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ABSTRACT

The mechanisms by which reasoning training reshapes LLMs’ internal compu-
tations remain unclear. We study lightweight steering vectors inserted into the
base model’s residual stream and trained with a reinforcement-learning objective.
These vectors match full fine-tuning performance while preserving the interpretabil-
ity of small, additive interventions. Using logit-lens readouts and path-patching
analyses on two models, we find that (i) the last-layer steering vector acts like
a token-substitution bias concentrated on the first generated token, consistently
boosting tokens such as “To” and “Step”; (ii) the penultimate-layer vector leaves
attention patterns largely intact and instead operates through the MLP and unem-
bedding, preferentially up-weighting process words and structure symbols; and
(iii) middle layers de-emphasize non-English tokens. Next, we show that a SAE
isolates features associated with correct generations. We also show that steering
vectors (i) transfer to other models, (ii)) combine across layers when trained in
isolation, and (iii) concentrate magnitude on meaningful prompt segments under
adaptive token-wise scaling. Taken together, these results deepen understanding of
how trained steering vectors shape computation and should inform future work in
activation engineering and the study of reasoning models.

1 INTRODUCTION

Reasoning-oriented language models have recently made striking gains Jaech et al.| (2024)); \Guo et al.
(2025). Many top systems are trained with reinforcement learning on verifiable tasks, especially
mathematics, where correctness provides reliable rewards. Yet we still lack a mechanistic account of
what this training changes inside the network.

We train steering vectors — learned additive directions injected into the residual stream, while freezing
the base model. This parameterization was shown to match the performance of fully-tuned models
(Sinii et al.}[2025)) and it isolates a small set of features that can be probed, ablated, and composed
with mechanistic-interpretability tools. To isolate layer-wise effects, we fit one steering vector per
layer ¢ and measure its behavioral impact, then analyze in depth the layers with the clearest effects.
Our findings are:

» Layer-wise isolation of RL-induced gains. We insert a steering vector at a single layer and
report the performance achievable by this minimal intervention, averaged across six modern math
benchmarks.

¢ Two mechanisms for single-layer steering. Single-layer steering operates via two distinct
mechanisms: all pre-final layers downweight non-English tokens, while the final layer modifies
the first generation token.

* Last layer behaves like first-token substitution. The final-layer vector acts at unembedding,
boosting opening tokens (e.g., “To”/*“Step”); simply prefixing that token recovers ~10-11 points —
about three-quarters of the explicit last-layer gain.

¢ Penultimate-layer vector acts through the MLP. The effect is mediated almost entirely by the
MLP, with minimal reliance on attention.

* Properties of steering vectors. They compose across layers, transfer to other models, and, with
adaptive magnitude, fire selectively on specific tokens.
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Figure 1: Single-layer steering. Mean accuracy on six benchmarks for Qwen2.5-Math-7B when
training a single vector sy at layer ¢ with all other layers frozen. Mid-layer vectors yield the largest
gains but never match all-layer steering, indicating the improvement is distributed across layers.

2 RELATED WORK

Reinforcement learning with verifiable rewards. Jaech et al.| (2024) demonstrated the striking
performance of RL-tuned reasoning models, sparking a wave of follow-ups that develop these models
(Guo et al.,[2025; Zeng et al.L[2025;|Liu et al.,2025a; Hu et al.,2025)). Subsequent work has examined
why this training is effective, analysing model behaviour and the sources of its gains (Wang et al.,
2025} Ye et al.| 2025} [Shao et al.| 20255 Liu et al., 2025b). We contribute with a mechanistic study of
the changes induced by reasoning training.

Steering vectors are small additive perturbations to the residual stream that modulate model behavior.
They are widely viewed as feature amplifiers — strengthening existing computations rather than
introducing new mechanisms — and have been used to toggle or amplify reasoning-like behaviors
(Venhoff et al.l [2025; Ward et al.| 2025). A common way to obtain them is contrastive extraction
from activation pairs (e.g., positive vs. negative sentiment) (Turner et al.,|2023; Panickssery et al.,
2023} |L1u et al.| 2023 Zou et al.| 2023). Beyond extraction, steering directions can also be trained:
optimized with preference data for controllable generation (Cao et al.,2024), or learned as simple
additive vectors that surface latent behaviors such as step-by-step reasoning or self-reflection (Mack
& Turner, [2024; |[Engels et al., [2025} [Betley et al., 2025).

In this work, we interpret steering vectors trained with GRPO-like objective using standard tools
from mechanistic interpretability — 1logit—1lens to read out token-level effects (nostalgebraist,
2020), path patching to localize circuits (Wang et al.,[2022)), and circuit-style analyses in the QK/OV
framework (Elhage et al., [2021)).

3 BACKGROUND

Recent work has shown that training lightweight steering vectors can match the performance of fully
trained models (Sinii et al., 2025). Concretely, a vector s, € R4 is added to the output residual stream
of £’th layer, and all other weights remain fixed. They used RLOO (Ahmadian et al.| [2024) objective
to train reasoning models

VgJ = ]EIND,yNﬂ'g("I) [a(a:, y) Vo IOg 71-Q(y | LIJ) ] )
where the advantage is defined as
1
aley) = r(wy) —be),  ba) =+ D r(wy).
Yy

Here r(z,y) is the scalar reward for completion y on prompt x, and b(z) is the per-prompt baseline
for variance reduction.
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Figure 2: Steering Vector Persistence. For each steering layer ¢ (color encodes ¢; warm = early, cool
= late) and each target layer £ on the x-axis, we compute the mean cosine similarity of the per-token
change in hidden representations AF«, ;. Left: similarity between AF.; ;(z) and the dataset mean
E.[AF.; ;(z)], showing how aligned the per-token shifts are. Right: similarity between AF.; ;(x)
and the layer-/¢ steering vector sy, showing the alignment of the shifts with the layer’s own steering

vector.

Sinii et al.|(2025) argue that this parameterization localizes training-induced changes in the model’s
internal computations, making the intervention easier to interpret. We adopt this setup to learn
per-layer steering vectors for our interpretability study.

4 SINGLE-LAYER STEERING VECTORS

Setup. We study two base models —
Qwen2.5-Math-7B  (Team, [2024) and
Llama3.1-8B-Instruct (Grattafior1 et al.,
2024). Models are trained on the Deep-
ScaleR dataset (Luo et al., 2025) with the
sampling temperature 7 = 1.0, a 4K con-
text window for Qwen2.5-Math-7B, and
8K for Llama3.1-8B-Instruct. Rewards are
assigned with Math—\/erif We used
128 prompts and 16 generations per gradi-
ent step. Evaluation spans six math bench-
marks: AIME24/25, AMC23, MATH500
(Hendrycks et al.l [2021), MinervaMath
(Lewkowycz et al.,[2022)), and Olympiad-
Bench (He et al.| [2024). We report the
mean score across these benchmarks. For
MATHS00, MinervaMath, and Olympiad-
Bench we report PASS @ 1; for AIME24/25
and AMC23 we report AVG@32 due to
their smaller sizes. During evaluation, mod-
els decode with sampling at 7 = 1.0 fol-
lowing |Zeng et al.|(2025). Evaluation con-
text length is 4K and 32K for Qwen2.5-
Math-7B and other models respectively.
All metrics are averaged over three eval-
uation seeds.
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Figure 3: Similarity of steering-induced unembed-
ding biases. Each cell shows the cosine similarity
between the average final-layer shifts E[AF., ;] and
E[AF. ;] induced by steering at layers ¢ and j. High
similarity across 7,7 < L indicates a shared effect on
the unembedding regardless of where steering is applied.
The last-layer shift implements another mechanism.

'https://github.com/huggingface/Math-Verify
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(a) Qwen2.5-Math-7B: Distribution of token-level (b) Prepending "7o" to each prompt raises base-model
probability change A P induced by the last-layer vec-accuracy by 10-11 points under both greedy and sam-
tor over 256 DeepScaleR prompts. Five tokens with pling, capturing about 75% of the gain from the ex-
the largest maxima are shown and a separate distribu- plicit last-layer vector.

tion for "To" at the first generation position.

Figure 4: Last-layer analysis. Left: the last-layer vector mainly boosts the initial token "70". Right:
prefixing that token reproduces most of the observed performance gain.

Result. For each layer ¢, we train a single steering vector s, while freezing all others. Figure ]|
reports per-layer results for Qwen2.5-Math-7B (see Appendix [A]for LLaMa3.1-8B-It), compared with
(1) all-layer steering, (ii) the base model with greedy decoding, and (iii) the base model sampled at
7 = 1.0 (the training initialization). Most layers improve over the initialization, but none matches all-
layer steering; under greedy decoding, several do (Appendix [B)), suggesting that single-layer vectors
target the right mechanisms yet cannot on their own sufficiently reduce the next-token distribution’s
entropy. In Qwen2.5-Math-7B, so3 and so4 underperform their neighboring layers; we trace the issue
to vectors passing through the input layer-norm in layer 25 (Appendix [C). We also find that pairing
vectors improves Qwen2.5-Math-7B but offers little benefit on LLaMA3.1-8B-Instruct (Appendix D).

5 STEERING VECTOR PERSISTENCE

Figure [T] shows that steering at different layers yields similar performance. We checked a hypothesis
whether the steering imposed at an early layer is propagated forward and expressed by a later layer
through a largely shared mechanism.

Specifically, we measured how a steering vector applied at layer ¢ persists through the network up to
layer ¢. For each input we computed the change in hidden states after the first ¢ layers,

AFyi(x) = Feg(m; s5) — Fey(),

where F.(z) denotes the output of the first ¢ layers of the transformer F, s; is the steering vector
injected at layer 3.

We then evaluated two quantities:

1. Diff-Diff CosSim: the cosine similarity between each AF.,;(x) and the mean effect
E.[AF<y,(z)] over the dataset (how consistently the intervention points in the same direction).

2. Diff-Vector CosSim: the cosine similarity between each AFy ;(z) and the layer-¢ steering
vector sy (whether the propagated effect aligns with the layer’s own steering direction).

Figure [2] summarizes the results. Diff~Diff CosSim shows that (a) alignment of the induced shifts
gradually decays as the perturbed hidden states propagate through the network; (b) the next layer
receives an almost uniform shift — cossims are always > 0.8; (c) values remain well above random
(consistently > 0.3); and (d) the shifts on the last layers become aligned. Taken together, the shifts
drift as they traverse the network but remain clustered around a common direction.

