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Abstract

Graph neural networks (GNNs) have been widely
used in various domains such as social networks,
molecular biology, or recommendation systems.
Concurrently, different explanations methods of
GNNs have arisen to complement its black-box
nature. Explanations of the GNNs’ predictions
can be categorized into two types—factual and
counterfactual. Given a GNN trained on binary
classification into “accept” and “reject” classes, a
global counterfactual explanation consists in gen-
erating a small set of “accept” graphs relevant to
all of the input “reject” graphs. The transforma-
tion of a “reject” graph into an “accept” graph is
called a recourse. A common recourse explana-
tion is a small set of recourse, from which every
“reject” graph can be turned into an “accept” graph.
Although local counterfactual explanations have
been studied extensively, the problem of finding
common recourse for global counterfactual expla-
nation remains unexplored, particularly for GNNs.
In this paper, we formalize the common recourse
explanation problem, and design an effective algo-
rithm, COMRECGC, to solve it. We benchmark
our algorithm against strong baselines on four dif-
ferent real-world graphs datasets and demonstrate
the superior performance of COMRECGC against
the competitors. We also compare the common
recourse explanations to the graph counterfactual
explanation, showing that common recourse ex-
planations are either comparable or superior, mak-
ing them worth considering for applications such
as drug discovery or computational biology.
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1. Introduction
Graph Neural Networks (GNNs) have been widely used for
graph classification across various domains such as elec-
trical design (Mirhoseini et al., 2020), physical simulation
(Bhattoo et al., 2022), or drug discovery (Jiang et al., 2020;
Cao et al., 2016; Hamilton et al., 2017). Despite their popu-
larity and their good performance, the predictions of GNNs
are not yet fully understood, and explaining GNN’s behav-
ior has become a central focus of recent research efforts
(Armgaan et al., 2024; Kosan et al., 2024; Kakkad et al.,
2023; Yuan et al., 2023). Our work focuses on the concept
of Counterfactual Explanation (CE) in the context of bi-
nary classification (e.g., ‘reject’ vs. ‘accept’ classes). This
involves designing the minimal changes required in each
‘reject’, or undesirable graph, to be able to change to an
‘accept’ graph, or counterfactual graph, that is often similar
in structure. A global CE, in particular, aims to identify a
small set of ‘accept’ graphs relevant to all ‘reject’ graphs,
thereby providing insights into the critical decision regions
recognized by the base GNN model. This global explanation
approach highlights the model-level behavior as opposed to
an instance level or local one (Verma et al., 2024).

Another important aspect of CE explanation is the implicit
provision of recourse—graph transformations that convert
a ‘reject’ graph into an ‘accept’ graph (Verma et al., 2022;
Karimi et al.). This is particularly valuable in applications
where it is possible to take action to reverse a decision,
such as in loan applications or in modifying a compound to
change physical or chemical properties of molecules (e.g.,
mutagenicity (Riesen & Bunke, 2008)).

The instance-specific or local counterfactual explanations
are insightful and capable of providing recourse for each
instance (Abrate & Bonchi, 2021; Bajaj et al., 2021; Lucic
et al., 2022; Tanyel et al., 2023; Chhablani et al., 2024).
However, the explanations generated are generally large in
number and not straightforward to interpret at the model
level. Global counterfactual explainers have been proposed
to address these issues (Huang et al., 2023; Ley et al., 2023).
We present additional related work in Appendix A. In (Huang
et al., 2023), the authors build global counterfactuals for
GNNs. However, a major limitation of their approach is
its generalizability when considering recourse. A single
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counterfactual can lead to significantly different recourse
depending on the specific graph it explains, making it un-
suitable as a local explanation (Verma et al., 2024). In
(Ley et al., 2023), translation directions are learned by a
counterfactual explanation algorithm and used with variable
magnitudes to generate a global explanation. While this
approach improves generalization, it decouples the process
of identifying translation directions from fitting to a specific
data distribution, which may limit robustness in some set-
tings. Moreover, this method has not yet been applied to
graph data.

