
AdaGrid: Adaptive Grid Search
for Link Prediction Training Objective

Anonymous Author(s)
Affiliation
Address
email

Abstract

One of the most important factors which contribute to the success of a machine1

learning model is a good training objective. Training objective crucially influences2

a model’s performance and generalization capabilities. The automated process3

of designing a good training objective involves optimizing a machine learning4

process, therefore can be viewed as a meta-learning problem. In this paper, we5

specifically focus on graph neural network training objectives for link prediction,6

which has not been explored in the existing literature. Here, the training objective7

includes, among others, training mode, negative sampling strategy, and various8

hyperparameters, such as edge message ratio. Commonly, these hyperparame-9

ters are fine-tuned by complete grid search, which is very time-consuming and10

model-dependent. To mitigate these limitations, we propose Adaptive Grid Search11

(AdaGrid), which dynamically adjusts the edge message ratio during training. It is12

model agnostic and highly scalable with a fully customizable computational budget.13

Through extensive experiments, we show that AdaGrid can boost the performance14

of the models up to 1.9%, while can be nine times more efficient than a complete15

search. Overall, AdaGrid represents an effective automated algorithm for designing16

machine learning training objectives.17

1 Introduction18

Link prediction is one of the most important tasks on graph-structured data. For a given pair of19

entities, the goal of link prediction is predicting whether they are going to interact. Applications20

of link prediction are found in various fields, such as social networks, recommender systems, and21

biology. There have been many strategies to cope with the link prediction task [19], where the state-22

of-the-art approaches use Graph Neural Networks (GNNs) [12, 10, 36]. GNNs capture dependencies23

via message passing between the nodes of graphs and are suitable for various graph-related tasks.24

To train GNNs, an appropriate training objective has to be selected, which includes choice of the25

objective function, evaluation metric, and training strategy.26

The automated process of designing a good training objective involves optimizing a machine learning27

process, therefore can be viewed as a meta-learning problem. In this paper, we specifically focus28

on graph neural network training objectives for link prediction, which has not been explored in29

the existing literature. Here, link prediction training objectives encompass training mode, negative30

sampling strategy, and hyperparameters such as edge message ratio; they crucially influence the31

performance of a model and its generalization capabilities on the link prediction task, so they have32

to be chosen carefully. Notably, setting an appropriate edge message ratio is notoriously hard since33

there are many relevant factors that determine the optimal edge message ratio: data split ratio, model34

configuration, the average clustering coefficient of the network, and the average shortest path length35

of the network.36
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The standard approach to fine-tune link prediction objectives is a complete search over some hyperpa-37

rameter space [37, 29]. Complete search trains more models for full epochs, each with a different edge38

message ratio from a set of predefined values, and selects the one with the maximal final validation39

AUC. Even though it exhaustively searches hyperparameter space, which is very time-consuming, it40

still obtains non-optimal performance. To make matters worse, even when the configuration of the41

model slightly changes, a complete search has to be repeated.42

In this paper, we propose Adaptive Grid Search (AdaGrid) which adjusts edge message ratio during43

training to each specific model and dataset, therefore alleviates the above-mentioned limitations.44

AdaGrid is model agnostic and highly scalable with a fully customizable computational budget.45

Through extensive experiments, we show that AdaGrid can boost the performance of the models46

up to 1.9%, while can be nine times more efficient than a complete search. We also propose a new47

negative sampling strategy, which is based on the community structure of the network. Unlike the48

standard uniform negative sampling, it samples more difficult negative instances and prevents abuse49

of community structure of networks.50

Our key contributions include: (1) We define GNN training modes for link prediction. (2) We explore51

the GNN training objective for link prediction. (3) We propose Adaptive Grid Search (AdaGrid),52

which resolves limitations of complete search. (4) We introduce community ratio-based negative53

sampling, which samples more difficult negative instances and prevents the abuse of the community54

structure of networks.55

2 Related Work56

Central to our research are graph neural network models, to which we tailor training objectives for57

the link prediction tasks. Thus, we provide a brief overview of general graph neural networks and58

their application to link prediction tasks.59

General graph neural networks In recent years, numerous graph neural network (GNN) models60

have been proposed. Some of them are inspired by convolutional neural networks [3, 6, 7, 10, 12,61

25, 15, 21, 28], recurrent neural networks [16, 31], recursive neural networks [2, 8], and loopy62

belief propagation [5]. The majority of these approaches can be united under the Graph Network63

framework proposed by Battaglia et al. [1]. In the Graph Network framework, a GNN is considered64

as a message-passing algorithm, where representations of nodes, edges, and the global attribute are65

iteratively updated from neighboring nodes, edges, and the global attribute using a differentiable,66

order-invariant aggregation function. A recent extensive overview of recent GNN models, general67

design pipeline for constructing such models and their applications is provided by Zhou et al. [36].68