In contrast, Diff~Vector CosSim falls rapidly with distance from the injection layer: the propagated
shifts are nearly orthogonal to each layer’s own steering vector. This need not imply different
behaviors — orthogonal steering directions can induce the same behavior (Jacob & Turner, 2024). Our
claim is therefore mechanistic rather than behavioral: the steering implemented at different layers
appears to differ in mechanism, even if the resulting behavior can coincide.
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Figure 5: Penultimate-layer steering in Qwen2.5-Math-7B. Mean accuracy when injecting s into
a single projection of the final block: @ (left), K (center), V' (right). Placing so only in V7 closes the
gap between Skip-Attn and s, indicating the effect is carried by the V; — W © path and is largely
independent of ()/ K and attention weights.
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Figure 6: Case study (Qwen2.5-Math-7B). Token-level probability shifts (Ap) induced by
penultimate-layer steering. Three patterns emerge: row 1 amplify the paragraph-initial token
“To”; row 2 suppress “solution” in favor of “calculations”; row 3 favor structural tokens that start
Python code comments, and newlines — rather than continuing the current sentence.

Our conclusion also holds for LLAMA3.1-8B-INSTRUCT (Appendix [E). The only notable difference
is that Diff-Diff CosSim reaches the lowest point at a middle layer and then rises toward later layers,
suggesting a tighter concentration around a shared steering direction in the second half of the model.
See Appendix [ for the raw cosine-similarity scores.

Next, note that Diff~Diff CosSim values jump at the final layer, indicating convergence to a more
uniform effect on the unembedding. The mean shifts E[AF., ;] produced by steering at any layer
i < L are highly similar to one another (Figure [3} mean pairwise cosine similarity 0.9), so steering
anywhere before the last layer yields essentially the same average bias on the unembedding. A
logit-lens probe of this shared direction shows strong negative alignment with tokens in Korean,
Chinese, Thai, and Arabic (cosine as low as —0.6; Appendix [G), implying reduced probabilities
for those tokens. We hypothesize that such tokens are harmful when solving English-posed math
problems and are therefore down-weighted when the model is steered. In contrast, the shift from
last-layer steering (equal to the steering vector itself) is clearly dissimilar to the others, suggesting a
distinct mechanism that we examine next.

6 LAST LAYER — TOKEN SUBSTITUTION

Notice that training only the last-layer vector so7 closes over 50% of the gap between the base model
and all-layer steering, indicating a strong task signal and the reason to study it on its own. With no
subsequent layers to process it, So7 acts at unembedding without altering hidden states, effectively
substituting tokens by boosting the logit of those it aligns with. We read out these preferences
viaa logit-lens projection (nostalgebraist,[2020), multiplying so7 by the unembedding matrix
(omitting the pre-unembed layer norm); the top token is "7o" (score 42.5; cosine 0.37) (see Appendix|[l]
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Figure 7: Minimal CAS. In setup ¢ = 17, ¢ + k = 20, we find features with the least values of CAS,
i.e. that are the most related to incorrectness of the generation; top feature has activate in incorrect
generations 5 times more frequently. Please refer to Section@ for details.

for other top-10 tokens). Though the vector is added unconditionally, because softmax is nonlinear,
effects vary by position, so we estimate the induced probability differences on 256 DeepScaleR
prompts:

APZ = P(‘/z | x:t;97527) - P(V; | x:t;e)'

Grouping by token, the largest increases are for "To"” and ” To", concentrated at the first generated
token (Figure fa)). To test first-token steering directly, we simply append "7o" to each prompt and
evaluate the base model: accuracy rises by 10-11 points under both greedy and sampling — about
75% of the gain from so7 (Figure [4D).

The last-layer vector in LLaMa3.1-8B-It has a much smaller impact (Appendix [A)), suggesting token
substitution is less effective. Nonetheless, s3; again concentrates its influence on the first generated
token and preferentially promotes "Step” (Appendix [J).

7 PENULTIMATE LAYER — CIRCUIT

Steering the penultimate layer so¢ yields a larger accuracy gain than steering the last layer, and
remains tractable to analyze because the modified activations traverse only one remaining block.
Here we identify which parts of that block convert the steering signal into performance.

For residual input X, the block computes Y = X + MHA(LN(X)) and Z =Y + MLP(LN(Y)),
with heads H;(U) = Softmax(UW2(UW)T /\/dy) UW} concatenated and mixed by W©, and
an MLP f(UW; + by)Ws + by. We assess the contribution of each submodule by inserting or
omitting s;_; at specific locations and measuring mean accuracy: Full steering X < X + s;_;; Skip-

Layer Z < Z + s;_1: Skip-Attn Y <Y + s,_;; Steer-Q/K/V-Proj for a head i, (UW/*/V)
(U + s_)W2/ IV,

Figure[5| gives three takeaways: (i) Skip-Layer reduces accuracy relative to passing so¢ through the
block, but the drop is small compared with using so7; thus so¢ still helps via a direct push on the
unembedding, with the remainder coming from in-block processing; (ii) Skip-Attn preserves over half
of the s gain, pointing to the MLP as the main contributor; (iii) patching any single ) or K, or a V;
with j # 1, has little effect, whereas placing sog only in V7 closes the gap to the full sog result.

Viewed through the QK/OV-circuit lens (Elhage et al., [2021]), token—token interaction (QK) is
unchanged and the effect travels through the OV path — controlling what is written when a token
is attended. Moreover, because s;_1 W) W enters the residual regardless of attention weights
(Appendix [K), this is equivalent to adding the projected vector just before the MLP, i.e., skipping
attention. Indeed, a vector trained directly on the post-attention residual reaches 38.8 + 0.6 mean
accuracy, matching so6. Overall, the penultimate vector in Qwen2.5-Math-7B acts via two routes:
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Table 1: Transferability of steering vectors across model families. Each cell shows the mean
performance change when the steering vector trained for the Donor model is applied to the Recipient
model. Values are normalized so that the recipient with its own vectors equals 1.0 and the base (no
vectors) equals 0.0; negative values denote degradation. “—” indicates not applicable (no Math
checkpoint available).

Donor
Family Recipient Base Instruct Math
Base 1.00 0.38 0.32
Qwen2.5-1.5B Instruct 0.94 1.00 0.31
Math 0.36 0.21 1.00
Base 1.00 0.36 0.74
Qwen2.5-7B Instruct 0.55 1.00 -0.34
Math 0.32 0.05 1.00
Base 1.00 0.01 —

LLaMA-3.1-8B | o g0l 100  —

a direct effect on the unembedding and an interaction with the MLP. Appendix [[] contains the
LLaMa3.1-8B-It study.

Figure [§] shows how adding the steering vector to the post-attention residual stream shifts token
probabilities. Beyond boosting the probability of the paragraph-initial token 7o, it promotes process
words — e.g., replacing “solution” with “calculations,” possibly to deter premature endings. It also
favors structural tokens such as Python comment markers and newlines, which often precede math
blocks and may support in-code reasoning.

8 INTERPRETATION OF STEERING VECTORS WITH DIFFSAE

Sparse autoencoders (SAEs) decompose model activations into interpretable “features” by expressing
each hidden state as a sparse weighted sum of latents from a large learned dictionary (Bricken
et al.;2023). Because these latents lie in the same vector space as the model’s activations, directly
interpreting steering vectors with standard SAEs is infeasible (Mayne et al.,[2024); we therefore focus
on interpreting the effects of steering. Recent work has introduced methods for comparing models
via their differences. In this paper, we use DiffSAE (Aranguri et al., 2025)) — a sparse autoencoder
trained to reconstruct activation differences between two models — to analyze the difference between
outputs at layer £ 4 k of the base model and those of the model steered at layer ¢. Concretely, let

hg”k) , hg”k) € R? be outputs of the (¢£+k)th layer of base and steered at layer £ models respectively.

Define d(© := h{" — hga we train DiffSAE with reconstruction error Ly = ||d — dJ|2 — min with
auxiliary loss that forces reconstruction with features that were not activated for several batches (Gao
et al.,[2024). We train different DiffSAE on all setups (¢, £ + k) for £ > 10, i.e. model was steered at
layer ¢, and we decompose the difference between layer £ + k outputs. See Appendix [R]

8.1 FEATURE, RELATED TO INCORRECT GENERATIONS

Our goal is to explain how steering alters the base model’s behavior. To this end, we identify features
that strongly correlate with producing correct solutions. We define the correctness association score
(CAS) for feature i as CAS; = r{ —r}, where r¥ is the fraction of correct generations in which
feature 7 activates on at least one token (among all correct generations), and 7! is the analogous
fraction for incorrect generations.

Case Study: Prompt Feature We examine the feature with the lowest CAS in the setting ¢/ =
16, ¢ + k = 20. The top 20 features for this setup are shown in Figure [/} Surprisingly, we find
features that exhibit a strong negative correlation with the correctness of the final answer.
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Figure 8: Top-1 feature by absolute frequency diff. We suspect that this feature indicates challenging
task for the model, and model might know if it could solve it before generation. See Subsection [8.1]
for more details.

We focus on the feature with the largest frequency difference: it activates on approximately 60%
of incorrect answers but only on about 10% of correct answers. Examples of these activations are
presented in Figure 8] The feature tends to fire on the task description, which may suggest that the
model has an early indication of whether it can solve the task before generating an answer. Additional
features and their descriptions are provided in Appendix

9 TRANSFER OF STEERING VECTORS ACROSS MODELS

We test whether steering vectors learned for one model can improve another model from the same
model family. We consider three groups of checkpoints models: (i) {Qwen2.5-7B, Qwen2.5-7B-
Instruct, Qwen2.5-Math-7B}, (ii) {Qwen2.5-1.5B, Qwen2.5-1.5B-Instruct, Qwen2.5-Math-1.5B},
and (iii) {LLaMA-3.1-8B, LLaMA-3.1-8B-Instruct} — where models within a group share hidden
size and depth. For each ordered pair within a group, we swap the donor model’s steering vectors
into the recipient and report the relative gain: scores are normalized by the gap between the base
model and the same model equipped with its own vectors. Raw (unnormalized) scores are provided

in Appendix [M]

Table |I| summarizes the results. Transfers between Qwen2.5-7B-Instruct and Qwen2.5-Math-7B are
weak and sometimes harmful, suggesting their fine-tuning objectives induce incompatible directions.
In contrast, all other exchanges yield positive gains, with the base Qwen2.5 checkpoints consistently
serving as the strongest donors for both 7B and 1.5B recipients. In contrast, the models from
LLaMa3.1-8B family are unaffected by the transferred steering vectors showing no change in
performance. We attribute this result to the fact that the two models use different chat templates
(Appendix [O) and steering vectors trained on one template do not have an effect on another. It is
surprising, however, that such transfer does not deteriorate the performance of the recipient model,
which deserves further study.