To answer these shortcomings, our work considers the prob-
lem of finding common recourse (FCR) graph explanation,
which seeks to generate a small set of recourse that is ca-
pable of converting every ’reject’ graph into an ’accept’.
This essentially means that one or more graphs use the same
recourse to achieve a counterfactual. To the best of our
knowledge, this problem has not been studied before from a
graph machine learning perspective. FCR offers both high-
level interpretability and instance level insights. Moreover,
in some cases, more input graphs can be explained with
fewer common recourse compared to global counterfactuals.
Our main contributions are the following:

• Novel problem setting. We formalize the FCR prob-
lem. We prove that the FCR problem is NP-hard. We
provide a generalized version of the FCR problem,
called FC (Finding Counterfactual), and derive an ap-
proximation algorithm to a constrained version of FC.

• COMRECGC. We design the COMRECGC algorithm
to extract high quality common recourse as an explana-
tion, which provides a solution to both problems.

• Experiments. We experiment on real-world datasets
and benchmark our algorithm against popular coun-
terfactual explainers on the Common recourse task.
COMRECGC outperforms the next best solution on
the FCR problem by more than 20%, 30%, 20%, and
10% in total coverage on the NCI1, MUTAGENICITY,
AIDS, and PROTEINS datasets respectively. We show
that COMRECGC common recourse explanation offers
a comparable and sometimes higher coverage than the
best baseline global counterfactual explanation.

2. Background and Problem Formulation
Counterfactual Explanation. A graph is defined as G =
(V,E), where V is the set of vertices and E the set of edges.
Consider a binary graph classification model—such as a
GNN—where the prediction function is be denoted by Φ.
A graph is predicted in the ‘reject’ class if Φ(G) = 0 and
in the ‘accept’ class if Φ(G) = 1. For any reject graph
G, we call a graph H counterfactual if Φ(H) = 1 and

d(G,H) ≤ θ, where θ is a given normalized distance value
such that 0 < θ < 1 and d is a distance function. In
other words, we say H covers G. In the rest of the paper,
we consider our input to be solely constituted of reject or
‘undesirable’ graphs, denoted by G, and we denote by C(G)
the set of counterfactual graphs that cover G.

Common Recourse. Given a reject graph G covered by
H , we call recourse a transformation (a function, r) which
converts G into H . Note that the cost of the recourse is
the distance between G and H . Upon defining a common
recourse, an obvious question is how to define it on dif-
ferent graphs. For instance, if the recourse is ‘adding’ a
vertex connected to some specific vertices that do not exist
in different graphs, it will lead to some sort of ambiguity.
However, a GNN always gives a latent representation (em-
bedding). Thus, we use graph embedding z from the space
of graphs into Rl for some constant l to define common
recourse. Note that these embeddings can also be used to
measure the distance between two graphs, such as the graph
edit distance (Ranjan et al., 2023).

Suppose H covers G, and let r be the recourse that turns G
into H (i.e., r(G) = H), then we define the embedding of
r in the space of vectors of Rl to be r⃗, the vector from z(G)

to z(H), i.e.,
−−−−−−→
z(G)z(H). Given two recourse r1, r2, we say

that they form a common recourse if there exists v⃗, a vector
in Rl, such that ||v⃗ − r⃗1||2 ≤ ∆ and ||v⃗ − r⃗2||2 ≤ ∆, for
a fixed 0 < ∆ < 1. The idea is that there exists a center
recourse which is close to both recourse and can be used as
a summary.

Please refer to the Appendix for the proofs of the Claims
and Theorems of this section.

