 )⊺ (B𝑟 )⊺ . Eq. (19) can be solved via the Singu-
lar Value Decomposition (SVD) in Theorem 2 with complexity
O(𝑣𝑑 (𝑛𝑚 + 𝑘2 + 𝑘𝑚)) for each iteration, where 𝑑 =

∑𝑣
𝑝=1 𝑑

𝑟 .
Theorem 2. [20] Letting the SVD of E ∈ R𝑑×𝑙 be E = UGV⊺ ,
where U ∈ R𝑑×𝑙 ,G ∈ R𝑙×𝑙 and V ∈ R𝑙×𝑙 , the optimal solution of
max

W⊺W=I
Tr(W⊺E) isW = UV⊺ .

▷ Step-3 update B: Optimizing B while keeping the irrelevant
variables fixed can be understood as

max
B𝑟

Tr((B𝑟 )⊺C𝑟 ) s.t.(B𝑟 )⊺B𝑟 = I𝑚 (20)

in which C𝑟 = 𝛾 (W𝑟 )⊺X𝑟 (A𝑟 )⊺ . The optimal solution for optimiz-
ing B𝑟 can be efficiently obtained using Theorem 2.
▷ Step-4 update K: Ignoring the irrelevant items w.r.t. K, updat-
ing K subproblem is

min
K

∥K∥𝑝
I𝜔,𝑆𝑝

+ 𝜇

2
∥K − (J + Y

𝜇
)∥2𝐹 (21)

According to [30], Eq. (21) can be solved into two steps as follows:
(1) minimizing the core matrix, and (2) minimizing 𝑡-TSN.
(1) Updating core matrix as

min
𝔓(T )

∥𝔓(T)∥∗ +
1
2𝜆

∥F − (J + Y

𝜇
)∥2𝐹 (22)
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where regularization parameter 𝜆 = 1/(𝑚𝑎𝑥 (𝑚, 𝑣)𝑛)
1
2 . And the

tensor T is obtained from 𝑡-SVD on the temporary variable F, i.e.,
F = U ∗ T ∗ V.
(2) Updating K as

min
K

∥K∥𝑝
I𝜔,𝑆𝑝

+ 𝜇

2
∥K − L∥2𝐹 (23)

With the learned low-rank core matrix 𝔓(T), we can use 𝑡-
product to reconstruct a tensor as L = U ∗ 𝔓(T)−1 ∗ V. The
learned L can further produce a closed-form solution via the fol-
lowing Theorem 3.
Theorem 3. Consider L ∈ R𝐼1×𝐼2×𝐼3 , with 𝑟 = min(𝐼1, 𝐼2). Let
L𝑓 = U 𝑓 M𝑓 V

⊺
𝑓
, then the optimization problem for weight tensor

Schatten 𝑝-norm can be formulated as

min
K

𝜂∥K∥𝑝𝝎,𝑠𝑝 + 1
2
∥K − L∥2𝐹 (24)

and its optimal solution is

K
∗ = ifft(U 𝑓 ∗ D𝜂,𝝎,𝑝 (L𝑓 ) ∗ V

⊺
𝑓
) (25)

where M𝑘
𝑓
= diag(𝜹 (M𝑘

𝑓
)) and D𝜂,𝝎, 𝑝 (L𝑘

𝑓
) = diag(𝜽 (L𝑘

𝑓
)) are

the 𝑘-th frontal slices of M𝑓 and D𝜂,𝝎, 𝑝 (L𝑓 ) in the Fourier do-
main with respect to 𝜽 (L𝑘

𝑓
) = GST(𝜹 (M𝑘

𝑓
), 𝜂 ∗ 𝝎𝑘 , 𝑝).

