
Under review as a conference paper at ICLR 2023

MOMENTUM IN MOMENTUM FOR ADAPTIVE OPTI-
MIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Adaptive gradient methods, e.g., ADAM, have achieved tremendous success in
machine learning. Employing adaptive learning rates according to the gradients,
such methods are able to attain rapid training of modern deep neural networks.
Nevertheless, they are observed to suffer from compromised generalization ca-
pacity compared with stochastic gradient descent (SGD) and tend to be trapped
in local minima at an early stage during the training process. Intriguingly, we dis-
cover that the issue can be resolved by substituting the gradient in the second raw
moment estimate term with its momentumized version in ADAM. The intuition
is that the gradient with momentum contains more accurate directional informa-
tion, and therefore its second moment estimation is a more preferable option for
learning rate scaling than that of the raw gradient. Thereby we propose ADAM3

as a new optimizer reaching the goal of training quickly while generalizing much
better. We further develop a theory to back up the improvement in generalization
and provide novel convergence guarantees for our designed optimizer. Extensive
experiments on a variety of tasks and models demonstrate that ADAM3 exhibits
state-of-the-art performance and superior training stability consistently. Consider-
ing the simplicity and effectiveness of ADAM3, we believe it has the potential to
become a new standard method in deep learning. Code will be publicly available.

1 INTRODUCTION

Prevailing first-order optimization algorithms in modern machine learning can be classified into two
categories. One is stochastic gradient descent (SGD) (Robbins & Monro, 1951), which is widely
adopted due to its low memory cost and outstanding performance. SGDM (Sutskever et al., 2013)
which incorporates the notion of momentum into SGD, has become the best choice for optimiza-
tion in computer vision. The drawback of SGD(M) is that it scales the gradient uniformly in all
directions, making the training slow, especially at the beginning, and fails to optimize complicated
models well beyond Convolutional Neural Networks (CNN). The other type is adaptive gradient
methods. Unlike SGD, adaptive gradient optimizers adapt the stepsize (a.k.a. learning rate) elemen-
twise according to the gradient values. Specifically, they scale the gradient by the square roots of
some form of the running average of the squared values of the past gradients. Popular examples
include AdaGrad (Duchi et al., 2011), RMSprop (Tijmen Tieleman, 2012) and Adam (Kingma &
Ba, 2015) etc. Adam, in particular, has become the default choice for many machine learning ap-
plication areas. This is because compared to SGD(M), Adam is better at optimizing complex loss
functions (Zhang et al., 2019; Kingma & Ba, 2015), e.g. those in deep learning.

Despite their fast speed in the early training phase, adaptive gradient methods, especially Adam, are
found by studies (Wilson et al., 2017; Zhou et al., 2020) to be more likely to exhibit poorer gener-
alization ability than SGD (M). This is discouraging because the ultimate goal of training in many
machine learning tasks is to exhibit favorable performance during the testing phase. In recent years
researchers have put much effort into mitigating the deficiencies of adaptive gradient algorithms.
AMSGrad (Reddi et al., 2018b) is proposed to optimize loss functions empirically faster than Adam,
and meanwhile, to fix the convergence problem in the original Adam (Kingma & Ba, 2015) paper,
which also implies that AMSGrad theoretically converges faster than Adam. Yogi (Reddi et al.,
2018a) takes the effect of batch size into consideration. M-SVAG (Balles & Hennig, 2018) trans-
fers the variance adaptation mechanism from Adam to SGD. AdamW (Loshchilov & Hutter, 2017)
changes the way in which L2 regularization is applied to Adam-alike algorithms for the first time.

1

Under review as a conference paper at ICLR 2023

SWATS (Keskar & Socher, 2017) switches from Adam to SGD throughout the training process via
a hard schedule, and AdaBound (Luo et al., 2019) switches with a smooth transition by imposing
dynamic bounds on stepsizes. More recently, RAdam (Liu et al., 2019) rectifies the variance of the
adaptive learning rate by investigating the theory behind warmup heuristic (Popel & Bojar, 2018;
Vaswani et al., 2017). AdaBelief (Zhuang et al., 2020) is a pioneering work that adapts stepsizes by
the belief in the observed gradients and surpasses all the existing adaptive gradient methods in gen-
eralization performance. Nevertheless, most of these proposed variants, despite surpassing Adam in
some scenarios, still generalize worse than SGD(M) on CNN-based vision tasks and their improv-
ments over Adam are not significant enough yet. Till today, SGD and Adam are still the default
options in machine learning, especially deep learning (Schmidt et al., 2021). Conventional rules for
choosing optimizers are: Choose SGDM for Fully Connected Networks and CNNs, and Adam for
Recurrent Neural Networks (RNN) (Cho et al., 2014; Hochreiter & Schmidhuber, 1997b), Trans-
formers (Vaswani et al., 2017) and Generative Adversarial Networks (GAN) (Goodfellow et al.,
2014). Based on the above observations, a natural question is:

Is there an adaptive gradient algorithm that can converge fast and meanwhile generalize well?

In this work, we are delighted to discover that simply replacing the gradient term in the second
moment estimation term of Adam with its momentumized version can achieve this goal. Our idea
comes from the origin of the Adam optimizer, which is a combination of RMSprop and SGDM.
RMSprop scales the current gradient by the square root of the exponential moving average (EMA)
of the squared past gradients, and Adam replaces the raw gradient in the numerator of the update
term of RMSprop with its EMA form, i.e., with momentum. Since the EMA of the gradient is a
more accurate estimation of the appropriate direction to descent, we consider putting it in the second
moment estimation term as well. We find such operation makes the optimizer more suitable for the
typical loss curvature and can theoretically converge to minima that generalize better. Extensive
experiments on a broad range of tasks and models indicate that: without bells and whistles, our
proposed optimizer can be as good as SGDM on vision problems and outperforms all the SOTA
optimizers in other tasks meanwhile maintaining fast convergence speed. Our algorithm is efficient
with no additional memory cost and applicable to a wide range of scenarios in machine learning
and deep learning. More importantly, AdaM3 requires little effort in hyperparameter tuning, and the
default parameter setting for adaptive gradient methods works well consistently in our algorithm.

Notation We use t, T to symbolize the current and total iteration number in the optimization pro-
cess. θ ∈ Rd denotes the model parameter and f(θ) ∈ R denotes the loss function. We further
use θt to denote the parameter at step t and ft to denote the noisy realization of f at time t because
of the mini-batch stochastic gradient mechanism. gt denotes the t-th time gradient and α denotes
stepsize. mt, vt represent the EMA of the gradient and the second moment estimation term at time
t of adaptive gradient methods respectively. ε is a small constant number added in adaptive gradient
methods to refrain the denominator from being too close to zero. β1, β2 are the decaying parame-
ter in the EMA formulation of mt and vt correspondingly. For any vectors a, b ∈ Rd, we employ√
a, a2, |a|, a/b, a ≥ b, a ≤ b for elementwise square root, square, absolute value, division, greater

or equal to, less than or equal to respectively. For any 1 ≤ i ≤ d, θt,i denotes the i-th element of θt.
Given a vector x ∈ Rd, we use ‖x‖2 to denote its l2-norm and ‖x‖∞ to denote its l∞-norm. The
symbol . means the order of the LHS is less than the order of the RHS, i.e., LHS/RHS→ 0 when
T →∞. β1,t denote the value of β1 at step t and αt denotes the value of α at step t.

2 ALGORITHM

Preliminaries & Motivation Omitting the debiasing operation and the damping term ε, the adap-
tive gradient methods can be generally written in the following form:

θt+1 = θt − α
mt√
vt
. (1)

Here mt, vt are called the first and second moment estimation terms. When mt = gt and vt = 1,
equation 1 degenerates to the vanilla SGD. Rprop (Riedmiller & Braun, 1993) is the pioneering work
using the notion of adaptive learning rate, in which mt = gt and vt = g2

t . Actually, it is equivalent
to only using the sign of gradients for different weight parameters. RMSprop (Tijmen Tieleman,
2012) forces the number divided to be similar for adjacent mini-batches by incorporating momentum

2

Under review as a conference paper at ICLR 2023

Algorithm 1 AdaM3 (ours). All mathematical operations are element-wise.
1: Initialization : Parameter initialization θ0, step size α, damping term ε,m0 ← 0, v0 ← 0, t← 0
2: while θt not converged do
3: t← t+ 1 . Updating time step
4: gt ← ∇θft(θt−1) . Acquiring gradient at time t
5: mt ← β1mt−1 + (1− β1)gt . EMA of gradients
6: vt ← β2vt−1 + (1− β2)mt

2 + ε . EMA of EMA of gradients plus damping term
7: m̂t ← mt/(1− βt1) . Bias correction of first moment estimation
8: v̂t ← vt/(1− βt2) . Bias correction of second moment estimation
9: θt ← θt−1 − α · m̂t/

√
v̂t . Updating parameters

10: end while

acceleration into vt. Adam (Kingma & Ba, 2015) is built upon RMSprop in which it turns gt into
momentumized version. Both RMSprop and Adam boost their performance thanks to the smoothing
property of EMA. Due to the fact that the EMA of the gradient is a more accurate estimation than
the raw gradient, we deem that there is no reason to use gt in lieu of mt in the second moment
estimation term vt. Therefore we propose to replace the gis in vt of Adam with its EMA version
mis, which further smooths the EMA. Hence our vt turns into the EMA of the square of the EMA
of the past gradients. The comparison of the classic optimizers and ours is summarized in Tab. 1.

Table 1: Comparison of AdaM3 and classic adaptive
gradient methods in mt and vt in equation 1.

Optimizer mt vt

SGD gt 1
Rprop gt g2

t

RMSprop gt (1− β2)
∑t
i=1 β

t−i
2 g2

i

Adam (1− β1)
∑t
i=1 β

t−i
1 gi (1− β2)

∑t
i=1 β

t−i
2 g2

i

Ours (1− β1)
∑t
i=1 β

t−i
1 gi (1− β2)

∑t
i=1 β

t−i
2 mi

2

Detailed Algorithm The detailed proce-
dure of our proposed optimizer is displayed
in Algorithm 1. There are two major modifi-
cations based on Adam, which are marked in
red and blue, respectively. One is that we re-
place the gt in vt of Adam with mt, which is
the momentumized gradient. Hence we name
our proposed optimizer as AdaM3, where the
M3 can be interpreted as either the three-fold
EMA mechanism (two-fold EMA in the denominator vt and one EMA in the numerator mt) or the
MoMentuMized gradient in vt. The other is the location of ε (in Adam ε is added after

√
· in line 9

of Alg.1). We discover that moving the location of ε term from outside the radical symbol to inside
can consistently enhance performance. To the best of our knowledge, our method is the first attempt
to put momentumized gradient in the second moment estimation term of adaptive gradient methods.

3 WHY ADAM3 OVER ADAM?

3.1 ADAM3 IS MORE SUITABLE FOR TYPICAL LOSS CURVATURE

In this section, we show that AdaM3 can converge to (global) minima faster than Adam does via
illustration. The left part of Figure 1 is the process of optimization from a plateau to a basin area,
where a global optimum is assumed to exist. The right part is the zoomed-in version of the situa-
tion near the minimum, where we have some peaks and valleys. This phenomenon commonly takes
place in optimization since there is only one global minimum with many local minima surround-
ing (Hochreiter & Schmidhuber, 1997a; Keskar et al., 2017).

Benefits of Substituting gt with mt. We first explain how substituting mt for gt in the precon-
ditioner vt can improve training via decomposing the trajectory of parameter point along the loss
curve. 1) In area A, the parameter point starts to slide down the curve, and |gt| begins to enlarge
abruptly. So the actual stepsize α/

√
vt is small for Adam. However, the absolute value of the mo-

mentumized gradient mt is small since it is the EMA of the past gradients, making α/
√
vt still large

for AdaM3. Hence AdaM3 can maintain a higher training speed than Adam in this changing corner
of the loss curve, which is what an optimal optimizer should do. 2) In area B, since the exponential
moving average decays the impact of past gradients exponentially w.r.t. t, the magnitude of the
elements of mt will gradually become as large as gt. 3) In area C, when the parameter approaches
the basin, the magnitude of gt decreases, making the stepsizes of Adam increase immediately. In

3

Under review as a conference paper at ICLR 2023

A

B

C

𝒈 is large, 𝒎 is small

𝒎 gradually becomes
as large as 𝒈

𝒈 is small, 𝒎 is large 𝜽𝒕 𝜽𝒕"𝟏
(𝟏) 𝜽𝒕"𝟏

(𝟐)

global minimum

local minimum

Zoom

𝜽

𝒇(𝜽)

𝜽

Ada𝐌𝟑

Adam

update

Figure 1: Illustration of the optimization process of Adam and AdaM3. A typical loss curve can be
composed to three areas: A) transition from a plateau to a downgrade; B) a steep downgrade; C) from
downgrade to entering the basin containing the optimum. An ideal optimizer is expected to sustain
large stepsize before reaching the optimum and reduce its stepsize near the optimum. Compared to
Adam, AdaM3 can adapt the effective stepsize more appropriately along the loss curve and maintain
a smaller stepsize near the convergence, contributing to stable training and better convergence.

contrast, the stepsize of AdaM3 is still comparatively small as |mt| is still much larger than |gt|,
which is desired for an ideal optimizer. Small stepsize near optimum is beneficial to convergence
and stability (Luo et al., 2019; Zhuang et al., 2020) and a concrete illustration is given in the right
part of Figure 1. If the stepsize is too large (e.g. in Adam), the weight parameter θt may rush to
θ

(2)
t+1 and miss the global optimum (θ(1)

t+1). Contrarily, small stepsize can guarantee the parameter
to be close to the global minimum even if there may be tiny oscillations within the basin before
the final convergence. The right part of Figure 1 mainly shows that large stepsize near convergence
inevitably leads to undesirable training instability.