2.1. The Problem of Common Recourse

Our goal is to have a small representative set of common
recourse, F, and the cost of these should be small. Before
formalizing our problem, we define the following:

• COVERAGE(F) :=
∣∣{G ∈ G|∃H ∈ C(G),∃r ∈ F

such that ||r⃗ −
−−−−−−→
z(G)z(H)||2 ≤ ∆}

∣∣/|G|; the fraction
of the input graphs for which at least one counterfactual
is obtained through one of the recourse in F. Note that
the center recourse are being chosen from F.

• cost(F) := AGGG∈G{min{ ||r⃗||2, r ∈ F and ∃H ∈
C(G) such that ||r⃗ −

−−−−−−→
z(G)z(H)||2 ≤ ∆}}; the total

distance from the covered input graphs to their closest
attained counterfactual through F. The AGG function
used in the experiments is the summation.

• size(F) := |F|.

Problem 1 (Finding Common Recourse (FCR)). Given
input graphs G and a budget R, the goal is to find a set of
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recourse of size R that maximizes the coverage:

maxF coverage(F) such that size(F) ≤ R.

Recourse are derived from the nearby counterfactual graphs.
For a set of counterfactuals H, we define its associated
recourse set as FH := {

−−−−−−→
z(G)z(H)| G ∈ G, H ∈ H∩C(G)}.

Subsequently, another way to formalize the problem would
be to look at the common recourse that can be extracted
from a set of counterfactuals.
Problem 2 (Finding Counterfactual (FC)). Given input
graph G and two budgets R and T , the goal is to find a
set of counterfactuals H such that its associated common
recourse set has size R:

maxH coverage(F∗
H) s.t. size(F∗

H) ≤ R, size(H) ≤ T,

where F∗
H denotes the common recourse set that achieves

the maximum coverage from selecting R recourse of FH.

Note that the FCR problem is a specific case of the FC
problem by setting T to |G|, the number of input graphs to
cover. The FC problem corresponds to a max multi-budget
multi-cover problem, where we have separate budgets for
counterfactuals and for recourse. To count an input graph
as covered, it must be covered by both of these budgets. We
give an example for the FC problem in Appendix B.

Although the cost is not a constraint nor an objective in both
the FCR and FC problems, it remains, alongside coverage, a
valuable metric for assessing the relevance of counterfactual
explanations (Rawal & Lakkaraju, 2020), and by extension,
the recourse explanation derived from them.

2.2. Analysis: The FCR problem

The FCR problem (Problem 1) consists in finding the best
common recourse set of size R in terms of coverage from a
list of common recourse.
Theorem 1. The FCR problem is NP-hard. (Appendix C.1)

Let us define f as the function that associates to a set of
common recourse its coverage. We claim that f is monotone
and submodular (Appendix C.2), hence the common greedy
algorithm yields a (1− 1/e) approximation to selecting the
R best recourse, which is the best poly-time approximation
unless P=NP (Feige, 1998).

2.3. Analysis of the FC problem

The FC problem (see Problem 2) is an extension of the
FCR problem where we are no longer given the full com-
mon recourse set, and we are required to pick at most T
counterfactuals to form R recourse for best coverage. In Ap-
pendix C.3, we present a budget version of the FC problem.

Let g be the function that associates to a set of counterfactu-
als its best coverage through building common recourse. It

is not hard to see that g is monotone and does not possess
any local submodularity ratio (Santiago & Yoshida, 2020).
Theorem 2. g is not pseudo-modular. (Appendix C.4)

2.3.1. APPROXIMATION FOR THE FC PROBLEM

Since the function g is monotone but not-pseudo modular
(Theorem 2), finding an approximation algorithm with some
guarantees is non trivial. To make the problem tractable for
approximation, we add the following constraint:
Constraint 1: (C1) To be considered as a valid solution, a
set of T counterfactuals, G1. . . . GT must verify:

∀p < T, g(
⋃

i≤p+1

Gi)− g(
⋃
i≤p

Gi) > 0. (1)