Proof: Eq. (24) becomes to

min
K 𝑓

𝑛3∑︁
𝑙=1

(
𝑟∑︁
𝑗=1

𝜂 ∗ 𝜔𝑘𝑗 ∗ 𝜃
𝑟
𝑗 (K

𝑘
𝑓
)) + 1

2
∥K𝑘

𝑓
− L𝑘

𝑓
∥2𝐹 (26)

in which 𝜃 𝑗 (K𝑘𝑓 ) denotes the 𝑗-th singular value of K𝑘
𝑓
, and its

corresponding weight is 𝜔𝑘
𝑗
= 1
𝜃𝑟
𝑗
(K𝑘

𝑓
)+𝜀 . Initially, each weight 𝜔𝑘

𝑗

is set as 𝜔𝑘
𝑗
= 1
𝛿 𝑗 (M𝑘

𝑓
)+𝜀 since 𝜃 𝑗𝑟 (K𝑘

𝑓
) is unavailable in the first

iteration, and updated based on the previous iteration of 𝜃 𝑗𝑟 (K𝑘
𝑓
).

Eq. (26) can be solved separately for different 𝑘 as

min
K𝑘
𝑓

𝑟∑︁
𝑗=1

𝜂 ∗ 𝜔𝑘𝑗 ∗ 𝜃
𝑟
𝑗 (K

𝑘
𝑓
) + 1

2
∥K𝑘

𝑓
− L𝑘

𝑓
∥2𝐹 (27)

Solvers are derived using the following Theorem 4 and Lemma 1.
Theorem 4. Consider the singular value decomposition (SVD) of
matrix T ∈ R𝐼1×𝐼2 as T = U𝐴 ∗D𝐴 ∗V⊺

𝐴
, where 𝜂 > 0, 𝑟 = min(𝐼1, 𝐼2),

and 0 ≤ 𝜔1 ≤ 𝜔2 ≤ . . . ≤ 𝜔𝑟 . The global optimal solution for the
following weighted Schatten 𝑝-norm minimization problem, adapted
from [58], is as follows:

min
K

𝜂∥K∥𝑝𝝎,𝑠𝑝 + 1
2
∥K − T∥2𝐹 (28)

As shown in [59], the optimal solution of Eq. (28) is given by

K∗ = U𝐴D𝜂,𝝎,𝑝 (T)V⊺𝐴 (29)

where D𝐴 = diag(𝜹), D𝜂,𝝎, 𝑝 (T) = diag(𝜽 ). The vector 𝜹 =

𝛿 𝑗 (T) 𝑗 = 1𝑟 represents the singular values of T, each of which can be
obtained using Lemma 1 [65].
Lemma 1. Consider the 𝑘-th subproblem of Eq. (28), expressed as

min
𝜃 (K𝑘

𝑓
)≥0

𝑓 (𝜃 𝑗 (K𝑘𝑓 )) =
1
2
(𝜃 𝑗 (K𝑘𝑓 ) − 𝛿 𝑗 (L𝑘𝑓 ))

2 + 𝜂𝜔 𝑗𝜃 𝑗 (K𝑘𝑓 )
𝑝

(30)

Within 𝜔 and 𝑝 , soft-thresholding function 𝜂𝑝𝐺𝑆𝑇 (𝜔 𝑗 ) is defined as

𝜂𝐺𝑆𝑇𝑝 (𝜔 𝑗 ) = (2𝜔 𝑗 (1 − 𝑝))
1

2−𝑝 + 𝜔 𝑗𝑝 (2𝜔 𝑗 (1 − 𝑝))
𝑝−1
2−𝑝 (31)

The minimum 𝑆𝑣𝐺𝑆𝑇 (𝛿 𝑗 , 𝜔 𝑗 ) of Eq. (31) is determined by

𝑇𝐺𝑆𝑇𝑝 (𝛿 𝑗 , 𝜔 𝑗 ) =
{
0, 𝛿 𝑗 < 𝜂𝐺𝑆𝑇𝑝

(
𝜔 𝑗

)
sgn(𝛿 𝑗 )𝑆𝐺𝑆𝑇𝑝 (𝛿 𝑗 , 𝜔 𝑗 ), 𝛿 𝑗 ≥ 𝜂𝐺𝑆𝑇𝑝

(
𝜔 𝑗

) (32)

in which 𝑆𝐺𝑆𝑇𝑝 (𝛿 𝑗 , 𝜔 𝑗 ) satisfies

𝑆𝐺𝑆𝑇𝑝 (𝛿 𝑗 , 𝜔 𝑗 ) − 𝛿 𝑗 + 𝜔 𝑗𝑝

(
𝑆𝐺𝑆𝑇𝑝 (𝛿 𝑗 , 𝜔 𝑗 )