Link prediction with graph neural networks GNNs have been applied to a wide variety of tasks,69

including, but not limited to, node classification [10, 12], link prediction [22], graph classification70

[5, 7, 35], and chemoinformatics [20, 18, 9, 11]. In the context of link prediction, a few approaches71

have been introduced recently [14]. Schlichtkrul et al. [22] proposed a relational graph convolutional72

neural network model (R-GCN) which incorporates GCN [12] as the building block to model73

relational data, knowledge graph in particular. It encodes nodes such that a node’s latent representation74

depends on all neighboring nodes as well as the node itself. Kipf et al. [13] introduced a variational75

graph autoencoder (VGAE) framework that learns latent representation on graph-structured data. The76

encoder part, based on GCNs, embeds nodes in latent space, then, the decoder part tries to reconstruct77

the adjacency matrix of the graph by the inner product of latent representations. Zhang et al. [32]78

proposed a novel framework called Weisfeiler-Lehman Neural Machine (WLNM), which is based79

on the Weisfeiler-Lehman algorithm that labels nodes of the graph according to the topology of the80

underlying graph. For each prospective node pair, WNLM extracts a subgraph in their neighborhood81

and encodes it as an adjacency matrix. Based on these adjacency matrices, WLNM then trains a82

classifier. Furthermore, Zhang et al. [33] introduced SEAL, a new heuristic learning paradigm, which83

captures first, second, and higher-order structural information in the form of local subgraphs. It84

unifies local subgraph, embedding, and attribute information using the graph convolutional network.85

Although numerous approaches for link prediction with GNN models have been proposed, their86

training objective is usually vaguely specified. This inspired us to define graph neural network87

training objectives for link prediction and research their properties.88
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3 Preliminaries89

We represent graph as G = (V,E), where V = {v1, . . . , vn} is the node set and E ⊆ V × V is the90

edge set. Nodes can be paired with features X = {xv : v ∈ V }. Given a set of of labeled node pairs91

D = {(u1, v1, y1), (u2, v2, y2), . . . }, where yi denotes presence/absence of the edge between the92

node pair (ui, vi) ∈ V × V , the goal of link prediction is to learn a mapping f : V × V → {0, 1}93

that for a given pair of nodes predicts whether they are likely to be connected by an edge.94

Graph neural networks In this paper we approach the link prediction problem by message passing95

GNNs [27]. The goal of GNNs is to learn meaningful node embeddings hv, which are based on96

iterative aggregation of local neighborhoods and should be informative for the task in question. The97

k-th iteration/layer of message passing can be written as [30]:98

m(k)
u = MSG(k)(h(k−1)

u ), (1)

h(k)v = AGG(k)({m(k)
u , u ∈ N (v)}, h(k−1)

v ), (2)

where h(k)v is the node embedding after k iterations, h0v = xv , m(k)
v is message embedding, andN (v)99

is the local neighborhood of node v. Definitions of MSG(k)(·) and AGG(k)(·) depend on version of100

the GNN. The final node embeddings hv = h
(K)
v can be then used for various node, edge, and graph101

level tasks. In the case of link prediction, the embeddings can be optimized so that the following102

equation resembles the probability of an edge between nodes u and v:103

P ((u, v) ∈ E) = σ (hu · hv) , (3)

where σ represents sigmoid function and · denotes dot product.104

Standard learning-based link prediction experimental setting Learning-based link prediction105

task is frequently formulated as binary classification, where potential edges are classified as true or106

false. The standard learning-based link prediction setting [33] first splits the graph’s edge set E into a107

training set, validation set, and test set. The ratio between the cardinalities of these sets is called split108

ratio (i.e. training/validation/test split ratio or training/validation split ratio). For link prediction using109

GNN models, each set of edges have to be further divided into message-passing edges and objective110

edges. Message-passing edges are used for the propagation of information between nodes, while111

loss is calculated based on objective edges. During the evaluation of the model’s performance, all112

validation and test edges are used only for the estimation of loss. For propagation of information,113

validation utilizes training message-passing edges, while testing exploits all training and validation114

edges. So far, objective edges comprise only of edges, which are present in the graph – they are115

positive instances or positive edges for the link prediction task. Therefore, the node pairs that are116

not connected by an edge are required for a fair binary classification task. These so-called negative117

instances or negative edges are usually obtained by uniformly randomly sampling nonexistent edges118