Benefits of Changing the Location of ε. Next, we elaborate on why putting ε under the
√
· is

beneficial. We denote the debiased second moment estimation in AdaM3 as v̂t and the second
moment estimation term without ε as v̂′t. By simple calculation, we have

v̂t =
(
(1− β2)/(1− βt2)

)
·

t∑
i=1

βt−i2 m2
i +

ε

1− β2
,

v̂′t =
(
(1− β2)/(1− βt2)

)
·

t∑
i=1

βt−i2 m2
i .

Hence we have v̂t = v̂′t + ε/(1 − β2). Then the actual stepsizes are α/(
√
v̂′t + ε/(1− β2)) and

α/(
√
v̂′t+ε) for ε under

√
· and ε out of

√
· in AdaM3 respectively. In the final stage of optimization,

v̂′t is very close to 0 (because the values of gradients are near 0) and far less than ε hence the actual
stepsizes can be approximately written as

√
1− β2α/

√
ε and α/ε. As ε usually takes very tiny

values ranging from 10−8 to 10−16 and β2 usually take values that are extremely close to 1 (usually
0.999), we have

√
1− β2α/

√
ε� α/ε 1. Therefore we may reasonably come to the conclusion that

after moving ε term into the radical symbol, AdaM3 further reduces the stepsizes when the training is
near minima, which contributes to enhancing convergence and stability as we have discussed above.

3.2 ADAM3 CONVERGES TO MINIMA THAT GENERALIZE BETTER

The outline of Adam and our proposed AdaM3 can be written in the following unified form:
mt = β1mt−1 + (1− β1)gt, vt = β2vt−1 + (1− β2)k2t ,

θt+1 = θt − αmt

/(
(1− βt1)

√
vt/(1− βt2)

)
. (2)

where kt equalts gt in Adam and mt in AdaM3. We introduce some definitions before proceeding.
Definition 1 (Symmetric α-stable distribution (Lévy & Lévy, 1954)). Let X1 and X2 be indepen-
dent copies of a random variable X . Then X is said to be stable if for any constants a > 0 and
b > 0 the random variable aX1 + bX2 has the same distribution as cX+d for some constants c > 0
and d. Denote ψ(t) as the characteristic function of the distribution of X , then it can be written as

1Note that even for different ε values we still have
√

1− β2α/
√
ε1 < α/ε2 as ε1, ε2 ∈ [10−16, 10−8].

4

Under review as a conference paper at ICLR 2023

ψ(t;α, β, c, µ) = exp(itµ− |ct|α(1− iβsgn(t)Φ)), where sgn(t) denotes the sign of t and

Φ =

{
tan πα

2
α 6= 1

− 2
π

log |t| α = 1.

µ ∈ R is a shift parameter and β ∈ [−1, 1]. When β = 0 the distribution is symmetric about µ and
is called (Levy) symmetric alpha-stable distribution, often abbreviated as SαS distribution.

Inspired by a line of work Pavlyukevich (2011); Simsekli et al. (2019); Zhou et al. (2020), we can
consider equation 2 as a discretization of a continuous-time process and reformulate it as its cor-
responding Lévy-driven stochastic differential equation (SDE). Assuming that the gradient noise
ζt = gt−∇f(θt) is centered symmetric α̃-stable (Sα̃S) distributed with covariance matrix Σt pos-
sessing a heavy-tailed signature (α̃ ∈ (0, 2]), then we can derive the Lévy-driven SDE of equation 2:

dθt = −qtR−1
t mtdt+ υR−1

t ΣtdLt, (3)

dmt = (1− β1)(∇f(θt)−mt), dvt = (1− β2)(k2t − vt), (4)

where Rt = diag(
√
vt/(1− βt2)), υ = α1−1/α̃, qt = 1/(1 − βt1) and Lt is the α̃-stable Lévy

motion with independent components. We are interested in the local stability of the optimizers
and therefore we suppose process equation 4 is initialized in a local basin Ω with a minimum θ∗

(w.l.o.g., we assume θ∗ = 0). To investigate the escaping behavior of θt, we first introduce two
technical definitions.
Definition 2 (Radon Measure (Simon et al., 1983)). If a measure m(·) defined on the σ-algebra of
Borel sets of a Hausdorff topological space X is 1) inner regular on open sets, 2) outer regular on
all Borel sets, and 3) finite on all compact sets, then the measure is called a Radon measure.
Definition 3 (Escaping Time & Escaping Set). We define Escaping Time Γ := inf{t ≥ 0 : θt 6∈
Ω−υ

γ}, where Ω−υ
γ

= {y ∈ Ω : dis(∂Ω, y) ≥ υγ} and γ > 0 is a constant. We define Escaping
Set Υ := {y ∈ Rd : R−1

θ∗ Σθ∗y 6∈ Ω−υ
γ}, where Σθ∗ = limθt→θ∗ Σt, Rθ∗ = limθt→θ∗ Rt.

We impose some standard assumptions before studying the relationship between Γ and Υ.
Assumption 1. f is non-negative with an upper bound, and locally µ-strongly convex in Ω, i.e., for
any compact and convex K ⊂ Ω, f is strongly convex on K.
Assumption 2. There exists some constant L > 0, s.t. ‖∇f(x)−∇f(y)‖2 ≤ L ‖x− y‖2 ,∀x, y.
Remark 1. Assumption 1 and 2 impose some standard assumptions of stochastic optimiza-
tion (Ghadimi & Lan, 2013; Johnson & Zhang, 2013).

Assumption 3. We assume that
∫ Γ

0
〈∇f(θt)/(1 + f(θt)), qtR

−1
t mt〉 dt ≥ 0 a.e., and β1 ≤ β2 ≤

2β1. We further suppose that there exist v−, v+ > 0 s.t. each coordinate of
√
vt can be uniformly

bounded in (v−, v+) and there exist τm, τ > 0 s.t. ‖mt − m̂t‖2 ≤ τm

∥∥∥∫ t−0
(mx − m̂x) dx

∥∥∥
2

and

‖m̂t‖2 ≥ τ
∥∥∥∇f(θ̂t)

∥∥∥
2
, where m̂t and θ̂t are calculated by solving equation equation 4 with υ = 0.

Remark 2. Assumption 3 requires the true gradient ∇f(θt) to have similar directions to mt as we
assume the integral of their inner product to be non-negative along the iteration trajectory. This can
be easily satisfied because mt can be viewed as an estimate of ∇f(θt). The distance assumption
between mt and m̂t can be easily fulfilled by their definitions.

Based on the above assumptions, we can prove that for algorithm of form equation 2, the expected
escaping time is inversely proportional to the Radon measure of the escaping set:

Lemma 1. Under Assumptions 1-3, let υα̃+1 = Θ(α̃) and ln (2∆/(µυ1/3)) ≤ 2µτ(β1 −
β2/4)/(β1v+ + µτ), where ∆ = f(θ0) − f(θ∗). Then given any θ0 ∈ Ω−2υγ , for equation 4
we have

E(Γ) = Θ(υ/m(Υ)),

where m(·) is a non-zero Radon measure satisfying that m(U) < m(V) if U ⊂ V .
Remark 3. As larger set has larger volume, i.e., V (U) ≤ V (V) if U ⊂ V , from Lemma 1 we have
the escaping time is negatively correlated with the volume of the set Υ. Therefore, we can come to
the conclusion that for both Adam and AdaM3, if the basin Ω is sharp which is ubiquitous during
the early stage of training, Υ has a large Radon measure, which leads to smaller escaping time Γ.
This means both Adam and AdaM3 prefer relatively flat or asymmetric basin (He et al., 2019).

5

Under review as a conference paper at ICLR 2023

On the other hand, upon encountering a comparatively flat basin or asymmetric valley Ω, we are able
to prove that AdaM3 will stay longer inside. Before proceeding, we impose two mild assumptions.
Assumption 4. The l∞ norm of∇f is bounded by some constant G, i.e., ‖∇f(x)‖∞ ≤ G,∀x.

Assumption 5. For AdaM3, there exists T0 ∈ N s.t., E(ζ2
t) ≤ β1E(m2

t−1)/(2− β1) when t > T0.

0

2

4

6

0 40000 80000
Iteration

ζt
2

β1mt−1
2 (2 − β1)

Figure 2: Empirical investigation of As-
sumption 5.

Assumption 4 is a standard assumption in stochastic opti-
mization (Guo et al., 2021; Reddi et al., 2018b; Savarese
et al., 2021). As β1 is always set as positive number close
to 1, Assumption 5 basically requires that the gradient
noise variance to be smaller than the second moment of
m when t is very large. This is mild as 1) we can select
mini-batch size to be large enough to satisfy it as the noise
variance is inversely proportional to batch size (Bubeck,
2014). 2) The magnitudes of the variances of the stochas-
tic gradients are usually much lower than that of the gradi-
ents (Faghri et al., 2020). In Fig. 2, we report the values of
ζ2
t and β1m

2
t−1/(2−β1) of AdaM3 on a 5-layer fully con-

nected network with width 30. From Fig. 2, one can ob-
serve that ζ2

t is consistently lower than β1m
2
t−1/(2− β1)

as iteration becomes larger, which further validates As-
sumption 5. Then we can come to the following result.
Proposition 1. Under Assumptions 1-5, upon encountering a comparatively flat basin or asymmet-
ric valley Ω, we have

E
(

Γ(ADAM3)
)
≥ E

(
Γ(ADAM)

)
.

When falling into a flat/asymmetric basin, AdaM3 is more stable than Adam and will not easily
escape from it. Combining the aforementioned results and the fact that minima at the flat or asym-
metric basins tend to exhibit better generalization performance (as observed in Keskar et al. (2017);
He et al. (2019); Hochreiter & Schmidhuber (1997a); Izmailov et al. (2018); Li et al. (2018)), we
are able to conclude that AdaM3 is more likely to converge to minima that generalize better, which
buttresses the empirical improvement of AdaM3. The proofs in section 3.2 are given in Appendix A.

4 CONVERGENCE ANALYSIS OF ADAM3

In this section, we establish the convergence theory for AdaM3 under the non-convex object function
condition. The convex convergence theory for AdaM3 is provided in Appendix B.1 for complete-
ness. We omit the two bias correction steps in the Algorithm 1 for simplicity, and the following
analysis can be easily adapted to the de-biased version as well. When f is non-convex and lower-
bounded, we derive the non-asymptotic convergence rate of AdaM3 in the following theorem.

Theorem 1. Suppose that Assumptions 2 and 4 hold. We denote bu,t =
√

(1− β2)/(ε− εβt2) ≤
bu,1, bl,t = 1/

[√
G2(1− βT)2 + ε/(1− β2)(1− βt2)

]
≥ bl,T where β = mint β1,t. If there exists

some T0 . 1/αT , such that for all t ≥ T0 we have αT ≤ αt ≤ (1 − β1,t+1)
√
bl,T /(2L2b3u,1) and

αt ≤ bl,t/(2Lb2u,t). With η(T) :=
∑T
t=1(1− β1,t)

2, we have:

E

[
1

T + 1

T∑
t=0

‖∇f(θt)‖22

]
≤ 1

αT (T + 1)
(Q1 +Q2η(T))

for some positive constants Q1, Q2 independent of d or T .

The conditions in Theorem 1 are reasonable, as in practice the momentum parameter for the first-
order average β1,t is usually set as a large value, and meanwhile the step size αt decays with
time (Chen et al., 2019; Guo et al., 2021; Huang & Huang, 2021). Our non-convex analysis im-
proves the current literature (Chen et al., 2019; Reddi et al., 2018b; Zhuang et al., 2020) in opti-
mization for adaptive gradient method significantly in that we no longer require β1,t and αt/

√
vt

to be monotonically decreasing (needed in Chen et al. (2019); Reddi et al. (2018b); Zhuang et al.

6

Under review as a conference paper at ICLR 2023

(2020)), which does not correspond to the realistic circumstances. In particular, we can use a setting
with (1− β1,t) = 1/

√
t and αt = α/

√
t for some initial constant α to achieve the O(log(T)/

√
T)

convergence rate as in the following result.
Corollary 1. When 1 − β1,t and αt are further chosen to be in the scale of O(1/

√
t) with all

assumptions in Theorem 1 hold, AdaM3 satisfies:

E

[
1

T + 1

T∑
t=0

‖∇f(θt)‖22

]
≤ 1√

T
(Q∗1 +Q∗2 log(T)),

for some constants Q∗1, Q
∗
2 similarly defined in Theorem 1.

Corollary 1 manifests the O(log(T)/
√
T) convergence rate of AdaM3 under the non-convex object

function case. We refer readers to the detailed proof in Appendix B.3.

