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Abstract

When a neural language model (LM) is001
adapted to perform a new task, what as-002
pects of the task predict the eventual per-003
formance of the model? In NLP, system-004
atic features of LM generalization to individ-005
ual examples are well characterized, but sys-006
tematic aspects of LM adaptability to new007
tasks are not nearly as well understood. We008
present a large-scale empirical study of the fea-009
tures and limits of LM adaptability using a010
new benchmark, TASKBENCH500, built from011
500 procedurally generated sequence model-012
ing tasks. These tasks combine core aspects of013
language processing, including lexical seman-014
tics, sequence processing, memorization, log-015
ical reasoning, and world knowledge. Using016
TASKBENCH500, we evaluate three facets of017
adaptability, finding that: (1) adaptation pro-018
cedures differ dramatically in their ability to019
memorize small datasets; (2) within a subset of020
task types, adaptation procedures exhibit com-021
positional adaptability to complex tasks; and022
(3) failure to match training label distributions023
is explained by mismatches in the intrinsic dif-024
ficulty of predicting individual labels. Our ex-025
periments show that adaptability to new tasks,026
like generalization to new examples, can be027
systematically described and understood, and028
we conclude with a discussion of additional as-029
pects of adaptability that could be studied us-030
ing the new benchmark.031

1 Introduction032

Much of the recent research effort in NLP has033

shifted from training task-specific models to adapt-034

ing pre-trained language models (LMs) by fine-035

tuning their parameters or input prompts for down-036

stream tasks (Devlin et al., 2019; Raffel et al.,037

2020; Li and Liang, 2021; Lester et al., 2021).038

This paradigm is general, in the sense that a large039

number of distinct NLP tasks benefit from pre-040

training (Peters et al., 2018; Devlin et al., 2019;041

Raffel et al., 2020). But many questions about the042

nature and limits of LM adaptation remain unan- 043

swered. For example: given a new task, can we pre- 044

dict how quickly (and how effectively) pre-trained 045

LMs can be adapted to perform it? From among the 046

variety of different adaptation techniques (e.g. fine- 047

tuning or prompt-tuning), can we predict which one 048

will be most effective? Today, new pre-training and 049

adaptation schemes are evaluated using small suites 050

of curated tasks, typically featuring classification, 051

textual inference, and question answering (Wang 052

et al., 2018, 2019). These benchmarks have been 053

extremely successful in identifying new tools for 054

adaptation, but they are poorly suited for answering 055

larger, structural questions like the ones above. 056

We present a large-scale study of LM adaptabil- 057

ity using a new suite of benchmark tasks called 058

TASKBENCH500. TASKBENCH500 consists of 059

500 procedurally generated tasks involving lexi- 060

cal semantics, factual information, memorization 061

of random relations, list processing, and logical 062

composition (Figure 1). Analogous to past work 063

that uses synthetic data to characterize LM perfor- 064

mance on single examples (Weston et al., 2016; 065

Lake and Baroni, 2018; Saxton et al., 2019; Kim 066

and Linzen, 2020; Keysers et al., 2020; Liu et al., 067

2021), TASKBENCH500 enables systematic study 068

of LM adaptability at the task level. In this paper, 069

we use it to study three aspects of adaptability: 070

Memorization: When can adaptation successfully 071

memorize new functions (e.g., to update factual 072

knowledge about entities, or learn arbitrary new 073

token correspondences)? We find that LMs’ abil- 074

ity to memorize new input–output mappings is 075

strongly influenced by task type. Datasets of 076

lexical relations (like antonym pairs) are easier 077

to memorize than factual information (like name– 078

occupation pairs). Both are easier to memorize 079

than lists of random word pairs. These findings 080

are particularly striking in the case of prompt tun- 081

ing, which in standard configurations struggles to 082

memorize even small random word pair lists. 083
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Figure 1: Overview of our task creation process. We begin by defining a set of atomic tasks that all synthetic tasks
are built upon. These include lexical tasks (blue text/outline), random tasks (green text/outline), and factual tasks
(orange text/outline). They also include both predicates and relations. These tasks are combined using composition
functions to form more complex, compositional tasks. Given a particular task specification, we synthetically create
a dataset for each task. Finally, we fine-tune or prompt-tune a pre-trained language model on each task dataset.

Composition: Is LM performance on simple tasks084

predictive of their performance on compositions of085

those tasks? (If the father and occupation relations086

are easy to learn via adaptation, does this imply087

that the father’s occupation relation is also easy to088

learn?) We find a nuanced answer. LMs exhibit089

compositional adaptation to lexical and factual090

relations (like father’s occupation), with success091

on composed tasks strongly correlated (r2 > 0.5)092

with success on atomic tasks. However, when com-093

posing these relations with sequence processing094

operations, success on the base task does not pre-095

dict success on the composed task.096

Distribution matching: In models fine-tuned on097

datasets exhibiting a distribution of acceptable an-098

swers (e.g., translating ungendered pronouns into099

gendered ones), do model predictions match these100

distributions? We find that LMs are often unable101

to match label distributions in datasets used for102

adaptation. In particular, when labels in the fine-103

tuning dataset are drawn from a uniform mixture104

of labels from two tasks (e.g., labeling half of the105

words with their antonym and half with their syn-106

onym), models disproportionately assign mass to107

labels from the task that is easier to learn.108

Each of these forms of adaptability corresponds109

to a central challenge in NLP: reliable updating110

of deployed models, composition of previously111

learned skills, and fair and predictable output from112

models trained on curated data. Our study of mem-113

orization, composition, and distribution matching114

have direct analogs to previous studies of sample115

expressivity (Zhang et al., 2017), compositional 116

generalization (Lake and Baroni, 2018; Kim and 117

Linzen, 2020; Keysers et al., 2020), and calibra- 118

tion (Guo et al., 2017). However, we study these 119

phenomena at the task level, rather than the ex- 120

ample level. Our experiments highlight important 121

qualitative differences between current adaptation 122

paradigms; identify several novel challenges for 123

LM adaptation, and offer a new benchmark for 124

approaches aimed at meeting these challenges. 125

2 Background 126

Fine-tuning and prompt search In languages 127

for which large digitized corpora are available, 128

most NLP system development today involves 129

adaptation of a pre-trained model to a downstream 130

task of interest. Pre-training typically involves re- 131

construction of masked or corrupted text sampled 132

from a large corpus (Devlin et al., 2019; Liu et al., 133

2019; Raffel et al., 2020). Adaptation to a new task 134

typically involves one of three approaches: (1) fine- 135

tuning of all of a pre-trained model’s parameters 136

(possibly in conjunction with a specialized decoder) 137

on a task-specific training set (Devlin et al., 2019); 138

(2) manual prompt engineering of an input tem- 139

plate that induces pre-trained model predictions to 140

perform the task of interest (Brown et al., 2020; 141

Petroni et al., 2019); or (3) automated prompt tun- 142

ing of these templates, in either the discrete space 143

of tokens (Shin et al., 2020) or continuous space 144

of token embeddings (Li and Liang, 2021; Lester 145

et al., 2021). The latter two approaches have grown 146
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more popular as pre-trained models have grown147