)𝑝−1
= 0 (33)

Arranging 𝝎 (0 ≤ 𝜔1 ≤ 𝜔2 ≤ . . . ≤ 𝜔𝑟 ) in non-ascending order
and 𝜹 (𝛿1 ≥ 𝛿2 ≥ . . . ≥ 𝛿𝑟 ≥ 0) in non-descending order aids in
determining a global minimizer 𝜽 (𝜃1 ≥ 𝜃2 ≥ . . . ≥ 𝜃𝑟 ) using von
Neumann’s trace inequality, where 𝑟 = min(𝐼1, 𝐼2).

Updating ADMM variables are written as
Y = Y + 𝜇 (J − K)
𝜇 =𝑚𝑖𝑛(𝜌𝜇, 𝜇𝑚𝑎𝑥 )

(34)

In the optimization process, we set 𝜇 = 1𝑒−4 and 𝜇𝑚𝑎𝑥 = 1010,
with a computational complexity of O(𝑛). Algorithm 1 delineates
the entire optimization procedure of Eq. (14), wherein convergence
is assessed by evaluating the objective value 𝑜𝑏 𝑗𝑡 after the 𝑡-th
iteration.

Algorithm 1 IWTSN-FMGC
Input: Multi-view data {X𝑟 }𝑣

𝑟=1, cluster number 𝑐 , latent space dimension
𝑘 , and parameters 𝛼 , 𝛾 .
Initialize Q𝑟 = I𝑘 , and the others matrices as 0.

1: repeat
2: Update A, W, B, and K via Eq (15), Eq. (19), Eq. (20), and Eq. (21),

respectively;
3: Update ADMM variables via Eq. (34);
4: until Satisfy convergence.
5: Perform SVD on Â =

∑𝑣
𝑟=1 A

𝑟 /𝑣.
Output: Clustering metrics.

SpaceComplexity. Primary space consumption is to storeW𝑟 ∈
R𝑑

𝑟 ×𝑙 , X𝑟 ∈ R𝑑𝑟 ×𝑛 , B𝑟 ∈ R𝑙×𝑚 , A𝑟 ∈ R𝑛×𝑚 , K ∈ R𝑚×𝑛×𝑣 , and
A ∈ R𝑚×𝑛×𝑣 . Total space complexity of IWTSN-FMGC amounts
to (𝑛 + 𝑙)𝑚 + 3𝑚𝑛𝑣 + 𝑑 (𝑛 +𝑚), which is linear to 𝑛.

Table 1: Datasets for experiment evaluation.
Dataset Sample (𝑛) Class (𝑘) View (𝑣) Dimensionality (𝑑)
YTF-50 126054 50 4 944/576/512/640
YTF-20 63896 20 4 944/576/512/640
SUNRGBD 10335 45 2 4096/4096
ORL 400 40 3 4096 /3304 / 6750
MSRCV1 210 5 6 1302 / 48 / 512/100/256/210
Yale 165 15 3 4096 /3304 / 6750
Synthetic 100 2 2 2/2

Time Complexity. Algorithm 1 incurs the following time com-
plexity per iteration: the bipartite graph learning in Step-1 costs
O(𝑣𝑑𝑛𝑚); the matrix multiplication and SVD operation of Step-2
and Step-3 involve O(𝑣𝑑 (𝑛𝑚+ 𝑙2 + 𝑙𝑚)) and O(𝑣 (𝑛𝑑𝑙 +𝑚2𝑙 +𝑛𝑚𝑙)),
respectively. Improved weighted Schatten 𝑝-norm optimization
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Table 2: Average Fscore, Purity, NMI, and ACC comparison with 11 SOTA methods on the seven datasets. The bold and blue
represent the best and the second-best results, respectively. ’-’ denotes out of CPU memory or storage memory.

