

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 EvoCoT: OVERCOMING THE EXPLORATION BOTTLE- NECK IN REINFORCEMENT LEARNING FOR LLMS

Anonymous authors

Paper under double-blind review

ABSTRACT

Reinforcement learning with verifiable reward (RLVR) has become a promising paradigm for post-training large language models (LLMs) to improve their reasoning capability. However, when the rollout accuracy is low on hard problems, the reward becomes sparse, limiting learning efficiency and causing exploration bottlenecks. Existing approaches either rely on teacher models for distillation or filter out difficult problems, which limits scalability or restricts reasoning improvement through exploration.

We propose **EvoCoT**, a self-Evolving curriculum learning framework based on two-stage Chain-of-Thought (CoT) reasoning optimization. **EvoCoT** constrains the exploration space by self-generating and verifying CoT trajectories, then gradually shortens CoT steps to expand the space in a controlled way. The framework enables LLMs to stably learn from initially unsolved hard problems under sparse rewards. We apply **EvoCoT** to multiple LLM families, including Qwen, DeepSeek, and Llama. Experiments show that **EvoCoT** enables LLMs to solve previously unsolved problems, improves reasoning capability without external CoT supervision, and is compatible with various RL fine-tuning methods. We release the source code to support future research¹.

1 INTRODUCTION

Recently, reinforcement learning with verifiable reward (RLVR) has emerged as a promising paradigm for the post-training of large language models (LLMs). LLMs demonstrate remarkable reasoning capability in solving complex tasks, from math problems to code generation. Existing works DeepSeek-AI et al. (2025); Liu et al. (2025b) compute rewards via rule-based verification of predicted final answers, effectively enhancing reasoning capability without relying on annotated reasoning trajectories.

Within RLVR, we expect LLMs to explore correct reasoning trajectories during rollouts to obtain rewards and gradually improve their reasoning capability Yu et al. (2025); Shao et al. (2024). However, when the rollout accuracy is low on some hard problems, the LLM receives sparse rewards, hindering the improvement of reasoning capability. Due to the vast solution space, LLMs often face exploration bottlenecks on such problems.

In experiments, we find that LLMs often fail to sufficiently learn from hard problems, even after RLVR training. For example, when trained on GSM8K Cobbe et al. (2021) and MATH Hendrycks et al. (2021) training sets, Qwen2.5-7B still fails to solve 8.8% and 22.0% of the problems, respectively (see Table 2). These unsolved problems are still valuable for RLVR. If LLMs could exploit such problems more effectively during training, their reasoning capability could be further improved Liu et al. (2025b).

Several recent works attempt to address this question. ① One category of methods depends on teacher LLMs to provide hints or reasoning trajectories for **distillation** Nath et al. (2025); Ma et al. (2025); Yan et al. (2025); Wu et al. (2025); Fu et al. (2025). For instance, LUFFY Yan et al. (2025) mixes outputs from teacher LLMs into the GRPO candidate set and applies importance sampling to emphasize low-probability but correct actions. These methods enhance performance but require

¹<https://anonymous.4open.science/r/EvoCoT-anonymous-76EB>

access to teacher LLMs, which is a strong assumption that imposes high costs and limits scalability, especially when training flagship models without available teacher models. ② Another category of methods attempts to control problem difficulty to facilitate curriculum learning for LLMs Chen et al. (2025b); Bae et al. (2025); Shi et al. (2025). RORL Bae et al. (2025) computes the rollout accuracy for each group in a batch and retains only the problems within a predefined accuracy range. While this mitigates reward sparsity, it also **filters out** many hard problems that could serve as valuable training data, restricting the LLM’s reasoning improvement through exploration. A detailed comparison is provided in Table 1.

In this paper, we aim to investigate the following question:

Key Question
Can LLMs become self-evolving by overcoming exploration bottlenecks and progressively enhancing reasoning capability, without distillation from teacher models?

Table 1: The comparison between existing reinforcement learnin (RL) methods and **EvoCoT**.

Methods	① Distillation-Free	② Unfiltered
ReLIFT Ma et al. (2025)	✗	✗
AdaRFT Shi et al. (2025)	✓	✗
RORL Bae et al. (2025)	✓	✗
TAPO Wu et al. (2025)	✗	✓
LUFFY Yan et al. (2025)	✗	✓
Guide-GRPO Nath et al. (2025)	✗	✗
SRFT Fu et al. (2025)	✗	✓
EvoCoT (Ours)	✓	✓

We think that the low rollout accuracy on hard problems is primarily due to the vast solution space being far beyond the LLMs’ current reasoning capability, as shown in Figure 1. We propose **EvoCoT**, a self-Evolving curriculum learning framework based on two-stage Chain-of-Thought (CoT) reasoning optimization. The core idea of **EvoCoT** is to constrain the size of the exploration space. In Stage 1, the LLM receives problems and final answers, and generates its own CoT trajectories. These CoTs are filtered and verified to construct step-by-step reasoning. In Stage 2, **EvoCoT** performs curriculum learning by progressively removing reasoning steps from each CoT trajectory. This step-wise reduction gradually expands the exploration space in a controlled manner, increasing reasoning difficulty while enabling stable training under sparse rewards. Through self-evolving iterations, the LLM enhances its reasoning capability and generates higher-quality CoTs, progressively solving a portion of initially unsolved hard problems.

We apply **EvoCoT** to LLMs across diverse model families, including Qwen, DeepSeek, Llama, and DeepSeek-R1-Distill-Qwen (referred to as R1-Qwen). Experimental results demonstrate that:

- Compared to GRPO, **EvoCoT** enables LLMs to overcome exploration bottlenecks on previously unsolved training set problems, with average improvements of +4.5 for Qwen2.5-7B and +21.7 for R1-Qwen-1.5B.
- Beyond the training set, **EvoCoT** transfers its learned reasoning to other math benchmarks, outperforming SimpleRL with average improvements of +2.3 on Qwen2.5-7B and +2.1 on R1-Qwen-1.5B.
- Compared to SFT and GRPO, **EvoCoT** supports more effective self-exploration, achieving average improvements of +10.8 and +1.6 across all evaluated LLMs.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING WITH VERIFIABLE REWARD

RLVR for LLMs has drawn considerable research attention following DeepSeek-R1 DeepSeek-AI et al. (2025) and Kimi-k1.5 Team et al. (2025). However, recent studies Yue et al. (2025); Zhao et al. (2025) suggest that the performance of the RLVR-trained model is fundamentally constrained by the base model’s inherent capability, as RLVR only biases the base model’s output distribution toward reward-maximizing paths. In RLVR, rewards are sometimes too sparse compared to the large solution space, causing exploration bottlenecks that prevent finding solutions unexplored by the base model. Some works Ma et al. (2025); Chen et al. (2025a); Fu et al. (2025); Liu et al. (2025c); Wu et al. (2025); Yan et al. (2025); Nath et al. (2025); Goldie et al. (2025) attempt to incorporate off-policy data into training. For instance, ReLIFT Ma et al. (2025), SASR Chen et al. (2025a), SRFT Fu et al. (2025) and SuperRL Liu et al. (2025c) integrate RLVR with supervised fine-tuning (SFT). Meanwhile, TAPO Wu et al. (2025), LUFFY Yan et al. (2025) and Guide-GRPO Nath et al.