larger. The performance of both prompt-search ap-148

proaches still lags fine-tuning (Raffel et al., 2020;149

Brown et al., 2020; Lester et al., 2021), though the150

difference between approaches appears to shrink151

as model size increases (Lester et al., 2021).152

Measuring generalization and adaptability153

The success of the training paradigm described154

above stems from its generality—a large number155

of NLP tasks appear to benefit from some combi-156

nation of pre-training and adaptation. Previous at-157

tempts to quantify this generality have typically re-158

lied on benchmarks like GLUE (Wang et al., 2018)159

and SuperGLUE (Wang et al., 2019), each of which160

aggregates ten natural language processing tasks de-161

signed to probe different aspects of language under-162

standing. Similar benchmarks have also been built163

for non-English languages (Xu et al., 2020; Kak-164

wani et al., 2020; Park et al., 2021; Hu et al., 2020).165

However, the heterogeneity and small number of166

distinct tasks represented in existing benchmarks167

makes it difficult to make finer-grained predictions,168

e.g. by identifying specific features of tasks that169

contribute to the success or failure of adaptation.170

This challenge has a direct analog to the prob-171

lem of characterizing generalization at the example172

level in models trained for a single task. Model173

performance on natural test sets is often loosely174

correlated with accuracy on individual examples175

featuring rare syntactic constructions or word col-176

locations (McCoy et al., 2019). A great deal of past177

work has focused on improving evaluation using178

synthetic evaluation sets (Jia and Liang, 2017; Naik179

et al., 2018; Lake and Baroni, 2018; Richardson180

et al., 2020). These datasets have been used to181

study long-range agreement (Marvin and Linzen,182

2018), compositional generalization (Lake and Ba-183

roni, 2018; Ruis et al., 2020; Keysers et al., 2020),184

and mathematical reasoning (Saxton et al., 2019).185

But no analogous notion of systematicity, or tool186

for studying it, currently exists for tasks rather than187

examples.188

Thus, building on this past work, we describe189

how to construct synthetic data distributions that190

enable systematic study of adaptation to new tasks191

rather than generalization to new examples. Like192

previous research that uses procedural data genera-193

tion procedures to study models in NLP, we focus194

on coverage rather than naturalness, using datasets195

designed to complement, rather than replace, exist-196

ing naturalistic benchmarks.197

3 A 500-task benchmark 198

Our goal is to study the generalizability of task 199

adaptation paradigms. In particular, we would like 200

to identify which attributes of a task make it easy 201

or difficult to learn, across different models and 202

training schemes. While this work shares many 203

of its high-level goals with existing benchmarks 204

built from collections of real-world datasets, the 205

makeup and difficulty of these datasets is often 206

difficult to characterize precisely: differences in an- 207

notation standards, annotation quality, and dataset 208

size mean that models often exhibit very differ- 209

ent performance on datasets designed to evaluate 210

evaluate model performance on the same abstract 211

task. In addition, existing datasets cover an ex- 212

ceedingly small subset of the space of all tasks that 213

future NLP practitioners might wish to perform. 214

To account for all these limitations, we propose to 215

generate tasks synthetically as described below. 216

The space of tasks TASKBENCH500 is con- 217

structed compositionally: we begin by defining a 218

space of atomic tasks, which are combined using 219

a set of composition operators to produce more 220

complex tasks. Every task takes as input one or 221

more words, and outputs either a boolean value or 222

a set of word sequences. We refer to any task that 223

outputs booleans as a predicate task, and any task 224

that outputs sets of word sequences as a relation 225

task. A subset of relation tasks involve modeling 226

relations between single words at the input and out- 227

put; we refer to these as word-level tasks and the 228

remaining relation tasks as sequential tasks. 229

The choice of atomic tasks and composition 230

functions aims to capture aspects of real language 231

processing tasks. Accordingly, the set of atomic 232

tasks comprises: 233

1. Lexical tasks, which test knowledge of lex- 234

ical semantics. These include lexical rela- 235

tions like synonym, or lexical predicates like 236

is-noun. These tasks are constructed from 237

WordNet relations (Fellbaum, 1998). 238

2. Factual tasks, which test factual knowl- 239

edge. These include factual relations 240

like father-of, or factual predicates like 241

is-human. These tasks are constructed from 242

Wikidata properties (Vrandečić and Krötzsch, 243

2014). 244

3. Random relation tasks, which test memo- 245

rization ability. These are created by mapping 246
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a word in the vocabulary to a singleton set247

containing a random other word. We create 4248

random relations with different random seeds.249

To recursively create arbitrarily complex tasks, we250

define a set of composition functions. These take251

tasks as arguments and return other tasks. These252

functions fall into two categories:253

1. Word-level compositions, which test ability254

to combine word-level information in differ-255

ent ways, such as through set or logical opera-256

tions. These functions take word-level tasks257

and return other word-level tasks. Examples258

include intersection and chaining.259

2. Sequential compositions, which test ability260

to operate on sequences. These functions con-261

vert word-level tasks to sequence-level tasks.262

There are two functions in this category: map263

takes a word-level relation task and returns264

a task that maps a sequence of n words to a265

set of all possible sequences resulting from266

applying fW to each input word.1 filter267

takes word-level predicate tasks and returns a268

sequence consisting only of words for which269

the task returns true, preserving the original270

ordering of those words.271

The full list of atomic tasks and composition func-272

tion can be found in Appendix Tables 4 and 5. We273

surmise that typical NLP tasks may require some274

combination of lexical knowledge, factual knowl-275

edge, sequential processing, and other task-specific276

reasoning; our data distribution lets us evaluate all277

these aspects separately and in combination.278

Datasets for tasks We create datasets D(f) =279

{(xi, yi) : x ∼ Xf , y ∼ Unif(f(xi))} for each280

task f , where Xf is the input distribution for the281

task, and recalling that f(xi) returns a set of pos-282

sible outputs associated with the input xi. For283

all tasks, we randomly partition the dataset into284

Dtrain(f) and Deval(f) splits.285

For lexical atomic tasks and their compositions,286

we directly use the most common words in the287

task’s input language for Xf . We use both En-288

glish and Spanish as input languages. For factual289

atomic tasks and their compositions, we sample290

the entities from Wikidata that participate in the291

relation or predicate defined by the task (e.g. for292

1Note word-level relations return sets of words—we turn a
sequence of sets of words into a set of sequences by consider-
ing all combinations of words in each set.

the child task, we sample only entities that have 293

children). For sequential tasks, we use a random 294

sampler, which samples n random words from the 295

vocabulary and concatenates them. 296

Figure 1 shows examples of tasks and associated 297

datasets. More details on dataset construction can 298

be found in Appendix A. 299

4 Experimental Setup 300

Model & Training For all experiments, we 301

adapt a pre-trained T5-base model (Raffel et al., 302

2020). We examine two types of training 303

paradigms: fine-tuning and prompt-tuning. Dur- 304

ing fine-tuning, we update all model parameters 305

on the training set. During prompt-tuning, we fol- 306

low Lester et al. (2021) and introduce a new set 307

of prompt-tokens {p1, · · · , pn} to the vocabulary, 308

which will be prepended to every sample from the 309

task during inference, i.e., each sample input x be- 310

comes p1p2 · · · pnx. Let θ denote the parameters of 311

the original pretrained LM. During training, the en- 312

tire model is frozen and only the word embeddings 313

of the new tokens {θp1 , · · · , θpn} ⊂ θ are updated. 314

We use prompts of length n = 100 for all exper- 315

iments. We also study each paradigm on various 316

quantities of training data, and separately evaluate 317

their memorization and generalization adaptabili- 318

ties. In particular, for word-level tasks the test-set 319

words are disjoint from the train-set words, so eval- 320

uating on the test set will strictly measure gener- 321

alization capacity. We optimize all models using 322

AdamW. See Appendix B for full hyperparameters. 323

Evaluation For each task f and model M[θ] 324

(with parameters θ), we measure the model’s av- 325

erage per-token accuracy on both training and test 326

splits of the datasetD(f). As each task defines mul- 327

tiple acceptable outputs for each input, we credit 328

models for producing any acceptable output. Let- 329

ting y′ =M(x), we measure the fraction of posi- 330

tions i at which any valid answer yi matches the 331

predicted y′i: 332

acc(M,D(f)) = 333

max
y∈f(x)

1

|D|
∑

(x,y)∈D

(
1

n

n∑
i=1

Jyi = y′iK

)
(1) 334

Further details can be found in Appendix B. 335

Given a pretrained model M[θpretrain], an 336

adaptation procedure T , and a task suite f , let 337

M[θT ,D(f)] denote the model trained using T on 338

training dataD(f). We then define the adaptability 339
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Figure 2: Left: Overview of the memorization experiment, which evaluates how accurately models adapted via
fine-tuning and prompt-tuning can memorize training data. Right: Memorization and generalization curves for
fine-tuning and prompt-tuning on 1000 training examples. Memorization curves are shown by solid lines, while
generalization curves are dashed. We average over all atomic tasks from each task category: lexical tasks, factual
tasks, and random tasks. The region shows the standard error of the mean. Transparent lines are each individual
task, colored by task category. In both paradigms, lexical tasks are easiest to memorize, followed by factual tasks,
then random tasks. However, prompt-tuning has overall much less memorization capacity than fine-tuning, which
can perfectly memorize even completely random relations.