Intuitively, this means that there exists a “series” (in the
sense of the union of sets) of counterfactuals that increases
the objective function at each step. Such a constraint does
not seem too abstract, as most approximation algorithms
look to add one element at a time. We obtain the following:

Theorem 3. There is a 1− e−1/R approximation algorithm
in expectation for the FC problem with C1. (Appendix C.5)

Discussions. The above theoretical results have important
implications: (1) FCR problem: The (1−1/e) approxima-
tion guarantee of the greedy algorithm consists in selecting
the best common recourse at each step once the counter-
factuals have been found. It is featured in our method for
solving the FCR problem. (2) FC problem: The 1−e−1/R

approximation for the FC problem might be less useful in
practice, as typically we want to allow numerous (R ≈ 100)
recourse to explain a dataset. Although the corresponding
randomized greedy algorithm provides a guarantee, instead
of using this algorithm, we will assess the importance of
each counterfactual with its number of visits through a “com-
mon recourse random walk”.

3. Our Method: COMRECGC
To find good counterfactual for common recourse, COM-
RECGC operates in different stages.

• A graph embedding algorithm: First, COMRECGC
maps each graph from the set of input graphs into Rl,
an embedding space. From the representation of an
input graph and one of its counterfactual, we derive the
recourse embedding.

• COMRECGC finds counterfactuals for common re-
course through a multi-head vertex reinforced ran-
dom walk in the graph edit space. This is a variation
of a vertex reinforced random walk (Pemantle, 2004).
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• A clustering algorithm for common recourse: we
form clusters over the embeddings of the generated
recourse. Each cluster of a certain radius (∆) corre-
sponds to a common recourse. Finally, we aggregate
the common recourse greedily to obtain the maximum
coverage.

3.1. Graph embedding algorithm

One of the essential notions for defining the counterfac-
tual is the distance function, as mentioned earlier. Our
method, COMRECGC, begins with the efficient computa-
tion of distance (or similarity) between two graphs. To
assess distance between graphs, we use the graph edit dis-
tance (GED) (Sanfeliu & Fu, 1983) that accounts for the
minimal number of transformations—such as edge/vertex
deletion/addition and label change—to make the graphs iso-
morphic. For a graph G, we denote N (G) as the neighbor
set of graphs that are only one edit distance away from
G. We use the normalized GED distance ĜED(G1, G2) =
GED(G1, G2)/(|V1| + |V2| + |E1| + |E2|) for our frame-
work, which has the advantage to compare two graphs of
different sizes.

Since the GED is NP-hard to compute, we use a graph
embedding algorithm, GREED from (Ranjan et al., 2023),
as a proxy, which aims to learn a GED metric through a
projection of the graph dataset in Rl. Note that it is possible
to employ any other embedding algorithm that can estimate
the GED between two graphs, to be able to validate the
closeness of counterfactuals, and to define common recourse
on the space of graphs through vectors in Rl. We denote as
z(G) the embedding of a graph G in the rest of the paper.

3.2. Multi-head vertex reinforced random walk

To identify counterfactuals, we explore the graph edit map
through a random walk. The random walk occurs in
the space of graphs, where each state is a distinct (non-
isomorphic) graph. Two states are connected if and only
if their corresponding graphs can be transformed into one
another by a single edit.

COMRECGC uses a variation of a vertex reinforced random
walk (VRRW). VRRW (Pemantle, 2004) performs random
walks on a finite state space where the transition probability
depends on the number of visits. This family of random
walks has the advantage of experimentally converging, as
well as providing an interpretation of the diversity and ex-
ploration performances (Mei et al., 2010). We now describe
how COMRECGC uses random walks:

Initially, the random walk begins with k-heads each placed
on different input graphs randomly, (Gi)i≤k ⊂ G. At each
step, we either continue the walk or, with a small probability,
all heads teleport back to starting graphs. It is crucial for

our walk to keep track of the graph from which each head
started or was teleported to. We represent the state of the
k-heads random walk as (ui)i≤k.