Overall, this experiments provides mixed results. indicate that the latent directions associated with
strong reasoning ability are largely preserved after fine-tuning. Consequently, reusing steering vectors
trained on a base model can be a simple, low-cost way to lift performance on related checkpoints and
domains.

10 ADAPTIVE STEERING

We next ask how allowing token-conditional magnitude affects steering performance, and which
tokens are amplified or suppressed.

We implement adaptive-magnitude steering with a rank-1 LoRA on the MLP output matrix of each
layer. With LoRA, the MLP output becomes W™ ™z™ + B ml ALmgm where we treat B as the
steering direction and Az as its token-conditioned magnitude, computed from the hidden state x.

We train this rank-1 LoRA separately at each layer of Qwen2.5-Math-7B and LLaMA3.1-8B-Instruct,
following the setup in Sectiond] As shown in Figure[J] adaptive steering consistently outperforms
constant-magnitude steering and matches full steering on the first 20 layers.

To explain the activation magnitudes, we examine activation patterns and run an automatic-
interpretability style pipeline (Bills et al.,|2023)). For each DeepScaleR prompt and each layer-¢ LoRA,
we generate a completion and record token-wise magnitudes across 100 examples (see Figure [23)).
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Figure 9: Single-layer adaptive steering. Mean accuracy on six benchmarks for Qwen2.5-Math-7B
when training a single steering vector with token-dependent magnitude at layer ¢ with all other
layers frozen. Adaptive steering always surpasses the constant steering a matches the performance of
full-steering on the 20 first layers.

We then pass either one labeled example or a batch of them to the model and ask it to describe what
drives the activation. Examples are given in Appendix [S| Two main trends emerge:

(i) Layerwise shift. Early-layer LoRAs fire on solution steps and formatting that set the answer’s
structure — more syntactic and structural cues. Later layers shift toward identifying reasoning steps
and the high-level semantic structure of the answer, focusing less on surface form and more on
the underlying reasoning. This aligns with the transformer’s progression from local aggregation to
higher-level representations.

(i) Positional dependence. Activations depend strongly on where a token appears: instruction,
reasoning, or final answer. For example, in Figure 26} the layer-15 LoRA is negative on instruction

and answer tokens (e.g., “proceed,” “following,” “therefore”), but positive on tokens such as “when”
and “which” within the reasoning span.

11 CONCLUSION

We presented a mechanistic interpretation of steering vectors trained for mathematical reasoning.
These vectors (i) suppress specific token groups, (ii) substitute useful opening tokens, (iii) achieve
strong effects without relying on attention, acting largely through the MLP; and (iv) are both
composable and transferable.

Though most our findings are consistent across the two models, several effects are clear on Qwen but
markedly weaker on LLaMA, suggesting model-specific mechanisms. Systematic comparisons across
architectures may help explain observed performance and behavioural differences. A promising
direction is to pin down the precise mechanism of mid-layer steering vectors.

Overall, steering vectors provide a compact and informative probe of reasoning-trained models,
offering concrete insight into the changes induced by such training.

ETHICS STATEMENT

Interpretability research can be dual-use, but our study remains within the safety bounds of the
underlying models and aims to advance responsible Al through improved model understanding. We
analyze Qwen and LLaMA models using the DeepScaler dataset, which excludes known harmful
content. We are transparent about limitations and report no conflicts of interest.

REPRODUCIBILITY STATEMENT

We aim for strong reproducibility. Our experiments use publicly available models (Qwen and LLaMA
families), the DeepScaleR training dataset, and standard math benchmarks (AIME24/25, AMC23,
MATH500, OlympiadBench, and MinervaMath). Section ] and the appendices provide detailed
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descriptions of the SAE training procedure, hyperparameter settings and raw evaluation numbers. We
will open-source the full implementation — including training code and analysis scripts — to facilitate
replication.
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A SINGLE-LAYER LLAMA3.1-8B-IT
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Figure 10: Single-layer steering. Mean accuracy on six benchmarks for Qwen2.5-Math-7B when
training a single vector s, at layer ¢ with all other layers frozen. Vectors from layers 8 — 15 yield
the largest gains but never match all-layer steering, indicating the improvement is distributed across
layers.

The results for LLaMa3.1-8B-It in Figure [T0|mirror those for Qwen2.5-Math-7B in Section [} mid-
layer vectors perform best yet none reaches all-layer steering. Differently from Qwen2.5-Math-7B,
the final-layer vector yields only marginal gains.

B PER-LAYER STEERING WITH GREEDY DECODING

We evaluated the same single-layer steering vectors from Section [4] with temperature 7 = 0 and
found that many match the performance of full-steering in this setup, see Figure[TT} That shows that
single-layer steering vectors modify the right mechanisms but lack the capacity to lower the entropy
enough.
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Figure 11: Single-Layer Steering with 7 = 0.

We re-evaluate the single-layer steering vectors from Section {] with greedy decoding (7 = 0). As
shown in Figure [T} many of these single-layer vectors match the performance of full steering, which
we did not observe when sampling with temperature 7 = 1. This suggests they target the correct
mechanisms but lack the capacity to sufficiently reduce generation entropy.
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C INEFFECTIVE LAYERS IN QWEN2.5-MATH-7B
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Figure 12: Component-output steering.

As noted in Section[4] single-layer steering on layers 23 and 24 underperforms their neighbors. To
pinpoint where this loss arises, we trained vectors inserted immediately after each subcomponent
between the layer-24 MLP and the layer-25 MLP. Figure[T2]shows that placing s24 affer the input
LayerNorm of layer 25 closes the gap with so5. Thus the input LayerNorm is the problematic step —
passing through it limits the effect of the steering vector.

D STEERING VECTORS ARE COMPOSABLE
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Figure 13: Composable steering. The normalized gain in mean accuracy when pairing vectors s;
and s; with ¢ < j. Crosses mark pairs reaching > 99% of all-layer. Qwen2.5-Math-7B often benefits,
with two near—all-layer pairs; LLaMa3.1-8B-It is mostly neutral or interfering.

We test whether depth-specific vectors combine without conflict by evaluating all pairs (s;, s;) with
i < j. Figure[[3]reports the normalized gain

Acc(s;, s5) — max{Acc(s;), Acc(s;)}
Acc(S) — max{Acc(s;), Acc(s;)}

norm(s;, s;) =

14
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which compares the pair to the better single vector: 0 means no improvement, 1 matches the all-layer
score S, and < 0 indicates interference. Exact accuracies are in Appendix [N

Adjacent pairs (near the diagonal) often interfere, while wider gaps add constructively. Notably, so5
paired with s16 or s14 nearly matches the all-layer 42.9%, though each alone plateaus around 40%.
The composition in LLaMa3.1-8B-It is weaker: many pairs are neutral or harmful. The modest gains
concentrate when late layers are paired with mid-depth layer 8, but none reach the all-layer result.

E STEERING VECTOR PERSISTENCE. LLAMA3.1-8B-IT
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Figure 14: Steering Vector Persistence — LLaMa3.1-8B-It. For each steering vector injection
layer k (one colored curve per k; warm = early layers, cool = later layers) we plot, as a function of
target layer [ (x-axis), the mean cosine similarity of the per-token change in hidden state AF;(z).
Left: similarity between each AF;(x) and the dataset mean E[AF;(z)]. Right: similarity between
AF;(x) and the layer-l steering vector s;.
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F STEERING VECTOR PERSISTENCE. RAW NUMBERS