(unconnected node pairs). The standard learning-based link prediction setting samples negative119

instances until each set of objective edges is balanced – there is the same number of positive and120

negative instances.121

Training objective for link prediction When training a machine learning model, one has to specify122

model evaluation function, objective function for optimization, as well as strategy how to use the123

available data. All of these components are captured under the term training objective. Models124

are usually evaluated by different metrics, while optimization is performed based on loss functions.125

On the other hand, strategies define how data is split, which instances are presented to the model126

in which epoch, how to sample negative instances, and so on. In the case of link prediction using127

GNNs, the latter includes also the choice of appropriate training mode, edge message ratio, and128

negative sampling. While evaluation and objective functions are well studied, not much attention has129

been given to training objective strategies. Therefore, we provide the first categorization of different130

training modes, which are also supported by DeepSNAP [24] – a popular network library for GNNs.131

Training modes For link prediction using GNN models, edges have to be split into message-passing132

edges and objective edges. This split can be performed in different ways, each corresponding to a133

different training mode. We recognize two main training modes for link prediction: all mode and134

disjoint mode. The all mode exploits the whole edge set for message passing and calculation135
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of loss, so each edge is used for propagation of information as well as for updating weights of the136

model. Such training mode is employed by graph autoencoders [13]. However, prior researchers have137

identified shortcomings of the autoencoder approaches [34]: The setup potentially leads to overfitting138

of the GNN model, since the model is never asked to predict edges that are not part of input, and thus139

tend to only memorize the message-passing edges. The disjoint mode resolves this by dividing140

edges in a set for message passing, which is disjoint from the set of objective edges. In this case, each141

edge belongs to only one of the roles. Consequentially, disjoint mode introduces an additional142

hyperparameter – edge message ratio, which control the proportion of message-passing edges. For143

instance, if there are 70 message-passing edges and 30 objective edges, the edge message ratio equals144

to 0.7. Normally, the split into objective and message-passing edges is performed prior to the training.145

Nevertheless, there exists an extension to the disjoint mode – the resample disjoint mode,146

which resamples both sets every fixed number of epochs to allow training to take full advantage of all147

edges for both purposes.148

4 Proposed Method: Adaptive Grid Search (AdaGrid)149

The key idea behind our approach is that we dynamically adapt training objectives during training150

to each configuration of the model and each dataset. We first compare training modes, highlight151

limitations of training objective, and expose disadvantages of complete search, which is the standard152

approach for selection of GNN training objective for link prediction (Section 4.1). We then propose153

Adaptive Grid Search (AdaGrid), which resolves drawbacks of complete search (Section 4.2). At the154

end, we introduce a novel negative sampling method, which takes into consideration the community155

structure of the network and creates more challenging negative instances (Section 4.3).156

4.1 Limitations of Training Objective157

We first compare training modes to establish which one yields the best results. As is shown in158

Appendix C.1, the resample disjoint mode consistently outperforms the all mode and the159

vanilla disjoint mode according to final validation AUC. However, additional experiments disclose160

that the resample disjoint mode is superior only when combined with an appropriate edge161

message ratio. Selection of bad edge message ratio results in performance considerably worse than162

the all mode. So the resample disjoint mode improves the model but in exchange for some163

extra work with an additional hyperparameter tuning. This suggests that the edge message ratio has164

to be fine-tuned carefully. The most straightforward and standard approach is to do a complete search165

on some predefined values, but this is very time-consuming. Based on the above observations, it is166

beneficial to estimate a good edge message ratio quickly. However, it turns out that the edge message167

ratio is notoriously hard to set. Appendix C.2 illustrates that there are no patterns that depend on: data168

split ratio, model configuration, the average clustering coefficient of the network, and the average169

shortest path length of the network.170

Complete search Since a good training objective is specific to each configuration of the model and171

dataset, the standard approach to finding a good edge message ratio is a complete search over some172

predefined set of values Q with cardinality L = |Q| [29]. Complete search is very time-consuming173

and computationally demanding because the model has to be trained multiple times with different174

edge message ratios. A possible speedup is to train each version of the model only for part of all175

epochs and then take the one which performs best at that time. This relaxation assumes that the176

best model is already evident before all models are trained for full epochs. While this seems as an177

adequate solution, there are still certain limitations. Even by slightly changing the configuration of178

the model, the optimal edge message ratio changes and complete search has to be repeated, which is179

extremely inconvenient. Another, possible false, assumption of this approach is that the optimal edge180