108 (2025) leverage reference CoT or hints generated by teacher models, or query an external thought
 109 library to guide policy optimization. Unfortunately, these methods either rely on distillation from
 110 teacher models or high-quality training data.
 111

112 2.2 CURRICULUM LEARNING FOR REASONING TASKS

113 Curriculum learning Bengio et al. (2009) is a training strategy that arranges examples ordered from
 114 easy to hard. In RL, curriculum learning explores strategies to balance exploration and exploitation,
 115 with methods such as promising initialization Narvekar et al. (2016) and reverse curriculum gen-
 116 eration Florensa et al. (2017) showing effectiveness. However, in LLMs, overcoming exploration
 117 bottlenecks remains a major question. Previous works Team et al. (2025); Xie et al. (2025); Liu et al.
 118 (2025a) explore the application of curriculum learning in RLVR for LLM post-training, demon-
 119 strating that the difficulty arrangement of the RL training data is critical for achieving competitive
 120 performance. However, existing difficulty-arranging methods have some limitations. RORL Bae
 121 et al. (2025) filters out too hard or too easy problems for the current LLM to solve, but some dis-
 122 carded hard problems could be valuable for training; E2H Parashar et al. (2025), SEC Chen et al.
 123 (2025b) and AdaRFT Shi et al. (2025) dynamically adapt the probability distribution on difficulties
 124 for sampling, but they require fine-grained difficulty estimation in the dataset; R3 Xi et al. (2024) and
 125 AdaBack Amani et al. (2025) smoothly increase difficulty by showing the LLM gradually shorter
 126 prefixes of CoT, whereas they necessitate complete CoT data for training.
 127

128 3 EVOCoT

129 3.1 SELF-EVOLVING CURRICULUM LEARNING FRAMEWORK

130 We introduce **EvoCoT**, a self-evolving curriculum learning framework for LLMs. **EvoCoT** im-
 131 proves LLMs’ reasoning capability through iterative training with gradually increasing difficulty.
 132 The core idea of **EvoCoT** is to constrain and gradually expand the exploration space. As illustrated
 133 in Figure 1, **EvoCoT** is structured as two nested stages: the **Answer-Guided Reasoning Path**
 134 **Self-Generation** constructs CoT trajectories from final answers, and the **Step-Wise Curriculum**
 135 **Learning** implements step-wise CoT reduction for RLVR. The overall pseudocode is provided in
 136 Appendix A and proceeds as follows:
 137

138 **Stage 1: Answer-Guided Reasoning Path Self-Generation.** Given a training dataset consisting
 139 of questions and final answers, the LLM generates CoT trajectories that reconstruct how the answer
 140 could be derived. This stage follows the intuition that reasoning paths are easier to construct when
 141 the final answer is provided. The generated CoTs are filtered to ensure logical consistency and are
 142 organized into multi-step trajectories connecting the question to the final answer. Importantly, this
 143 stage does not require annotated CoTs or teacher models, and transforms outcome-supervised data
 144 into reasoning paths in a fully self-generated manner.
 145

146 **Stage 2: Step-Wise Curriculum Learning.** Given the reasoning paths constructed in Stage 1, Stage
 147 2 implements the curriculum learning by progressively shortening each CoT trajectory. Starting from
 148 complete CoT trajectories, **EvoCoT** gradually removes reasoning steps in reverse order, producing a
 149 series of training samples with increasing difficulty. As shown in Figure 1, shorter CoTs expand the
 150 LLM’s exploration space, making the reasoning more challenging. The step-wise reduction forms a
 151 difficulty progression, from easy samples with full guidance to hard ones requiring more exploration.
 152 Each sample is used to fine-tune the LLM with RLVR, enabling stable exploration across a range of
 153 reasoning complexities under sparse rewards.
 154

155 The two stages iterate jointly, forming a self-evolving framework. The following subsections respec-
 156 tively introduce: ① how CoTs are generated and filtered in Stage 1; ② how curriculum learning is
 157 implemented in Stage 2 via step-wise CoT reduction; and ③ the self-evolving iterative optimization
 158 along with the advantages of **EvoCoT**.
 159

160 3.2 STAGE 1: ANSWER-GUIDED REASONING PATH SELF-GENERATION

161 In Stage 1, **EvoCoT** generates and filters reasoning trajectories from training data that contain only
 162 final answers. This process transforms outcome supervision into multi-step reasoning, without rely-
 163 ing on additional human annotations or teacher models.
 164

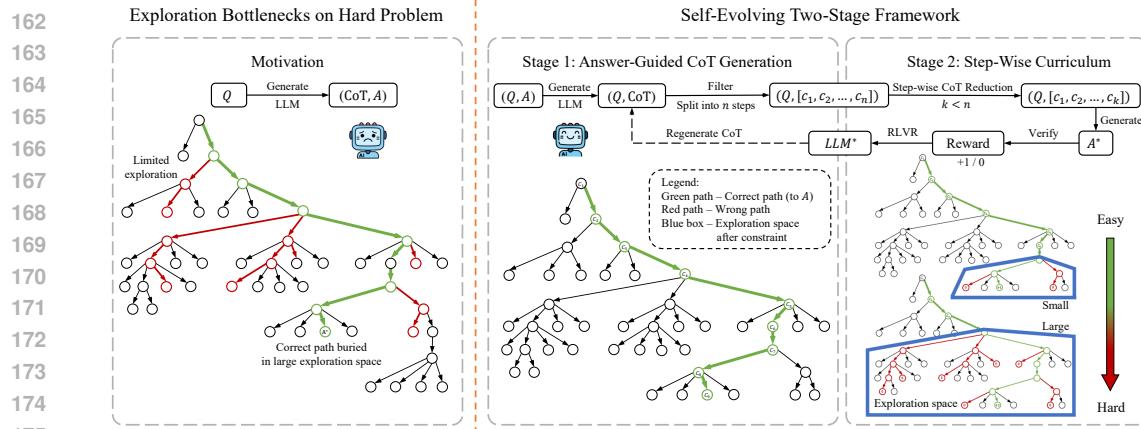


Figure 1: The overall framework of **EvoCoT**. It is structured as two nested stages: **Stage 1: Answer-Guided Reasoning Path Self-Generation**, which generates and filters CoT trajectories from final-answer supervision, and **Stage 2: Step-Wise Curriculum Learning**, which implements curriculum learning by progressively shortening CoTs to increase difficulty and exploration space. The two stages iterate jointly, enabling the LLM to gradually enhance its reasoning capability through self-evolving optimization.