Table 2: Qwen2.5-Math-7B. Raw scores for the plots in Figurel

Diff-Diff CosSim
Layer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0 100 096 091 084 080 075 067 0.59 054 0.54 052 049 047 045 043 042 040 037 037 037 035 034 034 033 033 031 037 057
1 — 1.00 095 085 0.80 0.74 0.65 0.58 0.51 0.51 0.49 045 043 042 039 038 0.36 0.34 0.33 0.33 031 0.32 032 031 031 029 029 041
2 — 100 096 091 086 078 070 0.64 0.64 061 0.57 054 052 050 048 045 042 042 041 039 037 037 037 036 034 038 055
3 — — — 1.00 093 087 0.78 0.69 0.64 0.63 0.61 0.57 0.55 0.53 0.51 0.49 047 0.44 043 041 039 037 035 034 032 030 032 0.57
4 — — — — 100 092 0.82 0.73 0.67 0.67 0.64 0.60 0.58 0.56 0.53 0.51 0.49 0.46 045 044 041 039 037 036 034 032 034 0.61
S — — — — 100 088 077 071 0.69 0.66 0.62 059 056 0.53 0.51 049 046 0.44 043 040 038 037 036 035 032 036 0.2
6 —_ - — — — — 1.00 0.82 0.72 0.70 0.65 0.61 0.58 0.55 0.52 0.50 0.47 0.44 0.44 042 039 038 036 0.35 0.33 0.32 0.33 0.59
7 -_ - —- — — — — 100 0.85 0.81 0.74 0.67 0.63 0.60 0.56 0.54 0.51 0.47 046 045 041 039 0.38 037 035 033 036 0.64
8 — — — — — — — 100 087 077 069 064 060 0.56 0.54 051 047 0.46 045 041 040 038 037 036 033 036 0.64
9 - - - - - — — — — 100 085 075 0.70 0.64 0.59 0.55 0.52 0.48 0.47 045 042 041 039 0.39 0.37 0.35 0.37 0.68
10 _ - - - - - — — — — 100 085 076 0.69 0.64 0.60 0.57 0.52 0.51 049 046 045 043 042 039 037 040 0.70
o — — - — 7100 084 075 067 0.63 058 053 051 051 048 047 045 0.43 041 039 040 0.68
12 - - - - - - - - — — — — 100 0.85 0.76 0.71 0.66 0.58 0.56 0.55 0.52 0.50 0.48 048 045 044 044 072
13 - - - - - - - - - — — — — 100 086 078 0.72 0.63 0.60 0.60 0.58 0.56 0.54 0.52 0.49 047 048 0.73
4 - - — 100 086 077 0.66 063 0.63 060 0.59 056 0.55 051 0.50 050 0.71
15 - - - - - - - - - - — — — — — 100 085 0.74 0.68 0.67 0.64 0.62 0.59 0.59 0.55 0.55 0.56 0.75
16 _ - - - - - - - - - - — — — —  — 100 0.80 0.73 0.72 0.69 0.68 0.64 0.65 0.62 0.59 0.58 0.70
7 - - — - - 100 081 073 067 0.64 0.60 0.62 058 0.57 055 0.57
18 - - - - - - - - - - - - - — — — — — 100 0.87 079 0.74 0.68 0.66 0.62 0.63 0.67 0.71
9 — — — — — - - - — 100 088 081 074 070 0.66 0.67 071 075
20 _ - - - - - - - - - - - - - — — — — — — 100 090 0.83 0.78 0.72 0.72 0.72 0.76
21 _ - = - - - - - - - - - - - - - — — — —  — 100 09 085 079 0.75 0.72 0.81
» - - - - - — 100 093 086 081 072 0.66
23 - - - - - - - - - - - - - - - - - - - — — — — 100 090 0.81 0.71 0.55
24 _ - = = = = = = - = = = = - - - - - - — — — — — 100 083 074 049
% — 100 090 092
26 - — — — — — — — — - - - - - = - - - = = = — — — 100 09
77/ 0
Diff-Vector CosSim
Layer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
0 1.00 0.31 033 0.29 0.24 0.23 0.18 0.14 0.12 0.11 0.11 0.10 0.10 0.09 0.08 0.07 0.07 0.05 0.04 0.04 0.03 0.03 0.04 0.02 0.02 0.02 0.04 0.12
1 — 1.00 033 030 0.17 0.16 0.12 0.09 0.09 0.08 0.08 0.08 0.07 0.07 0.06 0.06 0.06 0.04 0.03 0.03 0.02 0.03 0.04 0.03 0.03 0.02 0.03 0.08
2 — 100 055 047 038 030 023 0.9 0.8 0.8 0.5 0.14 0.3 0.1 0.0 0.09 007 0.07 005 0.04 0.04 0.05 004 0.03 002 0.03 0.11
3 — — — 1.00 056 044 032 026 0.23 0.22 0.21 0.18 0.17 0.16 0.14 0.13 0.11 0.08 0.08 0.07 0.05 0.05 0.06 0.05 0.05 0.03 0.05 0.12
4 — — — — 100 051 036 029 0.26 0.24 0.23 0.19 0.18 0.16 0.14 0.13 0.12 0.09 0.08 0.07 0.06 0.06 0.06 0.05 0.05 0.03 0.05 0.13
S — — — — 100 043 032 026 025 023 020 0.7 0.6 0.13 013 0.12 008 0.08 006 0.05 005 0.06 005 0.05 003 0.05 0.13
6 -_ — — — — — 100 043 032 0.28 0.25 0.22 0.19 0.18 0.14 0.13 0.12 0.09 0.08 0.07 0.06 0.05 0.06 0.05 0.04 0.03 0.04 0.12
7 — — — — —  — 100 048 040 034 028 024 021 0.17 0.16 0.14 0.10 0.09 008 0.06 006 007 006 005 0.03 005 0.14
8 _ - - — — — — — 1.00 047 037 030 025 022 0.18 0.16 0.14 0.10 0.09 0.07 0.05 0.06 0.06 0.06 0.05 0.03 0.05 0.14
9 - = = - - — — — — 100 047 036 029 026 020 0.18 0.16 0.11 0.10 0.08 0.07 0.06 0.07 0.06 0.05 0.04 0.05 0.14
0 — — — — — — — — — 100 05 038 032 024 021 018 0.13 0.12 0.09 007 0.07 007 0.07 0.07 0.04 0.06 0.15
11 - - - - - - - — — — — 100 049 039 029 026 021 0.13 0.12 0.10 0.07 0.07 0.07 0.08 0.07 0.04 0.07 0.14
12 - - - - - - - - — — — — 100 056 040 031 024 0.16 0.13 0.10 0.07 0.07 0.08 0.08 0.07 0.04 0.07 0.15
3 — — — — — — 100 055 041 030 020 0.16 0.12 009 0.09 008 0.09 0.08 0.05 0.08 0.5
14 - - - - - - - - - - — — — — 1.00 053 037 023 0.18 0.13 0.11 0.10 0.09 0.09 0.09 0.05 0.09 0.15
15 _ = = - - - - - - - — — — — — 100 055 035 027 0.19 0.15 0.12 0.12 0.13 0.12 0.06 0.12 0.16
6 — — — — — — — — 100 044 029 0.19 013 0.1 010 0.11 010 0.05 010 0.5
17 - - = - - - - - - - - - - — — — — 1.00 033 0.18 0.13 0.11 0.09 0.10 0.10 0.04 0.08 0.11
18 - - - - - - - - - - - - - - — — — — 100 036 0.28 0.20 0.19 0.21 0.19 0.10 0.20 0.13
9 — - - - 7100 042 027 024 026 023 0.3 024 0.14
20 _ - = = = = - - - - - - - - — — — — — — 100 041 036 035 030 0.18 026 0.15
21 _ - - - - - - - - - - - - - - - — — — — — 100 038 033 028 024 029 0.17
» - - - - 7100 048 037 032 022 015
23 _ - = = = = = - - = = - - - - - - - — — — —  — 100 068 017 022 0.10
24 - - - - - - - - - - - - - - - - - - - - — — —  — 100 017 022 007
% - - 100 048 023
26 - - = - = = = = - - - - - - - - - - - - - - — — — — 100 024
27 - (- - - - - - - - - - - - - - - - - - - - - - - — — — 100
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Table 3: LLaMa3.1-8B-It. Raw scores for the plots in Figure