5 EXPERIMENTS

5.1 2D TOY EXPERIMENT ON SPHERE FUNCTION

We compare the optimization performance of AdaM3 and Adam on 2D Sphere Function (bowl-
shaped) (Dixon, 1978): f(x) = x2

1 + x2
2. We omit the damping term ε in both two algorithms, so

the only difference is the mt and gt in the term vt. We set the learning rate α of AdaM3 as 0.1 and
finetune the learning rate of Adam. We can observe from Fig. 3 that, on the one hand, when the
α of Adam is the same as AdaM3, Adam is much slower than our AdaM3 in convergence; on the
other hand, when we use a larger α on Adam (α = 0.5, 0.1) it will oscillate much more violently.
To summarize, the replacement of gt with mt in AdaM3 makes the alteration of the learning rate
smoother and more suitable (see analysis in Sec 3.1) for the sphere loss function. Despite the fact
that this is only a toy experiment, such local behavior of AdaM3 and Adam may shed light on their
performance difference in complex deep learning tasks in the sequel of the paper, as any complicated
real function can be approximated using the compositions of sphere functions (Yarotsky, 2017).

5.2 DEEP LEARNING EXPERIMENTS

4 2 0 2 4

4

2

0

2

4

x

Adam
AdaM3

(a) αAdam = 0.1.
4 2 0 2 4

4

2

0

2

4

x

Adam
AdaM3

(b) αAdam = 0.5.
4 2 0 2 4

4

2

0

2

4

x

Adam
AdaM3

(c) αAdam = 1.0.

Figure 3: Optimization trajectories of AdaM3 and
Adam on Sphere Function. The αs of AdaM3 are 0.1.

We empirically investigate the perfor-
mance of AdaM3 in optimization, gen-
eralization and training stability. We
conduct experiments on various modern
network architectures for different tasks
covering both vision and language pro-
cessing area: 1) image Classification on
CIFAR-10 (Krizhevsky & Hinton, 2009)
and ImageNet (Russakovsky et al., 2015)
with CNN; 2) language modeling on
Penn Treebank (Marcus et al., 1993)
dataset using Long Short-Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997b); 3) neural machine translation on IWSTL’14
DE-EN (Cettolo et al., 2014) dataset employing Transformer; 4) Generative Adversarial Net-
works (GAN) on CIFAR-10. We compare AdaM3 with seven state-of-the-art optimizers:
SGDM (Sutskever et al., 2013), Adam (Kingma & Ba, 2015), AdamW (Loshchilov & Hutter,
2017), Yogi (Reddi et al., 2018a), AdaBound (Luo et al., 2019), RAdam (Liu et al., 2019) and
AdaBelief (Zhuang et al., 2020). We perform a careful and extensive hyperparameter tuning (in-
cluding learning rate, β2, weight decay and ε) for all the optimizers compared in each experiment
and report their best performance. The detailed tuning schedule is summarized in Appendix C. It
is worth mentioning that in experiments we discover that setting α = 0.001, β1 = 0.9, β2 = 0.999
(the default setting for adaptive gradient methods in applied machine learing) works well in most
cases. This elucidates that our optimizer is tuning-friendly, which reduces human labor and time
cost and is crucial in practice. The mean results with standard deviations over 5 random seeds are
reported in all the following experiments except ImageNet. Moreover, the pairwise hypothesis test-
ing results between our method and other gradient methods using Paired Wilcoxon signed-rank test
(exact form) (Wilcoxon, 1992) and Paired t-test (Shao, 2003) are provided in Appendix D.

7

Under review as a conference paper at ICLR 2023

Table 2: Test accuracy (%) of CNNs on CIFAR-10 dataset. The best in red and second best in blue.

Architecture Measure Non-adaptive Adaptive gradient methods
SGDM Adam AdamW Yogi AdaBound RAdam AdaBelief AdaM3

VGGNet-16 Best 94.73±0.12 93.29±0.10 93.33±0.15 93.44±0.16 93.79±0.17 93.90±0.10 94.57±0.09 94.80±0.10

Last 94.64±0.17 93.09±0.10 93.20±0.17 93.23±0.17 93.65±0.20 93.78±0.13 94.44±0.06 94.69±0.12

ResNet-34 Best 96.47±0.09 95.39±0.11 95.48±0.10 95.28±0.19 95.51±0.07 95.67±0.16 96.04±0.07 96.33±0.07

Last 96.31±0.11 95.25±0.09 95.36±0.08 95.11±0.15 95.41±0.08 95.61±0.13 95.94±0.12 96.18±0.11

DenseNet-121 Best 96.19±0.17 95.35±0.09 95.52±0.14 94.98±0.13 95.43±0.12 95.82±0.19 96.09±0.14 96.30±0.12

Last 96.04±0.16 95.25±0.11 95.37±0.14 94.89±0.13 95.31±0.17 95.73±0.21 95.95±0.16 96.20±0.12

Table 4: Test perplexity (↓) results of LSTMs on Penn Treebank dataset.
Layer # SGDM Adam AdamW Yogi AdaBound RAdam AdaBelief AdaM3

1 85.31±0.09 84.55±0.10 88.18±0.14 86.87±0.14 85.10±0.22 88.60±0.22 84.30±0.23 80.82±0.19

2 67.25±0.20 67.11±0.20 73.61±0.15 71.54±0.14 67.69±0.24 73.80±0.25 66.66±0.11 64.85±0.09

3 63.52±0.16 64.10±0.25 69.91±0.20 67.58±0.08 63.52±0.11 70.10±0.16 61.33±0.19 60.08±0.11

5.2.1 CNN FOR IMAGE CLASSIFICATION

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

Tr
ai

ni
ng

 L
os

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

5

10

15

20

25

(a) Adam.

1.000.750.500.250.000.250.500.751.00 1.00
0.75

0.50
0.25
0.00

0.25
0.50

0.75
1.00

Tr
ai

ni
ng

 L
os

s

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5

1.0

1.5

2.0

2.5

3.0

(b) AdaM3.

Figure 4: Comparison of the basins around the
convergent points of ResNet-34 trained by Adam
and AdaM3 on CIFAR-10.

CIFAR-10 We experimented with three pre-
vailing deep CNN architectures: VGG-16 (Si-
monyan & Zisserman, 2015), ResNet-34 (He
et al., 2016) and DenseNet-121 (Huang et al.,
2017). In each experiment, we train the model
for 200 epochs with batch size 128 and decay
the learning rate by 0.2 at the 60-th, 120-th, and
160-th epoch. We employ the label smooth-
ing technique (Szegedy et al., 2016), and the
smoothing factor is chosen as 0.1. Both best
epoch and last epoch test accuracy results are
summarized in Tab. 2, and Fig. 5 in Appendix C
displays the training and testing results of all
the compared optimizers. As indicated, during training AdaM3 can be as fast as other adaptive gra-
dient methods, being much faster than SGDM, especially before the third learning rate annealing. In
the testing phase, AdaM3 can exhibit accuracy as good as SGDM (better than SGDM on VGGNet
and DenseNet and slightly worse than SGDM on ResNet) and far exceeds all other adaptive gradient
methods, including the recently proposed adaptive gradient optimizers including Yogi, AdaBound,
RAdam and current SOTA AdaBelief.

We further visualize the basins of the convergent minima of the models trained by Adam and AdaM3

respectively in Fig. 4. We train ResNet-34 on CIFAR-10 using random seed 0 for 200 epochs and
depict the 3D loss landscapes along with two random directions (Li et al., 2018). The landscape of
Adam is cropped along the z-axis to 3 for comparison. Obviously seen from Fig. 4, the basin of
AdaM3 is much more flat than that of Adam, which verifies our theoretical argument in Sec 3.2 that
AdaM3 is more likely to converge to and stay in flat minima of the training loss.

Table 3: Top-1 test accuracy (%) on ImageNet.
SGDM Adam AdaM3

70.73±0.07 64.99±0.12 70.77±0.09

ImageNet To corroborate the effectiveness of
our algorithm on more comprehensive dataset,
we perform experiments on ImageNet ILSVRC
2012 dataset (Russakovsky et al., 2015) utiliz-
ing ResNet-18 as backbone. We execute each
optimizer three times independently for 100 epochs utilizing cosine learning rate annealing strategy.
As shown in Tab. 3, AdaM3 far exceeds Adam in Top-1 test accuracy with nearly 6% accuracy gain
and even performs better than SGDM.

5.2.2 LSTM FOR LANGUAGE MODELING

We implement LSTMs with 1 to 3 layers on the Penn Treebank dataset, where adaptive gradient
methods are the main-stream choices (much better than SGD). In each experiment, we train the
model for 200 epochs with a batch size of 20 and decay the learning rate by 0.1 at 100-th and 145-
th epoch. Test perplexity (the lower the better) is summarized in Tab. 4. Clearly observed from

8

Under review as a conference paper at ICLR 2023

Table 6: FID score (↓) of GANs on CIFAR-10 dataset. † is reported in Zhuang et al. (2020).
Type of GAN SGDM Adam(W) Yogi AdaBound RAdam AdaBelief AdaM3

DCGAN 223.77±147.90 52.39±3.62 63.08±5.02 126.79±40.64 48.24±1.38 47.25±0.79 46.66±1.94

SNGAN 49.70±0.41
† 13.05±0.19

† 14.25±0.15
† 55.65±2.15

† 12.70±0.12
† 12.52±0.16

† 12.06±0.21

BigGAN 16.12±0.33 7.24±0.08 7.38±0.04 14.81±0.31 7.17±0.06 7.22±0.09 7.16±0.05

Tab. 4, AdaM3 achieves the lowest perplexity in all the settings and consistently outperforms other
competitors by a considerable margin, with up to 3.48% perplexity reduction on 1-layer LSTM,
1.81% on 2-layer LSTM and 1.25% on 3-layer LSTM. The training and testing perplexity curve is
given in Fig. 6 and 7 in Appendix C. Particularly on 2-layer and 3-layer LSTM, AdaM3 maintains
both the fastest convergence and the best performance, which substantiates its superiority.

5.2.3 TRANSFORMER FOR NEURAL MACHINE TRANSLATION

Table 5: BLEU score (↑) on IWSTL’14 DE-EN dataset.
SGDM Adam AdamW AdaBelief AdaM3

28.22±0.21 30.14±1.39 35.62±0.11 35.60±0.11 35.66±0.10

Transformers have been the dominating
architecture in NLP, and adaptive gradient
methods are usually adopted for training
owing to their stronger ability to handle
attention-models (Zhang et al., 2019). To
test the performance of AdaM3 on trans-
former, we experiment on IWSTL’14 German-to-English with the Transformer small model adapt-
ing the code from the fairseq package.2 We set the length penalty as 1.0, the beam size as 5, the
initial warmup stepsize as 10−7 and the warmup updates iteration number to be 8000. We train
the models for 55 epochs, and the results are reported according to the average of the last 5 check-
points. As shown in Tab. 11, our optimizer achieves the highest average BLEU score with the lowest
variance and exceeds the popular optimizer in NLP AdamW .

5.2.4 GENERATIVE ADVERSARIAL NETWORK

Training of GANs is extremely unstable and challenging. To further study the optimization ability
and numerical stability of AdaM3, we experiment with three types of GANs: Deep Convolutional
GAN (DCGAN) (Radford et al., 2015), Spectral normalized GAN (SNGAN) (Miyato et al., 2018)
and BigGAN (Brock et al., 2019). For the generator and the discriminator network, we adopt CNN
for DCGAN and ResNets for SNGAN and BigGAN. The BigGAN training is assisted with con-
sistency regularization (Zhang et al., 2020) for better performance. We train DCGAN for 200000
iterations and the other two for 100000 iterations on CIFAR-10 with the batch size 64. The learning
rates for the generator and the discriminator network are both set as 0.0002. For AdaM3 all the other
hyperparameters are set as default values. Experiments are run 5 times independently, and we report
the mean and standard deviation of Frechet Inception Distance (FID, the lower, the better) (Heusel
et al., 2017) in Tab. 6. From Tab. 6 it is reasonable to draw the conclusion that AdaM3 outperforms
all the best-tuned baseline optimizers for all the GAN architectures by a considerable margin, which
validates its outstanding optimization ability and numerical stability. Here Adam equals AdamW
because the optimal weight decay parameter value is 0.

6 CONCLUSION

In this work, we rethink the formulation of Adam and innovatively propose AdaM3 as a new op-
timizer for machine learning adopting a novel momentum in momentum approach. We illustrate
that AdaM3 is more fit to the typical loss curve than Adam and theoretically demonstrate why
AdaM3 outperforms Adam in generalization. We further validate the superiority of AdaM3 through
extensive and a broad range of experiments. Our algorithm is simple and effective with four key
advantages: 1) maintaining fast convergence rate; 2) closing the generalization gap between adap-
tive gradient methods and SGD(M); 3) applicable to various tasks and models; 4) introducing no
additional parameters and easy to tune. The Combination of AdaM3 with other techniques such as
Nesterov’s accelerated gradient (Dozat, 2016) may be of independent interest in the future.

2https://github.com/pytorch/fairseq

9

https://github.com/pytorch/fairseq

Under review as a conference paper at ICLR 2023

ETHICS STATEMENT

Our work follows all ethical standards and laws. All the experiments were conducted on publically
available datasets, with no new data concerning human or animal subjects generated.

REPRODUCIBILITY STATEMENT

We adhere to ICLR reproducibility standards and provide all necessary information to reproduce
our experimental and theoretical results. We ensure the reproducibility of our work through several
ways, namely

• All the technical details and proofs in Section 3.2 are included in Appendix A.
• All the proofs in Section 4 are provided in Appendix B.
• The detailed hyperparameter tuning rules and configurations of all the reported experiments

in Section 5 are given in Appendix C.
• Our source code will be made publicly available after the acceptance of the paper.