Datasets AMGL[34] FMR[17] PMSC[12] LMVSC[13] SMVSC[43] SFMC[22] FMCNOF[60] FPMVS[51] SDAFG[31] MVBGC[16] TBGL[57] Our
ACC

YTF-50 - - - 68.32 ± 2.45 69.65 ± 2.46 - 21.66 ± 0.00 64.24 ± 2.97 62.44 ± 0.00 68.48 ± 3.12 72.31 ± 0.01 75.59 ± 0.01
YTF-20 - - - 67.26 ± 3.53 67.13 ± 4.20 - 38.61 ± 0.00 63.08 ± 3.79 61.88 ± 0.00 72.24 ± 2.65 73.66 ± 0.01 77.54 ± 0.02

SUNRGBD 9.81 ± 0.37 - - 17.87 ± 0.39 23.34 ± 0.38 11.02 ± 0.00 19.67 ± 0.00 23.26 ± 0.50 16.85 ± 0.00 21.13 ± 2.32 20.41 ± 0.03 24.20 ± 0.01
ORL 71.15 ± 2.81 65.79 ± 3.26 63.47 ± 3.09 65.65 ± 2.93 65.16 ± 1.10 50.00 ± 0.00 27.50 ± 0.00 66.75 ± 0.00 73.50 ± 0.00 64.53 ± 3.55 80.21 ± 0.02 95.75 ± 0.01

MSRCV1 76.44 ± 6.30 77.48 ± 6.40 47.45 ± 4.23 83.73 ± 7.20 70.51 ± 4.98 60.48 ± 0.00 47.14 ± 0.00 71.95 ± 5.36 70.95 ± 0.00 86.19 ± 7.59 90.96 ± 0.00 93.10 ± 0.00
Yale 64.52 ± 4.27 68.81 ± 5.95 58.80 ± 4.43 61.47 ± 3.47 66.06 ± 0.00 47.27 ± 0.00 33.94 ± 0.00 67.27 ± 0.00 65.45 ± 0.00 72.12 ± 0.00 88.36 ± 0.04 91.81 ± 0.02

NMI
YTF-50 - - - 82.43 ± 0.78 83.63 ± 0.85 - 43.03 ± 0.00 82.08 ± 1.07 77.18 ± 0.00 83.80 ± 0.96 84.68 ± 0.02 85.99 ± 0.00
YTF-20 - - - 76.78 ± 1.34 78.36 ± 2.39 - 45.45 ± 0.00 74.30 ± 1.95 73.18 ± 0.00 76.59 ± 3.04 77.69 ± 0.02 79.88 ± 0.02

SUNRGBD 18.46 ± 0.66 - - 24.50 ± 0.37 22.71 ± 0.41 2.30 ± 0.00 15.66 ± 0.00 22.84 ± 0.82 11.37 ± 0.00 23.82 ± 2.60 30.68 ± 0.01 37.81 ± 0.00
ORL 87.64 ± 1.07 81.20 ± 1.38 80.93 ± 1.39 83.35 ± 1.13 84.85 ± 0.29 81.58 ± 0.00 49.23 ± 0.00 86.26 ± 0.00 88.80 ± 0.00 77.41 ± 0.54 90.63 ± 0.02 99.01 ± 0.00

MSRCV1 77.65 ± 3.23 69.48 ± 3.31 34.29 ± 2.81 78.93 ± 4.60 62.01 ± 2.61 60.23 ± 0.00 38.42 ± 0.00 65.69 ± 3.27 76.23 ± 0.00 65.69 ± 3.27 85.36 ± 0.01 87.32 ± 0.00
Yale 67.73 ± 1.86 74.72 ± 3.38 63.74 ± 2.98 65.43 ± 1.92 69.83 ± 0.00 54.27 ± 0.00 39.50 ± 0.00 71.06 ± 0.00 69.20 ± 0.00 73.11 ± 0.00 86.93 ± 0.01 89.98 ± 0.02