Diff-Diff CosSim
Layer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1.00 0.84 0.68 0.55 046 0.38 0.34 031 030 029 0.26 024 027 034 035 037 040 042 043 046 044 046 046 046 045 045 046 046 044 042 053 057
1 — 1.00 0.77 0.61 0.51 0.42 036 032 029 0.28 025 024 025 033 034 036 040 043 045 047 045 048 048 049 048 047 048 048 047 044 0.62 0.57
2 — — 1.00 0.74 0.61 050 0.44 038 034 032 029 027 028 033 033 036 0.38 041 042 044 043 045 045 045 044 044 044 046 045 043 058 0.56
3 — — — 1.00 078 0.62 0.51 044 038 035 0.31 029 031 037 039 040 045 046 047 049 048 0.50 0.50 0.51 0.50 0.49 0.50 0.50 0.50 0.47 0.54 0.58
4 — — — — 100 075 0.61 050 044 0.38 0.33 030 031 043 044 047 051 052 053 055 053 056 0.56 0.58 0.56 0.55 0.56 0.55 0.54 0.50 0.53 0.53
5 — — — — — 100 077 0.62 052 047 042 0.38 036 039 037 038 042 044 045 046 045 047 047 048 047 046 047 047 046 043 055 057
6 — — — — — — 100 080 066 0.58 0.52 0.47 0.46 047 045 046 048 0.51 051 052 051 053 0.54 0.55 0.54 0.53 0.54 0.59 0.57 0.55 0.58 0.64
7 _ - — — — — — 100 0.77 0.66 0.55 0.48 045 051 050 0.52 0.54 0.56 0.57 0.58 0.56 0.59 0.59 0.60 0.59 057 0.60 0.59 0.58 0.54 0.53 0.56
8 _ - - — — — — — 1.00 0.82 0.68 0.58 0.53 051 048 047 0.51 0.53 0.53 0.54 052 0.54 0.54 0.54 0.53 0.51 0.52 0.52 0.51 0.48 048 0.55
9 _ - - - — — — — — 100 0.82 070 0.62 0.58 0.55 0.53 0.55 0.57 0.56 0.56 0.55 0.57 0.57 0.58 0.56 0.55 0.55 0.55 0.53 0.50 0.50 0.59
10 _ = - - - — — — — — 100 0.82 071 064 059 0.56 0.58 0.59 0.58 0.58 0.56 0.59 0.59 0.60 0.59 0.58 0.59 0.58 0.57 0.54 0.54 0.62
11 _ - - - - — — — — — — 100 085 076 0.67 0.60 0.60 0.59 0.57 0.55 0.53 0.56 0.56 0.56 0.54 0.53 0.53 0.52 0.51 0.49 050 0.59
12 - - - - - - - — — — — — 100 083 071 0.64 0.64 0.63 0.61 0.60 0.58 0.60 0.60 0.60 0.58 0.56 0.57 0.56 0.55 0.52 0.52 0.58
13 _ - - = - - - - — —  —  —  — 100 083 074 070 0.67 0.64 0.63 0.60 0.63 0.63 0.64 0.62 0.61 0.62 0.61 0.61 0.57 0.55 0.56
14 _ - - - - - - - — — — — —  — 1.00 081 074 0.71 0.68 0.66 0.63 0.65 0.64 0.64 0.62 0.61 0.60 0.59 0.58 0.54 0.54 0.59
5 - — — — — — — — — — — — — — — 100 088 080 075 0.70 0.66 0.65 0.63 0.62 0.59 0.57 0.57 0.56 0.55 0.53 0.55 0.59
6 — — — — — — — — — — — — — — — — 100 086 079 074 0.69 0.67 065 0.62 059 057 0.57 056 0.5 0.52 059 0.59
7 - - - - - — — — — — — — — — — — — 100 090 084 078 0.74 0.72 0.69 0.66 0.63 0.61 0.60 0.61 0.58 0.66 0.65
8 — — — — — = — — — — — — — — — — —  — 100 091 085 080 077 0.73 0.70 0.68 0.66 0.64 0.64 0.61 0.66 0.66
9 - - - - - - - - — - — — — — — — — — — 100 091 085 0.80 0.77 0.73 0.70 0.67 0.66 0.65 0.63 0.66 0.62
0 - — — — — — — — — — — — — — — — — — — — 100 091 086 082 077 0.74 0.71 0.69 0.68 0.65 0.71 0.69
20 — — — - — - - - = = = — = = = = — — — —  — 100 093 0.88 0.84 081 078 0.76 0.75 0.71 0.75 0.67
2 - - - - - - - - — - — — — - — — — — — — — — 100 095 090 0.87 084 081 0.80 075 0.76 0.67
23 - - - - - - - - - - - - = = — = — = — — — —  — 100 094 089 08 083 082 0.76 0.77 0.70
% - - - - - - - - - - - - - - - - — — — — — — — — 100 092 088 085 0.83 077 0.78 0.68
25— — - — = = = = = = = = = = = = = = = = = — — —  — 100 093 088 081 075 0.73 0.60
26 @ - - - - — — - - - - - - - - - - - - - — - — = — —  — 100 092 080 073 0.71 0.62
27— - = = = = = = = = = = = = = = — — — 100 090 081 0.74 0.70
28 _ - = - - = = = - - - - = - - - - - - - - - — — —  —  —  — 100 086 081 0.66
29 _ - = - = = = = = = = = = = = - - - - - - - - - — — — —  — 100 087 072
30 - - - - - - - - - - - - - - - - - - - - - - - - - - - - — — 100 078
31 _ - = = = = = = = = = = = = = = = = = = = = = = = = = — — — — 100
Diff-Vector CosSim
Layer 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0 1.00 0.17 0.13 0.08 0.05 0.03 0.03 0.03 0.03 0.01 0.01 0.01 0.03 0.05 0.05 0.05 0.05 0.05 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.02 0.01 -0.00 0.00 0.10 0.02
1 — 1.00 0.18 0.10 0.06 0.04 0.03 0.03 0.02 0.01 0.01 0.01 0.03 0.05 0.05 0.05 0.05 0.06 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.02 0.01 0.00 0.00 0.15 0.01
2 — — 100 020 0.11 0.07 0.06 0.05 0.04 0.2 0.02 0.02 0.03 0.05 0.05 0.05 0.05 0.06 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.03 0.03 0.02 0.00 0.00 0.13 0.01
3 — —  — 100 0.19 0.10 0.07 0.06 0.05 0.03 0.02 0.02 0.04 0.05 0.05 0.06 0.06 0.05 0.05 0.04 0.05 0.03 0.03 0.04 0.04 0.03 0.02 0.0l 0.00 0.00 0.10 0.02
4 — — — — 1.00 021 0.13 0.09 0.07 0.05 0.03 0.03 0.05 0.07 0.06 0.07 0.07 0.06 0.05 0.04 0.05 0.03 0.03 0.04 0.03 0.03 0.02 0.01 -0.01 0.00 0.06 0.01
5 — — — — — 100 021 0.5 0.09 0.07 0.06 0.04 0.05 0.07 0.06 0.07 0.07 0.07 0.06 0.05 0.05 0.04 0.04 0.05 0.04 0.04 0.02 0.01 0.00 0.00 0.11 0.02
6 — — — — — — 100 025 0.12 0.09 0.08 0.04 0.06 0.07 0.07 0.08 0.08 0.08 0.07 0.06 0.07 0.05 0.05 0.06 0.05 0.05 0.03 0.03 0.02 0.00 0.06 0.02
7 _ - - — — — — 100 024 0.17 0.12 0.08 0.09 0.10 0.08 0.09 0.09 0.08 0.07 0.05 0.06 0.04 0.04 0.05 0.04 0.04 0.02 0.02 0.00 0.01 0.05 0.02
8 _ = - - — — — — 100 028 0.16 0.10 0.12 0.10 0.09 0.09 0.10 0.09 0.08 0.06 0.07 0.05 0.05 0.06 0.05 0.04 0.02 0.02 0.01 0.01 0.06 0.02
9 _ - - - — — — —  — 100 027 019 017 0.12 0.11 0.11 0.11 0.09 0.08 0.07 0.06 0.05 0.05 0.06 0.05 0.04 0.02 0.02 0.01 0.01 0.06 0.02
10 - - - - - - — — — — 100 021 017 0.12 0.12 0.12 0.11 0.10 0.09 0.07 0.07 0.05 0.05 0.06 0.05 0.05 0.03 0.02 0.00 0.01 0.06 0.02
11 _ - - - - — — — — —  — 100 024 020 0.16 0.14 0.12 0.10 0.09 0.08 0.07 0.06 0.06 0.06 0.05 0.04 0.02 0.03 0.01 0.02 0.07 0.02
12 - - - - - - — — — — —  — 100 025 021 0.17 0.15 0.12 0.10 0.09 0.09 0.07 0.06 0.07 0.06 0.05 0.03 0.03 0.01 0.02 0.07 0.02
13 - - - - - - - - — — — — — 100 027 019 0.18 0.14 0.12 0.10 0.09 0.07 0.07 0.07 0.06 0.05 0.03 0.02 0.01 0.02 0.07 0.02
14 _ - = = - - - - — — — —  —  — 100 029 022 0.15 0.13 0.12 0.12 0.09 0.08 0.08 0.07 0.06 0.04 0.03 0.02 0.02 0.08 0.02
15 _ - - - - - - - - — — — — —  — 100 028 021 0.17 0.15 0.14 0.12 0.10 0.10 0.09 0.07 0.05 0.04 0.03 0.03 0.10 0.02
16 - - - - - - - - - - - - — — — — 100 029 025 019 0.17 0.15 0.13 0.13 0.11 0.08 0.06 0.05 0.04 0.04 0.15 0.03
17 _ - = = = = = = - - — = —  —  —  —  — 100 035 028 025 022 0.19 020 0.16 0.13 0.11 0.09 0.08 0.07 0.18 0.03
18 _ - - - - - - - - - - - — — — — —  — 100 036 031 028 022 023 021 0.14 0.10 0.10 0.09 0.07 0.18 0.04
19 _ - - - - - - - - - - - - - — — — — — 100 036 031 029 023 021 0.16 0.11 0.10 0.10 0.08 0.18 0.05
20 _ - = = = = = = = = = = = = — = —  —  —  — 100 044 033 032 031 0.19 0.15 0.12 0.13 0.08 0.20 0.05
21 _ - - - - - - - - - - - - - — — — — —  —  — 100 046 043 041 024 0.19 0.17 0.17 0.09 020 0.05
22 _ - - - - - - - - - - - - - - - - — — — — — 100 049 047 030 023 022 020 0.12 024 0.07
23 _ = = = = = = = = = = = = = = = — = —  —  —  —  — 100 057 034 028 023 021 0.12 0.24 0.06
24 _ - - - - - - = - - - - - - - - - - — — — —  —  — 100 038 032 029 025 0.12 025 0.06
25 _ - - - - - - - - - - - - - - - - - - - — — — — — 100 030 021 017 0.11 0.17 0.04
26 - — — — — — — — - — — - - — - - = = = = = — — — —  — 100 030 0.8 010 0.17 0.05
27 - - = = = = = = = = = = = = = = = = = = = = = — = — — 100 026 015 020 0.10
28 - - - - - - - - - - - - - - - - - - - - - - = — — — — — 100 027 030 007
29 - — - - - = - = = = = = = = = = = = = = = = = = — = — — — 100 030 006
0 - - - - = = = = = = = = = = = = = = = = = = — 100 022
31 - - - - = = = = = = = = = = = = = = = = = = = = = = = = = = — 100

G STEERING VECTOR PERSISTENCE. LOGIT-LENS

In Section 5] we showed that last-layer shifts induced by steering vectors are aligned and decrease the
probability of non-English tokens. Figure [T3]lists the tokens with the most negative cosine similarity
to the last-layer shift for the layer-18 steering vector, which is representative of other layers. Figure[16]
gives ChatGPT’s language classification of these tokens. Figure[I7] presents layer-wise histograms of

the cosine-similarity distributions, one for each steering vector at layer .
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Figure 15: Tokens with the most negative cosine similarity to the mean shift induced by the layer-18
steering vector (computed against token unembeddings; dot products shown).
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Below is a list of tokens. What languages do they originate from
and what topic clusters does it contain?

Y6 BEoE N BHE< %2 B o B o \OptionsResolver 7
o

ABECEEYo tuax@ s Ado#EAF 3 PO KL EHS

R

Thought for 28s

Here's what's in that grab-bag of tokens, grouped by script/language and then by “topic” clusters |

can infer.

Languages / scripts represented

¢ Korean (Hangul + Jamo): &, &, o, ©, 2, 3| o & &, o & %, &, @) (enclosed Hangul).
Chinese/Japanese/Korean (CJK Unified Ideographs): B, 18, 3&, %, &, 8, 38, /&, 18, )&, &, #&, 15,
£ (rare/uncommon Han characters used in Chinese; they exist in Japanese/Korean CJK sets too).
Buginese (Indonesia, used for Bugis/Makassarese): 6, 3, 0, 0, ®, ®.
Tai Tham (Lanna; used for Northern Thai / Tai Lii / Lao Tham): 0, , &, 5.
Tai Viet (used for Tai Dam / Tai Dén): y.
Javanese (Indonesia): an.
Arabic script (presentation forms; used for Arabic/Persian/Urdu, etc.): > ,& >, (Arabic
Presentation Forms), plus € (replacement char often seen when Arabic text is mis-decoded).
Canadian Aboriginal Syllabics (e.g., Inuktitut/Cree families): <.
Ogham (Old/Primitive Irish): #.
Latin (programming / PHP namespaced identifier): \OptionsResolver .
Symbols / compatibility forms: & (weather symbol “black snowman”), F (a fullwidth/compatibility

form character), (1) (enclosed CJK/Hangul).

Topic clusters you can read off the list

Korean cluster (Hangul syllables & enclosed forms): £, &, ..., &, (4.

CJK "water & fire” semantics cluster: many characters built from the water radical ; (3%, i, 2,
%) and fire ~/X (48, %&, 18), plus grain (#%) and jade (3).

Southeast Asian historic/vernacular scripts cluster: Buginese (6, 3, 0, , ®, @), Tai Tham (v,
P, €, 9), Tai Viet (y), Javanese ().

Arabic presentation/encoding cluster: > ,4 > ,3 and the € replacement character (suggesting
prior encoding issues).

Indigenous/ancient scripts cluster: Canadian Aboriginal Syllabics (<) and Ogham (#&).
Programming [ PHP framework cluster: \OptionsResolver (Symfony component naming style).
Symbols & compatibility forms cluster: & (weather/meteorological symbol), F
(halfwidth/fullwidth block), ) (enclosed CJK/Hangul).

If you want, | can lay these out in a tidy table (token = script - typical languages - notes).

Figure 16: GPT’s classification of the tokens from Figure

18



972
973
974
975
976
977
978
979
980
981
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986
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Figure 17: Layer-wise cosine similarity between the mean shift and token unembeddings. For
each layer 7, the histograms show cos (IEQC [AF<p ()], Ut) over tokens ¢ (log-scale counts). The
distributions are largely left-skewed, indicating negative alignment with most tokens and thus a broad
reduction in their probabilities.

H STEERING VECTOR PERSISTENCE. E[AF_,;(x)] ALIGNMENT.
LLAMA3.1-8B-IT

1.0
0.8
0.6
£
()]
(%]
o
O
0.4
0.2
[
301 [
-
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Layer

Figure 18: Similarity of steering-induced unembedding biases. LLaMa3.1-8B-It. Each cell shows
the cosine similarity between the average final-layer shifts E[AFr, ;] and E[AF. ;] induced by
steering at layers ¢ and j. High similarity across ¢, 7 < L indicates a shared effect on the unembedding
regardless of where steering is applied. The last-layer shift implements another mechanism. The
mean cosine similarity of all pairs ¢, j < L (up to the last layer) is 0.89.
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I LAST LAYER. LOGIT LENS

Table 4: Last Layer — logit-lens. Cosine similarities and dot-product scores between the last-
layer steering vector (trained in isolation) and the unembedding vectors of the top-10 tokens for
Qwen?2.5-Math-7Band LLaMa3.1-8B-It.