REFERENCES

Lukas Balles and Philipp Hennig. Dissecting adam: The sign, magnitude and variance of stochastic
gradients. In ICML, 2018.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In ICLR, 2019.

Sébastien Bubeck. Convex optimization: Algorithms and complexity. arXiv preprint
arXiv:1405.4980, 2014.

Mauro Cettolo, Jan Niehues, Sebastian Stüker, Luisa Bentivogli, and Marcello Federico. Report on
the 11th iwslt evaluation campaign, iwslt 2014. In Proceedings of the International Workshop on
Spoken Language Translation, Hanoi, Vietnam, 2014.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In ICLR, 2019.

Kyunghyun Cho, Bart van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder–decoder approaches. In Proceedings of SSST-8, Eighth
Workshop on Syntax, Semantics and Structure in Statistical Translation, 2014.

Laurence Charles Ward Dixon. The global optimization problem. an introduction. Toward global
optimization, 1978.

Timothy Dozat. Incorporating nesterov momentum into adam. ICLR Workshop, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 2011.

Fartash Faghri, David Duvenaud, David J Fleet, and Jimmy Ba. A study of gradient variance in deep
learning. arXiv preprint arXiv:2007.04532, 2020.

Saeed Ghadimi and Guanghui Lan. Stochastic first-and zeroth-order methods for nonconvex stochas-
tic programming. SIAM Journal on Optimization, 2013.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. NeurIPS, 2014.

Zhishuai Guo, Yi Xu, Wotao Yin, Rong Jin, and Tianbao Yang. On stochastic moving-average
estimators for non-convex optimization. arXiv preprint arXiv:2104.14840, 2021.

Haowei He, Gao Huang, and Yang Yuan. Asymmetric valleys: Beyond sharp and flat local minima.
NeurIPS, 2019.

10

Under review as a conference paper at ICLR 2023

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR, 2016.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. NeurIPS,
2017.

Sepp Hochreiter and Jürgen Schmidhuber. Flat minima. Neural computation, 1997a.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 1997b.

Feihu Huang and Heng Huang. Biadam: Fast adaptive bilevel optimization methods. arXiv preprint
arXiv:2106.11396, 2021.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger. Densely connected
convolutional networks. In CVPR, 2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson.
Averaging weights leads to wider optima and better generalization. UAI, 2018.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. NeurIPS, 2013.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Pe-
ter Tang. On large-batch training for deep learning: Generalization gap and sharp minima. ICLR,
2017.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

A. Krizhevsky and G. Hinton. Learning multiple layers of features from tiny images. Master’s
thesis, Department of Computer Science, University of Toronto, 2009.

Paul Lévy and Paul Lévy. Théorie de l’addition des variables aléatoires. Gauthier-Villars, 1954.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss land-
scape of neural nets. NeurIPS, 2018.

Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, and Jiawei
Han. On the variance of the adaptive learning rate and beyond. ICLR, 2019.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. ICLR, 2017.

Liangchen Luo, Yuanhao Xiong, Yan Liu, and Xu Sun. Adaptive gradient methods with dynamic
bound of learning rate. ICLR, 2019.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Computational Linguistics, 1993.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization
for generative adversarial networks. ICLR, 2018.

Ilya Pavlyukevich. First exit times of solutions of stochastic differential equations driven by multi-
plicative lévy noise with heavy tails. Stochastics and Dynamics, 2011.

Martin Popel and Ondřej Bojar. Training tips for the transformer model. PBML, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

S Reddi, Manzil Zaheer, Devendra Sachan, Satyen Kale, and Sanjiv Kumar. Adaptive methods for
nonconvex optimization. In NeurIPS, 2018a.

11

Under review as a conference paper at ICLR 2023

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. ICLR,
2018b.

Martin Riedmiller and Heinrich Braun. A direct adaptive method for faster backpropagation learn-
ing: The rprop algorithm. In IEEE international conference on neural networks, 1993.

Herbert Robbins and Sutton Monro. A stochastic approximation method. The annals of mathemati-
cal statistics, 1951.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual
recognition challenge. IJCV, 2015.

Pedro Savarese, David McAllester, Sudarshan Babu, and Michael Maire. Domain-independent dom-
inance of adaptive methods. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16286–16295, 2021.

Robin M Schmidt, Frank Schneider, and Philipp Hennig. Descending through a crowded valley–
benchmarking deep learning optimizers. ICML, 2021.

Jun Shao. Mathematical statistics. Springer Science & Business Media, 2003.

Leon Simon et al. Lectures on geometric measure theory. The Australian National University,
Mathematical Sciences Institute, Centre for Mathematics & its Applications, 1983.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. ICLR, 2015.

Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A tail-index analysis of stochastic gradient
noise in deep neural networks. In ICML, 2019.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initializa-
tion and momentum in deep learning. In ICML, 2013.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking
the inception architecture for computer vision. In CVPR, 2016.

Geoffrey Hinton Tijmen Tieleman. Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude. Coursera: Neural networks for machine learning, 2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. NeurIPS, 2017.

Mengdi Wang, Ji Liu, and Ethan X Fang. Accelerating stochastic composition optimization. Journal
of Machine Learning Research, 2017.

Frank Wilcoxon. Individual comparisons by ranking methods. In Breakthroughs in statistics, pp.
196–202. Springer, 1992.

Ashia C Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The
marginal value of adaptive gradient methods in machine learning. NeurIPS, 2017.

Dmitry Yarotsky. Error bounds for approximations with deep relu networks. Neural Networks, 2017.

Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consistency regularization for
generative adversarial networks. In ICLR, 2020.

Jingzhao Zhang, Sai Praneeth Karimireddy, Andreas Veit, Seungyeon Kim, Sashank J Reddi, Sanjiv
Kumar, and Suvrit Sra. Why are adaptive methods good for attention models? arXiv preprint
arXiv:1912.03194, 2019.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and Weinan E. Towards theoretically
understanding why sgd generalizes better than adam in deep learning. In NeurIPS, 2020.

12

Under review as a conference paper at ICLR 2023

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Pa-
pademetris, and James Duncan. Adabelief optimizer: Adapting stepsizes by the belief in observed
gradients. NeurIPS, 2020.

Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In
ICML, 2003.

13

Under review as a conference paper at ICLR 2023

A TECHNICAL DETAILS OF SUBSECTION 3.2

Here we provide more construction details and technical proofs for the Lévy-driven SDE in Adam-
alike adaptive gradient algorithm equation 2. In the beginning we introduce a detailed derivation
of the process equation 4 as well as its corresponding escaping set Υ in definition 3. Then we give
some auxiliary theorems and lemmas, and summarize the proof of Lemma 1. Finally we prove the
Lemma 1 and give a more detailed analysis of the conclusion that the expected escaping time of
AdaM3 is longer than that of Adam in a comparatively flat basin.

A.1 DERIVATION OF THE LÉVY-DRIVEN SDE EQUATION 4

To derive the SDE of Adam-alike algorithms equation 2, we firstly define m′t = β1m
′
t−1 + (1 −

β1)∇f(θt) with m′0 = 0. Then by the definition it holds that

m′t −mt = (β1 − 1)

t∑
i=0

βt−i1 ζt.

Following Simsekli et al. (2019), the gradient noise ζt has heavy tails in reality and hence we assume
that 1

1−βt1
(m′t −mt) obeys Sα̃S distribution with time-dependent covariance matrix Σt. Since we

can formulate equation 2 as

θt+1 = θt − α
m′t
zt

+ α
(m′t −mt)

zt
where zt = (1− βt1)

√
vt

(1− βt2)
, (5)

and we can replace the term (m′t −mt) by α−
1
α̃ (1 − βt1)ΣtS where each coordinate of S is inde-

pendent and identically distributed as Sα̃S(1) based on the property of centered symmetric α̃-stable
distribution. Let Rt = diag(

√
vt

(1−βt2)
), and we further assume that the step size α is small, then the

continuous-time version of the process equation 5 becomes the following SDE:

dθt = −R−1
t

m′tdt

(1− βt1)
+ α1− 1

α̃R−1
t ΣtdLt,

dmt = (1− β1)(∇f(θt)−mt), dvt = (1− β2)(k2
t − vt).

After replacing m′t with mt for brevity, we get the SDE equation 4 consequently.

A.2 PROOF OF LEMMA 1

To prove Lemma 1, we first introduce Theorem 2.
Theorem 2. Suppose Assumptions 1-3 hold. We define κ1 = c1L

v−|τm−1| and κ2 =

2µτ
β1v++µτ

(
β1 − β2

4

)
with a constant c1. Let υα̃+1 = Θ(α̃), ρ0 = 1

16(1+c2) and ln
(

2∆
µυ1/3

)
≤

κ2υ
−1/3 where ∆ = f(θ0) − f(θ∗) and a constant c2. Then for any θ0 ∈ Ω−2υγ , u > −1,

υ ∈ (0, υ0], γ ∈ (0, γ0] and ρ ∈ (0, ρ0] satisfying υγ ≤ ρ0 and limυ→0 ρ = 0, the Adam-alike
algorithm in equation 2 obey

1− ρ
1 + u+ ρ

≤ E
[
exp

(
−um(Υ)Θ(υ−1)Γ

)]
≤ 1 + ρ

1 + u− ρ
.

From Theorem 2, by setting υ small, it holds that for any adaptive gradient algorithm the upper
and lower bounds of its expected escaping time Γ is at the order of

(
υ

m(Υ)

)
, which directly implies

Lemma 1 conclusively. Therefore, it suffices to validate Theorem 2.

The proof of Theorem 2 is given in Section A.2.3. Before we proceeed, we first provide some
prerequisite notations in Section A.2.1 and list some useful theorems and lemmas in Section A.2.2.

A.2.1 PRELIMINARIES

For analyzing the uniform Lévy-driven SDEs in equation 4, we first introduce the Lévy process Lt
into two components ξt and εi, namely

Lt = ξt + εt, (6)

14

Under review as a conference paper at ICLR 2023

whose characteristic functions are respectively defined as

E
[
ei〈λ,ξt〉

]
=et

∫
Rd\{0}εI{‖y‖2≤ 1

υδ
}ν(dy),

E
[
ei〈λ,εt〉

]
=et

∫
Rd\{0}εI{‖y‖2≤ 1

υδ
}ν(dy),

where ε = ei〈λ,y〉 − 1 − i〈λ, y〉I {‖y‖2 ≤ 1} with υ defined in equation 4 and a constant δ s.t.
υ−δ < 1. Accordingly, the Lévy measure ν of the stochastic processes ξ and ε are

νξ = ν

(
A ∩

{
‖y‖2 ≤

1

υδ

})
, νε = ν

(
A ∩

{
‖y‖2 ≥

1

υδ

})
, where A ∈ B(Rd).

Besides, for analysis, we should consider affects of the Lévy motion Lt to the Lévy-driven SDE of
Adam variants. Here we define the Lévy-free SDE accordingly:

dθ̂t = −µtQ̂−1
t m̂t,

dm̂t = (1− β1)(∇f(θ̂t)− m̂t),

dv̂t = (1− β2)(∇(fθ̂t)
2 − v̂t).

(7)

where Q̂t = diag(
√
v̂t).

A.2.2 AUXILIARY THEOREMS AND LEMMAS

Theorem 3 (Adapted from Zhou et al. (2020)). Suppose Assumptions 1-3 hold. Assume the se-
quence {(θ̂t, m̂t, v̂t)} are produced by equation 7. Let ŝt = ht

qt

(√
ωtv̂t

)
with ht = 1 − β1,

qt = (1 − (1 − β1)t)−1 and ωt = (1 − (1 − β2)t)−1. We define ‖x‖2y =
∑
i yix

2
i . Then for

Lévy-driven Adam SDEs in equation 7, its Lyapunov function L(t) = f(θ̂t)− f(θ̂∗) + 1
2 ‖m̂t‖ŝ−1

t

with the optimum solution θ∗ in the current local basin Ω obeys

L(t) ≤ ∆ exp

(
− 2µτ

(1− β1)v+ + µτ

(
3

4
− β1 +

β2

4

)
t

)
,

where ∆ = f(θ̂0)− f(θ̂∗) due to m̂0 = 0. The sequence {θ̂t} produced by equation 7 obeys∥∥∥θ̂t − θ∗∥∥∥2

2
≤ 2∆

µ
exp

(
− 2µτ

(1− β1)v+ + µτ

(
3

4
− β1 +

β2

4

)
t

)
.