The training input consists of math problems formatted as (Q, A) pairs, where Q is the question and A is the final answer. No CoT annotations or distilled data are required. For each (Q, A) , the LLM is prompted to generate a reasoning chain C (detailed in Appendix B):

$$(Q, A) \xrightarrow[\text{LLM}]{} C \quad (1)$$

Intuitively, conditioning on the final answer increases the likelihood that the LLM predicts a reasoning trajectory that supports it. To verify consistency, we check whether the LLM can derive the correct answer A when conditioned on (Q, C) :

$$(Q, C) \xrightarrow[\text{LLM}]{} \hat{A}, \quad \text{retain } C \text{ if } \hat{A} = A. \quad (2)$$

Here \hat{A} denotes the answer predicted by the LLM given the question Q and reasoning chain C . Only reasoning chains that derive the correct answer are retained. Each verified C is then split into step-wise format using the delimiter " $\backslash n \backslash n$ ":

$$(Q, C, \hat{A}) \xrightarrow[\text{split}]{} (Q, \hat{C} = \{c_1, c_2, \dots, c_n\}, \hat{A}), \quad \hat{A} = A \quad (3)$$

where each c_i is a clear reasoning sub-step, forming a multi-step trajectory suitable for subsequent curriculum learning. **No additional constraints are applied to the self-generated C , allowing the LLM to explore freely.**

3.3 STAGE 2: STEP-WISE CURRICULUM LEARNING

In Stage 2, the LLM is trained by progressively shortening the reasoning trajectories generated in Stage 1. This process forms a curriculum that enables the LLM to perform reasoning from easy to hard within each individual sample. Training relies solely on outcome verification as the reward.

Given a complete reasoning trajectory $(Q, c_1, c_2, \dots, c_n)$, training proceeds by gradually truncating the tail steps to increase difficulty. The curriculum follows:

$$\begin{aligned} (Q, c_1, c_2, \dots, c_{n-1}, c_n) &\rightarrow (C^*, A^*) \\ (Q, c_1, c_2, \dots, c_{n-1}) &\rightarrow (C^*, A^*) \\ &\vdots \\ (Q, c_1) &\rightarrow (C^*, A^*) \\ (Q) &\rightarrow (C^*, A^*) \end{aligned} \quad (4)$$

216 where C^*, A^* denotes a reasoning chain and answer generated by the LLM, without any constraint
 217 on the number or form of the subsequent reasoning steps. Starting from full-length CoTs, the LLM
 218 learns to generate correct answers under strong guidance. Gradually removing steps expands the
 219 exploration space of the LLM, increasing difficulty and encouraging the discovery of more com-
 220 plex reasoning paths. The step-wise curriculum within each sample stabilizes training under sparse
 221 rewards and improves the overall reasoning capability of the LLM.

222 Our design is motivated by two considerations: ① Training with longer CoT guidance is easier than
 223 shorter or no CoT, making the progressive reduction of steps a natural curriculum. ② As trajectories
 224 shorten, the LLM needs to complement reasoning steps and ultimately derive A directly from Q ,
 225 which avoids reward hacking caused by revealing answers in the self-generated CoTs.
 226

227 3.4 SELF-EVOLVING ITERATIVE OPTIMIZATION

228 **EvoCoT** follows a self-evolving two-stage process. In each iteration, the current LLM first gener-
 229 ates CoT trajectories from (Q, A) pairs (Stage 1). These CoTs are filtered and split into step-wise
 230 reasoning paths. Then, the LLM is trained via curriculum learning by progressively shortening
 231 the CoTs (Stage 2), increasing task difficulty. After updating the LLM’s parameters, its reasoning
 232 capability improves, enabling the generation of higher-quality CoTs in the next iteration.
 233

234 Although initial CoTs may be imperfect, iterative training can improve the LLM’s reasoning capa-
 235 bility and lead to better CoT generation, which in turn provides stronger guidance for subsequent
 236 learning. Over multiple iterations, our self-evolving **EvoCoT** enhances both the quality of generated
 237 reasoning and the LLM’s overall reasoning capability. We use \mathcal{Q} , \mathcal{A} , and \mathcal{C} to denote the complete
 238 datasets. The t -th iteration can be represented as:

$$\begin{aligned} (Q, A) &\xrightarrow{\text{LLM}^{(t)}} \mathcal{C}^{(t)} \xrightarrow{\text{learning}} \text{LLM}^{(t+1)} \\ (Q, A) &\xrightarrow{\text{LLM}^{(t+1)}} \mathcal{C}^{(t+1)} \xrightarrow{\text{learning}} \text{LLM}^{(t+2)} \\ &\vdots \end{aligned} \tag{5}$$

245 **Note that** **EvoCoT** is orthogonal to existing training paradigms and can be applied as a complemen-
 246 tary stage after post-training. This orthogonality arises from its self-exploration process, which does
 247 not rely on external supervision. Rather than replacing prior methods like GRPO, **EvoCoT** further
 248 enhances reasoning through iterative self-evolution. **EvoCoT** has three main advantages:

- 249 • **Avoiding reliance on human-annotated CoTs:** The LLM learns solely from automatically gen-
 250 erated reasoning chains based on (Q, A) pairs, without requiring any manual CoT labels or teacher
 251 models.
- 252 • **Reducing the risk of failure on hard problems with large exploration space:** Step-wise CoT
 253 reduction gradually increases the difficulty by expanding the LLM’s exploration space, enabling
 254 more stable learning under sparse rewards.
- 255 • **Eliminating the need to manually build training data ordered by difficulty:** Each single CoT
 256 sample naturally supports curriculum learning.

258 4 EXPERIMENTS

261 We conduct a large-scale experiment to evaluate **EvoCoT**. In this section, we introduce our research
 262 questions (RQs), baselines, benchmarks, and evaluation metrics. For each RQ, the experimental
 263 design, results, and analysis are presented separately.

264 4.1 RESEARCH QUESTIONS

266 Our experimental study is guided by the following research questions:
 267

268 **RQ1: Can EvoCoT solve previously unsolved training problems?** We evaluate whether **EvoCoT**
 269 enables LLMs to correctly solve problems in the training set that were initially unsolved, verifying
 its effectiveness in overcoming exploration bottlenecks.

270 **RQ2: Can **EvoCoT** improve generalization to unseen math problems?** We evaluate whether
 271 **EvoCoT** enhances the LLM’s performance on a diverse set of math benchmarks that are not included
 272 in the training data.

273 **RQ3: How effective is **EvoCoT** compared to other learning paradigms?** We compare **EvoCoT**
 274 with RLVR and supervised fine-tuning (SFT) to isolate the effectiveness of the self-exploration in
 275 **EvoCoT**.

276 **RQ4: Can **EvoCoT** indefinitely improve reasoning through self-evolution?** We evaluate whether
 277 **EvoCoT** can continuously enhance LLM reasoning through iteration, or if the performance sat-
 278 rates, revealing its scalability and inherent limitations.

280 **4.2 EXPERIMENTAL SETUP**

282 **Baselines.** We compare **EvoCoT** with recent open-source RLVR works, including SimpleRL Zeng
 283 et al. (2025), DeepScaleR Luo et al. (2025), and Open-Reasoner-Zero Hu et al. (2025). In addition to
 284 vanilla GRPO training, we include PRIME Cui et al. (2025) and SEC Chen et al. (2025b) as method-
 285 level baselines, which are recent RL improvements or curriculum learning without distillation. To
 286 ensure a fair comparison, we use the released LLMs with the prompt templates reported in the
 287 original papers, and all LLMs use the same sampling settings.