Qwen2.5-Math-7B

To ] To So _to \ } For .To -to
Cos. Sim. 0.37 0.16 0.16 0.15 0.14 0.14 0.13 0.13 0.12 0.12
Dot Prod. 42.5 19.12 18.62 19.12 16.88 19.75 15.69 14.19 17.0 18.62
LLaMa3.1-8B-It
final Step format Final final final Steps Final _final solution
Cos. Sim. 0.12 0.11 0.09 0.09 0.08 0.08 0.08 0.08 0.08 0.08
Dot Prod. 1.69 1.32 1.17 1.09 0.71 1.01 1.02 0.93 0.83 0.95
J  LAST LAYER. LLAMA3.1-8B-IT
Base Base + "Step" Last Steering
@ 215 224 21.6
208 20
Q (]
’305) 0 i ] ° é 15 11.7 131 ¢ 14"7
a ] o £ i
g 0.4 8 g0
g o2 é &
£ 0.0 —— o
"Step" " final" "=t ":\n\n" "An\n" "Step" Greedy Sampling

at Pos. 0

(a) Distribution of the change in token probability
(A P) produced by the single last-layer steering vec-
tor on Qwen-2.5-Math-7B. The box-plots summarise
256 DeepScaleR completions and display (i) the five
tokens with the highest maximum A P and (ii) a sep-

(b) Prepending "To" to every prompt (Base + "To")
raises performance by 10-11 absolute points under
both greedy and sampling decoding by the base model
— more than half of the gain achieved by explicit last-
layer steering.

arate distribution for "7o" when it appears at the first
generated position ("7o" at Pos. 0).

Figure 19: Last Layer Analysis. The left panel shows how last-layer steering concentrates its impact
on starting with token "7To"; the right panel confirms that this single-token boost translates into a
substantial portion of the observed performance improvement.

We analyze the last-layer steering vector for LLaMa3.1-8B-It using the procedure in Section [6]
Table[d](see Appendix[[) reports the 1ogit—1lens scores. Two observations stand out: (i) the vector
is only weakly aligned with any single token — the largest cosine similarity is 0.12 — and (ii) the
highest-scoring tokens are variations of "final" and "Step". Much of the vector’s effect is concentrated
on "Step" at the first generated position (Figure[19a)).

Prepending "Step" to each prompt improves the pefromance of the base model under both Sampling
and Greedy decoding. Interestingly, in the Greedy setting this prefix even outperforms last-layer
steering, plausibly because a last-layer steering vector cannot condition its influence on position and
thus perturbs subsequent steps.

K VALUE STEERING ADDS A LINEAR TERM TO MHA

The following derivation holds when we ignore the pre-attention LayerNorm (LN). While this is
a strong assumption — that LN does not alter the steering vector’s trajectory — the experiment in
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Section[/|shows that a post-attention steering vector attains the same performance as a pre-attention
one, indicating that the pre-attention vector indeed does not act through attention.

Claim. Let U € R7* % and define the (row-wise) attention
UW’ZQ uw’

N ) eRT*T AU =1.

A(U) = Softmax<

For head ¢,
H;(U) = AU)UW, .
Let a steering vector s € R« be added to the values of head i for every token, and set S = 1s' €
RT>dmoat Then
H(U) = AWU) (U + WY
= AU)UWY + AU)SWY
= H;(U) + SwY (since A(U)1 =1).
wy
Writing WY = | --- | by heads, the multi-head output satisfies
Wiy

MHA (U + S) = MHA(U) + SW}) wWf

and is independent of the attention pattern.

L. PENULTIMATE-LAYER STEERING VECTOR IN LLAMA3.1-8B-1IT

Q-Proj K-Proj V-Proj
S30 S30 S30
200 S T TR TR ==
194 _ _ .
- 184 Skip-Attn Skip-Attn Skip-Attn
o
2
c 17
©
[}
= 16
15 S31 S31 S31
14 Skip-Layer Skip-Layer Skip-Layer
0 4 8 12 16 20 24 28 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7
Head Head Head

Figure 20: Penultimate-layer steering in LLaMa3.1-8B-It. Mean accuracy when the penultimate-
layer vector s3 is injected into a single @) (left), K (center), or V' (right) projection of the final block.
Steering any single projection stays near Skip-Attn and below s3.

Skip-Head Steer-Head s
S30 30
IR — p—— —————— -y w———— . ] N e s
8 —————————————————————————————— 8 18 ----------------------------
< 184 . < 1 .
c Skip-Attn c Skip-Attn
[(>] [(>]
V161 L 16
= . S31 = , S31
_____________________ Skip-Layer R ———1 | ¢ | W= 1Y/ <T
14 e e, R _________ =i
0 4 8 12 16 20 24 28 0 4 8 12 16 20 24 28
Head Head

Figure 21: Penultimate-layer steering in LLLaMa3.1-8B-It. Mean accuracy when applying s3q at
the final block by patching whole heads: Skip-Head (left, steer all except head 7) and Steer-Head
(right, steer only head ). No single head closes the gap between Skip-Attn and s3¢, indicating a
cooperative multi-head effect.
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Projection-level patching (Steer—Q/K/V) did not reveal the source of the gain (Figure 20). We
therefore patched entire heads using two setups: Steer—Head (H;(U) — H;(U + s;—1)) and
Skip—Head (leave H;(U) unchanged while steering all other heads). In Figure 21] two baselines
mirror the Qwen result: Skip-Layer performs close to s31, indicating a direct unembedding effect, and
Skip-Attn retains about 70% of the s3g gain, suggesting much of the impact bypasses attention. No
single head closes the remaining gap between sz and Skip—Attn, pointing to a cooperative multi-head
mechanism and the importance of attention layer for s3q’s performance; resolving this is left for
future work.

However, training the steering vector in the post-attention residual stream yields performance in-
distinguishable from sz (mean accuracy 19.9 & 0.1), suggesting either that the vector effectively
bypasses attention or that comparable performance can be achieved via the MLP alone.

M UNNORMALIZED TRANSFER PERFORMANCE

Table 5: Transferability of steering vectors within the Qwen2.5 family. Each cell shows the mean
performance change when the steering vector trained for the Donor model is applied to the Recipient
model. The "None" column denotes the non-trained models’ performance.

Donor
Family Recipient None Base Instruct Math
Base 0.52+0.12 22724053 9.02+1.66 7.57+0.67
Qwen2.5-1.5B  Instruct 1344 +1.17 23.224+0.35 23.82+028 16.64 +0.27
Math 1133 £1.09 1948 +1.18 16.09 +1.48 34.11 £0.28
Base 12.04 =5.85 3644 +0.15 20.78 +3.43 30.0+0.14
Qwen2.5-7B Instruct 3582 +£0.14 37.514+044 38.89+0.27 34.78 £0.07
Math 1433 +£1.75 23424+176 1584+196 42.82+0.25
Base 091 £0.11 9.18+ 022 095+0.11 —
LLaMa3.1-8B  y et 11.81+£043  11.66+046 26.14 + 0.43 —

Table 6: Transferability of steering vectors within the Qwen2.5 family. Generation Length. Each
cell shows the mean generation length change when the steering vector trained for the Donor model
is applied to the Recipient model. The "None" column denotes the non-trained models’ performance.

Donor
Family Recipient None Base Instruct Math
Base 3816 £ 810 1318 =10 2945+ 221 3727 + 221
Qwen2.5-1.5B  Instruct 703 £ 6 1362 +£20 1347 £ 12 1864 + 4
Math 1292 +48 1248 £34 1362+ 50 1064 + 6
Base 1153 + 36 827+6 1616 + 18 1924 + 38
Qwen2.5-7B Instruct 793 +4 831+6 1053 + 11 966 + 6
Math 1224 +£31 1110+ 14 936 + 4 1287 + 27
Base 1258 + 48 732 +£2 1421 + 54 —
LLaMa3.I-8B  j et 28124 184 2172465 1198 + 28 —
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N PAIR SINGLE RAw

Table 7: Pairwise composition of steering vectors. Mean accuracy (%) across six benchmarks when
applying two independently trained steering vectors at once: s; at layer ¢ and s; at layer j.

Qwen2.5-Math-7B

Layer 0 1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

0 346 356 36.0 37.1 362 36.7 36.4 38.2 384 39.1 387 399 39.9 403 41.6 41.7 419 40.0 408 394 387 394 384 375 372 395 39.7 379
1 — 356 349 351 360 36.1 352 36.7 37.4 378 383 39.6 385 39.3 404 40.8 41.0 392 39.5 394 389 39.0 38.6 37.2 374 399 39.0 37.1
2 — — 352 363 362 362 360 37.6 37.6 38.0 384 39.1 39.5 403 41.0 41.7 41.6 393 40.3 39.7 39.0 39.1 389 36.6 369 39.8 39.8 38.0
3 — — — 363 327 360 356 380 37.8 37.8 39.0 40.2 39.6 40.1 409 414 41.5 394 40.2 40.1 385 39.8 392 37.5 37.7 40.5 39.6 38.1
4 — — — — 354 364 354 374 370 38.1 38.0 39.6 392 40.2 413 41.6 423 39.7 40.2 40.0 38.6 38.9 39.1 37.6 36.6 40.6 39.5 38.0
5 — — — — — 370 358 372 374 384 385 39.6 40.1 40.0 41.1 41.4 415 39.6 41.1 40.8 39.8 39.5 39.3 383 374 40.1 39.7 379
6
7
8
9

- - — — — — 363 367 364 37.7 378 394 388 394 41.0 414 415 39.8 403 39.7 39.0 39.6 389 37.5 369 40.5 39.9 378
- - — — — — — 37.1 360 37.1 38.1 39.0 39.5 39.8 41.7 41.6 41.9 403 40.2 41.1 40.1 40.2 394 383 37.7 41.1 403 385
- - - — — — — — 369 359 373 388 382 394 408 403 41.5 399 40.0 40.7 40.0 404 39.0 38.0 384 40.1 410 383
- = - - — — — — — 374 374 385 393 395 39.7 40.7 409 39.1 39.2 402 403 404 40.0 38.8 382 40.8 40.6 39.5