message ratio does not change during training. To resolve these drawbacks of the standard approach,181

we propose Adaptive Grid Search (AdaGrid).182

4.2 Adaptive Grid Search (AdaGrid)183

Description The key feature of AdaGrid is its ability to adapt edge message ratio during training to184

each configuration of the model and each dataset. AdaGrid changes the edge message ratio every185

adapt_epochs. Then, it trains L copies of the model with different edge message ratios in parallel,186

where each copy is trained for try_epochs. A set of predefined edge message ratios Q which are187

taken into consideration can be chosen according to preference. After try_epochs of training, the188
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edge message ratio is selected based on one of two possible criteria: validation criterion and gap189

criterion. The validation criterion selects the edge message ratio which corresponds to the model with190

the highest final validation AUC. Since sometimes validation AUC is a bit unstable during training191

also smoothing can be performed – instead of the final validation AUC, rather average of a few last192

validation AUCs is taken. On the other hand, the gap criterion chooses the edge message ratio of the193

model with minimal absolute difference between the final training and validation AUC. Analogously,194

also gap criterion can utilize smoothing. One of the main upsides of AdaGrid is its flexibility since195

it can be adjusted to each application separately. The adapt_epochs and the try_epochs regulate196

training time, while selection criterion and set of considered edge message ratios Q can be tailored to197

each specific task.198

Computational budget of AdaGrid By setting the adapt_epochs and the try_epochs appropri-199

ately, AdaGrid’s computational budget can be fully customizable. If model is trained for full_epochs200

and L edge message ratios are considered, overall number of training epochs of AdaGrid is:201

number of epochs = full_epochs ·
(
1 +

(L− 1) · try_epochs
adapt_epochs

)
, (4)

while complete search requires:202

number of epochs = full_epochs · L. (5)
For instance, if try_epochs = adapt_epochs both required the same number of epochs, while if203

try_epochs = 5, adapt_epochs = 50, and L = 9, AdaGrid needs five times fewer training epochs.204

4.3 Community Ratio-based Negative Sampling205

Uniform negative sampling seems to be an appropriate approach for obtaining negative instances,206

however, after careful analysis, it turns out that these instances are rather simple negative examples207

for link prediction. A lot of networks inherently display some kind of community structure – the208

network can be partitioned into disjoint communities so that connections within communities are209

denser than the connections with the rest of the network. Let us define edges that have both endpoints210

in the same community as the within community edges, and edges that have endpoints in the different211

communities as the between communities edges.212

Limitations of uniform negative sampling In Appendix B.1, we have theoretically shown that,213

under certain assumptions, uniform negative sampling yields mostly between community edges. The214

same findings are confirmed empirically in Appendix B.2. This can be exploited by a naive model215

which does not even consider nodes’ features to perform unfairly well. By always predicting there is216

an edge between u and v for node pairs from the same community, and always predicting there is not217

one for node pairs from different communities, classification accuracy far beyond baseline 0.5 can be218

obtained.219

Community ratio-based negative sampling To improve uniform negative sampling, we propose220

a negative sampling which also considers the community structure of the network. First, let us221

define community ratio as the proportion of node pairs with nodes from the same community. Our222

community ratio-based negative sampling obtains negative edges in such a way that sets of negative223

and positive instances can not be distinguished based on community ratio. It first performs community224

detection on the graph with all training edges, then it measures the community ratio on validation225

edges. Afterward, negative instances for all three sets are sampled in compliance with the gauged226

community ratio. Our approach is beneficial because community structure can not be abused anymore.227

At the same time, it generates more challenging negative instances, which can better differentiate the228

performance of models.229

5 Experiments230

We test the performance of AdaGrid on various model configurations, datasets, data split ratios,231

negative sampling strategies, and hyperparameter settings of AdaGrid. Firstly, we describe datasets,232

the model configuration used in experiments, baselines against which AdaGrid is compared, and233

experimental set-up. In Section 5.1, we interpret the results of AdaGrid on the standard uniform234

negative sampling setting, while Section 5.2 explains the benefits of both, community ratio-based235

negative sampling and AdaGrid. In the end, in Section 5.3 we unfold why AdaGrid performs better236

than the baselines.237
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Table 1: AUC in percent for AdaGrid, complete search, and random search with uniform negative
sampling evaluation. Model has K = 2, o = 64, and is trained in the resample disjoint mode.