289 **EvoCoT Hyperparameters** We apply **EvoCoT** across diverse model families, including
 290 Qwen2.5-7B Yang et al. (2024), Llama3.1-8B Dubey et al. (2024), DeepSeek-Math-7B Shao et al.
 291 (2024), and DeepSeek-R1-Distill-Qwen-1.5B (referred to as R1-Qwen-1.5B) DeepSeek-AI et al.
 292 (2025). We follow the baseline models and training setup provided by DeepScaleR and SimpleRL-
 293 Zoo². ① In Stage 1, we collect problems from the GSM8K and MATH training sets where the
 294 LLM fails to solve the problem in all 8 rollouts. For each unsolved problem, 8 reasoning paths are
 295 sampled with a temperature of 1.0. ② In Stage 2, detailed training hyperparameters are provided in
 296 Appendix C. Since the number of failed problems varies across LLMs, we discard excess problems
 297 after reaching the maximum number of training steps. All experiments are conducted on 8xA100
 298 (40GB) GPUs.

299 **Benchmarks.** We evaluate **EvoCoT** on a broad set of math reasoning benchmarks. Training is
 300 conducted on the train splits of GSM8K Cobbe et al. (2021) and MATH Hendrycks et al. (2021). For
 301 evaluation, we use the test splits of GSM8K and MATH, as well as AIME 2024, AMC 2023, Minerva
 302 Math Lewkowycz et al. (2022), and Olympiad Bench He et al. (2024). These benchmarks cover a
 303 wide range of mathematical domains and difficulty levels, offering a comprehensive evaluation.

305 **Evaluation Metrics.** Following prior work Zeng et al. (2025), we use pass@k to measure the
 306 probability that at least one correct solution is generated within k attempts. In all experiments, we
 307 set k = 1. All responses are generated with a context length of 8,192, using a decoding temperature
 308 of 0.6 and sampling 8 responses per LLM³. Other evaluation hyperparameters follow the default
 309 settings.

310 **4.3 RQ1: **EvoCoT** OVERCOME EXPLORATION BOTTLENECKS**

312 In RQ1, we examine whether **EvoCoT** enables LLMs to solve training problems that were previ-
 313 ously unsolved. We focus on GSM8K and MATH training data, and select problems where the LLM
 314 fails to solve in rollouts. These problems are added to the **EvoCoT**’s training set. Figure 2 tracks
 315 the number of correct rollouts during training, while Table 2 compares performance before and after
 316 applying **EvoCoT** on these challenging problems.

317 **① **EvoCoT** maintains high rollout accuracy even as reasoning shortens.** As shown in Figure 2,
 318 **EvoCoT** consistently keeps correct rollouts at a high level throughout training across various LLMs,
 319 whereas GRPO drops to 0 on hard problems. Notably, R1-Qwen-1.5B consistently achieves over 220
 320 correct out of 256 rollouts, showing reliable performance on initially unsolved problems. **② **EvoCoT****
 321 **brings larger improvement to stronger LLMs.** Table 2 shows that Qwen2.5-7B improves from

322 ²We use <https://github.com/volcengine/verl> framework for training.

323 ³We use <https://github.com/huggingface/Math-Verify> framework.

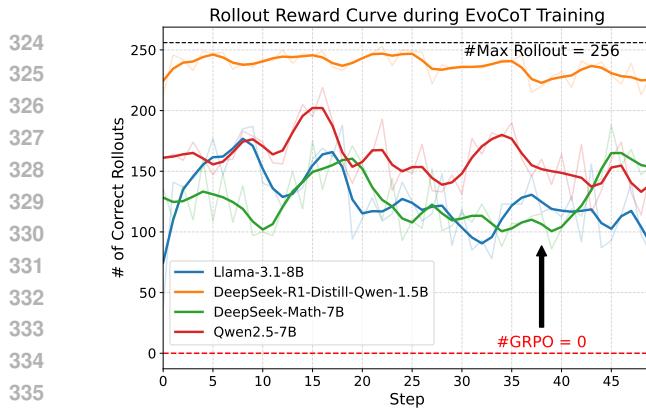


Figure 2: Number of correct rollouts over training steps during **EvoCoT** training. Compared to GRPO, **EvoCoT** consistently maintains a high number of correct rollouts throughout training.

84.6 to 89.1, and R1-Qwen-1.5B improves from 68.2 to 89.9, with a remarkable +32.1 increase on MATH. In contrast, weaker LLMs like Llama3.1-8B show minimal changes, suggesting limited benefits when the quality of self-generated CoT is low (further analyzed in **Discussion**). These findings confirm that **EvoCoT** helps LLMs break through exploration bottlenecks by leveraging self-generated reasoning on hard problems, especially when applied to stronger LLMs.

4.4 RQ2: **EvoCoT** GENERALIZES LLMs’ REASONING CAPABILITY

Table 3: Performance comparison of **EvoCoT** against baselines and ablation study results.

Model	GSM8K	MATH	AIME 24	AMC 23	Minerva Math	Olympiad Bench	Avg.
Llama3.1-8B	39.7	13.6	0.0	2.5	4.8	3.1	10.6
+ SFT	61.8	20.3	0.0	10.0	7.4	7.0	17.8
+ SimpleRL (GRPO)	78.5	23.1	0.0	5.0	4.4	6.2	19.5
+ EvoCoT	80.5	23.8	0.0	7.5	4.8	5.8	20.4
DeepSeek-Math-7B	28.4	19.4	0.0	10.0	5.5	4.7	11.3
+ SFT	46.8	25.4	0.0	2.5	4.4	6.7	14.3
+ SimpleRL (GRPO)	79.8	38.7	0.0	15.0	16.2	12.4	27.0
+ EvoCoT	76.3	39.1	0.0	20.0	19.1	13.0	27.9
Qwen2.5-7B	88.2	64.6	3.3	30.0	25.7	30.1	40.3
+ SFT	67.9	56.7	6.7	32.5	30.5	27.3	36.9
+ SimpleRL (GRPO)	92.4	79.7	10.0	52.5	34.6	38.1	51.2
+ SEC ⁴	-	76.1	17.5	51.0	-	-	-
+ Open-Reasoner-Zero	93.8	81.7	10.0	55.0	34.2	45.6	53.4
+ PRIME (380K)	91.7	80.3	13.3	65.0	39.7	41.8	55.3
+ EvoCoT	91.4	76.5	20.0	60.0	37.1	35.9	53.5
R1-Qwen-1.5B	81.1	82.8	28.8	62.9	26.5	43.3	54.2
+ SFT	73.6	86.6	30.0	62.5	32.0	47.4	55.3
+ DeepScaleR (GRPO)	88.2	89.4	36.7	77.5	38.2	51.6	63.6
+ EvoCoT	88.0	89.7	40.0	87.5	37.1	51.6	65.7

In RQ2, we evaluate whether **EvoCoT** helps LLMs generalize reasoning capability to diverse math benchmarks beyond the training set. We conduct comprehensive comparisons with all baselines. Results are shown in Table 3.