Purity
YTF-50 - - - 73.21 ± 2.18 72.72 ± 2.61 - 22.83 ± 0.00 66.84 ± 3.02 67.83 ± 0.00 75.04 ± 2.33 78.91 ± 0.02 80.62 ± 0.00
YTF-20 - - - 73.40 ± 2.75 72.40 ± 3.96 - 40.34 ± 0.00 64.92 ± 3.83 68.31 ± 0.00 77.14 ± 3.72 76.04 ± 0.03 80.55 ± 0.02

SUNRGBD 10.74 ± 0.37 - - 37.42 ± 0.53 32.64 ± 0.65 11.47 ± 0.00 25.15 ± 0.00 32.77 ± 1.15 17.65 ± 0.00 32.69 ± 2.53 41.90 ± 0.01 49.53 ± 0.00
ORL 76.47 ± 2.02 69.10 ± 2.70 67.21 ± 2.73 69.18 ± 2.19 72.17 ± 1.08 79.25 ± 0.00 28.25 ± 0.00 73.75 ± 0.00 79.00 ± 0.00 58.97 ± 1.39 83.53 ± 0.01 96.87 ± 0.01

MSRCV1 80.45 ± 4.29 79.01 ± 4.16 49.91 ± 3.78 85.25 ± 5.56 71.51 ± 4.02 62.86 ± 0.00 50.48 ± 0.00 72.33 ± 5.01 70.95 ± 0.00 72.33 ± 5.01 88.32 ± 0.02 93.10 ± 0.00
Yale 66.64 ± 3.14 70.08 ± 5.39 60.47 ± 3.92 62.40 ± 3.27 66.06 ± 0.00 48.48 ± 0.00 35.15 ± 0.00 67.27 ± 0.00 66.06 ± 0.00 72.12 ± 0.00 89.12 ± 0.00 91.81 ± 0.02

F-score
YTF-50 - - - 62.49 ± 2.45 63.52 ± 2.56 - 15.67 ± 0.00 56.89 ± 3.18 24.29 ± 0.00 61.83 ± 3.35 63.88 ± 0.02 66.87 ± 0.01
YTF-20 - - - 62.43 ± 2.91 61.68 ± 5.99 - 25.84 ± 0.00 57.81 ± 4.00 42.07 ± 0.00 64.38 ± 3.11 66.05 ± 0.02 70.33 ± 0.02

SUNRGBD 6.46 ± 0.22 - - 11.41 ± 0.23 14.99 ± 0.14 12.17 ± 0.00 14.08 ± 0.00 15.23 ± 0.39 13.80 ± 0.00 14.96 ± 2.05 15.98 ± 0.01 18.34 ± 0.00
ORL 53.73 ± 6.36 54.00 ± 3.15 52.57 ± 3.06 56.52 ± 3.38 55.98 ± 0.76 32.35 ± 0.00 13.80 ± 0.00 58.73 ± 0.00 47.51 ± 0.00 42.87 ± 1.47 78.14 ± 0.01 95.61 ± 0.01

MSRCV1 70.28 ± 4.42 66.76 ± 4.50 34.05 ± 2.34 77.43 ± 6.43 59.31 ± 2.82 52.43 ± 0.00 33.85 ± 0.00 61.55 ± 3.54 63.58 ± 0.00 61.55 ± 3.54 83.02 ± 0.01 86.66 ± 0.00
Yale 41.47 ± 3.53 56.30 ± 4.88 43.23 ± 4.15 46.42 ± 2.74 52.60 ± 0.00 31.28 ± 0.00 17.97 ± 0.00 54.19 ± 0.00 45.91 ± 0.00 58.12 ± 0.00 80.76 ± 0.02 83.52 ± 0.04

of Step-4 is O(𝑣2𝑛𝑚 + 𝑣𝑛𝑚 log(𝑛)); ADMM variables need O(𝑣).
Upon completion, the final Â requires O(𝑛𝑚2) for SVD and subse-
quent 𝑘-means. Overall, the total time complexity approximates to
O(𝑡 (2𝑣𝑑𝑛𝑚 + 𝑣𝑛𝑚 log(𝑛) + 𝑛𝑚2)). Analogous to space complexity,
the time complexity of Algorithm 1 also exhibits linear to sample
number. Both space complexity and time complexity are linear to
𝑛, which enables handling large-scale datasets with 100, 000 ≤ 𝑛.