Datasets
Cora CiteSeer

Methods 20/40/40 50/25/25 80/10/10 20/40/40 50/25/25 80/10/10

Complete search 94.85 96.65 97.17 95.84 97.78 98.46
Random search 94.71 96.40 97.02 95.88 97.67 98.45

AdaGrid
adapt_epochs try_epochs

100 1 95.03 96.89 97.54 95.96 97.82 98.69
100 5 95.03 96.87 97.63 95.91 97.80 98.64
100 100 94.93 96.98 97.59 95.97 97.79 98.67
50 1 95.01 96.98 97.68 95.94 97.81 98.72
50 5 95.05 97.04 97.75 95.87 97.81 98.68
50 50 95.03 97.06 97.76 95.97 97.83 98.71
10 1 95.01 97.07 97.90 95.79 97.89 98.70
10 5 95.14 97.10 97.83 95.81 97.83 98.71
10 10 95.10 97.09 97.86 95.94 97.88 98.71

Gain 0.29 0.45 0.73 0.09 0.11 0.26

Datasets All experiments in the paper are conducted on Cora and CiteSeer datasets [23]. Addition-238

ally, limitations of training objective experiments use also the PubMed dataset [23]. All three datasets239

are well-known citation networks (additional details are available in the Appendix A).240

Model configuration Experiments were conducted using the following model configuration. Our241

model consists ofK GCN layers applied sequentially, where before each GCN layer there is a dropout242

of 0.2, and after each layer but the last there is a ReLU activation. As input it accepts nodes’ features243

h
(0)
v = xv ∈ Rd and it outputs final hidden representations hv = h

(K)
v ∈ Ro. All intermediate244

hidden representations have the same dimensionality as the final representation: h(i)v ∈ Ro for245

i = 1, 2, . . . ,K − 1. The model predicts the probability of an edge between nodes u and v according246

to Equation (3). In experiments, d depends solely on the dimensionality of the graph’s features, while247

o is a hyperparameter. The model is always trained for 500 epochs using binary cross-entropy as248

loss function, however, the quality of the model is rather measured by AUC metric. Its parameters249

are optimized by stochastic gradient descent (SGD) with the learning rate of 0.1, the momentum of250

0.9, and the weight decay of 5 · 10−4. During training, a cosine annealing [17] schedule is used for251

alternation of the learning rate.252

Baselines To contextualize the empirical results of our approach, we compare AdaGrid against two253

baselines: complete search and random search. Complete search trains more models for full epochs,254

each with a different edge message ratio from a set of predefined values, and selects the one with the255

maximal final validation AUC. It exhaustively searches hyperparameter space, which makes it very256

time-consuming. It also does not change the edge message ratio during training. On the other hand,257

random search modifies edge message ratio to a random value from [0.1, 0.9] interval after every258

training epoch. This makes it very fast, however, different edge message ratios are not inspected. We259

show that both baselines perform inferior to AdaGrid: complete search has static edge message ratio260

and is slow, while random search does not explore edge message ratio space.261

Experimental set-up When comparing AdaGrid with the standard complete search and random262

search, we are interested principally in absolute performance and the trade-off between training time263

and performance. Experiments are systematically conducted over various settings, which include264

different model configurations, datasets, data split ratios, and negative samplings. We use Cora and265

CiteSeer datasets. To get more representative results we test the model with two configurations:266

K = 2, o = 64 and K = 3, o = 128. The model is always trained in the resample disjoint267

mode, however, data is every time divided according to other split ratios: 20/40/40, 50/25/25, and268

80/10/10. Models are trained and evaluated using the standard uniform sampling as well as commu-269

nity ratio-based negative sampling, proposed in Section 4.3. In a community ratio-based negative270

sampling setting, community detection is performed using the Clauset-Newman-Moore greedy modu-271
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Table 2: AUC in percent for AdaGrid, complete search, and random search with community ratio-
based negative sampling evaluation. Model has K = 2, o = 64, and is trained in the resample
disjoint mode.

Datasets
Cora CiteSeer

Methods 20/40/40 50/25/25 80/10/10 20/40/40 50/25/25 80/10/10

Complete search 84.01 82.98 84.62 83.87 82.22 83.96
Random search 84.00 82.05 83.82 83.87 82.61 83.65

AdaGrid
adapt_epochs try_epochs

100 1 84.35 83.05 85.27 84.01 83.20 84.58
100 5 84.52 82.88 85.43 83.92 82.86 84.34
100 100 84.49 83.61 85.57 84.00 83.12 84.75
50 1 84.51 83.48 86.02 83.88 83.11 84.79
50 5 84.59 83.56 85.98 83.90 82.94 84.84
50 50 84.59 83.74 85.74 84.00 82.99 84.81
10 1 84.49 83.69 86.27 83.65 83.11 84.90
10 5 84.65 83.82 86.54 83.75 83.37 84.89
10 10 84.59 84.07 86.56 83.94 83.04 84.83