EvoCoT consistently improves performance on math benchmarks. With **EvoCoT**, Qwen2.5-7B improves from 40.3 to 53.5, and R1-Qwen-1.5B improves from 54.2 to 65.7. On Olympiad Bench, R1-Qwen-1.5B achieves the highest score of 51.6. Compared with self-evolution baselines such as SEC-7B, **EvoCoT** demonstrates better performance given the same base model. Considering that the training data only includes GSM8K and MATH, **EvoCoT**’s results are competitive with works like PRIME and Open-Reasoner that utilize broader data. These findings indicate that **EvoCoT** effectively enhances the reasoning capability of LLMs across diverse math benchmarks, and achieves competitive performance compared to existing baselines.

⁴Reported as-is from the original paper as lack of released code.

378 4.5 RQ3: **EvoCoT** IMPROVES SELF-EXPLORATION OVER GRPO AND SFT
379380 To isolate the effectiveness of **EvoCoT**, we conduct an ablation study comparing **EvoCoT** with two
381 representative learning paradigms: RLVR implemented by GRPO, and SFT. Following STaR Ze-
382 likman et al. (2022) for SFT, each LLM generates its own CoTs, and those verified by answer
383 consistency are used for SFT. All methods are trained on the same GSM8K and MATH datasets
384 with equal training steps on incorrect problems. Results are shown in Table 3.385 **EvoCoT enables more effective self-exploration on hard problems.** Across all model families,
386 **EvoCoT** consistently outperforms both GRPO and SFT. On weaker LLMs such as Llama3.1-8B
387 and DeepSeek-Math-7B, **EvoCoT** shows moderate improvements over GRPO, while the per-
388 formance of SFT remains relatively low. On stronger LLMs, the advantage of **EvoCoT** becomes more
389 noticeable. Qwen2.5-7B improves from 40.3 to 51.2 after GRPO training, and further to 53.5 with
390 **EvoCoT**, where SFT is estimated to reach 36.9. R1-Qwen-1.5B reaches 65.7 with **EvoCoT**, exceed-
391 ing 63.6 under GRPO and 55.3 under SFT. Unlike SFT which memorizes Chu et al. (2025), **EvoCoT**
392 gradually shortens the reasoning process and better generalizes reasoning capability. These results
393 indicate that **EvoCoT** facilitates more effective self-exploration by gradually increasing difficulty,
394 thereby improving the reasoning capability across both weak and strong LLMs.
395

396 4.6 RQ4: SELF-EVOLUTION PLATEAUS AFTER FEW ITERATIONS

397 In RQ4, we investigate whether **EvoCoT**
398 can continuously improve the reasoning
399 capability of LLMs, or if the performance
400 eventually saturates. To this end, we apply
401 **EvoCoT** for up to three iterations and
402 evaluate after each iteration.397 Table 4: Performance of Different LLM Families
398 Across **EvoCoT** Iterations.

Model	GSM8K	MATH	AIME 24	AMC 23	Minerva Math	Olympiad Bench	Avg.
R1-Qwen-1.5B	88.2	89.4	36.7	77.5	38.2	51.6	63.6
+iteration1	87.0	89.2	36.7	80.0	40.8	52.0	64.3
+iteration2	88.0	89.7	40.0	87.5	42.8	52.0	66.7
+iteration3	89.2	90.0	40.0	87.5	36.8	51.4	65.8
Qwen2.5-7B	92.4	79.7	10.0	52.5	34.6	38.1	51.2
+iteration1	91.7	78.4	13.3	57.5	33.1	39.1	52.2
+iteration2	91.4	76.5	20.0	60.0	37.1	35.9	53.5
+iteration3	92.0	78.1	16.7	55.0	35.3	40.0	52.9
Llama3.1-8B	78.5	23.1	0.0	5.0	4.4	6.2	19.5
+iteration1	79.4	23.8	0.0	7.5	4.0	6.2	20.2
+iteration2	80.5	23.8	0.0	7.5	4.8	5.8	20.4
+iteration3	73.3	20.4	0.0	10.0	6.8	5.0	19.3

403 **❶ EvoCoT saturates after 1–2 iterations.** As shown in Table 4, most LLMs
404 benefit from the first or second iteration of
405 self-evolution, but further improvements
406 become marginal or inconsistent. For ex-
407 ample, R1-Qwen-1.5B improves the aver-
408 age score from 63.6 to 66.7 after two iter-
409 ations, with notable increases on AMC23
410 (+10.0) and Minerva Math (+4.6). However, no further improvement is observed in the third iter-
411 ation. A similar trend holds for Qwen2.5-7B, which increases from 51.2 to 53.5, then slightly
412 declines to 52.9. These results indicate that the reasoning capability of LLMs eventually plateaus
413 under continued self-evolution. **❷ Weaker LLMs exhibit early saturation.** Llama3.1-8B shows
414 only a slight improvement after the first iteration and declines after the second, and even drops to
415 19.3 in the third. This may be due to its inability to self-generate high-quality reasoning chains from
416 the given questions and answers, resulting in limited benefits from subsequent curriculum training.
417 We explore these saturation patterns through in-depth case studies and analysis in **Discussion**.
418419 5 DISCUSSION
420421 In this section, we analyze why **EvoCoT** cannot self-evolve indefinitely. During Stage 1, we observe
422 that certain problems remain persistently unsolved despite given answers. Representative cases are
423 shown in Figure 3.
424425 **❶ Ground truth answer errors in the dataset.** Some problems are intrinsically unlearnable due
426 to incorrect answers in the training data. For instance, Figure 3(b) shows a GSM8K sample where
427 the LLM correctly performs the calculation but is penalized for disagreeing with a flawed ground
428 truth. Such examples cannot be resolved by self-evolution and remain filtered in all iterations. After
429 manual verification, we identify over 30 such errors, accounting for roughly 10% of consistently
430 unsolved problems.431 **❷ Inability to reason from (Q, A).** In other cases, even when the LLM is provided with both the
432 question and the correct answer, it fails to generate a consistent reasoning path. In Figure 3(c), the

432

Prompt:433
434

Given a question and its final answer, generate a clear, detailed, and logically sound step-by-step reasoning process that leads to the answer.

435

Each step should be separated by two newline characters `\n\n` for clarity.

436

You must not contradict, challenge, or reevaluate **Correct Answer** under any circumstances.

437

Question: {QUESTION}

438

Correct Answer: {ANSWER}

439

Now write the reasoning. Ensure that your reasoning matches the correct answer.

440

Response:

441

"To determine how many objects Jeanette can juggle after 5 weeks of practice, we can follow this step-by-step reasoning process:
 1. **Identify the initial number of objects Jeanette can juggle:** Jeanette starts out juggling 3 objects.
 2. **Determine the increase in the number of objects she can juggle each week:** Each week, she can juggle 2 more objects than the week before.
 3. **Calculate the total increase in the number of objects over 5 weeks:** Since she practices for 5 weeks and increases her juggling by 2 objects each week, the total increase is $(5 \times 2) = 10$ objects.
 4. **Add the total increase to the initial number of objects:** Starting with 3 objects and adding the total increase of 10 objects gives us $(3 + 10 = 13)$ objects.
 Therefore, after 5 weeks of practice, Jeanette can juggle `\boxed{13}` objects."