of a (pretrained model, adaptation paradigm, task340

suite) as:341

adapt(M[θpretrain], T , f)342

= acc(M[θT ,Dtrain(f)],Deval(f)) (2)343

We denote by adaptmem the value of this metric344

over training data (Deval = Dtrain), and by adaptgen345

the metric over test data (Deval = Dtest).346

5 Memorizing datasets347

Our first experiment investigates the extent to348

which task adaptation paradigms can memorize349

different types of tasks. We are interested in memo-350

rization because many real NLP tasks involve some351

degree of memorization. For example, translation352

builds on memorizing lexical associations between353

words in various languages, and semantic simi-354

larity and paraphrasing require memorizing word355

meanings and/or groupings of semantically similar356

words.357

Method We use training-set adaptability358

(adaptmem) as an indicator of a model’s memo-359

rization ability (Figure 2). We train on a set of360

1000 examples, and plot the value of Eq. 2 on each361

atomic task as models are adapted via fine-tuning362

or prompt-tuning. This allows us to visualize both363

the final training-set performance, as well as the364

time it took to achieve that performance, both of365

which we use to quantify memorization ability.366

Results Figure 2 shows the training curves for 367

fine-tuning (left) and prompt-tuning (right), on dif- 368

ferent types of tasks. Solid lines show adaptmem, 369

while dashed lines show adaptgen. 370

Under both adaptation paradigms, we find that 371

lexical tasks are easier to memorize than factual 372

tasks, while random tasks are the hardest to memo- 373

rize. However, for fine-tuning, we find that models 374

can (eventually) learn to perfectly memorize all 375

types of tasks—even entirely random word associ- 376

ations. However, different types of tasks converge 377

at different rates—lexical tasks converge first, fol- 378

lowed by factual tasks, followed by random tasks. 379

Prompt-tuning, with many fewer parameters 380

than fine-tuning, is much less expressive. As shown 381

in Figure 2, none of the tasks types converge to 382

100% accuracy across tasks. Prompt-tuning over- 383

all also takes significantly longer to converge; in 384

particular, on random tasks, the finetuned model 385

generally converges at ∼20k updates, while the 386

prompt-tuned model takes over 200k updates to 387

even begin performing nontrivially. 388

However, despite being much worse at memo- 389

rization, prompt-tuned models still generalize al- 390

most as well as fully fine-tuned models, at least 391

on atomic tasks. This suggests that the inability to 392

memorize arbitrary functions is not necessarily a 393

problem for prompt-tuning in general, and more 394

broadly that overfitting the training set—at least 395

during fine-tuning—may not be necessary for gen- 396

eralization. 397
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Atomic Word-level Comp Seq Comp

FFT 46.9±4.0 39.5±2.1 21.5±1.9

FPT 42.6±4.3 28.1±2.4 11.5±1.4

32FT 33.6±3.8 22.2±1.8 5.7±0.9

32PT 32.4±3.6 21.7±1.7 6.9±1.1

Table 1: Model (generalization) adaptabilities to
atomic, word-level compositional, and sequential com-
positional tasks, under full fine-tuning (FFT), full
prompt-tuning (FPT), 32-shot fine-tuning (32FT) and
32-shot prompt-tuning (32PT). Prompt-tuned models
are comparable to fine-tuned models for atomic tasks,
but not for compositional tasks. However, this distinc-
tion disappears under few-shot learning.

6 Composing tasks398

In the previous section, we found that while prompt-399

tuning cannot memorize arbitrary tasks like fine-400

tuning, it can still generalize well on simple atomic401

tasks, almost comparably to fine-tuning. In this sec-402

tion we investigate whether this finding extends to403

more complex tasks. Specifically, we examine the404

behavior of prompt-tuned and fine-tuned models405

when adapted to compositions of atomic tasks.406

Many prior studies of compositionality focus407

on instance-level compositionality (Lake and Ba-408

roni, 2018; Keysers et al., 2020): they test whether409

models can generalize to new instances by com- 410

bining information from previously-seen instances 411

within the same task. For example, Lake and Ba- 412

roni (2018) study whether models can learn to jump 413

left, after learning to jump, run, and run left. In 414

our work, we instead focus on task-level compo- 415

sitionality, studying whether models can adapt to 416

new tasks that are compositions of simpler tasks 417

on which they are known to perform well. Thus, 418

while a model exhibiting compositional generaliza- 419

tion will correctly compose fragments of previously 420

observed training examples, a training procedure 421

exhibiting compositional adaptability will perform 422

well on tasks involving compositions of previously 423

learned skills. 424

Method We study adaptation to complex tasks 425

by relating performance on atomic tasks with per- 426

formance on depth-2 compositional tasks. We also 427

study each paradigm under few-shot learning, by 428

creating a random 32-sample subset of each train- 429

ing dataset, and training on that subset. To mitigate 430

the effect of the random seed, we report average 431

performance over 4 different subsets. 432

What allows models to adapt to these complex 433

tasks? We hypothesize that their adaptability is 434

(in part) compositional—when they can adapt to 435
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simple tasks, they can also adapt to compositions of436

those tasks. For each training paradigm T and each437

composition function C, we estimate the Pearson438

correlation coefficient r2 between adaptability to a439

compositional task C(f1, · · · fn),440

adaptgen(M, T , C(f1, · · · , fn)), (3)441

and average adaptability to the task’s atomic com-442

ponents,443

1

n

n∑
i=1

adaptgen(M, T , fi). (4)444

Figure 3 depicts the procedure graphically.2445

Can language models learn compositional446

tasks? The average model adaptability to com-447

positional and atomic tasks, under each training448

paradigm, is reported in Table 1. We observe that449

the gap between full-data prompt-tuned models and450

full-data fine-tuned ones is much larger on com-451

positional tasks than atomic ones. Thus, prompt-452

tuned models can only generalize comparably to453

finetuned ones for sufficiently “simple” tasks.454

Interestingly, this distinction disappears un-455

der few-shot learning. Though both adaptation456

paradigms generalize much worse in the few-shot457

setting compared to the full setting, they appear to458

be comparable to each other in the few-shot setting,459

even on compositional tasks. This may simply im-460

ply that few examples are insufficient to learn the461

nuances of complex tasks, and that simply learning462

a few prompt tokens is sufficient to capture what463

can be learned from the limited data samples.464

Do language models adapt compositionally?465

We visualize each regression model in Figure 3.466

Higher r2 indicates higher correlation between467

atomic and compositional versions of tasks. Note468

that all model training paradigms demonstrate469

some degree of word-level compositionality (r2 >470

0.5)—when they succeed at word-level composi-471

tional tasks (union, chaining), they succeed at472

the atomic constituents to those tasks, and vice473

versa. However, this does not appear to be the case474

for sequential map. In the full-data regime, both475

fine-tuning and prompt-tuning have near-zero r2476

values. In the few-shot regime, the r2 value, while477

nontrivial, is also quite low. Note the slopes of478

2We focus only on compositional functions C which
have at least 20 compositional tasks C(f1, · · · , fn) in
TASKBENCH500, so that we have at least 20 points to ob-
tain a statistically significant correlation coefficient.

the learned regression lines—the model appears to 479

be unable to learn the sequential versions of tasks, 480

despite succeeding at their atomic versions. To 481

explain this result, we hypothesize that a major 482

obstacle to sequence-level compositional adaptabil- 483

ity is segmentation of sequences into atomic units. 484

This is especially the case for factual tasks: for 485

example, the sequence Pauline Payne Whitney 486

Charles Lloyd could be segmented as [Pauline 487

Payne Whitney] [Charles Lloyd] or [Pauline 488

Payne] [Whitney Charles Lloyd], etc. To test 489

whether segmentation is a bottleneck, we train on 490

a version of sequential tasks where we give the lan- 491

guage model explicit markers of word/entity bound- 492

aries (e.g. the language model is given Pauline 493

Payne Whitney # Charles Lloyd as input). We 494

found that, with separators, performance on the map 495

tasks increases substantially and the model demon- 496

strates compositional adaptability (r2 > 0.5) to 497

these tasks in 3 of the 4 adaptation paradigms. This 498

setting is plotted in Fig. 3 as Map (+separators). 499

7 Learning new distributions 500

Previous sections investigated the degree to which 501

models could fit particular tasks using a binary 502

metric that assigned credit to any acceptable an- 503

swer. Our final set of experiments explores a finer- 504

grained notion of correctness: when there are mul- 505

tiple acceptable answers, as is often the case in real 506

NLP tasks, when does the output distribution of a 507

model match the distribution empirically observed 508

during adaptation? 509

Method We specifically investigate whether 510

models are biaed towards predicting “easy” la- 511

bels, in the sense measured in Section 5. We 512

consider all possible pairs of atomic tasks f1, f2 513

within the same category. Let fe to be the eas- 514

ier task in this pair and fh be the harder task, 515

relative to a model M and training paradigm 516

T , in the sense that, adaptgen(M, T , fe) > 517

adaptgen(M, T , fh). We compose fe and fh us- 518

ing union to create compositional task ∪(fe, fh), 519

and construct the training dataset for this task to be 520

balanced — such that the model sees an equal num- 521

ber of examples of form (x, fe(x)) as (x, fh(x)). 522

Now letM∪(fe,fh) denote a model adapted to this 523

task. During test-time, we provideM∪(fe,fh) with 524

novel inputs x′ from the domain of both fe and fh, 525

and record the average probability mass it assigns 526

7
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Figure 4: Left: Overview of the task prediction distribution experiments (§7). We train a model on a balanced
dataset, and check whether the prediction distribution over tasks on novel examples matches the (balanced) empir-
ical distribution. Right: Probability mass, across all pairs of tasks, assigned to all answers corresponding to the
easier vs. harder task, when trained on a balanced dataset and evaluated novel examples. We report the average
across all task pairs and held-out examples, as well as standard errors for each task pair. Note that the model tends
to assign more probability to the easier task, despite the task training set being balanced.

to all yie ∈ fe(x′) versus all yih ∈ fh(x′).3 Finally,527

we average these dataset-wide probabilities over all528

pairs of tasks, to get an aggregated probability mass529

assigned to all easier tasks and all harder tasks in530

a task pair, invariant of the actual underlying task531

identity. More details on this procedure can be532

found in Appendix D.533

Results Overall, as seen in Figure 4, across all534

tasks and training paradigms, the model tends to535

assign a higher probability to the easier relation. As536

a concrete example, when trained to predict either537

antonyms or lexical entailments, the average proba-538

bility mass placed on the antonyms of a word from539

the held-out set (easier relation) is 13%, while the540

average probability mass placed on the entailments541

of a word (harder relation) is 8%.542

Thus, despite having a perfectly balanced fine-543

tuning set, pretrained models still predict label dis-544

tributions in a way that align with their inductive545

biases (measured via the “intrinsic difficulty” of in-546

dividual labels). This holds for all task adaptation547

methods, including full fine-tuning, meaning even548

paradigms and models that can fit more complex549

tasks still have residual biases from pretraining550

that affect their predictions. This also suggests551

wider-reaching consequences for model fairness552

and equity: simply debiasing a fine-tuning dataset553

is insufficient to overcome biases from pretraining.554

3Note that the model may (and often does) assign mass to
answers outside of these sets.