In each step, we randomly select one of the heads as the
lead, denoted by the index ℓ, then proceed as follows:

• First, we move the lead head. The goal for the walker
is to go towards a potential counterfactual graph with
the following transition rule, for v ∈ N (uℓ):

p(uℓ, v) ∝ pϕ(v)C(v) (2)

Where C(v) is one plus the number of visits to graph
v, and pϕ(v) is the probability, assigned by the GNN,
of v being a counterfactual.

• Each non-lead head moves to the next state based
on the recourse available among its neighbors that is
closest to the lead’s recourse. More formally, if the
lead head is in state uℓ after the previous step, then the
next state for the i-th head is:

argminv∈N (ui)∪{ui}||
−−−−−−−→
z(Gℓ)z(uℓ)−

−−−−−−→
z(Gi)z(v) ||2

Teleportation. The graph edit space is exponentially large.
Thus, to explore the search space around small neighbor-
hoods of the input graphs, we restrict the random walk
by adding a probability of returning to input graphs of
0 < τ < 1 at each step. We call this operation telepor-
tation, and each head state is reset to one of the input graphs
optimizing for coverage as follows: define t(G) to be the
number of walks started from the input graph G. Then the
probability of a head to teleport to G ∈ G is:

pτ (G) =
exp(−t(G))

ΣG′∈G exp(−t(G′))
(3)

The pseudo code of the random walk procedure and some
elements of analysis are presented in the Appendix (D.1 and
D.2).

Counterfactual Candidates. After M steps, the random
walk is terminated. For the next phase, we select the coun-
terfactuals that have been visited at least a certain number
of times, referring to these as the counterfactual candidates
that represent the outcomes of the walk.

3.3. Aggregation with clustering

Once counterfactuals have been found, COMRECGC forms
clusters among the resulting recourse to find common re-
course. For this task, we use a spatial clustering algorithm,
DBSCAN (Ester et al., 1996) to find high density areas to
aggregate recourse with close embedding representation.
We associate a common recourse to each cluster of radius
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∆. Finally, we pick R common recourse to be our expla-
nation using a greedy approach. Algorithm 1 summarizes
this method on a set G of input graphs, with a set of coun-
terfactuals S, where gain(r;F) is the gain in coverage from
adding the recourse r to F.

Algorithm 1 CR CLUSTERING(G, S, R)

1: C←∆-clusterize {
−−−−−−→
z(G)z(v) : v ∈ S, G ∈ G}

2: F← ∅
3: for i ∈ 1 : R do
4: r ← argmaxr∈C gain(r;F)
5: F← F+ {r}
6: end for
7: return F

3.4. COMRECGC: algorithm and complexity

Finally, in Algorithm 2 we present COMRECGC’s solution
to the FCR problem, which consists of a Multi-head VRRW,
a selection of counterfactual candidates for recourse, and a
clustering process for identifying common recourse. Line 2
is the filtering based on the number of visits, where n is a
threshold set as a hyperparameter for the dataset.

Algorithm 2 COMRECGC(ϕ, G, k, M , τ , R, n)
1: S← MULTI-HEAD VRRW(ϕ, G, k, M , τ )
2: S← top n frequently visited counterfactuals in S
3: return CR CLUSTERING(G, S, R)

Complexity Analysis. The complexity of the random walk
is O(Mhk), where M is the number of steps in the VRRW,
k is the number of heads in the VRRW, and h is the maxi-
mum node degree in the graph-edit space map. The com-
plexity of using DBSCAN clustering on n|G| recourse is
O(n2|G|2), where n is the number of top-visited counter-
factuals, and |G| is the number of input graphs. In practice,
we have a small constant due to being in Rl for l = 64.
Finally, the complexity of the greedy summary of n|G| re-
course over |G| features R times is O(nR|G|2), where R
is the size of the recourse set. The overall complexity is
O(Mhk + n2|G|2).