Lemma 2 (Zhou et al. (2020)). (1) The process ξ in the Lévy process decomposition can be decom-
posed into two processes ξ̂ and linear drift, namely,

ξt = ξ̂t + µυt, (8)

where ξ̂ is a zero mean Lévymartingale with bounded jumps.
(2) Let δ ∈ (0, 1), µυ = E(ξ1) and Tυ = υ−θ for some θ > 0, ρ0 = ρ0(δ) = 1−δ

4 > 0 and
θ0 = θ0(δ) = 1−δ

3 > 0. Suppose υ is sufficiently small such that Θ(1) ≤ υ−
1−δ
6 and υ−ρ −

2(C + Θ(1))υ
7
6 (1−δ)+ ρ

2 ≥ 1 with a constant C = |
∫

0<u≤1
u2dΘ(u)| ∈ (0,+∞). Then for all

δ ∈ (0, δ0), θ ∈ (0, θ0) there are p0 = p0(δ) = δ
2 and υ0 = υ0(δ, ρ) such that the estimates

‖υξTυ‖2 = υ ‖µυ‖2 Tυ < υ2ρ and P ([υξ]dTυ ≥ υ
ρ) ≤ exp(−υ−p)

hold for all p ∈ (0, p0] and υ ∈ (0, υ0].
Lemma 3 (Zhou et al. (2020)). Let δ ∈ (0, 1) and gtt≥0 be a bounded adapted cȧdlȧg stochastic
process with values in Rd, Tυ = υ−θ, θ > 0. Suppose supt≥0 ‖gt‖ is well bounded. Assume
ρ0 = ρ0(δ) = 1−δ

16 > 0, θ0 = θ0(δ) = 1−δ
3 > 0, p0 = ρ

2 . For ξ̂t in equation 8, there is
δ0 = δ0(δ) > 0 such that for all ρ ∈ (0, ρ0) and θ ∈ (0, θ0), it holds

P

(
sup

0≤t≤Tυ
υ

∣∣∣∣∣
d∑
i=1

∫ t

0

gis−dξ̂
i
s

∣∣∣∣∣ ≥ υρ
)
≤ 2 exp

(
−υ−p

)
,

for all p ∈ (0, p0] and 0 < υ ≤ υ0 with υ0 = υ(ρ), where ξ̂is represents the i-th entry in ξ̂s.

15

Under review as a conference paper at ICLR 2023

Lemma 4 (Zhou et al. (2020)). Under Assumptions 1-3 hold, assume δ ∈ (0, 1), ρ0 = ρ0(δ) =
1−δ

16(1+c1κ1) > 0, θ0 = θ0(δ) = 1−δ
3 > 0, p0 = min(ρ̂(1+c1κ1)

2 , p), 1
c2

ln
(

2∆
µυρ̂

)
≤ υ−θ0 where

κ1 = c2l
v−|τm−1| and c2 = 2µτ

(1−β1)v++µτ

(
3
4 − β1 + β2

4

)
in Adam-alike adaptive gradient algorithms.

For all ρ̂ ∈ (0, ρ0), p ∈ (0, p0], 0 < υ ≤ υ0 with υ0 = υ0(ρ̂), and θ0 = θ̂0, we have

sup
θ0∈Ω

P
(

sup
0≤t<σ1

∥∥∥θt − θ̂t∥∥∥
2
≥ 2υρ̂

)
≤ 2 exp(−υ−

p
2), (9)

where the sequences θt and θ̂t are respectively produced by equation 4 and equation 7 in adaptive
gradient method.

A.2.3 PROOF OF THEOREM 2

Proof. The idea of this proof comes from equation 9 we showed in Lemma 4 where the sequence θt
and θ̂t start from the same initialization. Based on Theorem 3, we know that the sequence {θ̂t} from
equation 7 exponentially converges to the minimum θ∗ of the local basin Ω. To escape the local
basin Ω, we can either take small steps in the process ζ or large jumps Jk in the process ε. However,
equation 9 suggests that these small jumps might not be helpful for escaping the basin. And for big
jumps, the escaping time Γ of the sequence {θt} most likely occurs at the time σ1 if the big jump
υJ1 in the process ε is large.
The verification of our desired results can be divided into two separate parts, namely establishing
upper bound and lower bound of E

[
exp

(
−um(Υ)Θ(υ−1)Γ

)]
for any u > −1. Both of them can

be established based on the following facts:

∣∣∣P(R−1
θ ΣθυJk 6∈ Ω±υ

γ

, ‖υJk‖2 ≤ R
)
− P

(
R−1
θ∗ Σθ∗υJk 6∈ Ω±υ

γ

, ‖υJk‖2 ≤ R
)∣∣∣

≤ δ′

4
· Θ(υ−1)

Θ(υ−δ)
,

∣∣P (R−1
θ ΣθυJk 6∈ Ω, ‖υJk‖2 ≤ R

)
− P

(
R−1
θ∗ Σθ∗υJk 6∈ Ω, ‖υJk‖2 ≤ R

)∣∣ ≤ δ′

4
· Θ(υ−1)

Θ(υ−δ)
,

P
(
R−1
θ∗ Σθ∗υJk 6∈ Ω

)
− P

(
R−1
θ∗ Σθ∗υJk 6∈ Ω, ‖υJk‖2 ≤ R

)
≤ δ′

4
· Θ(υ−1)

Θ(υ−δ)
. (10)

Specifically, for the upper bound of E
[
exp

(
−um(Υ)Θ(υ−1)Γ

)]
, we consider both the big jumps

in the process ε and small jumps in the process ζ which may escape the local minimum. Instead of
estimating the escaping time Γ from Ω, we first estimate the escaping time Ξ̃ from Ω−ρ̄. Here we
define the inner part of Ω as Ω−ρ̄ := {y ∈ Ω : dis(∂Ω, y) ≥ ρ̄}. Then by setting ρ̄ → 0, we can
use Ξ̃ for a decent estimation of Γ. We denote ρ̄ = υγ where γ is a constant such that the results of
Lemma 2-4 hold. So for the upper bound we mainly focus on Ξ̃ in the beginning and then transfer
the results to Γ. In the beginning, we can show that for any u > −1 it holds that,

E
[
exp

(
−um(Υ)Θ(υ−1)Ξ̃

)]
≤

+∞∑
k=1

E
[
e−um(Υ)Θ(υ−1)tkI

{
Ξ̃ = tk

}
+Resk

]
,

where

Resk ≤

E
[
e−um(Υ)Θ(υ−1)tkI

{
Ξ̃ ∈ (tk−1, tk)

}]
, if u ∈ (−1, 0]

E
[
e−um(Υ)Θ(υ−1)tk−1I

{
Ξ̃ ∈ (tk−1, tk)

}]
, if u ∈ (0,+∞).

16

Under review as a conference paper at ICLR 2023

Then using the strong Markov property we can bound the first term
E
[
e−um(Υ)Θ(υ−1)tkI

{
Ξ̃ = tk

}]
as

R1 =

+∞∑
k=1

E
[
e−um(Υ)Θ(υ−1)tkI {Γ = tk}

]
≤αυ(1 + ρ/3)

1 + uαυ

+∞∑
k=1

(
1− αυ(1− ρ)

1 + uαυ

)k−1

≤αυ(1 + ρ/3)

1 + uαυ

+∞∑
k=0

(
1− αυ(1− ρ)

1 + uαυ

)k−1

=
1 + ρ/3

1 + u− ρ
.

On the other hand, for the lower bound of E
[
exp

(
−um(Υ)Θ(υ−1)Γ

)]
, we only consider the big

jumps in the process ε which could escape from the basin, and ignore the probability that the small
jumps in the process ζ which may also lead to an escape from the local minimum θ∗. Specifically,
we can find a lower bound by discretization:

E
[
exp

(
−um(Υ)Θ(υ−1)Γ

)]
≥

+∞∑
k=1

E
[
exp

(
−um(Υ)Θ(υ−1)tk

)
I{Γ = tk}

]
.

Then we can lower bound each term by three equations equation 10 we just listed here, which
implies that for any θ0 ∈ Ω−υ

γ

,

E
[
e−um(Υ)Θυ−1Γ

]
≥ αυ(1− ρ)

1 + uαυ

+∞∑
k=1

(
1− αυ(1 + ρ)

1 + uαυ

)k−1

=
1− ρ

1 + u+ ρ
,

where ρ→ 0 as υ → 0. The proof is completed.

A.3 PROOF OF PROPOSITION 1

Proof. Since we assumed the minimizer θ∗ = 0 in the basin Ω which is usually small,we can employ
second-order Taylor expansion to approximate Ω as a quadratic basin whose center is θ∗. In other
words, we can write

Ω =

{
y ∈ Rd

∣∣∣∣ f(θ∗) +
1

2
y>H(θ∗)y ≤ h(θ∗)

}
,

whereH(θ∗) is the Hessian matrix at θ∗ of function f and h(θ∗) is the basin height. Then according
to Definition 3, we have

Υ =
{
y ∈ Rd

∣∣∣ y>Σθ∗R
−1
θ∗ H(θ∗)R−1

θ∗ Σθ∗y ≥ h∗f
}
.

HereRθ∗ = limθt→θ∗ diag(
√
vt/(1− βt2)) is a matrix depending on the algorithm, h∗f = 2(h(θ∗)−

f(θ∗)) and Σθ∗ is independent of the algorithm, i.e. the same for Adam and AdaM3. Firstly, we
will prove that v(ADAM3)

t ≥ v
(ADAM)
t when t → ∞. To clarify the notation, we use θt,mt, vt, gt to

denote the symbols for Adam and θ̃t, m̃t, ṽt, g̃t for AdaM3, and ζt is the gradient noise. By using
Lemma 1 and above results, we have θt ≈ θ̃t ≈ θ∗ before escaping when t is large, and thus
vt = limθt→θ∗ [∇f(θt) + ζt]

2 and ṽt = limθt→θ∗ [β1m̃t−1 + (1 − β1)(∇f(θ̃t) + ζt)]
2. We will

firstly show that E(ṽt) ≥ E(vt) when t is large.

E(vt) = E(lim
θt→θ∗

[∇f(θt) + ζt]
2)

(i)
= lim
θt→θ∗

E([∇f(θt) + ζt]
2)

= lim
θt→θ∗

(
E(∇f(θt)

2) + E(2∇f(θt)ζt) + E(ζ2
t)
)

(ii)
= E(lim

θt→θ∗
∇f(θt)

2) + lim
θt→θ∗

E(2∇f(θt)ζt) + lim
θt→θ∗

E(ζ2
t)

(iii)
= lim

θt→θ∗
E(ζ2

t),

17

Under review as a conference paper at ICLR 2023

where (i) and (ii) are due to the dominated convergence theorem (DCT) since we have that we know
both ‖∇f(θt)‖2 and ‖∇f(θt) + ζt‖2 could be bounded by H in Assumption 4. And (iii) is due to
the fact that∇f(θ∗) = 0 since function f attains its minimum point at θ∗, and ζt has zero mean, i.e.

lim
θt→θ∗

E(∇f(θt)ζt) = lim
θt→θ∗

E(∇f(θt))E(ζt) = 0.

And similarly we can prove that,

E(ṽt) = E
(

lim
θt→θ∗

[β1m̃t−1 + (1− β1)(∇f(θ̃t) + ζt)]
2

)
= lim
θt→θ∗

(
E(β2

1m̃
2
t−1) + E((1− β1)2(∇f(θ̃t) + ζt)

2) + E(2β1(1− β1)m̃t−1∇(f(θ̃t) + ζt))
)

(i)
=β2

1 lim
θt→θ∗

E(m̃2
t−1) + (1− β1)2 lim

θt→θ∗
E(ζ2

t),

where we can get the equality (i) simply by the same argument with dominated convergence theorem
we just used:

lim
θ̃t→θ∗

E(∇(f(θ̃t)
2) = E(lim

θ̃t→θ∗
∇(f(θ̃t)

2)
(i)
= 0,

lim
θ̃t→θ∗

E(∇(f(θ̃t)ζt) = E(lim
θ̃t→θ∗

∇(f(θ̃t)ζt)
(ii)
= 0,

lim
θ̃t→θ∗

E(m̃t−1(∇f(θ̃t) + ζt)) = E(lim
θ̃t→θ∗

m̃t−1∇f(θ̃t)) + lim
θ̃t→θ∗

E(m̃t−1)E(ζt)
(iii)
= 0,

where we get the equality (i) and (ii) since the function f(θ̃t)
2 and f(θ̃t)ζt could be absolutely

bounded by H2. And the first term in equality (iii) is 0 since we have ‖m̃t−1‖2 ≤ H by its
definition and ∇f(θ∗) = 0, and the second term vanishes since the noise ζt has zero mean. Based
on the Assumption 5, we have

E(m̃2
t−1) ≥ 2− β1

β1
E(ζ2

t),

which implies that E(ṽt) ≥ E(vt) when t is large. It further indicates that R(ADAM3)
θ∗ ≥ R(ADAM)

θ∗ .
We consider the volume of the complementary set

Υc =
{
y ∈ Rd

∣∣∣ y>Σθ∗R
−1
θ∗ H(θ∗)R−1

θ∗ Σθ∗y < h∗f

}
,

which can be viewed as a d-dimensional ellipsoid. We can further decompose the symmetric matrix
M := Σθ∗R

−1
θ∗ H(θ∗)R−1

θ∗ Σθ∗ by SVD decomposition

M = U>AU,

where U is an orthogonal matrix and A is a diagonal matrix with nonnegative elements. Hence the
transformation y → Uy is an orthogonal transformation which means the volume of Υc equals the
volume of set {

y′ ∈ Rd
∣∣∣ y′>Ay′ < h∗f

}
.

Considering the fact that the volume of a d-dimensional ellipsoid centered at 0 Ed(r) =

{(x1, x2, · · · , xn) :
∑d
i=1

x2
i

R2
i
≤ 1} is

V (Ed(r)) =
π
n
2

Γ(n2 + 1)
Πn
i=1Ri,

and the fact we just proved that R(ADAM3)
θ∗ ≥ R

(ADAM)
θ∗ . Therefore we deduce the volume of

Υ(ADAM3) is smaller than that of Υ(ADAM), which indicates that for Radon measure m(·) we
have m(Υ(ADAM3)) ≥ m(Υ(ADAM)). Based on Lemma 1, we consequently have E(Γ(ADAM3)) ≥
E(Γ(ADAM)).