4 EXPERIMENTS
4.1 Experimental Setting
Benchmark Datasets. We conducted experiments on six datasets
(YTF-50, YTF-20, SUNRGB-D, ORL, MSRCv1, and Yale) to evaluate
our approach. The implementations of all competing methods were
obtained from their respective public repositories or directly from
the authors. Our experiments for shallow methods were carried out
on a computing platform consisting of a 32GB RAM and Intel Core
i7 CPU, using Matlab 2021b on a 2021 Mac mini.
ComparedAlgorithms.We employed 11 State-Of-The-Art (SOTA)
competitors, including AMGL[34], FMR [17], PMSC [12], BMVC
[64], LMVSC [13], SMVSC [43], SFMC [22], FMCNOF [60], FPMVS
[51], SDAFG [31], UDBGL [8], FastMICE [10], MVBGC [16], and
TBGL [57] to assess the effectiveness and efficiency of our IWTSN-
FMGC. These competitors were selected based on their performance
in four common metrics [13, 50, 54] cited in recent literature.
Experimental Results. Table 2 detailedly reports the six evalu-
ated multi-view benchmark datasets by conducting comparative
experiments with 11 multi-view clustering methods. From Table 2,
we could observe the following:

• Our method consistently surpasses all competitors across all
assessed metrics and datasets, underscoring its superiority
over existing SOTA multi-view clustering techniques.

• AMGL, FMR, and PMSC leverage a widely adopted self-
representation framework for spectral clustering by using
full connection self-representation graph learning. However,
as evidenced in Table 2, our IWTSN-FMGC consistently out-
performs these methods in terms of clustering performance.
Meanwhile, IWTSN-FMGC also has very competitive time
and space complexity (Linear to sample number).

• Dynamic anchor learning based methods (such as FastMICE,
MVBGC, and our IWTSN-FMGC) generally achieve superior
clustering performance compared to approaches like LMVSC,
SFMC, FMCNOF, SDAFG, and UDBGL, which maintain fixed
anchors during optimization. Notably, our IWTSN-FMGC
consistently outperforms recently proposed methods like
FastMICE and MVBGC, due to its ability to dynamically
explore local manifold and high-order information.

• Despite TBGL also leveraging the tensor Schatten 𝑝-norm to
exploit the high-order low-rank structure of bipartite graphs,
our IWTSN-FMGC significantly outperforms it across multi-
ple metrics in Table 2. This superiority could be attributed
to the dynamic neighbor bipartite graph learning technique
of IWTSN-FMGC, which captures local manifold structure
more effectively than the fixed bipartite graph method of
TBGL. Furthermore, IWTSN-FMGC innovatively develops
an enhanced weighted tensor Schatten 𝑝-norm to better
approximate the target rank of the learned bipartite graph
tensor, thereby enhancing its innovation and effectiveness.
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(c) ORL: X3

(d) ORL: Z1 of TBGL (e) ORL: Z2 of TBGL
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(f) ORL: Z3 of TBGL

(g) ORL: Z1 of IWTSN-FMGC (h) ORL: Z2 of IWTSN-FMGC
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(i) ORL: Z3 of IWTSN-FMGC

Figure 1: The original {X}𝑣
𝑟=1, the bipartite graphs {Z}

𝑣
𝑟=1 of second best competitor TBGL, and {Z}𝑣

𝑟=1 of our IWTSN-FMGC on
ORL dataset are all visualized in Figure 1, where different cluster assignments represent the different colors.