3.5. Variation of COMRECGC for the FC problem

Our goal is to build a generic framework to solve both the
FCR and FC problems. We can also use COMRECGC to
generate solutions to the FC problem. In the counterfactual
candidates step, we need to significantly reduce the number
of counterfactuals used to generate common recourse in
order to match the constraints in FC. COMRECGC selects
the counterfactuals that are closest to the input graphs. In-
tuitively, this is because the common recourse threshold ∆
is geometrically tight, so we want recourse (cost) to be as
small as possible to increase the chance of getting common

ones in the clustering step. Algorithm 3 represents COM-
RECGC’s solution to the FC problem. Line 3 is specific
to the FC framework. In particular, we select T = |G|
counterfactuals. This allows our method to be compared to
the existing local explainers, where one counterfactual is
given per input graph (Ying et al.). The complexity of this
extra step is O(n|G|), hence COMRECGC’s solution to the
FC problem has a complexity of O(Mhk + n2|G|2).

Algorithm 3 COMRECGC for FC (ϕ, G, k, M , R)
1: S← MULTI-HEAD VRRW(ϕ, G, k, M )
2: S← top n frequently visited counterfactuals in S
3: S←

⋃
G∈G argminv∈S ||

−−−−−−→
z(G)z(v)||2

4: return CR CLUSTERING(G, S, R)

4. Experiments
We evaluate COMRECGC on four real-world datasets
against the recourse from benchmark explainers, and show:

• COMRECGC produces global common recourse that
are of higher quality than those of the baselines on both
the FCR and FC problems.

• The explanations produced by COMRECGC are signif-
icantly less costly in terms of recourse than the ones
generated by the baseline counterfactual explainers.

• The common recourse from COMRECGC can explain
a similar, and in some cases higher, number of input
graphs compared to the counterfactual graphs gener-
ated by a global counterfactual explainer.

Reproducibility. We make our code available at https:
//github.com/ssggreg/COMRECGC.

4.1. Datasets

We consider the datasets MUTAGENICITY (Riesen & Bunke,
2008; Kazius et al., 2005), NCI1 (Wale & Karypis, 2006),
AIDS (Riesen & Bunke, 2008), and PROTEINS (Borgwardt
et al., 2005; Dobson & Doig, 2003). In the first three, each
graph accounts for a molecule, where nodes represent atoms
and edges chemical bonds between them. The molecules
are classified by whether they are mutagenic, anticancer, or
active against HIV, respectively. The PROTEINS dataset is
composed of different proteins classified into enzymes and
non-enzymes, with nodes representing secondary structure
elements and edges representing structural proximity. For
each dataset, we remove graphs containing rare nodes (with
a label count less than 50). The statistics of the datasets are
detailed in Table 1.
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Table 1. Datasets overview.
NCI1 MUTAGENICITY AIDS PROTEINS

#Graphs 3978 4308 1837 1113
#Nodes 118714 130719 28905 43471
#Edges 128663 132707 29985 81044

#Node Labels 10 10 9 3

4.2. Experimental set up

We train a base GNN model (GCN) (Kipf & Welling, 2017)
for a binary classification task, consisting of three convo-
lutional layers, a max pooling layer, and a fully connected
layer, following best practices from the literature (Vu &
Thai, 2020). The model is trained with the Adam opti-
mizer (Kingma & Ba, 2014) and a learning rate of 0.001
for 1000 epochs. The training/validation/testing split is
80%/10%/10%, and the corresponding accuracy measures
are presented in Table 2.

Table 2. Accuracy of GCN on the graph binary classification task
on NCI1, MUTAGENICITY, AIDS and PROTEINS.