8 Conclusion 555

In this paper, we construct TASKBENCH500, a 556

synthetic task set which serves as a testbed for task 557

adaptability. We focus on three axes of adaptabil- 558

ity: ability to memorize, ability to (composition- 559

ally) generalize, and ability to fit to novel distribu- 560

tions. We study two adaptation paradigms: fine- 561

tuning and prompt-tuning, finding that: 1. unlike 562

fine-tuning, prompt-tuning cannot memorize com- 563

pletely arbitrary tasks beyond a small number of 564

examples, 2. all adaptation paradigms demonstrate 565

compositional adaptation to word-level composi- 566

tions, but not sequence-level compositions, and 567

3. no paradigm is able to perfectly replicate the 568

downstream distribution—all paradigms learn out- 569

put distributions that align with its inductive biases. 570

In future work, TASKBENCH500 can be used 571

to study other factors that may affect adaptabil- 572

ity, such as length of the prompt in prompt-tuning, 573

similarity between the task distribution and the pre- 574

training distribution, or finer-grained distinctions 575

between tasks (beyond lexical/factual/random, or 576

composition type) that predict task adaptability. 577

TASKBENCH500 can also be used to explore the 578

limitations of prompt engineering on a GPT3-scale 579

model. Finally, the current set of tasks and prim- 580

itives in TASKBENCH500 are by no means com- 581

plete. Future work can expand on these primitives 582

and study the relationships between the tasks put 583

forth here and real NLP tasks. 584
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9 Impact Statement585

This paper introduces a new procedure for defin-586

ing task suites. This procedure is then used to587

create a 500-task benchmark, which measures the588

adaptability of pre-trained language models to new589

tasks. Because the benchmark is created procedu-590

rally from a databases of words and entities, we591

anticipate that there should be little to no identify-592

ing information or toxic and hateful content. Our593

datasets should also contain less social bias com-594

pared to natural datasets.595

However, like with all benchmarks, overfitting596

to static datasets can inhibit progress in NLP. More-597

over, even though this dataset is procedurally gen-598

erated, we cannot avoid all biases. The resources599

upon we build our benchmark are themselves600

biased—for example, lexical databases (like Word-601

Net) are much richer for certain languages (like602

English) than others, and WikiData currently fea-603

tures many more men than women. Our benchmark604

currently only features English and Spanish tasks,605

with a heavy bias towards standard English. This606

can encourage development of methods that under-607

serve non-standard-English-speaking communities.608

We hope to mitigate the aforementioned issues609

by releasing the code to procedurally generate task610

suites. We emphasize that the benchmark is dy-611

namic: consisting of not just the static task suite612

that we are currently releasing, but more impor-613

tantly the procedure for creating new tasks suites.614

We encourage future researchers to develop analo-615

gous task suites for low-resource languages, non-616

standard English dialects, and more balanced sets617

of entities.618
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A More details on TASKBENCH500 859

creation procedure 860

A.1 Task creation details 861

For atomic lexical tasks, we take a subset of rela- 862

tions specified in either Wordnet (Fellbaum, 1998) 863

or SentiWordNet (Esuli and Sebastiani, 2006). For 864

atomic factual tasks, we take a subset of tasks from 865

Wikidata (Vrandečić and Krötzsch, 2014). We also 866

have 3 broad categories of composition functions: 867

set operations, logical operations, and sequential 868

operations. The full list of atomic tasks can be 869

found in Table 4 and the list of composition func- 870

tions can be found in 5. 871

We enumerate all possible depth-2 word level 872

compositions of each task, and the sequential ver- 873

sions of them (i.e. if the task is a relation, in- 874

serting it into a map, or if the task is a predicate, 875

inserting it into a filter), up to 500 tasks. We 876

also apply some basic heuristics to filter identical 877

tasks: for example, we filter symmetric relations, 878

e.g. union(B,A) is identical to union(A,B), or 879

avoid the use of logical operations alongside set 880

operations, e.g. lor(in(x,A), in(x,B)) is iden- 881

tical to in(x,union(A,B))). Our full list of tasks 882

can be found in Tables 4, 6, 7, and 8. 883

Sequential compositions Sequential composi- 884

tion functions convert word-wise tasks to sequence- 885

level tasks. We specifically consider only two se- 886

quential functions: map and filter. Note that 887

compositions of multiple maps or multiple filters 888

can instead be expressed as compositions of multi- 889

ple word-level functions. For example, 890

map{λx.occupation(x)}(map{λx. 891

father(x)}(S)) 892

(for an input sequence S) is equivalent to 893

map{λx.occupation(father(x))}(S) 894

Specifically, we define the following top-level 895

sequential operator 896

map-filter{fM , fF }
= map{fM}(filter{fF })

(5) 897

where fM is a word-wise relation and fF is a word- 898

wise predicate. All recursively-defined sequential 899

operators follow this form. The following are the 900

recursive rules for mapping nested maps and filters 901

into a function of this form: in the base cases, 902

map{fM} = map-filter{fM , λx.true}
filter{fF } = map-filter{λx.x, fF };

(6)

903
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Task (T ) SPARQL fragment (sparql(T, y))

A(x) ?x A ?y .
union(T1(x),T2(x)) { sparql(T1(x), y) } UNION { sparql(T2(x), y) }

intersection(T1(x),T2(x)) sparql(T1(x), y) sparql(T2(x), y)
lor(T1(x),T2(x)) BIND( y1 || y2 AS y ) sparql(T1(x), y1) sparql(T2(x), y2)
land(T1(x),T2(x)) BIND( y1 && y2 AS y ) sparql(T1(x), y1) sparql(T2(x), y2)

Table 2: Rules for mapping word-level factual tasks to SPARQL conditional statements. Blue substrings represent
recursive calls to this set of rules, which are to be replaced with their output SPARQL fragments. Note the second
argument to the sparql function represents the variable name to output to.

in the recursive cases,904

map{f ′M}(map-filter{fM , fF })
= map-filter{f ′M (fM ), fF }

filter{f ′F }(map-filter{fM , fF })
= map-filter{fM , fF ∧ f ′F (fM )}.

(7)

905

A.2 Dataset creation details906

Note that many tasks created through composition907

will be degenerate or identical to other tasks, even908

with our heuristic filters. We do a preliminary filter909

for degenerate tasks by removing tasks for which910

we have less than 100 samples. We also manually911

inspect all depth-2 word-level lexical compositions912

to ensure they are nontrivial and unique.913

Word-level lexical tasks For English lexical914

tasks, we use words that appeared more than 5915

times in the Brown corpus (Francis and Kucera,916

1979) for our inputs x. For Spanish lexical tasks,917

we in use words that appeared at least once in the918

CESS Spanish Treebank (Martí et al., 2007) for919

our inputs. This results in a a total of 9143 English920

words and 5298 Spanish words. We then construct921

outputs for each input word using either WordNet922

or SentiWordNet. We filter out inputs for which923

the relations map to an empty set—thus, for a task924

like intersection(synonym(x), antonym(x)),925

most inputs will be filtered out as the set of syn-926

onyms are usually disjoint from the set of antonyms.927

(This task ends up getting filtered out entirely, as928

the final number of inputs is under 100.)929

Word-level factual tasks We use a dump of930

Wikidata from 2017, taken from (Sorokin and931

Gurevych, 2018).4 We convert each word-level932

factual task into SPARQL queries which returns a933

set of input-output data pairs from Wikidata.934

4https://public.ukp.informatik.tu-darmstadt.
de/wikidata-dump/wikidata-virtuoso-dump-2017.zip