18

Under review as a conference paper at ICLR 2023

B PROOFS IN SECTION 4

B.1 CONVERGENCE ANALYSIS IN CONVEX OPTIMIZATION

We analyze the convergence of AdaM3 in convex setting utilizing the online learning frame-
work (Zinkevich, 2003). Given a sequence of convex cost functions f1(θ), · · · , fT (θ), the regret
is defined as R(T) =

∑T
t=1[ft(θt) − ft(θ

∗)], where θ∗ = arg minθ
∑T
t=1 ft(θ) is the optimal

parameter and ft can be interpreted as the loss function at the t-th step. Then we have:

Theorem 4. Let {θt} and {vt} be the sequences yielded by AdaM3. Let αt = α/
√
t, β1,1 =

β1, 0 < β1,t ≤ β1 < 1, vt ≤ vt+1 for all t ∈ [T] and γ = β1/
√
β2 < 1. Assume that the distance

between any θt generated by AdaM3 is bounded, ‖θm − θn‖∞ ≤ D∞ for any m,n ∈ {1, · · · , T}.
Then we have the following bound:

R(T) ≤ D2
∞
√
T

2α(1− β1)

d∑
i=1

√
vT,i +

D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1,t
√
vt,i

αt

+
α
√

1 + log T

(1− β1)3(1− γ)
√

1− β2

d∑
i=1

‖g1:T,i‖2 .

Theorem 4 implies that the regret of AdaM3 can be bounded by Õ3(
√
T), especially when the data

features are sparse as Section 1.3 in Duchi et al. (2011) and then we have
∑d
i=1

√
vT,i �

√
d and∑d

i=1 ‖g1:T,i‖2 �
√
dT . Imposing additional assumptions that β1,t decays exponentially and that

the gradients of ft are bounded (Kingma & Ba, 2015; Liu et al., 2019), we can obtain:

Corollary 2. Further Suppose β1,t = β1λ
t and the function ft has bounded gradients,

‖∇ft(θ)‖∞ ≤ G∞ for all θ ∈ Rd, AdaM3 achieves the guarantee R(T)/T = Õ(1/
√
T) for

all T ≥ 1:

R(T)

T
≤

[
dα
√

1 + log T

(1− β1)3(1− γ)
√

(1− β2)T
+

dD2
∞

2α(1− β1)
√
T

]

· (G∞ +
√
ε/1− β2) +

dD2
∞G∞β1

2α(1− β1)(1− λ)2T
.

From Corollary 2, the average regret of AdaM3 converges to zero as T goes to infinity. The proofs
of Theorem 4 and Corollary 2 are provided in Appendix B.2.

B.2 PROOF OF THE CONVERGENCE RESULTS FOR THE CONVEX CASE

3Õ(·) denotes O(·) with hidden logarithmic factors.

19

Under review as a conference paper at ICLR 2023

B.2.1 PROOF OF THEOREM 4

Proof. Firstly, according to the definition of AdaM3 in Algorithm 1, by algebraic shrinking we have

T∑
t=1

m2
t,i√
tvt,i

=

T−1∑
t=1

m2
t,i√
tvt,i

+

(∑T
j=1(1− β1,j)Π

T−j
k=1 β1,T−k+1gj,i

)2

√
T
[∑T

j=1(1− β2)βT−j2 m2
j,i + ε+

∑T−1
j=1

∏j
i=1 β

i
2ε
]

≤
T−1∑
t=1

m2
t,i√
tvt,i

+

(∑T
j=1(1− β1,j)Π

T−j
k=1 β1,T−k+1gj,i

)2

√
T
∑T
j=1(1− β2)βT−j2 m2

j,i

≤
T−1∑
t=1

m2
t,i√
tvt,i

+
(
∑T
j=1 ΠT−j

k=1 β1,T−k+1)(
∑T
j=1 ΠT−j

k=1 β1,T−k+1g
2
j,i)√

T
∑T
j=1(1− β2)βT−j2 m2

j,i

(i)
≤
T−1∑
t=1

m2
t,i√
tvt,i

+
(
∑T
j=1 β

T−j
1)(

∑T
j=1 β

T−j
1 g2

j,i)√
T (1− β2)

∑T
j=1 β

T−j
2 m2

j,i

≤
T−1∑
t=1

m2
t,i√
tvt,i

+
1

1− β1

∑T
j=1 β

T−j
1 g2

j,i√
T (1− β2)

∑T
j=1 β

T−j
2 m2

j,i

=

T−1∑
t=1

m2
t,i√
tvt,i

+
1

(1− β1)
√
T (1− β2)

T∑
j=1

βT−j1 g2
j,i√∑T

j=1 β
T−j
2

(∑j
l=1(1− β1,l)Π

j−l
k=1β1,j−k+1gl,i

)2

≤
T−1∑
t=1

m2
t,i√
tvt,i

+
1

(1− β1)
√
T (1− β2)

T∑
j=1

βT−j1 g2
j,i√∑T

j=1 β
T−j
2 ((1− β1,j)gj,l)

2

≤
T−1∑
t=1

m2
t,i√
tvt,i

+
1

(1− β1)
√
T (1− β2)

T∑
j=1

βT−j1 g2
j,i√

βT−j2 (1− β1,j)2g2
j,i

(ii)
≤
T−1∑
t=1

m2
t,i√
tvt,i

+
1

(1− β1)2
√
T (1− β2)

T∑
j=1

γT−jgj,i,

20

Under review as a conference paper at ICLR 2023

where (i) arises from β1,t ≤ β1, and (ii) comes from the definition that γ = β1√
β2

. Then by induction,
we have

T∑
t=1

m2
t,i√
tvt,i

≤
T∑
t=1

1

(1− β1)2
√
t(1− β2)

t∑
j=1

γt−jgj,i

≤ 1

(1− β1)2
√

1− β2

T∑
t=1

1√
t

t∑
j=1

γt−jgj,i

(i)

≤ 1

(1− β1)2
√

1− β2

T∑
t=1

gt,i

T∑
j=t

γj−t√
j

≤ 1

(1− β1)2
√

1− β2

T∑
t=1

gt,i ·
1

(1− γ)
√
t

≤ 1

(1− β1)2(1− γ)
√

1− β2

T∑
t=1

gt,i√
t

(ii)
≤ 1

(1− β1)2(1− γ)
√

1− β2

‖g1:T,i‖2

√√√√ T∑
t=1

1

t

(iii)
≤

√
1 + log T

(1− β1)2(1− γ)
√

1− β2

‖g1:T,i‖2 ,

where (i) exchanges the indices of summing, (ii) employs Cauchy-Schwarz Inequality and (iii)
comes from the following bound on harmonic sum:

T∑
t=1

1

t
≤ 1 + log T.

Due to convexity of ft, we get

ft(θt)− ft(θ∗) ≤ g>t (θt − θ∗)

=

d∑
i=1

gt,i(θt,i − θ∗,i). (11)

According to the updating rule, we have

θt+1 = θt − αt
mt√
vt

= θt − αt
(
β1,t√
vt
mt−1 +

1− β1,t√
vt

gt

)
. (12)

Substracting θ∗, squaring both sides and considering only the i-th element in vectors, we obtain

(θt+1,i − θ∗,i)2 = (θt,i − θ∗,i)2 − 2αt

(
β1,t√
vt,i

mt−1,i +
1− β1,t√

vt,i
gt,i

)
(θt,i − θ∗,i) + α2

t

(
mt,i√
vt,i

)2

.

By rearranging the terms, we have

2αt
1− β1,t√

vt,i
gt,i(θt,i − θ∗,i)

= (θt,i − θ∗,i)2 − (θt+1,i − θ∗,i)2 − 2αt ·
β1,t√
vt,i
·mt−1,i(θt,i − θ∗,i) + α2

t

(
mt,i√
vt,i

)2

.

21

Under review as a conference paper at ICLR 2023

Further we have

gt,i(θt,i − θ∗,i) =

√
vt,i

2αt(1− β1,t)
[(θt,i − θ∗,i)2 − (θt+1,i − θ∗,i)2] +

αt
√
vt,i

2(1− β1,t)

(
mt,i√
vt,i

)2

+
β1,t

1− β1,t
(θ∗,i − θt,i)mt−1,i

=

√
vt,i

2αt(1− β1,t)
[(θt,i − θ∗,i)2 − (θt+1,i − θ∗,i)2] +

αt
√
vt,i

2(1− β1,t)

(
mt,i√
vt,i

)2

+
β1,t

1− β1,t
·
v

1
4
t,i√
αt
· (θ∗,i − θt,i) ·

√
αt ·

mt−1,i

v
1
4
t,i

≤
√
vt,i

2αt(1− β1)
[(θt,i − θ∗,i)2 − (θt+1,i − θ∗,i)2] +

α

2(1− β1)
·
m2
t,i√
tvt,i

(13)

+
β1,t

2αt(1− β1,t)
(θ∗,i − θt,i)2√vt,i +

β1α

2(1− β1)
·
m2
t−1,i√
tvt,i

, (14)

where equation 14 bounds the last term of equation 13 by Cauchy-Schwarz Inequality and plugs in
the value of αt. Plugging equation 14 into equation 12 and summing from t = 1 to T , we obtain

R(T) =

T∑
t=1

d∑
i=1

gt,i(θt,i − θ∗,i)

≤
T∑
t=1

d∑
i=1

√
vt,i

2αt(1− β1)
[(θt,i − θ∗,i)2 − (θt+1,i − θ∗,i)2] +

T∑
t=1

d∑
i=1

α

2(1− β1)
·
m2
t,i√
tvt,i

+

T∑
t=1

d∑
i=1

β1,t

2αt(1− β1,t)
(θ∗,i − θt,i)2√vt,i +

T∑
t=1

d∑
i=1

β1α

2(1− β1)
·
m2
t−1,i√
tvt,i

≤
d∑
i=1

√
v1,i

2α1(1− β1)
(θ1,i − θ∗,i)2 +

1

2(1− β1)

T∑
t=2

d∑
i=1

(θt,i − θ∗,i)2

(√
vt,i

αt
−
√
vt−1,i

αt−1

)
(15)

+

T∑
t=1

d∑
i=1

β1,t

2αt(1− β1)
(θ∗,i − θt,i)2√vt,i +

T∑
t=1

d∑
i=1

α

1− β1
·
m2
t,i√
tvt,i

, (16)

where equation 16 rearranges the first term of equation 15. Finally utilizing the assumptions in
Theorem 4, we get

R(T) ≤
d∑
i=1

√
v1,i

2α1(1− β1)
D2
∞ +

1

2(1− β1)

T∑
t=2

d∑
i=1

D2
∞

(√
vt,i

αt
−
√
vt−1,i

αt−1

)

+
D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1,tv
1
2
t,i

αt
+

d∑
i=1

α
√

1 + log T

(1− β1)3(1− γ)
√

1− β2
‖g1:T,i‖2

=

d∑
i=1

√
vT,i

2αT (1− β1)
D2
∞ +

D2
∞

2(1− β1)

T∑
t=1

d∑
i=1

β1,tv
1
2
t,i

αt

+

d∑
i=1

α
√

1 + log T

(1− β1)3(1− γ)
√

1− β2

‖g1:T,i‖2 , (17)

which is our desired result.

22

Under review as a conference paper at ICLR 2023

B.2.2 PROOF OF COROLLARY 2

Proof. Plugging αt = α√
t

and β1,t = β1λ
t into equation 17, we get

R(T) ≤ D2
∞
√
T

2α(1− β1)

d∑
i=1

√
vT,i +

D2
∞

2α(1− β1)

T∑
t=1

d∑
i=1

β1λ
t
√
tvt,i

+

d∑
i=1

α
√

1 + log T

(1− β1)3(1− γ)
√

1− β2
‖g1:T,i‖2 . (18)

Next, we employ Mathematical Induction to prove that vt, i ≤ G∞ for any 0 ≤ t ≤ T, 1 ≤ i ≤ d.
∀i, we have m2

0,i = 0 ≤ G2
∞. Suppose mt−1,i ≤ G∞, we have

m2
t,i = (β1,tmt−1,i + (1− β1,t)gt,i)

2

(i)
≤β1,tm

2
t−1,i + (1− β1,t)g

2
t,i

≤ β1,tG
2
∞ + (1− β1,t)G

2
∞ = G2

∞,

where (i) comes from the convexity of function f = x2. Hence by induction, we have m2
t,i ≤ G2

∞
for all 0 ≤ t ≤ T . Furthermore, ∀i, we have v0,i = 0 ≤ G2

∞. Suppose vt−1,i ≤ G2
∞ + (1 −

βt−1
2)ε/(1− β2), we have

vt,i = β2vt−1,i + (1− β2)m2
t,i + ε

≤ β2G
2
∞ + (1− β2)G2

∞ +

(
β2 − βt2
1− β2

+ 1

)
ε = G2

∞ +
1− βt2
1− β2

ε.