Gain 0.64 1.09 1.94 0.14 0.76 0.94

larity maximization algorithm [4]. AdaGrid and complete search both consider only the following set272

of edge message ratios: Q = {0.1, 0.2, . . . , 0.9}. To examine power of AdaGrid, it is assessed with273

various configurations of (adapt_epochs, try_epochs) ∈ {10, 50, 100}×{1, 5, adapt_epochs} and274

both criteria from Section 4.2. Both criteria utilize smoothing. The selection criterion is considered275

a hyperparameter of AdaGrid, so we present results for the better of the two. Each experiment is276

repeated three times to mitigate the effect of randomness and the average performance is reported.277

5.1 AdaGrid and Uniform Negative Sampling278

We first evaluate AdaGrid on a uniform negative sampling setting, because this is the standard279

approach for link prediction. Table 1 contains results of AdaGrid and baselines on K = 2 and o = 64280

model configuration, however, K = 3 and o = 128 displays similar performance. The table shows281

that AdaGrid consistently performs better than the best baseline approach, no matter its configuration.282

Improvement of more than 0.7% is especially evident for the 80/10/10 split ratio, which is the most283

similar to the usual experimental data splits. Another crucial aspect of AdaGrid is its adjustability in284

terms of computational budget. Even when AdaGrid is trained for considerably fewer training epochs285

than complete search, it constantly performs better than the best baseline approach. If AdaGrid is286

trained with adapt_epochs = 10 and try_epochs = 1, it requires almost five times fewer epochs287

than a complete search and twice as many as a random search, while it can surpass both for more than288

0.7%. AdaGrid even outperforms both of them, when adapt_epochs = 100 and try_epochs = 1.289

In this case, AdaGrid is about nine times faster than a complete search and is computationally290

almost equivalent to the training of a single model. When decreasing the number of try_epochs, the291

performance also slowly decreases, however, a similar performance can be obtained in only a fraction292

of computational time. This can be particularly useful for huge models.293

5.2 AdaGrid and Community Ratio-based Negative Sampling294

We also evaluate AdaGrid on the proposed community ratio-based negative sampling setting to295

display its advantages, as well as advantages of AdaGrid. Table 2 shows that AdaGrid nearly always296

performs better than the best baseline approach, regardless of its configuration. By comparing297

results of negative sampling strategies, it is evident that community ratio-based negative sampling298

creates a more challenging evaluation setting since AUC scores are considerably lower. It also better299

differentiates the performance of models, because gains of AdaGrid are always bigger than the ones300

of uniform negative sampling. Especially outstanding is the gain of more than 1.9%, which again301

confirms the benefits of AdaGrid.302
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Figure 1: Edge message ratio during training, regulated by validation criterion and gap criterion.
Model has K = 2 and o = 64. It is trained on CiteSeer with 80/10/10 split ratio in the resample
disjoint mode.

5.3 AdaGrid and Edge Message Ratio303

We have investigated the properties of AdaGrid, which could explain its improvement of performance.304

The success of AdaGrid probably stems from its ability to change edge message ratio during training305

in an informed way. According to Figure 1 AdaGrid modifies edge message ratio almost every306

adapt_epochs in conjunction with both criteria. Additionally, Tables 1 and 2 show that AdaGrid307

performs better with a lower number of adapt_epochs – it is beneficial to be capable of changing308

edge message ratio more frequently. Therefore, complete search results in non-optimal performance,309

because it assumes the edge message ratio is static. On the other hand, random search does not310

explore edge message ratio space, so it incorrectly alters it.311

6 Conclusion312

The aim of the paper is to explore graph neural network training objectives for link prediction. We first313

propose community-based negative sampling, which is fairer and harder than the standard uniform314

negative sampling. It makes distributions of negative and positive instances indistinguishable based315

only on community ratio, as well as disables some naive models which rely solely on community316

detection algorithms. We also show that it is very hard to find a suitable training objective, since it is317

specific to each dataset and model configuration. To diminish the inconvenience of edge message318

ratio fine-tuning, we propose AdaGrid, which adapts edge message ratio “on-the-fly” during training319

and overcomes limitations of complete search. It is model agnostic and has a fully customizable com-320

putational budget. More importantly, AdaGrid can also reduce training time and boost performance321

at once. It can improve the performance of the models up to 1.9%, while can be nine times more322

efficient than a complete search.323

Future work Since AdaGrid performs well on link prediction, it would be interesting to apply324