For factual relations R, we create two queries: 935

a sample query which gives us a set of entities 936

that participate in the relation, from which the in- 937

puts x are derived, and a function query that maps 938

specific inputs x to its set of output entities R(x). 939

For factual predicates P , we create three queries: 940

a positive sample query which gives samples x 941

for which P (x) = true, a negative sample query 942

which gives samples x for which P (x) = false, 943

and a function query that maps specific inputs x to 944

its output boolean value P (x). 945

The SPARQL query is generated recursively 946

given the specification of the task. We define a func- 947

tion task2sparql(T(x),y) which converts tasks 948

T(x) to SPARQL fragments (where the second ar- 949

gument to the function is the variable name we 950

define for the output). We then convert the output 951

of this function into a well-formed query using: 952

SELECT ?x 953

WHERE <task2sparql(T(x),y)> 954

for sample queries and 955

SELECT ?y 956

WHERE <task2sparql(T(x),y)> 957

for functions queries. Note for function queries that 958

the input x is provided to us (and is not a variable). 959

The general rules specifying the task2sparql 960

function are given in Table 2. 961

Sequential tasks In practice, naively concatenat- 962

ing outputs from a random word sampler to cre- 963

ate sequences will return degenerate or trivial se- 964

quences for many functions (for example, map{λx. 965

child(x)} is not meaningful for sequences con- 966

sisting of words that don’t refer to humans). Thus, 967

we define a sequence sampler that takes in a se- 968

quential function (given in the form from eq. 5), an 969

input length n and an output length m ≤ n, which 970

will always sample sequences with length n such 971

that the output, when the function is applied to the 972

sequence, is of length m. 973
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function seq_sampler(map-filter(fM,fF ), n, m):
seq ←“”;
for i = 1 · · ·n do

word ∼ Unif(domain(fM ) ∩ {x :
fF (x) = true});

seq ← seq + word
end
for j = n · · ·m do

word ∼ Unif({x : fF (x) = false});
seq ← seq + word

end
seq ← permute-words(seq)

At a high level, this algorithm samples n input974

words which are in the domain of the map relation,975

and for which the filter predicate returns true, and976

m−n input words for which the filter predicate re-977

turns false, then permutes and concatenates them.978

B Experimental Setup Details979

Hyperparameters We adapt a pre-trained T5-980

base model (24-layer, 220M parameters) to our981

tasks. We use an AdamW optimizer with a learning982

rate of 1.0 for all prompt-tuning experiments, and983

learning rate of 1e-3 for all fine-tuning experiments.984

We use batch sizes of 64 for word-level tasks, and985

32 for sequential tasks. We run all experiments986

up to 100 epochs, and run 3–4 trials for each few-987

shot experiment to estimate average performance988

over possible choices of few-shot training samples.989

These hyperparameters were chosen by trial and990

error on top of default configurations.991

Infrastructure and Reproducibility For each992

task, we adapt our model using a single 32GB993

NVIDIA V100 GPU, or a single 40GB NVIDIA994

A100 GPU. Training time varies by training dataset995

size and maximum number of epochs, but on av-996

erage (using the hyperparameters specified above)997

is less than a few hours per task. Prompt-tuning is998

also more efficient than fine-tuning, updating the999

parameters of only 100 prompt tokens vs. the full1000

220M parameters in the model.1001

Evaluation of Sequential Tasks When evaluat-1002

ing accuracies of sequential tasks (equation 1), note1003

that we must align words in the generated sequence1004

y′i with words in the ground-truth sequence yi.1005

However, this can be nontrivial, especially under1006

the setting where word and entity boundaries are1007

not explicitly generated by the model. We cannot1008

rely on whitespaces to segment words as a single1009

word can span multiple white-spaces; for example,1010

an entity Will Smith constitutes a single word.1011

Instead, given a ground-truth sequence of n words1012

(note ground-truth segmentations are present in the 1013

dataset), we optimize over all possible length-n 1014

segmentations of the generated sequence. 1015

C Compositionality Experiment: 1016

Additional Results 1017

Additional results for the compositionality experi- 1018

ment, including all composition functions, and the 1019

formula for the best-fit regression line in each case, 1020

are reported in Table 3. 1021

Note for the map task that under the explicit seg- 1022

mentation setting (+separators), full fine-tuning is 1023

the only training paradigm that doesn’t demonstrate 1024

compositional adaptability. This experiment is plot- 1025

ted in isolation in Figure 5. Note the distribution 1026

of points in the full fine-tuning case: for a signifi- 1027

cant number of tasks, the model seems to be able 1028

to adapt to their sequential versions despite fail- 1029

ing at their atomic version. This suggests that in 1030

these cases, the model does not simply adapt com- 1031

positionally, but can take advantage of additional 1032

information present in sequences (e.g., seeing more 1033

tokens, more examples of the word-level function) 1034

to outperform compositional adaptation. 1035

D Prediction distribution experiment: 1036

Additional details 1037

We adapt the model to the task ∪(fe, fh), construct- 1038

ing the training dataset for ∪(fe, fh) to be balanced 1039

— such that the model sees an equal number of ex- 1040

amples of form (x, fe(x)) as (x, fh(x)). 1041

Let M∪(fe,fh) denote a model adapted to 1042

this task. Note that the domains of ei- 1043

ther function are not always identical, for ex- 1044

ample the set of entities in the domain of 1045

political-party-of(x) (mostly politicians) is 1046

different from the set of entities in the domain of 1047

position-played-on-sports-team(x) (mostly 1048

athletes). We create a balanced training set by first 1049

taking all items in the intersection of both domains, 1050

then sampling an equal number number of items 1051

in either domain. Furthermore, to minimize the 1052

effect of the order seen during training, we shuffle 1053

the entire dataset after creating all example-label 1054

pairs. Thus on average, we would expect half the 1055

examples to have (x, fe(x)) preceding (x, fh(x)), 1056

and half to have (x, fe(x)) preceding (x, fh(x)). 1057

During test-time, we giveM∪(fe,fh) a novel in- 1058

put x′ and record the average probability mass it 1059

assigned to all yie ∈ fe(x
′) vs. all yih ∈ fh(x

′). 1060

Note we evaluate only on inputs x′ which are in the 1061

13



Figure 5: Compositionality of map function, when token separators are explicitly provided in the input and output.
All adaptation paradigms demonstrate compositionality except for full fine-tuning, where there seems to be a large
proportion of tasks for which the model can adapt to sequentially but not atomically.

domain of both fe and fh. Under the rare scenario1062

that a prediction is in both target tasks for a partic-1063

ular word (i.e. y is in both fe(x′) and fh(x′)), we1064

count that towards both tasks, and increment the1065

probability mass on either task by the probabilty1066

the model assigned to y.1067

Instead of averaging across outputs in either set1068

fe(x
′), fh(x

′), we also looked at the probabilities1069

assigned to highest-scoring predictions from each1070

set. The overall trends were similar: the model1071

tends to assign greater mass to the highest-scoring1072

prediction from the easier task compared to highest-1073

scoring prediction from the harder task.1074
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Function type Training type Avg. adaptability Optimal formula r2 value

Full Fine-tuning 37.43±3.18 1.27x+ 0.14 0.56
Chaining Full Prompt-tuning 22.37±3.03 1.32x+ 0.05 0.65
f2(f1) 32-shot Fine-tuning 18.59±2.21 1.34x+ 0.07 0.57

32-shot Prompt-tuning 18.19±2.21 1.32x+ 0.07 0.6

Full Fine-tuning 31.18±2.02 1.24x+ 0.02 0.73
Union Full Prompt-tuning 25.05±2.11 1.4x− 0.01 0.83
f2 ∪ f1 32-shot Fine-tuning 17.28±1.52 1.37x+ 0.02 0.8

32-shot Prompt-tuning 18.43±1.55 1.35x+ 0.02 0.8

Full Fine-tuning 43.31±22.42 2.25x− 0.12* 0.97*
Intersection Full Prompt-tuning 16.68±8.78 1.64x− 0.04* 0.98*
f2 ∩ f1 32-shot Fine-tuning 22.77±17.03 5.93x− 0.12* 0.91*

32-shot Prompt-tuning 25.91±19.38 6.81x− 0.12* 0.94*

Full Fine-tuning 78.39±2.53 2.15x− 0.85* 0.8*
Logical And Full Prompt-tuning 79.25±2.57 1.27x− 0.18* 0.58*
f1 ∧ f2 32-shot Fine-tuning 66.49±2.55 4.75x− 2.13* 0.88*

32-shot Prompt-tuning 55.86±1.22 0.48x+ 0.3* 0.05*

Full Fine-tuning 72.41±1.97 1.39x− 0.37* 0.54*
Logical Or Full Prompt-tuning 74.71±2.01 1.15x− 0.18* 0.48*
f1 ∨ f2 32-shot Fine-tuning 58.04±1.11 1.52x− 0.35* 0.63*