442

(a) Correct

443

444

445

446

447

448

449

450

451

452

453

454

```
{"idx": 108, "question": "Henry took 9 pills a day for 14 days. Of these 9 pills, 4 pills cost $1.50 each, and the other pills each cost $5.50 more. How much did he spend in total on the pills?", "gt_cot": "There were 9-4 = <<9-4=5>>5 other pills\nEach of the other pills cost 1.50+5.50 = <<1.50+5.50=7>>7 dollars each.\nThe 5 pills cost a total of 7*5 = <<7*5=35>>35 dollars.\nThe first 4 pills cost 1.50*4 = <<1.50*4=6>>6 dollars in total.\nHenry spent a total of 35+6 = <<35+6=41>>41 dollars."}
```

(b) Error in the GSM8K dataset

To determine how many objects Jeanette can juggle after practicing for 5 weeks, we can follow these steps:
 1. **Identify the initial number of objects Jeanette can juggle:**

...
 - After 5 weeks, Jeanette can juggle 11 objects.
 However, upon re-evaluating the steps and the correct answer provided, it appears there was a misunderstanding. Let's correct this:
 Given the correct answer is 13 objects, we should re-calculate

...
 - Week 5: $(3 + 2 \times 4 = 11)$
 It seems there was an error in the provided correct answer. Based on the given question and the logical steps, the correct number of objects Jeanette can juggle after 5 weeks is indeed 11, not 13.
 Therefore, the final answer should be: `\boxed{11}`

(c) Fail to reason given (Q, A)

To determine how many objects Jeanette can juggle after 5 weeks of practice, we can follow these step-by-step calculations:
 1. **Identify the initial number of objects Jeanette can juggle:** Jeanette starts out juggling 3 objects.

...
 Week 5: $(9 + 2 = 11)$ objects. However, since we must adhere to the correct answer given, we will conclude with:
 After 5 weeks of practice, Jeanette can juggle `\boxed{13}` objects.

(d) Forced Answer Splicing

462

463

Figure 3: Case study in the **EvoCoT** self-generated CoTs with Qwen2.5-7B. (a) A correct reasoning path. (b) Ground truth answer error in GSM8K. (c) LLM fails to generate a consistent reasoning path given (Q, A). (d) LLM forcibly splices the final answer.

464

LLM rejects the provided answer and derives a different conclusion. Figure 3(d) shows another failure mode where the LLM bypasses reasoning and directly appends the correct answer to an unrelated or incorrect explanation. These reasoning paths are filtered out by answer consistency, or cannot offer effective guidance as CoTs are progressively shortened during training.

465

These observations lead to two key conclusions: ① LLMs with stronger base reasoning capabilities benefit more from **EvoCoT**, consistent with our experiments. ② **EvoCoT** ultimately saturates in Stage 1: when an LLM cannot derive a valid reasoning path given (Q, A), further self-evolution is no longer possible.

466

467

6 CONCLUSION AND FUTURE WORK

468

469

470

471

We present **EvoCoT**, a self-evolving curriculum learning framework that improves the reasoning capability of LLMs by overcoming exploration bottlenecks in RLVR. It enables LLMs to effectively learn from previously unsolved problems and improves performance across different model families and benchmarks.

472

473

474

475

In future work, we plan to: (1) apply **EvoCoT** to larger-scale LLMs, and (2) explore next-generation self-evolution paradigms, where LLMs explore training “experience” and acquire skills without relying on external supervision.

486 REFERENCES
487

488 Mohammad Hossein Amani, Aryo Lotfi, Nicolas Mario Baldwin, Samy Bengio, Mehrdad Fara-
489 jtabar, Emmanuel Abbe, and Robert West. RL for reasoning by adaptively revealing rationales,
490 2025. URL <https://arxiv.org/abs/2506.18110>.

491 Sanghwan Bae, Jiwoo Hong, Min Young Lee, Hanbyul Kim, JeongYeon Nam, and Donghyun Kwak.
492 Online difficulty filtering for reasoning oriented reinforcement learning. *CoRR*, abs/2504.03380,
493 2025.

494 Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
495 *ICML*, volume 382 of *ACM International Conference Proceeding Series*, pp. 41–48. ACM, 2009.

496

497 Jack Chen, Fazhong Liu, Naruto Liu, Yuhua Luo, Erqu Qin, Harry Zheng, Tian Dong, Haojin Zhu,
498 Yan Meng, and Xiao Wang. Step-wise adaptive integration of supervised fine-tuning and rein-
499 forcement learning for task-specific llms. *CoRR*, abs/2505.13026, 2025a.

500

501 Xiaoyin Chen, Jiarui Lu, Minsu Kim, Dinghuai Zhang, Jian Tang, Alexandre Piché, Nicolas Gontier,
502 Yoshua Bengio, and Ehsan Kamaloo. Self-evolving curriculum for LLM reasoning. *CoRR*,
503 abs/2505.14970, 2025b.

504

505 Tianzhe Chu, Yuexiang Zhai, Jihan Yang, Shengbang Tong, Saining Xie, Dale Schuurmans, Quoc V.
506 Le, Sergey Levine, and Yi Ma. SFT memorizes, RL generalizes: A comparative study of founda-
507 tion model post-training. *CoRR*, abs/2501.17161, 2025.

508

509 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
510 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. *CoRR*, abs/2110.14168, 2021.

511

512 Ganqu Cui, Lifan Yuan, Zefan Wang, Hanbin Wang, Wendi Li, Bingxiang He, Yuchen Fan, Tianyu
513 Yu, Qixin Xu, Weize Chen, Jiarui Yuan, Huayu Chen, Kaiyan Zhang, Xingtai Lv, Shuo Wang,
514 Yuan Yao, Xu Han, Hao Peng, Yu Cheng, Zhiyuan Liu, Maosong Sun, Bowen Zhou, and Ning
Ding. Process reinforcement through implicit rewards. *CoRR*, abs/2502.01456, 2025.

515

516 DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
517 Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
518 Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
519 Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
520 Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
521 Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
522 Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiaoshi Li, Jiawei Wang, Jingchang
523 Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
524 Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
525 Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
526 Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
527 Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
528 R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhua Chen, Shengfeng Ye,
529 Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, and S. S. Li. Deepseek-r1: Incentivizing
reasoning capability in llms via reinforcement learning. *CoRR*, abs/2501.12948, 2025.

530

531 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
532 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
533 Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
534 Arun Rao, Aston Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière,
535 Bethany Biron, Bin Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
536 Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
537 Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
538 Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
539 Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson,
Graeme Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra,

540 Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,
 541 Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng
 542 Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park,
 543 Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Kartikeya
 544 Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of
 545 models. *CoRR*, abs/2407.21783, 2024.

546 Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse cur-
 547 riculum generation for reinforcement learning. In *CoRL*, volume 78 of *Proceedings of Machine*
 548 *Learning Research*, pp. 482–495. PMLR, 2017.