10 — — — — — — — — 372 371 386 39.6 403 40.6 40.8 402 41.1 402 40.5 409 39.6 37.7 37.6 41.0 412 39.6
11— — 374 380 389 393 406 41.6 393 402 407 402 408 39.8 383 37.5 409 414 399
2 — — — — — — 372 373 394 405 41.1 394 404 40.6 40.1 408 402 39.1 379 419 41.1 398
13 — — — 386 390 40.1 412 397 404 409 402 407 39.8 383 38.1 413 400 40.5
4 — — — — — - — — — — — —  — 399 393 404 395 404 41.6 41.6 412 402 398 39.1 43.1 422 416
5 — — — — = 392 398 385 395 407 41.0 41.0 399 39.6 39.1 42.5 40.0 422
6 — — — — — 400 355 37.6 407 407 408 402 39.5 388 429 39.9 419
7 - — - — . _ 366 327 395 398 397 394 37.5 373 412 386 40.1
8 — — — - 375 369 379 380 380 348 369 39.8 347 40.1
9 - — — - . 382 311 346 356 261 354 39.1 255 39.5
0 - - - - . 363334 316 183 339 381 183 379
20— — — 374 326 343 353 368 240 383
» - - — — — _ _ _ _ — — _ _ — — — — — — — — 365 138 245 270 174 322
B - - - — = 232155356 121 37
M T 246 342 129 342
5 — — 388207353
2% — - — — D375 364
27— - = = = = = = - = = - = = - = - = == === = — 306

LLaMa3.1-8B-It

Lajer 0 1 2 3 4 5 6 7 8 9 10 1l 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3l
0 211 173 174 177 181 192 19.1 195 212 222 205 22.6 225 20.6 219 211 220 20.1 19.1 221 197 20.1 22.0 203 20.6 195 198 202 198 200 20.5 206
I — 2019 171 179 175 179 184 199 204 227 205 227 224 209 219 20.7 210 202 207 21.2 209 193 21.8 209 2L.1 196 202 21.2 20.1 197 20.7 209
2 —  — 228 183 186 187 193 192 206 228 205 23.0 229 207 21.8 211 217 209 20.6 220 214 212 225 214 222 206 21.2 217 211 207 220 216
3 —  —  — 226 185 194 195 194 208 238 21.6 235 232 208 228 217 226 208 208 22.6 214 214 225 220 218 196 21.1 214 210 20.1 224 216
4 — — — — 217 181 190 194 196 229 209 222 226 20.6 224 20.8 210 20.1 20.1 20.8 213 202 216 209 21.6 128 182 206 208 113 21.0 215
5 — — — — — 223 188 190 207 221 207 223 229 20.5 218 20.5 21.6 20.8 215 224 214 212 227 215 220 193 207 211 21.0 207 219 213
6 — — — — — — 218 185 199 215 194 219 221 20.6 207 204 216 209 214 208 217 209 223 215 217 194 206 208 208 207 21.5 207
7 — — — — — —  — 224 189 194 186 21.0 216 20.0 209 204 216 204 206 209 210 203 224 208 21.6 145 19.1 21.0 20.1 183 215 207
8 — — — — — — — — 230 209 186 211 224 209 230 21.6 233 224 227 232 232 237 242 236 236 219 224 235 240 238 238 23.1
9 — — — —  — — 247 187 204 236 214 229 227 244 230 227 237 240 237 249 240 247 233 234 237 243 237 244 238
0 — — — — — — — — — — 234 176 203 193 209 205 23.1 217 218 225 226 226 23.6 22.5 230 21.3 208 220 222 224 229 224
1 — — — — — — — — — —  — 242 209 208 217 2.6 237 227 23.1 238 243 233 241 240 242 224 233 240 241 245 24.1 240
2 — — — — — — — — — — —  — 245208 225 217 234 227 233 238 242 235 243 239 237 222 235 236 233 23.1 24.1 230
B3 — — — — — — — — — — — — — 231 200 195 209 200 206 203 19.6 206 21.5 210 20.6 217 21.9
14— — = — =~ 242197 220 213 219 223 215 230 235 233 222 235 234
5 - — — — — — — — — — — — — — — 235211 213 221 210 211 225 227 230 220 225 23.1
6 — — — — — — — — — - — - — — — — 2209 209 212 213 207 210 222 224 202 220 220
17— - - - - - - - 219 210 212 200 207 21.6 209 209 206 21.0
18 — — — — — — - — - - — 215 202 2 194 206 204 195 204 199 206
9 — — - — - - - - - - - - - - = — 238 197 211 212 205 204 213 222
20 - — — — - - - - - - - - = == = 19.6 209 21.9 206 204 209 208
2 — — - - - - = = = = = = = = = = = = = 194 204 208 19.1 196 200 205
2 - - - - - - === 203 213 224 212 211 212 219
2B - — - — = — = - = - = - - = = = == 193 19.6 209 19.1 166 20.1 20.1
4 - — - - - - - - - - - - - - = = = = = = 190 190 204 188 17.2 202 206
%5 - - - — — — - — — — — — — — — — - — - - - — — — — 219 137 186 192 166 200 214
% - — — — — — — — — — — — — - — - — = — = — = — = — — 217 188 196 162 200 207
7 - - - - - - - - - — - — - — — — - — - — - — — — — — — 216 195 153 202 200
28 - - — - - - = - - - = = - - = = = = — = — — 209 132 192 208
29 - — — — — - — - — — - — - — - - - — - — - — - — — — — — — 211123203
N - - - - - - = - - - - - - - - - - = - = - = = = - = — = — — 200 185
35— - = = = = = = = = = — = — = — = — = — = — = = — = — — — — — 148

O CHAT TEMPLATES

Following we used two chat templates. For models that support special chat-
template tokens, we adopted the Qwen-Math template; special tokens for Qwen2 .5-Math-"7B are
shown as a representative example. For LLaMa3 . 1-8B — which does not include pretrained special
chat-template tokens — we used the R/ template.

Chat Template — Qwen-Math

<|im_start|>system Please reason step by step, and put your
final answer within \boxed{}.<|im_end|> <|im_start |>user
TASK<|im_end|> <|im_start|>assistant
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Chat Template — R1

A conversation between User and Assistant. The User asks

a question, and the Assistant solves it. The Assistant
first thinks about the reasoning process in the mind and
then provides the User with the answer. The reasoning
process is enclosed within <think> </think> and answer is
enclosed within <answer> </answer> tags, respectively, i.e.,
<think> reasoning process here </think> <answer> answer here
</answer>. \nUser: TASK\nAssistant: <think>

P LLM USE

We used the latest ChatGPT to check grammar and wording. We also asked it to identify the language
of non-English tokens and give brief meanings (Figure[T6).

Q FEATURES WITH TOP CAS

plane . ### 7 . Find the distance between (-2, 4) and (3,-8). Here, \((x_21, y_1) = (-2,

4)\) and \((x_2, y_2) = (3, -8)\). Substitute these values into the distance formula: \[ d
= \sqrt{(3 - (-2))*2 + (-8 - 4)»2%} \1 Simplify inside the parentheses: \[ d = \sqrt{(3 +
2)*2 + (-8 = 4)*2} \1 \[ d = \sqrt{5"2 + (-12)~2} \1 Calculate the squares: \[ d =

\'sqrt {25 + 144} \1 Add the results: \[ d = \sqrt {169} \ 1 Take the square root: \[ d =
13 \1 So, the distance is \ (\ boxed {13}\ ). ### 8. What is the distance between (-5, 1) and

(11,-3)? Here, \((x_1, y_1) = (-5, 1)\) and \((x_2, y_2) = (11, -3)\). Substitute
these values into the distance formula: \[ d = \sqrt{(11 - (-5))*2 + (-3 - 21)*2} \1
( ST = 3 \)). 4. Now, we need to calculate the distance between point \( P \) at \( (-4, @)

\) and point \( T \) at \( (8, 5) \). The distance \( d \ ) between two points \ ((x_1,
y_1)\) and \((x_2, y_2)\) is given by: \[ d = \sgrt{(x_2 - x_1)"2 + (y_2 - y_1)*2}
\'] Let's calculate this distance using the coordinates of \( P \) and \( T \). ' python import
math # Coordinates of P and T P = (-4, ©) T = (8, 5) # Calculate the distance between P and
T distance _PT = math .sqrt ((T[O@1 - PLO@I)*x2 + (T[11 - P[11)*x2) print (distance _PT)

“output 13.@ ' The distance from \( P \) to \( T \) is \( 13 \). So the final answer
is: \[ \boxed {133} \1

(ST = 3 \)). 4. Now, we need to calculate the distance between point \( P \) at \( (-4, 0)
\) and point \( T \) at \( (8, 5) \). The distance \( d \ ) between two points \ ((x_1,
y_1)\) and \((x_2, y_2)\) is given by: \[ d = \sgrt{(x_2 - x_1)"2 + (y_2 - y_1)~2%}
\'1 Let 's calculate this distance using the coordinates of \( P \) and \( T \). °°' python import
math # Coordinates of P and T P = (-4, ©) T = (8, 5) # Calculate the distance between P and
T distance _PT = math .sqrt ((T[@1 - P[O@D)*x2 + (T[1] - P[11)**2) print (distance _PT)

“output 13.@ 7 The distance from \( P \) to \( T \) is \( 13 \). So the final answer
is: \[ \boxed {133} \1]

Figure 22: (¢ = 16,¢ + k = 17), F-3782, Top-1 in Correctness. This feature seems to be related to
"boxed" token.
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pairs of books I can choose from my eleven books , we can use the concept of combinations . The

formula for combinations ( often denoted as \( C(n, k) \) or \( n \choose k \) is given by : \I[

C(n, k) = \frac{n! ¥ k!(n-k)!'}> \'1 where: - \( n \) is the total number of items, - \( k
\) is the number of items to choose. In this case, \( n = 11 \) and \( k = 2 \). Let's
calculate this using Python . °'° python import math # Number of books n = 11 # Number of books
to choose k = 2 # Calculate the number of combinations num _comb inations = math .comb (n, k)

print (num _comb inations ) *° ' “'‘output 55 ' ° The number of different pairs of books I can choose
from my eleven books is \ (\(ENE@{553\).

contains 8 squares . The second ring (at a distance of 2 units) contains 16 squares. In general,
the \(n*{th}\) ring (at a distance of \(n\) units) contains \(8n\) squares. Thus, the number
of squares in the \(507{th}\) ring is \(8 \times 50 = 400\). Let's write a simple Python
code to verify this pattern and calculate the number of unit squares in the \(5@*{th}\) ring.
** python def number _of _s quares _in _nth _ring (n): return 8 % n # Calculate the number of unit
squares in the 5@ th ring nth_ring = 5@ number _of _s quares =
number _of _s quares _in _nth _ring (n th _ring ) print (number _of _s quares ) “° ' “'“output 4080 *° ' The
number of unit squares in the \(58A{th}\) ring is \ (\[BOXEH{400}\).