Therefore, by induction, we have vt,i ≤ G2
∞ + (1 − βt2)ε/(1 − β2) ≤ G2

∞ + ε/(1 − β2),∀i, t.
Combining this with the fact that

∑d
i=1 ‖g1:T,i‖2 ≤ dG∞

√
T and equation 18, we obtain

R(T) ≤
d(G∞ +

√
ε

1−β2
)D2
∞
√
T

2α(1− β1)

+
d(G∞ +

√
ε

1−β2
)D2
∞β1

2α(1− β1)

T∑
t=1

λt
√
t+

dG∞α
√

1 + log T

(1− β1)3(1− γ)
√

(1− β2)T
. (19)

For
∑T
t=1 λ

t
√
t, we apply arithmetic geometric series upper bound:

T∑
t=1

λt
√
t ≤

T∑
t=1

tλt ≤ 1

(1− λ)2
. (20)

Plugging equation 20 into equation 19 and dividing both sides by T , we obtain

R(T)

T
≤
d(G∞ +

√
ε

1−β2
)α
√

1 + log T

(1− β1)3(1− γ)
√

(1− β2)T
+
dD2
∞(G∞ +

√
ε

1−β2
)

2α(1− β1)
√
T

+
dD2
∞G∞β1

2α(1− β1)(1− λ)2T
,

which concludes the proof.

B.3 PROOF OF THE CONVERGENCE RESULTS FOR THE NON-CONVEX CASE

B.3.1 USEFUL LEMMA

Lemma 5. (Wang et al. (2017); Guo et al. (2021)) Consider a moving average sequence mt+1 =
β1,tmt + (1 − βt)gt+1 for tracking ∇f(θt), where E(gt+1) = ∇f(θt) and f is an L-Lipschits
continuous mapping. Then we have

Et(‖mt+1 −∇f(θt)‖22) ≤β1,t ‖mt −∇f(θt−1)‖22 + 2(1− β1,t)
2Et(‖gt+1 −∇f(θt)‖22)

+
L2

1− β1,t
‖θt − θt−1‖22 .

Based on the above Lemma 5, we could derive the following convergence result in Theorem 1.

23

Under review as a conference paper at ICLR 2023

B.3.2 PROOF OF THEOREM 1

We denote ∆t = ‖mt+1 −∇f(θ2)‖22, and by applying Lemma 5 we can get:

Et(∆t+1) ≤ β1,t+1∆t + 2(1− β1,t+1)2Et(‖gt+2 −∇f(θt+1)‖22) +
L2

1− β1,t+1
‖θt+1 − θt‖22 .

(21)

Based on some simple calculation, we can verify that
∑t−1
i=0 β

i
2ε = (1 − βt2)ε/(1 − β2), which

implies that 1/
√
vt ≤ bu,t holds for all t ∈ [T] elementwisely. On the other hand, since we have

mt+1 = β1,tmt−1 + (1− β1,t)gt with the condition ‖gt‖∞ ≤ G for all t ∈ [T]. Therefore, we can
deduce that

‖mt‖∞ ≤ β1,t ‖mt−1‖∞ + (1− β1,t)G ≤ β ‖mt−1‖∞ + (1− β)G, m0 = 0,

which implies that ‖mt‖∞ ≤ G(1 − βt) after some simple calculation, and hence we have m2
t ≤

G2(1−βT)2 elementwise. Next, since we have vt+1 = β2vt−1 + (1−β2)m2
t + ε, we can similarly

get

‖vt‖∞ ≤ β2 ‖vt−1‖∞ + (1− β2)

(
G2(1− βT1,1) +

ε

1− β2

)
, v0 = 0,

which implies that ‖vt‖∞ ≤
(
G2(1− βT) + ε

1−β2

)
(1− βt2) and hence 1/

√
vt ≥ bl,t. After some

simplification of equation 21, we have

Et(
T∑
t=0

(1− β1,t+1)∆t)

≤ E

[
T∑
t=0

(∆t −∆t−1) +

T∑
t=0

2σ2(1− β1,t+1)2 +

T∑
t=0

L2

1− β1,t+1
‖θt+1 − θt‖22

]
(i)
=E

[
T∑
t=0

(∆t −∆t−1) +

T∑
t=0

2σ2(1− β1,t+1)2 +

T∑
t=0

L2α2
t b

2
u,t+1

1− β1,t+1
‖mt+1‖22

]
, (22)

where (i) comes from the Lipschitz property of ∇f . On the other hand, since f has Lipschitz
gradient, we have:

f(θt+1) ≤ f(θt) +∇f(θt)
>(θt+1 − θt) +

L

2
‖θt+1 − θt‖22

=f(θt)−∇f(θt)
>(

αt√
vt
mt+1) +

L

2

∥∥∥∥ αt√
vt
mt+1

∥∥∥∥2

2

=f(θt) +
αt

2
√
vt
‖∇f(θt)−mt+1‖22 +

L

2

∥∥∥∥ αt√
vt
mt+1

∥∥∥∥2

2

− αt
2
√
vt
‖∇f(θt)‖22

− αt
2
√
vt
‖mt+1‖22

≤f(θt) +
αtbu,t

2
∆t +

Lα2
t b

2
u,t − αtbl,t

2
‖mt+1‖22 −

αtbl,t
2
‖∇f(θt)‖22 . (23)

Since we know that T0 . 1
αT

, then we know the overall loss of the first T0 terms would be

E(
∑T0

t=1 ‖∇f(θ)‖22) . 1/αT , and hence

E

(
1

T + 1

T0∑
t=1

‖∇f(θ)‖22

)
.

1

αT (T + 1)
. (24)

24

Under review as a conference paper at ICLR 2023

For the other case when t > T0, without loss of generality we can assume that T0 = 0 for the above
argument. We denote A =

√
bl,T

2L2b3u,1
and θ∗ = arg minθ f(θ). From equation 23, we have

E

(
T∑
t=0

αtbl,t
2
‖∇f(θt)‖22

)

≤ E

[
T∑
t=0

(f(θt)− f(θt+1)) +

T∑
t=0

αtbu,t
2

∆t +

T∑
t=0

(Lα2
t b

2
u,t − αbl,t)

2
‖mt+1‖22

]

≤ f(θ0)− f(θ∗) + E

(
T∑
t=0

(Lα2
t b

2
u,t − αbl,t)

2
‖mt+1‖22

)
+ E

(
T∑
t=0

αtbu,t
2(1− β1,t+1)

(1− β1,t+1)∆t

)
(i)
≤ f(θ0)− f(θ∗) + E

(
T∑
t=0

(Lα2
t b

2
u,t − αbl,t)

2
‖mt+1‖22

)
+
Abu,1

2
E

(
T∑
t=0

(1− β1,t+1)∆t

)
(ii)
≤ f(θ0)− f(θ∗) + E

(
T∑
t=0

(Lα2
t b

2
u,t − αbl,t)

2
‖mt+1‖22

)

+
Abu,1

2
E

[
∆0 +

T∑
t=0

2(1− β1,t+1)2σ2 +

T∑
t=0

L2α2
t b

2
u,t+1

1− β1,t+1
‖mt+1‖22

]
(iii)
≤ f(θ0)− f(θ∗) +

Abu,1
2

(σ2 + ‖∇f(θ0)‖22) +Abu,1σ
2
T∑
t=0

(1− β1,t+1)2

+ E

[
T∑
t=0

(
AL2bu,1α

2
t b

2
u,t+1

2(1− β1,t+1)
+
Lα2

t b
2
u,t − αtbl,t

2

)
‖mt+1‖22

]
(iv)
≤ f(θ0)− f(θ∗) +

Abu,1
2

(σ2 + ‖∇f(θ0)‖22) +Abu,1σ
2
T∑
t=0

(1− β1,t+1)2,

where (i) comes from the fact that αt ≤ (1 − β1,t+1)A based on the conditions in Theorem 1; (ii)
could be obtained after we apply equation 22 to the summation; (iii) is due to the fact that

E(∆0) = E(‖(1− β1,1)(g1 −∇f(θ0))− β1,1∇f(θ0))‖22)

= (1− β1,1)2E(‖g1 −∇f(θ0)‖22) + β2
1,1E‖∇f(θ0)‖22 ≤ σ

2 + ‖∇f(θ0)‖22 .

And we can deduce (iv) by using the assumptions in Theorem 1

AL2bu,1α
2
t b

2
u,t+1

2(1− β1,t+1)
≤
A2L2bu,1b

2
u,t+1

2
≤ bl,t

4
,

Lαtb
2
u,t

2
≤ bl,t

4
.

Therefore, we have

E

(
T∑
t=0

αT bl,T
2
‖∇f(θt)‖22

)

≤ E

(
T∑
t=0

αtbl,t
2
‖∇f(θt)‖22

)

≤ f(θ0)− f(θ∗) +
Abu,1

2
(σ2 + ‖∇f(θ0)‖22) +Abu,1σ

2
T∑
t=0

(1− β1,t+1)2.

25

Under review as a conference paper at ICLR 2023

As a consequence, we can deduce that

E

(
T∑
t=0

1

T + 1
‖∇f(θt)‖22

)

≤
2(f(θ0)−f(θ∗))

bl,T
+
√

1
2L2bu,1bl,T

(σ2 + ‖∇f(θ0)‖22)

αT (T + 1)
+

√
2

Lbu,1bl,T

σ2
∑T
t=0(1− β1,t+1)2

αT (T + 1)

(25)

:=
1

αT (T + 1)
(Q1 +Q2η(T)),

where

Q1 =
2(f(θ0)− f(θ∗))

bl,T
+

√
1

2L2bu,1bl,T
(σ2 + ‖∇f(θ0)‖22), Q2 =

√
2

Lbu,1bl,T
σ2.

B.3.3 PROOF OF COROLLARY 1

Without loss of generality we choose 1−β1,t = β/
√
t and αt = α/

√
t,∀t ∈ [T] for some constants

α, β with all conditions in Theorem 1 hold, we have

TαT = α
√
T , η(T) =

T∑
t=1

(1− β1,t)
2 = β2

T∑
t=1

1

t
≤ β2(1 + log(T)).

After combining this with equation 25 and making some rearrangement, we have:

E

(
T∑
t=0

1

T + 1
‖∇f(θt)‖22

)

≤
2(f(θ0)−f(θ∗))

bl,T
+
√

1
2L2bu,1bl,T

(σ2 + ‖∇f(θ0)‖22)

α
√
T

+

√
2

Lbu,1bl,T

σ2β2(1 + log(T))

α
√
T

:=
1

αT (T + 1)
(Q∗1 +Q∗2η(T)),

where

Q∗1 =
2(f(θ0)− f(θ∗))

bl,Tα
+

√
1

2L2bu,1bl,T

(σ2 + ‖∇f(θ0)‖22)

α
+

√
2

Lbu,1bl,T

σ2β2

α
,

Q∗2 =

√
2

Lbu,1bl,T

σ2β2

α
.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 HYPERPARAMETER TUNING RULE

For hyperparameter tuning, we perform extensive and careful grid search to choose the best hyper-
parameters for all the baseline algorithms.

CNN for Image Classification For SGDM, we set the momentum as 0.9 which is the default
choice (He et al., 2016; Huang et al., 2017) and search the learning rate between 0.1 and 10−5 in
the log-grid. For all the adaptive gradient methods, we fix β1 = 0.9 and β2 = 0.999 and search the
learning rate between 0.1 and 1e−5 in the log-grid, ε between 1e−5 and 1e−16 in the log-grid. For all
optimizers we grid search weight decay parameter value in {1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2}.
For ImageNet, since we use cosine learning rate schedule, for SGDM we grid search the final learn-
ing rate in {1e−3, 5e−4, 1e−4, 5e−5, 1e−5} and for the adaptive gradient methods we search the final
learning rate in {1e−5, 5e−6, 1e−6, 5e−7, 1e−7}.

26

Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200
Epoch

88

90

92

94

96

98

100

Tr
ai

n
Ac

cu
ra

cy
 (%

)

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(a) Train Accuracy for VGGNet.

0 25 50 75 100 125 150 175 200
Epoch

88

90

92

94

96

98

100

Tr
ai

n
Ac

cu
ra

cy
 (%

)

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(b) Train Accuracy for ResNet.

0 25 50 75 100 125 150 175 200
Epoch

88

90

92

94

96

98

100

Tr
ai

n
Ac

cu
ra

cy
 (%

)

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(c) Train Accuracy for DenseNet.

0 25 50 75 100 125 150 175 200
Epoch

87

88

89

90

91

92

93

94

95

Te
st

 A
cc

ur
ac

y
(%

)

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(d) Test Accuracy for VGGNet.

0 25 50 75 100 125 150 175 200
Epoch

88

90

92

94

96

Te
st

 A
cc

ur
ac

y
(%

)

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(e) Test Accuracy for ResNet.

0 25 50 75 100 125 150 175 200
Epoch

88

90

92

94

96

Te
st

 A
cc

ur
ac

y
(%

)

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(f) Test Accuracy for DenseNet.

Figure 5: Train and test accuracy of different optimizers on CIFAR-10.

Table 7: Well tuned hyperparameter configuration of the adaptive gradient methods for CNNs on
CIFAR-10.

Algorithm Adam AdamW Yogi AdaBound RAdam AdaBelief AdaM3

Stepsize α 0.001 0.001 0.001 0.001 0.001 0.001 0.001
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Weight decay 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4

ε 10−8 10−8 10−8 10−8 10−8 10−8 10−8

LSTM for Language Modeling For SGDM, we grid search the learning rate in
{100, 50, 30, 10, 10.1} and momentum parameter between 0.5 and 0.9 with stepsize 0.1 . For all
the adaptive gradient methods, we fix β2 = 0.999 and search β1 between 0.5 and 0.9 with stepsize
0.1, the learning rate between 0.1 and 1e−5 in the log-grid, ε between 1e−5 and 1e−16 in the log-
grid. For all the optimizers, we fix the weight decay parameter value as 1.2e−4 following Zhuang
et al. (2020).