(a) ORL: Z∗ of 𝑖𝑡𝑒𝑟 = 2 (b) ORL: Z∗ of 𝑖𝑡𝑒𝑟 = 10 (c) ORL: Z∗ of 𝑖𝑡𝑒𝑟 = 20 (d) ORL: Z∗ of 𝑖𝑡𝑒𝑟 = 33

Figure 2: Visualization of consensus bipartite graph A∗ of our IWTSN-FMGC on ORL dataset with iteration increasing, where
different cluster assignments represent the different colors.

4.2 Visualization Analysis
Figure 1 (a)-(c) visualize the original {X𝑟 }𝑣

𝑟=1, while (d)-(i) depict
the bipartite graphs {A𝑟 }𝑣

𝑟=1 generated by TBGL and our IWTSN-
FMGC on the ORL dataset, respectively. TBGL and our IWTSN-
FMGC exhibit improved cluster structures compared to the original

data. However, TBGL shows scattered structure distributions, lead-
ing to incorrect cluster partitions. In contrast, the visualizations
(g)-(i) of our IWTSN-FMGC display fewer incorrect cluster assign-
ments than those of TBGL, consistent with the clustering results
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Figure 3: Ablation analysis of our IWTSN on the Synthetic dataset w.r.t. different noise ratios.
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Figure 4: Parameter analysis on the two datasets.

in Table 2. Additionally, Figure 2 illustrates the evolving cluster-
ing structures with increasing iterations, indicating progressively
clearer patterns. These results affirm the effectiveness and superi-
ority of our proposed method in learning reliable bipartite graphs.

4.3 Ablation Studies
To demonstrate significance, effectiveness, and robustness of tensor
Schatten 𝑝-norm, we degrade our IWTSN ∥A∥𝑝

I𝜔,𝑠𝑝
to ∥A∥𝑝𝑠𝑝 ,

simplifying as our w/o. By performing experiments on different
noise ratios on the Synthetic dataset in Fig. 3, we observe that: 1) our
method outperforms our w/o on all evaluated metrics in Fig. 3 (a),
indicating the significance and validity of the proposed ∥A∥𝑝

I𝜔,𝑠𝑝
;

2) Fig. 3 (b) and (c) demonstrate that our ∥A∥𝑝
I𝜔,𝑠𝑝

outperforms

∥A∥𝑝𝑠𝑝 by a large margin, verifying the robustness of our method.

4.4 Parameter and Convergence
Algorithm 1 incorporates two parameters, 𝛼 and 𝛾 , which control
the influence of neighbor bipartite graph learning and the improve-
ment of weight tensor Schatten 𝑝-norm ∥ · ∥I𝜔,𝑆𝑝 , respectively.
These parameters are varied within the range 2[−5:2:5] , with𝑚 = 2𝑐
and 𝑙 = 2𝑐 fixed. Specifically, if 𝑑𝑚𝑖𝑛 ≤ 2𝑐 , then 𝑙 = 𝑑𝑚𝑖𝑛 , where
𝑑𝑚𝑖𝑛 represents the minimum dimension across all views. Fig. 4
illustrates the sensitivity analysis of our Algorithm 1 using two
large-scale datasets (YTF-50 and YTF-20). The results demonstrate
that our IWTSN-FMGC is minimally affected by variations in 𝛼

and 𝛾 . Moreover, the losses depicted in Fig. 5 consistently decrease
to a stable value with increasing iterations on the YTF-20 dataset,
confirming robust convergence of our IWTSN-FMGC.

5 CONCLUSION
This paper proposes a novel IWTSN to better capture the low-rank
property hidden local bipartite graphs. Then, we employ the devel-
oped improved weighted tensor Schatten 𝑝-norm to perform fast
local multi-view clustering by integrating the designed adaptive
neighbor bipartite graph learning. Meanwhile, a well-designed so-
lution is also provided to solve improved weighted tensor Schatten
𝑝-norm. Comprehensive experiments and analysis have proved the
superiority and validity of our method.
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Figure 5: The losses on the YTF-20 dataset.
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