\ impl ies f \ left (\ frac {1}{ 2 ¥\ right) = 1.\ 1 Substituting \( f\ left (\ frac {1}{2}\ right) =
1\) into the first equation, we get: \N[f(2) + 1 = 1 \implies f(2) = 0.\]

Let 's verify
this solution using Python and sympy to ensure accuracy . ' python import sympy as sp # Define
the symbols f _2, f _half = sp.symbols (' f_2 f _half') # Define the equations based on the
functional equation eql = sp.Eq(f_2 + f_half, 1) eq2 = sp.Eq(f_half - f_2, 1) # Solve
the system of equations solution = sp .solve ((eql, eq2), (f_2, f_half)) # Extract the value of

f(2) f_2_value = solution [f_21 print (f_2 _value) * Y output @ ' The value of the
function \( f(x)\) at \(x = 2\) is \ (\boxed {0 }\).

Figure 23: (¢ = 16, ¢ + k = 20), F-2515, Top-1 in Correctness. This feature seems to be related to
"boxed" token.

\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \cdots \] The series on the right is a

geometric series with the first term \(a = 1\) and common ratio \(r = \frac{1}{23}\). The sum
of an infinite geometric series is given by \(S = \frac{a}1 - r¥\): \[ S = \frac{1}1 -
\frac{13}{2}} = \frac{21} \frac{13{23} = 2 \1 Thus, the sum of the series \ (\sum_{n =

1} A\ infty \frac{n}{2*n}\) is \(2\). 5. *xIf you cut a square into four right - angled
triangles , what is the area of the largest triangle ? s+« If we start with a square of side length \

(a\), cutting it into four right -angled triangles will result in each triangle having legs!/ of

length \ (\ frac{a}{2}\ ). The area of each| triangle is: \[ \text{Area} = \frac{1}{2} \ times
Hence, $b_n$ is not an integer . Also, since $a_n$ is a perfect square, we have $2a_n(a_n +
1)$ is a perfect square. Hence, $b_n$ is not an integer . Therefore, $b _n$ is not an integer
for all $n\geg ©%$. Thus, $a _n”*2 < b_n*2 < (a_n + 1)*2% for all $n\geq ©$. Hence,
$a_n$ is a perfect square for all $n\geq ©$. $\bullet$ $20179$ $\bullet$ But since $b_n$
is not an integer , we have $a _n"2 < b_n"2 < (a_n + 1)"2$. Thus, $a_n$ is a perfect square
for all $n\geqg ©$. Therefore, $a_n$ is a perfect square for all [] that $b_n$ is not an
integer , we have $a”2 < b*"2 < ~2$. Since $a$ is a perfect square, we have $"2$. Hence,

$b$ is not an integer . Also, since $a$ is a perfect! square, we have $af(a + 1)...

the item that broke is a second -class item ( since this will leave more first -class items ). So,
truck A now has 2 first -class items and 1 second —class item. 2. Truck B originally carried 4
first -class items and 2 second -class items . After one item broke , it either lost a first -class
item or a second -class item . Again, we will consider the worst —case scenario  where the item that
broke 1is a second -class item . So, truck B now has 4 first-class items and 1 second -class item .
3. The remaining total number of first -class items is \(2 + 4 = 6\). 4.

The remaining total
number of items is \(8\). 5. The probability of selecting a first -class item from the remaining \

(8\) items 1is the ratio of first -class items to the total number of remaining items . Let 's use

Figure 24: (¢ = 16, ¢ + k = 20), F-2625, Top-1 in Incorrectness. This feature seems to be related to
repeated tokens in different contexts.
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R DIFFSAE

While vanilla SAE is trained on hidden states directly, DiffSAE trains on the differece of the activation
of different models, however in our case difference came for the pathcing hidden states with steering

on the previous layer. Define d(*) := h{" — hl(f), then

29 = o(WORO + b)) € RY,
dO =wz0 1 )

ec’

where W2

enc

(e.g., BatchTopK (Bussmann et al.| [2024)).

e RFxd bll) e RF, WL, € RI*F b\ € RY, and o(-) is a sparsity-enforcing function

dec

S ADAPTIVE STEERING. EXAMPLES

<lim_starti>system

Please[IZ1 step by step, and put your final answer within \IERE{( ) RTREIE\n

Given that z and w are complex numbers with a modulus of 1, and 15 Iz + wl < @2, find the minimum value of 1z - wl ZERET S\
it siant

Given that \(1z| = 1\) and \(Iwl = 1), and \( 1\leq Iz + wl \leq \sqrt{2} ), we need to find the minimum value of \(1z - I \).

First, let's represent \( z\) and \( w \) in their polar forms:
\[ 2= eA{iMtheta_1}\]

AL w = eA{ivtheta_2}\]

where \(\theta_1 \) and \(\theta_2\) are real angles.

The modulus of \(z+ w\) is:
1z +wl = leA{iMtheta_1} + eA{i\theta_2}I\]

Using Euler's formula, we get:

\ eA{itheta_1} + eA{i\theta_2} = \cos(\theta_1) + i\sin(\theta_1) + \cos(\theta_2) + i\sin(\theta_2) \]
[ = (\cos(\theta_l) + \cos(\theta_2)) + i(\sin(\theta_1) + \sin(\theta_2)) \]

‘The modulus is:
Az +/wl = \sqrt{(\cos(\theta_{l) +\cos(\theta_2))*2 + (sin(\theta_1) + \sin(\theta_2))\2} \]

Al =\sqrt{\cosA2(\theta_1) +\cosA2(\theta_2) + 2\cos(\heta_1)\cos(\theta_2) + \sinA2(\theta_1) +\sinA2(\theta_2) + 2\sin(\theta_1)\sin(\theta_2)} \]

Al = \sqp s [l + \sis 1)) + (\cos _P) +\si _2)) + _1)\cos(\theta_2) + \sin(\theta_1 )\sin(\theta_2))} \]
[ =\sqrt{1 + 1 + 2\cos(\theta_[l - \theta_2)} \]

Al =\sqrt{2 + 2\cos(\theta_ - \theta_2)} \]

Al =\sqrt{2(1 + \cos(\theta_I - \theta_2))} \]

Al = \sqrt{2 \edot 2\cosA2\left(\frac {\theta_I - \theta_2}{2 \right)} \]

Al = 2Vlefthcos\left(\frac {\theta_1 - \theta_2}{2\right)\right! \]

Given \( 1 \leq I + Wi \leq \sqrt{(2) \), we have:
\[ 1 \leq 2Vleftheos\left(\frac{\theta_ - \theta_2}{2}\right)\right| \leq \sqrt{2) \]
AL Mrae {1}{2) \leq \lefthcos\left (frac (\theta_i - \theta_2}{2)\right)\right! \leq \frac {(\sqrt{2}}{2) \]

“This implies:
\[ Vrae {\pi}{4} \leq \lefthfrac {\theta_1 - \theta_2}{2}\right! \leq \frac {\pi}{3} \]
[ Mrac {\pi}{2) \leq Mheta_1 - \theta_21 \leq \frac{2\pi}{3} \]

Now, we need to find \( 1z - wl\):

\[ 1z - wl = leA{i\theta_1} - eA{i\theta_2}I\]

\[=\sart{(\cos(\theta_1) - \cos(\theta_2))A2 + (sin(\theta_1) - \sin(\theta_2))2} \]

A = \sqrt{\cosA2(\theta_1) + \cos*2(\theta_2) - 2\cos(\theta_1)\cos(\theta_2) + \sin*2(\theta_1) + \sin*2(\theta_2) - 2\sin(\theta_1)\sin(\theta_2)} \]
=\ [ + \sinABtheta_1) + D) +si 2)- _D\cos(\theta_2) +\sin(\theta_I)\sin(\theta_2))} \I

Figure 25: Adaptive steering at layer 5. Colors indicate the sign and magnitude of the token-wise
scaling factor. The layer-5 adaptive vector activates on variables and math-operator tokens.
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<lim_starti>system\n
Please reason step by step, and put your final answer within \boxed ) ZT eI

<lim_starti>user ]

Given that z and w are complex numbes with a modulus of /] 1% iz + wilZ @2, find the minimum value of Iz -'w FTRCTSG
i sriessanis]

{28 find the minimun value of \(1z/ wh) given that \(1z! =|1\), \(iwl = 1), and \(1 \leq Iz + wl \leq \sqrt{ 2}, /we lcan proceed with the following reasoning

1. **Geometric Interpretation**:
- Since \(1zI =]1V) and \(Iwl = 1\), both \(z\) and \(w) lie on the unit circle in the complex plane.
- The condition \(1 \leq Iz + i \leq \sqrt{2}\) means that the distance between the points \(z\)/and \(-W\) on the unit circle is between 1 and \(\sqrt{2}\).

2. **Using the Triangle Inequality**:
- The modulus \(1z + wN) can be interpreted as the length of the vector sum of \(z\) and \(w\).
- The minimum value of \(1z - wi) will occur 775 \(z\) and \(w\) are[as close to each other as|possible while still satisfying the given condition.

3. **Finding the Minimum Value**:
- The maximum value of \(1z + wh) is \(\sqrt{2)\), which occurs when \(z\) and \(w\) e orthogonal (] </, \(z = e/{i\theta}\) and \(w = eA{i(\theta + \frac {\pi H2))}V).
- The minimum value of \(1z + wh\ is 1, which occurs when \(z\) and \(w\)/are separated by an angle of \(pit) (i.c} \(z = eA{i\theta}\) and \(w = eA{i(\theta +\pi)} = -e/{i\theta}\))

4. **Calculating \(1z - §N**:
- When \(1z + wl = \sqrt{2}\), \(2)) and \(w\) are orthogonal, and \(1z - Wl = \sqrt{2}\).
- When \(1z + wl = 1V), \(z)) and \(w\) are separated by an angle of \(\pi\), and \(1z = wi = 2\).

However, we need to find the minimum value of \(1z - wi\) within the given range. The critical point to consider is when \(1z + wl =|1\), because this is the minimum value of \(1z + wh) and it gives us the configuration where \(z\) and \(w\) are farhest apart
while still satisfying the condition.

When \(1z + wl =|1V), we can use the identity:

1z +Wih2 + 1z - wiA2 = 2(zh2 + IwihB). \]

Since \(IzI = 1) and \(Iwl = 1\), we have:

N[ 142 +1z= wiA2 = 2(142 +]142) = 4.\]

So,

\izfiwh2=4-1=3.\

Thus,

\[ Iz - wl=\sqrt{3}.\]

herefore., the minimum value of \(1z - wh) is§(boxed (\sqrt{2)} [

i final answer [ \boxed (\sqrt (213}

Figure 26: Adaptive steering at layer 15. Colors show the sign and magnitude of the token-wise
scaling factor. The layer-15 adaptive vector gives positive weight to natural-language reasoning and
definition tokens, and negative weight to the instruction prompt and answer-generation tokens.
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