32-shot Prompt-tuning 53.91±0.48 0.8x+ 0.1* 0.33*

Full Fine-tuning 13.44±1.73 0.15x+ 0.09 0.03
Map Full Prompt-tuning 5.39±0.93 0.13x+ 0.03 0.07

map{λx.fM (x)} 32-shot Fine-tuning 3.59±0.70 0.21x+ 0.0 0.2
32-shot Prompt-tuning 3.77±0.85 0.3x− 0.01 0.29

Full Fine-tuning 67.40±2.51 0.49x+ 0.52 0.17
Map (+separators) Full Prompt-tuning 18.02±1.96 0.83x+ 0.02 0.64
map{λx.fM (x)} 32-shot Fine-tuning 10.66±1.34 0.79x− 0.01 0.86

32-shot Prompt-tuning 5.22±1.14 0.57x− 0.04 0.64

Full Fine-tuning 82.08±5.92 1.59x− 0.58* 0.95*
Filter Full Prompt-tuning 78.58±5.43 1.38x− 0.43* 0.95*

filter{λx.fF (x)} 32-shot Fine-tuning 38.39±3.27 0.81x− 0.24* 0.87*
32-shot Prompt-tuning 51.58±4.99 1.19x− 0.43* 0.87*

Table 3: We study the correlation between the atomic word-level functions and their compositions, under various
training paradigms. We train a linear regressor to predict a model’s generalization adaptability on a composite
function based on its adaptabilities on the atomic constituents. Finally, we report the average generalization adapt-
ability of composite tasks, for each training paradigm, under each type of composition.
* indicates composition function has less than 20 tasks, thus reported numbers may not be significant.
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Category Predicates Relations

Lexical is-POS-noun[eng] synonyms[eng] synonyms[spa]
is-POS-verb[eng] antonyms[eng] antonyms[spa]
is-POS-adjective[eng] hyponyms[eng] hyponyms[spa]
is-POS-adverb[eng] entailments[eng] entailments[spa]
is-sentiment-positive[eng] translate[eng->spa] translate[spa->eng]
is-sentiment-negative[eng]
is-sentiment-neutral[eng]

Factual is-instance-human child location[inv]
is-instance-film child[inv] manufacturer
is-instance-book continent member of political party
is-instance-city country of citizenship member of sports team
is-instance-taxon country of origin mother
is-occupation-actor country mother[inv]
is-occupation-politician creator named after
is-occupation-writer creator[inv] native language
is-occupation-journalist developer occupation
is-occupation-teacher diplomatic relation official language
is-occupation-composer father original language of film or TV show
is-birthplace-london father[inv] owned by
is-birthplace-nyc genre performer
is-birthplace-la has part place of birth
is-birthplace-buenosaires head of state place of death

head of state[inv] position held
influenced by position played on team
languages spoken written or signed record label
location sex or gender

Random random-seed0[eng] random-seed2[eng]
random-seed1[eng] random-seed3[eng]

Table 4: Full list of atomic tasks in TASKBENCH500. The content inside brackets specifies task input and output languages (eng for English and spa for Spanish). {inv}
indicates the task is inverted, e.g. creator takes creations as input and returns their creators, while creator{inv} takes creators as input and returns their creations.

Category Function Example Tasks Example Data

Chaining chain mother(head of state) Russia→ {Maria Ivanovna Putina}

Set Operations union union(mother, father) Elizabeth I of England→ {Anne Boleyn, Henry VIII of England}
intersection intersection(entailments[eng], synonyms[eng]) live→ {be, exist}

Logical Operations

land land(is-occupation-actor, is-birthplace-nyc) Anne Hathaway→ true

Brad Pitt→ false

Franklin Delano Roosevelt→ false

lor lor(is-birthplace-london, is-birthplace-nyc) Franklin Delano Roosevelt→ true

David Bekham→ true

Mao Zedong→ false

Sequential Operations map map{λx. synonyms[eng]}(S) criticality pillow delinquent culture eternity cling sane sentry→ {· · · , criticalness rest neglectful acculturation timelessness cohere reasonable spotter, · · · }
filter λx. filter{is-POS-noun[eng]}(S) expect inexpensive direct bones sullen breed switching eight→ {bones breed switching eight}

Table 5: Full list of composition functions used in TASKBENCH500, with examples.
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antonyms[eng](entailments[eng]) entailments[spa](antonyms[spa]) influenced by(creator) mother(creator) place of birth(influenced by)
antonyms[eng](hyponyms[eng]) entailments[spa](hyponyms[spa]) influenced by(father) mother(father) place of birth(named after)
antonyms[eng](translate[spa->eng]) father(creator) influenced by(influenced by) mother(head of state) place of death(influenced by)
antonyms[spa](hyponyms[spa]) father(father) influenced by(performer) mother(influenced by) place of death(named after)
child(influenced by) father(head of state) languages spoken written or signed(child) mother(mother) position held(influenced by)
child(named after) father(mother) languages spoken written or signed(influenced by) mother(named after) position held(mother)
child(owned by) father(named after) languages spoken written or signed(named after) mother(owned by) position played on team(father)
country of citizenship(child) hyponyms[eng](antonyms[eng]) member of political party(father) mother(performer) position played on team(named after)
country of citizenship(father) hyponyms[eng](entailments[eng]) member of political party(influenced by) named after(child) record label(child)
country of citizenship(mother) hyponyms[eng](translate[spa->eng]) member of political party(mother) named after(developer) record label(father)
entailments[eng](antonyms[eng]) hyponyms[spa](antonyms[spa]) member of political party(named after) named after(influenced by) record label(influenced by)
entailments[eng](hyponyms[eng]) hyponyms[spa](entailments[spa]) member of sports team(child) occupation(influenced by) record label(mother)
entailments[eng](translate[spa->eng]) influenced by(child) member of sports team(father) occupation(named after) translate[eng->spa](antonyms[eng])
entailments[spa](antonyms[spa]) influenced by(creator)

union(antonyms[eng], entailments[eng]) union(father, mother) union(place of death, position held)
union(antonyms[eng], hyponyms[eng]) union(hyponyms[eng], synonyms[eng]) union(place of death, position played on team)
union(antonyms[eng], synonyms[eng]) union(hyponyms[spa], synonyms[spa]) union(place of death, record label)
union(antonyms[spa], entailments[spa]) union(languages spoken written or signed, member of political party) union(random-seed0[eng], antonyms[eng])
union(antonyms[spa], hyponyms[spa]) union(languages spoken written or signed, mother) union(random-seed0[eng], entailments[eng])
union(antonyms[spa], synonyms[spa]) union(languages spoken written or signed, occupation) union(random-seed0[eng], hyponyms[eng])
union(child, father) union(languages spoken written or signed, place of birth) union(random-seed0[eng], synonyms[eng])
union(child, mother) union(languages spoken written or signed, position held) union(random-seed1[eng], antonyms[eng])
union(country of citizenship, languages spoken written or signed) union(languages spoken written or signed, position played on team) union(random-seed1[eng], entailments[eng])
union(country of citizenship, named after) union(languages spoken written or signed, record label) union(random-seed1[eng], hyponyms[eng])
union(country of citizenship, position held) union(member of political party, mother) union(random-seed1[eng], synonyms[eng])
union(country of citizenship, position played on team) union(member of political party, place of birth) union(random-seed2[eng], antonyms[eng])
union(creator, father) union(member of political party, record label) union(random-seed2[eng], entailments[eng])
union(creator, mother) union(member of sports team, mother) union(random-seed2[eng], hyponyms[eng])
union(entailments[eng], hyponyms[eng]) union(member of sports team, place of death) union(random-seed2[eng], synonyms[eng])
union(entailments[eng], synonyms[eng]) union(occupation, place of death) union(random-seed3[eng], antonyms[eng])
union(entailments[spa], hyponyms[spa]) union(place of birth, position held) union(random-seed3[eng], entailments[eng])
union(entailments[spa], synonyms[spa]) union(place of birth, position played on team) union(random-seed3[eng], hyponyms[eng])
union(father, influenced by) union(place of birth, record label) union(random-seed3[eng], synonyms[eng])

intersection(entailments[eng], synonyms[eng]) intersection(hyponyms[eng], synonyms[eng]) intersection(hyponyms[spa], synonyms[spa])

land(is-occupation-actor, is-birthplace-buenosaires) land(is-occupation-actor, is-birthplace-london) land(is-occupation-politician, is-birthplace-london)
land(is-occupation-actor, is-birthplace-la) land(is-occupation-actor, is-birthplace-nyc) land(is-occupation-politician, is-birthplace-nyc)

lor(is-birthplace-buenosaires, is-occupation-journalist) lor(is-birthplace-la, is-birthplace-london) lor(is-birthplace-nyc, is-birthplace-london) lor(is-occupation-actor, is-birthplace-la)
lor(is-birthplace-buenosaires, is-occupation-politician) lor(is-birthplace-london, is-occupation-teacher) lor(is-birthplace-nyc, is-occupation-actor) lor(is-occupation-actor, is-birthplace-nyc)
lor(is-birthplace-buenosaires, is-occupation-teacher) lor(is-birthplace-nyc, is-birthplace-buenosaires) lor(is-birthplace-nyc, is-occupation-politician) lor(is-occupation-journalist, is-birthplace-buenosaires)
lor(is-birthplace-la, is-birthplace-buenosaires) lor(is-birthplace-nyc, is-birthplace-la) lor(is-occupation-actor, is-birthplace-buenosaires) lor(is-occupation-politician, is-birthplace-buenosaires)
lor(is-birthplace-la, is-birthplace-london)