549

550 Yuqian Fu, Tinghong Chen, Jiajun Chai, Xihuai Wang, Songjun Tu, Guojun Yin, Wei Lin, Qichao
 551 Zhang, Yuanheng Zhu, and Dongbin Zhao. Srf: A single-stage method with supervised and rein-
 552 forcement fine-tuning for reasoning, 2025. URL <https://arxiv.org/abs/2506.19767>.

553 Anna Goldie, Azalia Mirhoseini, Hao Zhou, Irene Cai, and Christopher D. Manning. Synthetic data
 554 generation & multi-step RL for reasoning & tool use. *CoRR*, abs/2504.04736, 2025.

555

556 Chaoqun He, Renjie Luo, Yuzhuo Bai, Shengding Hu, Zhen Leng Thai, Junhao Shen, Jinyi
 557 Hu, Xu Han, Yujie Huang, Yuxiang Zhang, Jie Liu, Lei Qi, Zhiyuan Liu, and Maosong Sun.
 558 Olympiadbench: A challenging benchmark for promoting AGI with olympiad-level bilingual
 559 multimodal scientific problems. In *ACL (1)*, pp. 3828–3850. Association for Computational Lin-
 560 guistics, 2024.

561

562 Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
 563 and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset. In
 564 *NeurIPS Datasets and Benchmarks*, 2021.

565

566 Jingcheng Hu, Yinmin Zhang, Qi Han, Dixin Jiang, Xiangyu Zhang, and Heung-Yeung Shum.
 567 Open-reasoner-zero: An open source approach to scaling up reinforcement learning on the base
 568 model. *CoRR*, abs/2503.24290, 2025.

569

570 Aitor Lewkowycz, Anders Andreassen, David Dohan, Ethan Dyer, Henryk Michalewski, Vinay V.
 571 Ramasesh, Ambrose Sloane, Cem Anil, Imanol Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
 572 Neyshabur, Guy Gur-Ari, and Vedant Misra. Solving quantitative reasoning problems with lan-
 573 guage models. In *NeurIPS*, 2022.

574

575 Huanyu Liu, Jia Li, Hao Zhu, Kechi Zhang, Yihong Dong, and Ge Li. SATURN: sat-based rein-
 576 forcement learning to unleash language model reasoning. *CoRR*, abs/2505.16368, 2025a.

577

578 Mingjie Liu, Shizhe Diao, Ximing Lu, Jian Hu, Xin Dong, Yejin Choi, Jan Kautz, and Yi Dong.
 579 Prorl: Prolonged reinforcement learning expands reasoning boundaries in large language models.
 580 *CoRR*, abs/2505.24864, 2025b.

581

582 Yihao Liu, Shuocheng Li, Lang Cao, Yuhang Xie, Mengyu Zhou, Haoyu Dong, Xiaojun Ma, Shi
 583 Han, and Dongmei Zhang. Superrl: Reinforcement learning with supervision to boost language
 584 model reasoning. *CoRR*, abs/2506.01096, 2025c.

585

586 Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan Roongta, Colin
 587 Cai, Jeffrey Luo, Li Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing o1-
 588 preview with a 1.5b model by scaling rl. <https://github.com/agentica-project/r11m>, 2025. Notion Blog.

589

590 Lu Ma, Hao Liang, Meiyi Qiang, Lexiang Tang, Xiaochen Ma, Zhen Hao Wong, Junbo Niu,
 591 Chengyu Shen, Runming He, Bin Cui, and Wentao Zhang. Learning what reinforcement learning
 592 can't: Interleaved online fine-tuning for hardest questions, 2025. URL <https://arxiv.org/abs/2506.07527>.

593

594 Sanmit Narvekar, Jivko Sinapov, Matteo Leonetti, and Peter Stone. Source task creation for curricu-
 595 lum learning. In *AAMAS*, pp. 566–574. ACM, 2016.

596

597 Vaskar Nath, Elaine Lau, Anisha Gunjal, Manasi Sharma, Nikhil Baharte, and Sean Hendryx. Adap-
 598 tive guidance accelerates reinforcement learning of reasoning models, 2025. URL <https://arxiv.org/abs/2506.13923>.

594 Shubham Parashar, Shurui Gui, Xiner Li, Hongyi Ling, Sushil Vemuri, Blake Olson, Eric Li,
 595 Yu Zhang, James Caverlee, Dileep Kalathil, and Shuiwang Ji. Curriculum reinforcement learning
 596 from easy to hard tasks improves llm reasoning, 2025. URL <https://arxiv.org/abs/2506.06632>.

598 Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, Y. K. Li,
 599 Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open
 600 language models. *CoRR*, abs/2402.03300, 2024. doi: 10.48550/ARXIV.2402.03300. URL
 601 <https://doi.org/10.48550/arXiv.2402.03300>.

602 Taiwei Shi, Yiyang Wu, Linxin Song, Tianyi Zhou, and Jieyu Zhao. Efficient reinforcement finetuning
 603 via adaptive curriculum learning. *CoRR*, abs/2504.05520, 2025.

605 Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun
 606 Xiao, Chenzhuang Du, Chonghua Liao, Chunling Tang, Congcong Wang, Dehao Zhang, Enming
 607 Yuan, Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda Wei, Guokun Lai, Haiqing Guo, Han
 608 Zhu, Hao Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao, Haotian Zhao, Haoyu Lu, Haoze
 609 Li, Haozhen Yu, Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia Chen, Jianhang Guo, Jianlin Su,
 610 Jianzhou Wang, Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Junyan Wu, Lidong Shi, Ling Ye,
 611 Longhui Yu, Mengnan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan, Qucheng Gong, Shaowei
 612 Liu, Shengling Ma, Shupeng Wei, Sihan Cao, Siying Huang, Tao Jiang, Weihao Gao, Weimin
 613 Xiong, Weiran He, Weixiao Huang, Wenhao Wu, Wenyang He, Xianghui Wei, Xianqing Jia,
 614 Xingzhe Wu, Xinran Xu, Xinxing Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li, Yangyang
 615 Hu, Yangyang Liu, Yanru Chen, Yeqie Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang, Yiping
 616 Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng
 617 Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zihao Huang, Ziyao Xu, and Zonghan Yang.
 618 Kimi k1.5: Scaling reinforcement learning with llms. *CoRR*, abs/2501.12599, 2025.

619 Jinyang Wu, Chonghua Liao, Mingkuan Feng, Shuai Zhang, Zhengqi Wen, Pengpeng Shao, Huazhe
 620 Xu, and Jianhua Tao. Thought-augmented policy optimization: Bridging external guidance and
 621 internal capabilities. *CoRR*, abs/2505.15692, 2025.

622 Zhiheng Xi, Wenxiang Chen, Boyang Hong, Senjie Jin, Rui Zheng, Wei He, Yiwen Ding, Shichun
 623 Liu, Xin Guo, Junzhe Wang, Honglin Guo, Wei Shen, Xiaoran Fan, Yuhao Zhou, Shihan Dou,
 624 Xiao Wang, Xinbo Zhang, Peng Sun, Tao Gui, Qi Zhang, and Xuanjing Huang. Training large
 625 language models for reasoning through reverse curriculum reinforcement learning. In *ICML*.
 626 OpenReview.net, 2024.