Transformer for Neural Machine Translation For SGDM, we search learning rate between 0.1
and 10−5 in the log-grid and momentum parameter between 0.5 and 0.9 with stepsize 0.1. For
adaptive gradient methods, we fix β1 = 0.9, grid search β2 in {0.98, 0.99, 0.999}, learning rate in
{1e−4, 5e−4, 1e−3, 1.5e−3, 2e−3, 3e−3}, and ε between 1e−5 and 1e−16 in the log-grid. For all the
optimizers we grid search weight decay parameter in {1e−4, 5e−4, 1e−3, 5e−3, 1e−2, 5e−2}.

Generative Adversarial Network For SGDM we search the momentum parameter between 0.5
and 0.9 with stepsize 0.1. For all the adaptive gradient optimziers we set β1 = 0.5, search β2 and ε
using the same schedule as previsou subsection.

All the experiments reported are trained on NVIDIA Tesla V100 GPUs. We provide some additional
information concerning the empirical experiments for completeness.

27

Under review as a conference paper at ICLR 2023

0 25 50 75 100 125 150 175 200
Epoch

60

70

80

90

100

110

120

Tr
ai

n
Pe

rp
le

xi
ty

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(a) 1-Layer LSTM.

0 25 50 75 100 125 150 175 200
Epoch

40

50

60

70

80

90

100

110

Tr
ai

n
Pe

rp
le

xi
ty

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(b) 2-Layer LSTM.

0 25 50 75 100 125 150 175 200
Epoch

40

50

60

70

80

90

100

110

Tr
ai

n
Pe

rp
le

xi
ty

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(c) 3-Layer LSTM.

Figure 6: Train perplexity curve on Penn Treebank (Marcus et al., 1993) dataset.

0 25 50 75 100 125 150 175 200
Epoch

80

85

90

95

100

105

110

Te
st

 P
er

pl
ex

ity

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(a) 1-Layer LSTM.

0 25 50 75 100 125 150 175 200
Epoch

65

70

75

80

85

90

Te
st

 P
er

pl
ex

ity

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(b) 2-Layer LSTM.

0 25 50 75 100 125 150 175 200
Epoch

60

65

70

75

80

85

90

95

100

Te
st

 P
er

pl
ex

ity

AdaM3

SGDM
Adam
AdamW
Yogi
AdaBound
RAdam
AdaBelief

(c) 3-Layer LSTM.

Figure 7: Test perplexity curve on Penn Treebank (Marcus et al., 1993) dataset.

C.2 IMAGE CLASSIFICATION

CIFAR datasets The values of the hyperparameters after careful tuning of the reported results
of the adaptive gradient methods on CIFAR-10 in the main paper is summarized in Table 7. For
SGDM, the optimal hyperparameter setting is: the learning rate is 0.1, the momentum parameter
is 0.9, the weight decay parameter is 5 × 10−4. For Adabound, the final learning rate is set as 0.1
(matching SGDM) and the value of the hyperparameter gamma is 10−3.

ImageNet For SGDM, the tuned stepsize is 0.1, the tuned momentum parameter is 0.9 and the
tuned weight decay is 1 × 10−4. For Adam, the learning rate is 0.001, ε = 1e−8, and the weight
decay parameter is 1e−4. For AdaM3, the learning rate is 0.001, ε = 1e−16 and the weight decay
parameter is 5e−2.

C.3 LSTM ON LANGUAGE MODELING

The training and testing perplexity curves are illustrated in Figure 6 and 7. We can clearly see that
AdaM3 is able to make the perplexity descent faster than SGDM and most other adaptive gradient
methods during training and mean while generalize much better in testing phase. In experimental
settings, the size of the word embeddings is 400 and the number of hidden units per layer is 1150.
We employ dropout in training and the dropout rate for RNN layers is 0.25 and the dropout rate for
input embedding layers is 0.4.

The optimal hyperparameters of adaptive gradient methods for 1-layer, 2-layer and 3-layer LSTM
are listed in Tables 8, 9 and 10 respectively. For SGDM, the Well tuned stepsize is 30.0 and the
momentum parameter is 0.9. For Adabound, the final learning rate is set as 30.0 (matching SGDM)
and the value of the hyperparameter gamma is 10−3.

28

Under review as a conference paper at ICLR 2023

Table 8: Well tuned hyperparameter configuration of adaptive gradient methods for 1-layer-LSTM
on Penn Treebank dataset.

Algorithm Adam AdamW Yogi AdaBound RAdam AdaBelief AdaM3

Stepsize α 0.001 0.001 0.01 0.01 0.001 0.001 0.001
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Weight decay 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4

ε 10−12 10−12 10−8 10−8 10−12 10−16 10−16

Table 9: Well tuned hyperparameter configuration of adaptive gradient methods for 2-layer-LSTM
on Penn Treebank dataset.

Algorithm Adam AdamW Yogi AdaBound RAdam AdaBelief AdaM3

Stepsize α 0.01 0.001 0.01 0.01 0.001 0.01 0.001
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Weight decay 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4

ε 10−12 10−12 10−8 10−8 10−12 10−12 10−16

C.4 TRANSFORMER ON NEURAL MACHINE TRANSLATION

For transformer on NMT task, the well tuned hyperparameter values are summarized in Table 11.
The stepsize of SGDM is 0.1 and the momentum parameter of SGDM is 0.9. Initial learning rate
is 10−7 and the minimum learning rate threshold is set as 10−9 in the warm-up process for all the
optimizers.

C.5 GENERATIVE ADVERSARIAL NETWORK

The optimal momentum parameters of SGD for all GANs are 0.9. For adaptive gradient methods,
the well tuned hyperparameter values for BigGAN with consistency regularization are summarized
in Table 12. We implement the GAN experiments adapting the code from public repository 4. We
sample two visualization results of generated samples of GAN training with AdaM3 in Figure 8.

D HYPOTHEIS TEST RESULTS

Doing pair-wise hypothesis tests between our optimizer and each other optimizer helps performance
comparison. Note that all the experiments reported in our main paper are run 5 times independently
using random seeds. Since the sample size is comparatively small, we adopt non-parametric method
Exact paired Wilcoxon signed rank test together with Paired t-test to conduct hypothesis tests on
CIFAR image classification experiments (using best epoch test accuracy), LSTM language modeling
experiments and BigGAN image generation experiment. The null hypothesis is that the compared
baseline method is no worse than our AdaM3 in performance, while the alternative hypothesis is that
our proposed AdaM3 is better than the compared baseline gradient method. The results (p-values)
are summarized in Tab. 13-19. We can conclude from the tables that most of the P-values are quite
small, which demonstrates that our shown superiority of AdaM3 is reliable and universal.

4https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

29

https://github.com/POSTECH-CVLab/PyTorch-StudioGAN

Under review as a conference paper at ICLR 2023

Table 10: Well tuned hyperparameter configuration of adaptive gradient methods for 3-layer-LSTM
on Penn Treebank dataset.

Algorithm Adam AdamW Yogi AdaBound RAdam AdaBelief AdaM3

Stepsize α 0.01 0.001 0.01 0.01 0.001 0.01 0.001
β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9
β2 0.999 0.999 0.999 0.999 0.999 0.999 0.999

Weight decay 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4 1.2× 10−4

ε 10−12 10−12 10−8 10−8 10−12 10−12 10−16

Table 11: Well tuned hyperparameter configuration of adaptive gradient methods for transformer on
IWSTL’14 DE-EN dataset.

Algorithm Adam AdamW AdaBelief AdaM3

Stepsize α 0.0015 0.0015 0.0015 0.0005
β1 0.9 0.9 0.9 0.9
β2 0.98 0.98 0.999 0.999

Weight decay 10−4 10−4 10−4 10−4

ε 10−8 10−8 10−16 10−16

Table 12: Well tuned hyperparameter configuration of adaptive gradient methods for BigGAN with
consistency regularization.

Algorithm Adam Yogi AdaBound RAdam AdaBelief AdaM3

β1 0.5 0.5 0.5 0.5 0.5 0.5
β2 0.999 0.999 0.999 0.999 0.999 0.999

Weight decay 0 0 0 0 0 0
ε 10−8 10−8 10−8 10−8 10−16 10−16

(a) DCGAN trained using random seed 0 (best FID
score 43.52, iteration 26000).

(b) BigGAN trained using random seed 2 (best
FID score 7.07, iteration 92000).

Figure 8: Generated figures trained on CIFAR-10 optimizing with AdaM3.

Table 13: P-values (↓) calculated using pair-wise hypothesis tests between AdaM and the baseline
optimizers on VGGNet-16 for CIFAR-10 classification.

Test type SGDM Adam AdamW Yogi AdaBound RAdam AdaBelief

Exact paired Wilcoxon signed rank test 0.313 0.031 0.031 0.031 0.031 0.031 0.031
Paried t-test 0.246 3.96e-6 8.34e-5 1.28e-4 1.66e-5 1.73e-5 0.012

30

Under review as a conference paper at ICLR 2023

Table 14: P-values (↓) calculated using pair-wise hypothesis tests between AdaM and the baseline
optimizers on ResNet-34 for CIFAR-10 classification.

Test type SGDM Adam AdamW Yogi AdaBound RAdam AdaBelief

Exact paired Wilcoxon signed rank test 0.901 0.031 0.031 0.031 0.031 0.031 0.031
Paried t-test 0.902 4.35e-4 3.77e-4 1.17e-4 3.44e-4 2.59e-4 0.006

Table 15: P-values (↓) calculated using pair-wise hypothesis tests between AdaM and the baseline
optimizers on DenseNet-121 for CIFAR-10 classification.

Test type SGDM Adam AdamW Yogi AdaBound RAdam AdaBelief

Exact paired Wilcoxon signed rank test 0.094 0.031 0.031 0.031 0.031 0.031 0.094
Paried t-test 0.112 2.17e-4 1.52e-3 4.99e-5 6e-4 0.003 0.04

Table 16: P-values (↓) calculated using pair-wise hypothesis tests between AdaM and the baseline
optimizers on 1-layer LSTM for Penn Treebank dataset.

Test type SGDM Adam AdamW Yogi AdaBound RAdam AdaBelief

Exact paired Wilcoxon signed rank test 0.031 0.031 0.031 0.031 0.031 0.031 0.031
Paried t-test 4.54e-7 2.46e-6 2.21e-7 5.58e-7 6.07e-6 1.36e-5 1.36e-5

Table 17: P-values (↓) calculated using pair-wise hypothesis tests between AdaM and the baseline
optimizers on 2-layer LSTM for Penn Treebank dataset.

Test type SGDM Adam AdamW Yogi AdaBound RAdam AdaBelief

Exact paired Wilcoxon signed rank test 0.031 0.031 0.031 0.031 0.031 0.031 0.031
Paried t-test 1.96e-5 2.50e-5 3.75e-9 1.88e-7 1.96e-5 2.16e-7 7.45e-6

Table 18: P-values (↓) calculated using pair-wise hypothesis tests between AdaM and the baseline
optimizers on 3-layer LSTM for Penn Treebank dataset.

Test type SGDM Adam AdamW Yogi AdaBound RAdam AdaBelief

Exact paired Wilcoxon signed rank test 0.031 0.031 0.031 0.031 0.031 0.031 0.031
Paried t-test 5.76e-6 3.75e-6 6.56e-8 2.26e-8 1.76e-6 1.16e-8 2.16e-4

Table 19: P-values (↓) calculated using pair-wise hypothesis tests between AdaM and the baseline
optimizers on BigGAN experiments on CIFAR-10.

Test type SGDM Adam(W) Yogi AdaBound RAdam AdaBelief

Exact paired Wilcoxon signed rank test 0.031 0.031 0.031 0.031 0.031 0.094
Paried t-test 3.38e-7 1.01e-3 1.67e-4 3.68e-7 0.215 0.076

31

	Introduction
	Algorithm
	Why AdaM3 over Adam?
	AdaM3 is More Suitable for Typical Loss Curvature
	AdaM3 Converges to Minima that Generalize Better

	Convergence Analysis of AdaM3
	Experiments
	2D Toy Experiment on Sphere Function
	Deep Learning Experiments
	CNN for Image Classification
	LSTM for Language Modeling
	Transformer for Neural Machine Translation
	Generative Adversarial Network

	Conclusion
	Technical details of Subsection 3.2
	Derivation of the Lévy-driven SDE equation 4
	Proof of Lemma 1
	Preliminaries
	Auxiliary theorems and lemmas
	Proof of Theorem 2

	Proof of Proposition 1

	Proofs in Section 4
	Convergence Analysis in Convex Optimization
	Proof of the convergence results for the convex case
	Proof of Theorem 4
	Proof of Corollary 2

	Proof of the convergence results for the non-convex case
	Useful Lemma
	Proof of Theorem 1
	Proof of Corollary 1

	Additional Experimental Details
	Hyperparameter tuning rule
	Image classification
	LSTM on language modeling
	Transformer on neural machine translation
	Generative Adversarial Network

	Hypotheis Test Results