Table 6: Full list of word-level compositional tasks in TASKBENCH500, organized by composition type.
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map{λx. antonyms[eng](entailments[eng](x))} map{λx. languages spoken written or signed(child(x))} map{λx. translate[eng->spa](x)}
map{λx. antonyms[eng](hyponyms[eng](x))} map{λx. languages spoken written or signed(influenced by(x))} map{λx. translate[spa->eng](x)}
map{λx. antonyms[eng](translate[spa->eng](x))} map{λx. languages spoken written or signed(named after(x))} map{λx. union(antonyms[eng](x), entailments[eng](x))}
map{λx. antonyms[eng](x)} map{λx. languages spoken written or signed(x)} map{λx. union(antonyms[eng](x), hyponyms[eng](x))}
map{λx. antonyms[spa](entailments[spa](x))} map{λx. location(x)} map{λx. union(antonyms[eng](x), synonyms[eng](x))}
map{λx. antonyms[spa](hyponyms[spa](x))} map{λx. location[inv](x)} map{λx. union(antonyms[spa](x), entailments[spa](x))}
map{λx. antonyms[spa](x)} map{λx. manufacturer(x)} map{λx. union(antonyms[spa](x), hyponyms[spa](x))}
map{λx. child(influenced by(x))} map{λx. member of political party(father(x))} map{λx. union(antonyms[spa](x), synonyms[spa](x))}
map{λx. child(named after(x))} map{λx. member of political party(influenced by(x))} map{λx. union(child(x), father(x))}
map{λx. child(owned by(x))} map{λx. member of political party(mother(x))} map{λx. union(child(x), mother(x))}
map{λx. child[inv](x)} map{λx. member of political party(named after(x))} map{λx. union(child(x), named after(x))}
map{λx. continent(x)} map{λx. member of political party(x)} map{λx. union(country of citizenship(x), languages spoken written or signed(x))}
map{λx. country of citizenship(child(x))} map{λx. member of sports team(child(x))} map{λx. union(country of citizenship(x), named after(x))}
map{λx. country of citizenship(father(x))} map{λx. member of sports team(father(x))} map{λx. union(country of citizenship(x), position held(x))}
map{λx. country of citizenship(mother(x))} map{λx. member of sports team(influenced by(x))} map{λx. union(country of citizenship(x), position played on team(x))}
map{λx. country of citizenship(x)} map{λx. member of sports team(x)} map{λx. union(creator(x), father(x))}
map{λx. country of origin(x)} map{λx. mother(creator(x))} map{λx. union(creator(x), location(x))}
map{λx. country(x)} map{λx. mother(father(x))} map{λx. union(creator(x), mother(x))}
map{λx. creator(x)} map{λx. mother(head of state(x))} map{λx. union(entailments[eng](x), hyponyms[eng](x))(S)mapchild(x)}
map{λx. creator[inv](x)} map{λx. mother(influenced by(x))} map{λx. union(entailments[eng](x), synonyms[eng](x))}
map{λx. developer(x)} map{λx. mother(mother(x))} map{λx. union(entailments[spa](x), hyponyms[spa](x))}
map{λx. diplomatic relation(x)} map{λx. mother(named after(x))} map{λx. union(entailments[spa](x), synonyms[spa](x))}
map{λx. entailments[eng](antonyms[eng](x))} map{λx. mother(owned by(x))} map{λx. union(father(x), influenced by(x))}
map{λx. entailments[eng](hyponyms[eng](x))} map{λx. mother(performer(x))} map{λx. union(father(x), mother(x))}
map{λx. entailments[eng](translate[spa->eng](x))} map{λx. mother(x)} map{λx. union(father(x), named after(x))}
map{λx. entailments[eng](x)} map{λx. mother[inv](x)} map{λx. union(hyponyms[eng](x), synonyms[eng](x))}
map{λx. entailments[spa](antonyms[spa](x))} map{λx. named after(child(x))} map{λx. union(hyponyms[spa](x), synonyms[spa](x))}
map{λx. entailments[spa](hyponyms[spa](x))} map{λx. named after(creator(x))} map{λx. union(influenced by(x), mother(x))}
map{λx. entailments[spa](x)} map{λx. named after(developer(x))} map{λx. union(influenced by(x), named after(x))}
map{λx. father(creator(x))} map{λx. named after(father(x))} map{λx. union(languages spoken written or signed(x), member of political party(x))}
map{λx. father(father(x))} map{λx. named after(influenced by(x))} map{λx. union(languages spoken written or signed(x), member of sports team(x))}
map{λx. father(head of state(x))} map{λx. named after(x)} map{λx. union(languages spoken written or signed(x), mother(x))}
map{λx. father(mother(x))} map{λx. native language(x)} map{λx. union(languages spoken written or signed(x), occupation(x))}
map{λx. father(named after(x))} map{λx. occupation(influenced by(x))} map{λx. union(languages spoken written or signed(x), place of birth(x))}
map{λx. father(x)} map{λx. occupation(named after(x))} map{λx. union(languages spoken written or signed(x), position held(x))}
map{λx. father[inv](x)} map{λx. occupation(x)} map{λx. union(languages spoken written or signed(x), position played on team(x))}
map{λx. genre(x)} map{λx. official language(x)} map{λx. union(languages spoken written or signed(x), record label(x))}
map{λx. has part(x)} map{λx. original language of film or TV show(x)} map{λx. union(member of political party(x), mother(x))}
map{λx. head of state(x)} map{λx. owned by(x)} map{λx. union(member of political party(x), named after(x))}
map{λx. head of state[inv](x)} map{λx. performer(x)} map{λx. union(member of political party(x), place of birth(x))}
map{λx. hyponyms[eng](antonyms[eng](x))} map{λx. place of birth(influenced by(x))} map{λx. union(member of political party(x), record label(x))}
map{λx. hyponyms[eng](entailments[eng](x))} map{λx. place of birth(named after(x))} map{λx. union(member of sports team(x), mother(x))}
map{λx. hyponyms[eng](translate[spa->eng](x))} map{λx. place of birth(x)} map{λx. union(member of sports team(x), place of death(x))}
map{λx. hyponyms[eng](x)} map{λx. place of death(influenced by(x))} map{λx. union(member of sports team(x), record label(x))}
map{λx. hyponyms[spa](antonyms[spa](x))} map{λx. place of death(named after(x))} map{λx. union(mother(x), named after(x))}
map{λx. hyponyms[spa](entailments[spa](x))} map{λx. place of death(x)} map{λx. union(occupation(x), place of death(x))}
map{λx. hyponyms[spa](x)} map{λx. position held(influenced by(x))} map{λx. union(place of birth(x), position held(x))}
map{λx. influenced by(child(x))} map{λx. position held(mother(x))} map{λx. union(place of birth(x), position played on team(x))}
map{λx. influenced by(creator(x))} map{λx. position held(x)} map{λx. union(place of birth(x), record label(x))}
map{λx. influenced by(developer(x))} map{λx. position played on team(father(x))} map{λx. union(place of death(x), position held(x))}
map{λx. influenced by(father(x))} map{λx. position played on team(named after(x))} map{λx. union(place of death(x), position played on team(x))}
map{λx. influenced by(head of state(x))} map{λx. position played on team(x)} map{λx. union(place of death(x), record label(x))}
map{λx. influenced by(influenced by(x))} map{λx. random-seed0[eng](x)} map{λx. union(random-seed0[eng](x), antonyms[eng](x))}
map{λx. influenced by(owned by(x))} map{λx. random-seed1[eng](x)} map{λx. union(random-seed0[eng](x), entailments[eng](x))}
map{λx. influenced by(performer(x))} map{λx. random-seed2[eng](x)} map{λx. union(random-seed0[eng](x), hyponyms[eng](x))}
map{λx. influenced by(x)} map{λx. random-seed3[eng](x)} map{λx. union(random-seed0[eng](x), synonyms[eng](x))}
map{λx. intersection(antonyms[eng](x), entailments[eng](x))} map{λx. record label(child(x))} map{λx. union(random-seed1[eng](x), antonyms[eng](x))}
map{λx. intersection(antonyms[eng](x), hyponyms[eng](x))} map{λx. record label(father(x))} map{λx. union(random-seed1[eng](x), entailments[eng](x))}
map{λx. intersection(antonyms[eng](x), synonyms[eng](x))} map{λx. record label(influenced by(x))} map{λx. union(random-seed1[eng](x), hyponyms[eng](x))}
map{λx. intersection(antonyms[spa](x), entailments[spa](x))} map{λx. record label(mother(x))} map{λx. union(random-seed1[eng](x), synonyms[eng](x))}
map{λx. intersection(antonyms[spa](x), hyponyms[spa](x))} map{λx. record label(x)} map{λx. union(random-seed2[eng](x), antonyms[eng](x))}
map{λx. intersection(antonyms[spa](x), synonyms[spa](x))} map{λx. sex or gender(x)} map{λx. union(random-seed2[eng](x), entailments[eng](x))}
map{λx. intersection(entailments[eng](x), hyponyms[eng](x))} map{λx. subclass of(x)} map{λx. union(random-seed2[eng](x), hyponyms[eng](x))}
map{λx. intersection(entailments[eng](x), synonyms[eng](x))} map{λx. synonyms[eng](x)} map{λx. union(random-seed2[eng](x), synonyms[eng](x))}
map{λx. intersection(entailments[spa](x), hyponyms[spa](x))} map{λx. synonyms[spa](x)} map{λx. union(random-seed3[eng](x), antonyms[eng](x))}
map{λx. intersection(entailments[spa](x), synonyms[spa](x))} map{λx. translate[eng->spa](antonyms[eng](x))} map{λx. union(random-seed3[eng](x), entailments[eng](x))}
map{λx. intersection(hyponyms[eng](x), synonyms[eng](x))} map{λx. translate[eng->spa](entailments[eng](x))} map{λx. union(random-seed3[eng](x), hyponyms[eng](x))}
map{λx. intersection(hyponyms[spa](x), synonyms[spa](x))} map{λx. translate[eng->spa](hyponyms[eng](x))} map{λx. union(random-seed3[eng](x), synonyms[eng](x))}