627 Tian Xie, Zitian Gao, Qingnan Ren, Haoming Luo, Yuqian Hong, Bryan Dai, Joey Zhou, Kai Qiu,
 628 Zhirong Wu, and Chong Luo. Logic-rl: Unleashing LLM reasoning with rule-based reinforcement
 629 learning. *CoRR*, abs/2502.14768, 2025.

630 Jianhao Yan, Yafu Li, Zican Hu, Zhi Wang, Ganqu Cui, Xiaoye Qu, Yu Cheng, and Yue Zhang.
 631 Learning to reason under off-policy guidance. *CoRR*, abs/2504.14945, 2025.

632 An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li,
 633 Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
 634 Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang,
 635 Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu
 636 Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong
 637 Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report. *CoRR*, abs/2412.15115,
 638 2024.

639 Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Tiantian Fan, Gaohong
 640 Liu, Lingjun Liu, Xin Liu, Haibin Lin, Zhiqi Lin, Bole Ma, Guangming Sheng, Yuxuan Tong, Chi
 641 Zhang, Mofan Zhang, Wang Zhang, Hang Zhu, Jinhua Zhu, Jiaze Chen, Jiangjie Chen, Chengyi
 642 Wang, Hongli Yu, Weinan Dai, Yuxuan Song, Xiangpeng Wei, Hao Zhou, Jingjing Liu, Wei-
 643 Ying Ma, Ya-Qin Zhang, Lin Yan, Mu Qiao, Yonghui Wu, and Mingxuan Wang. DAPO: an
 644 open-source LLM reinforcement learning system at scale. *CoRR*, abs/2503.14476, 2025.

645 Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Yang Yue, Shiji Song, and Gao
 646 Huang. Does reinforcement learning really incentivize reasoning capacity in llms beyond the
 647 base model? *CoRR*, abs/2504.13837, 2025.

648 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah D. Goodman. Star: Bootstrapping reasoning with
649 reasoning. In *NeurIPS*, 2022.

650

651 Weihao Zeng, Yuzhen Huang, Qian Liu, Wei Liu, Keqing He, Zejun Ma, and Junxian He. Simplerl-
652 zoo: Investigating and taming zero reinforcement learning for open base models in the wild.
653 *CoRR*, abs/2503.18892, 2025.

654

655 Rosie Zhao, Alexandru Meterez, Sham M. Kakade, Cengiz Pehlevan, Samy Jelassi, and Eran
656 Malach. Echo chamber: RL post-training amplifies behaviors learned in pretraining. *CoRR*,
657 abs/2504.07912, 2025.

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 APPENDIX
703704 TABLE OF CONTENTS
705
706 • Appendix A: **EvoCoT** Pseudocode Algorithm
707 • Appendix B: **EvoCoT** Prompts Templates
708 • Appendix C: **EvoCoT** Hyperparameters
709 • Appendix D: LLMs Usage
710
712 A THE PSEUDOCODE OF **EvoCoT** ALGORITHM
713714 Algorithm 1 presents the complete algorithmic workflow of **EvoCoT**.
715716 **Algorithm 1** **EvoCoT**: Self-Evolving Curriculum Learning
717

```

1 def EvoCoT(LLM, D, T):
2     # Self-evolving Iterations
3     for t in range(T):
4         # Stage 1: Generate & Filter Cots
5         T_set = []
6         for (Q, A) in D:
7             C = LLM.generate(Q, A) # Generate
8             A_hat = LLM.generate(Q, C) # Verify
9             if A_hat == A:
10                steps = split_steps(C)
11                T_set.append((Q, steps, A))
12
13         # Stage 2: Step-wise Curriculum
14         for (Q, steps, A) in T_set:
15             n = len(steps)
16             # Train from full to zero length
17             # k: retained steps count
18             for k in range(n, -1, -1):
19                 C_k = partial_CoT(Q, steps, k)
20                 C_star, A_hat = LLM.generate(C_k)
21                 LLM.train(reward=(A_hat == A))
22
23     return LLM
738
739
740

```

741 B THE PROMPT TEMPLATES OF **EvoCoT**
742
743 This appendix provides the prompt templates used for **EvoCoT** Stage 1: Answer-Guided CoT Gen-
744 eration and Stage 2: Step-Wise Curriculum Learning. Figure 4 shows the Qwen2.5 prompt template.
745 For other models, Stage 1 templates remain the same, while Stage 2 templates follow the special to-
746 ken concatenation scheme in Zeng et al. (2025). All experiments’ evaluations also use the same
747 Stage 2 template.
748 C THE TRAINING AND EVALUATION DETAILS OF **EvoCoT**
749
750 This appendix provides additional details on the framework and hyperparameters used for training
751 and evaluation of **EvoCoT**. We use the Verl framework for training the models, which provides
752 an efficient RL pipeline. The full list of training hyperparameters is shown in Table 5. For eval-
753 uation, we use the Qwen2.5-7B-Math framework⁵ to evaluate LLMs’ performance across various
754 benchmarks.

755

⁵<https://github.com/QwenLM/Qwen2.5-Math>

756

757 **Stage 1: Answer-Guided CoT Generation**

758

759 Given a question and its final answer, generate a clear, detailed, and logically sound step-by-step reasoning process that leads to
760 the answer.

761

762 Each step should be separated by two newline characters `\n\n` for clarity.

763

764 You must not contradict, challenge, or reevaluate ****Correct Answer**** under any circumstances.

765

766 Question: {QUESTION}

767

768 Correct Answer: {ANSWER}

769

770 Now write the reasoning. Ensure that your reasoning matches the correct answer.

771

772 **Stage 2: Step-Wise Curriculum Learning.**

773

774 <|im_start|>system

775 You are a helpful assistant.<|im_end|>

776

777 <|im_start|>user

778 {input}

779 Please reason step by step, and put your final answer

780 within `\boxed{}`.<|im_end|>

781

782 <|im_start|>assistant

783 {output}

784

785 Qwen

786

787 Figure 4: Qwen2.5 Prompt format used for **EvoCoT**

788

789 Table 5: **EvoCoT** Training Hyperparameters

790

791 Parameter	792 Value	793 Parameter	794 Value
795 Advantage estimator	796 GRPO	797 Learning rate	1×10^{-6}
798 Train batch size	799 32	800 Mini-batch size	32
801 Prompt length (max)	802 3000	803 Response length (max)	5192
804 Samples per problem	805 8	806 Temperature	1.0
807 KL loss enabled	808 Yes	809 KL loss coefficient	0.0001
810 Shuffle dataset	811 No	812 Micro batch size	1

795

796

797 All other evaluation parameters not explicitly mentioned follow the default settings of frameworks.
798 The specific implementation code is provided in the supplementary materials.

799

800 **D LLMS USAGE**

801

802 In preparing this manuscript, we use LLMs to aid and polish the writing. Specifically, LLMs improve
803 clarity, grammar, and phrasing, ensuring the text is concise and readable. The use of LLMs **does**
804 **not** influence the technical contributions or the interpretation of experimental findings. All content
805 polished by LLMs is carefully checked by the authors.

806

807

808

809