AdaGrid to other graph learning tasks. Due to its generality, it would be suitable even for other deep325

learning tasks. Instead of edge message ratio, AdaGrid can optimize any parameter which can be326

dynamically changed during training. To even further speed up AdaGrid, instead of considering327

all edge message ratios only those which are adjacent to the current one can be considered during328

adaptation phases. Another intriguing idea is to eliminate a predefined set of values from which edge329

message ratios are selected. By locally interpolating validation AUCs near the current edge message330

ratio, a new edge message ratio can be chosen so that it maximizes validation AUC.331
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A Dataset Details441

Cora Cora dataset [23] consists of 2708 scientific publications from Cora and 5429 citation links.442

Each scientific publication belongs to one of the seven classes and is described by a binary-valued443

word vector, which indicates the absence/presence of the corresponding words from the dictionary.444

The dictionary contains 1433 unique words.445

CiteSeer CiteSeer dataset [23] consists of 3312 scientific publications from CiteSeer and 4732446

citation links. Each scientific publication belongs to one of the six classes and is described by a447

binary-valued word vector, which indicates the absence/presence of the corresponding words from448

the dictionary. The dictionary contains 3703 unique words.449

PubMed PubMed Diabetes dataset [23] consists of 19717 scientific publications from PubMed450

related to diabetes and 44338 citation links. Each scientific publication belongs to one of the three451

classes and is described by a TF-IDF weighted word vector from a dictionary with a size of 500.452

B Limitations of Uniform Negative Sampling453

Although uniform negative sampling is the standard approach for the evaluation of link prediction454

tasks, it has a serious drawback. We first theoretically show that under certain assumptions uniform455

negative sampling creates simple link prediction evaluation (Appendix B.1). Then we confirm456

theoretical results also empirically on a real network (Appendix B.2).457

B.1 Theoretical Analysis of Uniform Negative Sampling458

Imagine that a network with N nodes is partitioned into R� N communities of equal size, where459

N is a multiple of R. Then for a random node pair (u, v), it is much more likely that nodes are460

from different communities than conversely. Let A denote the event that u and v are from the same461

community, and B that they are from different communities:462

P (B) = 1− P (A) = 1−
R · (NR · (

N
R − 1)/2)

N · (N − 1)/2
(6)

= 1−
(NR − 1)

(N − 1)
(7)

≈ 1− 1

R
, (8)

if N and N
R are large enough. Since it makes sense to have multiple communities, it is safe to assume463

P (B) ≥ 1
2 . The latter estimate is not tight for real networks, because they usually have R at least a464

bit larger than 2. For example, Equation (8) yields probability P (B) = 0.9 for R = 10. Therefore, if465

node pairs are sampled uniformly, the majority of negative instance node pairs correspond to nodes466

from different communities.467

The above observation can be exploited so that a baseline model based only on community structure468

can already get high classification accuracy. For the following analysis let’s assume that positive469

edges are equally likely to be within community and between communities edges. This assumption470

provides a lower bound on classification accuracy because positive edges should contain way more471

within community edges. So by always predicting there is an edge between u and v for node pairs472

from the same community, and always predicting there is not one for node pairs from different473

communities, the following accuracy score (ACC) is obtained:474

ACC = P (correct |NEG) · P (NEG) + P (correct |POS) · P (POS) (9)

≈ (1− 1

R
) · 1

2
+

1

2
· 1
2
, (10)

where POS and NEG denote events that an edge belongs to positive instances or negative instances.475

Accuracy above is considerably larger than expected 0.5 (e.g. ≈ 0.7 for R = 10), which is not476

desired.477
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Figure 2: Prediction values (dot product of nodes’ hidden representations) of negative and positive
edges before sigmoid activation on CiteSeer dataset. To find edges within and between communities,
community detection is performed using the Clauset-Newman-Moore greedy modularity maximiza-
tion algorithm [4]. Model has K = 3, o = 128, and edge_message_ratio = 0.6. It is trained with
80/20 split ratio in the resample disjoint mode.