Table 7: Full list of sequential compositional tasks in TASKBENCH500, organized by composition type.
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filter{λx. is-POS-adjective[eng](x)} filter{λx. is-POS-adverb[eng](x)} filter{λx. is-POS-noun[eng](x)} filter{λx. is-POS-verb[eng](x)} filter{λx. is-sentiment-negative[eng](x)}
filter{λx. is-POS-adverb[eng](x)} filter{λx. is-POS-noun[eng](x)}

map{λx. antonyms[eng](x)}(filter{λx. is-POS-adjective[eng](x)}) map{λx. random-seed0[eng](x)}(filter{λx. is-POS-adjective[eng](x)}) map{λx. random-seed3[eng](x)}(filter{λx. is-POS-adjective[eng](x)})
map{λx. antonyms[eng](x)}(filter{λx. is-POS-adverb[eng](x)}) map{λx. random-seed0[eng](x)}(filter{λx. is-POS-adverb[eng](x)}) map{λx. random-seed3[eng](x)}(filter{λx. is-POS-adverb[eng](x)})
map{λx. antonyms[eng](x)}(filter{λx. is-POS-noun[eng](x)}) map{λx. random-seed0[eng](x)}(filter{λx. is-POS-noun[eng](x)}) map{λx. random-seed3[eng](x)}(filter{λx. is-POS-noun[eng](x)})
map{λx. antonyms[eng](x)}(filter{λx. is-POS-verb[eng](x)}) map{λx. random-seed0[eng](x)}(filter{λx. is-POS-verb[eng](x)}) map{λx. random-seed3[eng](x)}(filter{λx. is-POS-verb[eng](x)})
map{λx. antonyms[eng](x)}(filter{λx. is-sentiment-negative[eng](x)}) map{λx. random-seed0[eng](x)}(filter{λx. is-sentiment-negative[eng](x)}) map{λx. random-seed3[eng](x)}(filter{λx. is-sentiment-negative[eng](x)})
map{λx. antonyms[eng](x)}(filter{λx. is-sentiment-neutral[eng](x)}) map{λx. random-seed0[eng](x)}(filter{λx. is-sentiment-neutral[eng](x)}) map{λx. random-seed3[eng](x)}(filter{λx. is-sentiment-neutral[eng](x)})
map{λx. antonyms[eng](x)}(filter{λx. is-sentiment-positive[eng](x)}) map{λx. random-seed0[eng](x)}(filter{λx. is-sentiment-positive[eng](x)}) map{λx. random-seed3[eng](x)}(filter{λx. is-sentiment-positive[eng](x)})
map{λx. entailments[eng](x)}(filter{λx. is-POS-adjective[eng](x)}) map{λx. random-seed1[eng](x)}(filter{λx. is-POS-adjective[eng](x)}) map{λx. synonyms[eng](x)}(filter{λx. is-POS-adjective[eng](x)})
map{λx. entailments[eng](x)}(filter{λx. is-POS-adverb[eng](x)}) map{λx. random-seed1[eng](x)}(filter{λx. is-POS-adverb[eng](x)}) map{λx. synonyms[eng](x)}(filter{λx. is-POS-adverb[eng](x)})
map{λx. entailments[eng](x)}(filter{λx. is-POS-noun[eng](x)}) map{λx. random-seed1[eng](x)}(filter{λx. is-POS-noun[eng](x)}) map{λx. synonyms[eng](x)}(filter{λx. is-POS-noun[eng](x)})
map{λx. entailments[eng](x)}(filter{λx. is-POS-verb[eng](x)}) map{λx. random-seed1[eng](x)}(filter{λx. is-POS-verb[eng](x)}) map{λx. synonyms[eng](x)}(filter{λx. is-POS-verb[eng](x)})
map{λx. entailments[eng](x)}(filter{λx. is-sentiment-negative[eng](x)}) map{λx. random-seed1[eng](x)}(filter{λx. is-sentiment-negative[eng](x)}) map{λx. synonyms[eng](x)}(filter{λx. is-sentiment-negative[eng](x)})
map{λx. entailments[eng](x)}(filter{λx. is-sentiment-neutral[eng](x)}) map{λx. random-seed1[eng](x)}(filter{λx. is-sentiment-neutral[eng](x)}) map{λx. synonyms[eng](x)}(filter{λx. is-sentiment-neutral[eng](x)})
map{λx. entailments[eng](x)}(filter{λx. is-sentiment-positive[eng](x)}) map{λx. random-seed1[eng](x)}(filter{λx. is-sentiment-positive[eng](x)}) map{λx. synonyms[eng](x)}(filter{λx. is-sentiment-positive[eng](x)})
map{λx. hyponyms[eng](x)}(filter{λx. is-POS-adjective[eng](x)}) map{λx. random-seed2[eng](x)}(filter{λx. is-POS-adjective[eng](x)}) map{λx. translate[eng->spa](x)}(filter{λx. is-POS-adjective[eng](x)})
map{λx. hyponyms[eng](x)}(filter{λx. is-POS-adverb[eng](x)}) map{λx. random-seed2[eng](x)}(filter{λx. is-POS-adverb[eng](x)}) map{λx. translate[eng->spa](x)}(filter{λx. is-POS-adverb[eng](x)})
map{λx. hyponyms[eng](x)}(filter{λx. is-POS-noun[eng](x)}) map{λx. random-seed2[eng](x)}(filter{λx. is-POS-noun[eng](x)}) map{λx. translate[eng->spa](x)}(filter{λx. is-POS-noun[eng](x)})
map{λx. hyponyms[eng](x)}(filter{λx. is-POS-verb[eng](x)}) map{λx. random-seed2[eng](x)}(filter{λx. is-POS-verb[eng](x)}) map{λx. translate[eng->spa](x)}(filter{λx. is-POS-verb[eng](x)})
map{λx. hyponyms[eng](x)}(filter{λx. is-sentiment-negative[eng](x)}) map{λx. random-seed2[eng](x)}(filter{λx. is-sentiment-negative[eng](x)}) map{λx. translate[eng->spa](x)}(filter{λx. is-sentiment-negative[eng](x)})
map{λx. hyponyms[eng](x)}(filter{λx. is-sentiment-neutral[eng](x)}) map{λx. random-seed2[eng](x)}(filter{λx. is-sentiment-neutral[eng](x)}) map{λx. translate[eng->spa](x)}(filter{λx. is-sentiment-neutral[eng](x)})
map{λx. hyponyms[eng](x)}(filter{λx. is-sentiment-positive[eng](x)}) map{λx. random-seed2[eng](x)}(filter{λx. is-sentiment-positive[eng](x)}) map{λx. translate[eng->spa](x)}(filter{λx. is-sentiment-positive[eng](x)})

Table 8: Full list of sequential compositional tasks in TASKBENCH500, organized by composition type (continued from previous page).
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