B.2 Empirical Analysis of Uniform Negative Sampling478

The assumption that all communities are of equal size is usually not true for real networks, however,479

on real networks similar findings are discovered empirically. From Figure 2, it is evident that on the480

CiteSeer dataset the vast majority of negative instances corresponds to nodes from different commu-481

nities and that positive instances are mostly within community edges. It can also be observed that the482

model has difficulties with the prediction of negative edges within communities because it assigns483

them considerably above-average prediction values. These edges are probably also misclassified by484

the model.485

C Limitations of Training Objective486

In this section, we explore the GNN training objective for link prediction. We compare different487

training modes (Appendix C.1) and highlight limitations of the resample disjoint mode, which488

is the best-performing training mode (Appendix C.2).489

C.1 Comparison of Training Modes490

In this section we compare the following training modes: all mode, disjoint mode, and491

resample disjoint mode. These training modes are presented in detail in Section 3. Figure492

3 shows that resample disjoint mode is superior according to final validation AUC, however,493

additional experiments reveal that only if combined with an appropriate edge message ratio. The494

resample disjoint mode has also the smallest difference between training and validation AUC,495

since resample disjoint mode significantly reduces overfitting. These findings are consistent496

overall datasets from Section 5, so we recommend using the resample disjoint mode.497

C.2 Limitations of the Resample Disjoint Mode498

Another important parameter that can drastically boost performance is the edge message ratio. In499

Figure 4 can be observed that the difference between the best and the worst edge message ratio is500

more than 1.4%. This indicates that the edge message ratio should be fine-tuned carefully. The most501

13



Figure 3: AUC scores on training and validation sets for all mode, disjoint mode, and resample
disjoint mode. Model hasK = 2, o = 128, and edge_message_ratio = 0.8 for the both disjoint
modes. It is trained on CiteSeer dataset with 80/20 split ratio.

straightforward approach is to do a complete search on some predefined values, but this is very time502

consuming. Another strategy is to randomly change the edge message ratio after each epoch. It503

surprisingly achieves almost as good results as a complete search (Figure 4), even though, it has504

much lower computational complexity. Based on the above observations, it is beneficial to estimate a505

good edge message ratio quickly. However, it turns out that the edge message ratio is notoriously506

hard to set. In the following paragraphs is illustrated that there are no patterns that depend on: data507

split ratio, model configuration, the average clustering coefficient of the network, and the average508

shortest path length of the network.509

Figure 4: AUC scores for different edge message ratios and selection strategies on Cora dataset.
Model has K = 3 and o = 128. It is trained with 80/10/10 split ratio in the resample disjoint
mode.
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Data split ratio and model configuration The data split ratio controls how much information is510

available for training, so the model should prefer a different edge message ratio when given a new data511

split ratio. Although the optimal edge message ratio indeed changes, patterns are inconsistent across512

various model configurations and networks. In Figures 5 and 6, the optimal edge message ratios are513

plotted with the same configuration of the model but on different networks. The trend of the optimal514

edge message ratios fundamentally differs, although both datasets correspond to citation networks.515

Even on the same network, trends are often not coherent across distinct model configurations. Figures516

6 and 7 display discrepancy between the optimal edge message ratio trends on PubMed network517

when the models are configured differently.518

Average clustering coefficient and average shortest path length of the network The average519

clustering coefficient is a local measure, while the average shortest path length is a global one. These520

two characteristics should impact the optimal edge message ratio. For example, a higher average521

clustering coefficient implies there are a lot of edge triangles, so by removing some of the edges, it is522

expected that the distance between a pair of nodes does not drastically increase. This might indicate523

that networks with a higher average clustering coefficient would not need that high edge message524

ratio. By similar consideration, a higher average shortest path length should intuitively require a525

higher edge message ratio. However, Figures 8 and 9 depict that the average clustering coefficient526

and average shortest path length are uncorrelated with the optimal edge message ratio.527
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Figure 5: The optimal edge message ratios within 0.1% margin for different training/validation splits.
Model has K = 2 and o = 64. It is trained on CiteSeer dataset in the resample disjoint mode.

Figure 6: The optimal edge message ratios within 0.1% margin for different training/validation splits.
Model has K = 2 and o = 64. It is trained on PubMed dataset in the resample disjoint mode.
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Figure 7: The optimal edge message ratios within 0.1% margin for different training/validation splits.
Model has K = 3 and o = 128. It is trained on PubMed dataset in the resample disjoint mode.

Figure 8: The optimal edge message ratio for different average clustering coefficients on artificial
Watts-Strogatz small-world graphs [26] with 256 nodes and average degree 6. Model has K = 2 and
o = 32. It is trained with 80/20 split ratio in the resample disjoint mode.
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Figure 9: The optimal edge message ratio for different average shortest path lengths on artificial
Watts-Strogatz small-world graphs [26] with 256 nodes and average degree 6. Model has K = 2 and
o = 32. It is trained with 80/20 split ratio in the resample disjoint mode.
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