NCI1 MUTAGENICITY AIDS PROTEINS

Training 0.844 0.882 0.998 0.780
Validation 0.816 0.830 0.973 0.820

Testing 0.781 0.800 0.978 0.730

Choice of the parameters θ and ∆. The parameter θ ac-
counts for the distance to a graph G ∈ G within which a
graph with an accepted prediction can be used as a coun-
terfactual explanation for G. There is a trade-off: a small
θ provides instance-wise explanations, if they exist, and
a larger θ allows for more effective summaries, as coun-
terfactuals tend to cover a broader range of input graphs.
Following (Huang et al., 2023), we set θ = 0.1 in the exper-
iments on the NCI1, MUTAGENICITY and AIDS datasets.
However, we set θ = 0.15 for the PROTEINS dataset, as we
have found experimentally that counterfactuals tend to be
more distant from their input graphs.

On the other hand, the parameter ∆ accounts for the max-
imum difference between two recourse to be considered
common. A larger ∆ yields better summaries but the in-
sights become less precise. We set ∆ = 0.02, although
this may seem large compared to the value of θ, the em-
bedding space dimension used for the datasets is l = 64,
making the margin for common recourse sensibly smaller
than the one for finding counterfactuals, as expected. An
example illustrating a common recourse explanation with
those parameters is provided in Figure 1.

COMRECGC parameters. Across all of our experiments,
COMRECGC uses k = 5 heads, has probability of telepor-
tation τ = 0.05, performs the random walk for M = 50000
steps, and selects R = 100 common recourse.

4.3. Results for the FCR problem

Baselines. Since the FCR problem does not constrain the
number of counterfactuals used to generate common re-
course, explainers used for benchmarking this problem must
be able to generate a large number of counterfactuals. In
the literature, we find that only GCFEXPLAINER(Huang
et al., 2023) aims at generating global counterfactuals on a
large scale. This is also the only global method to generate
counterfactual. To generate common recourse with GCFEX-
PLAINER counterfactuals, we use the same recourse cluster-
ing algorithm (Algorithm 1) that is part of COMRECGC. For
COMRECGC, its number of heads variants, and GCFEX-
PLAINER, we limit the number of counterfactuals entering
the clustering stage to 100, 000 graphs.

Results. The results are presented in Table 3. We observe
that the common recourse explanation from COMRECGC
yields better coverage by a significant margin on all datasets,
thus providing a better solution for the FCR problem than
the baselines. The cost of the common recourse is also
lower on the NCI1, MUTAGENICITY datasets, comparable
on the AIDS dataset, and slightly above on the PROTEINS
dataset. This difference in coverage is explained by the
multi-head random walk used to generate counterfactuals
in COMRECGC, which tends to facilitate forming common
recourse afterwards. The lower cost is also explained by the
fact that finding common recourse with similarity threshold
∆ = 0.02 is difficult, and is easier on small recourse than
on larger ones.

Figure 1. Common Recourse on MUTAGENICITY: Removing an
NO2 complex. On the left two mutagenetic molecules from the
input, on the right two resulting non-mutagenetic molecules.
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Table 3. Results on the FCR problem. Higher coverage corresponds to generating common recourse shared by more input graphs. The
cost (lower is better) refers to the total length of the recourse. COMRECGC and its variants outperform the baseline in almost all settings.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

GCFEXPLAINER 21.4% 5.75 20.6% 6.91 14.2% 6.97 32.8% 10.65
COMRECGC 2-HEAD 40.5% 5.12 45.9% 5.74 32.8% 6.71 45.9% 11.44
COMRECGC 3-HEAD 44.5% 5.07 52.6% 5.61 33.6% 6.62 45.9% 11.51
COMRECGC 4-HEAD 44.6% 4.70 52.0% 5.81 34.8% 6.71 46.2% 11.47
COMRECGC 5-HEAD 42.9% 4.95 51.8% 5.63 34.7% 6.74 46.4% 11.59
COMRECGC 6-HEAD 44.9% 4.51 52.0% 5.68 35.2% 6.66 47.3% 11.59

Table 4. Results on the FC problem. Higher coverage and lower cost are desirable. COMRECGC performs better than the baselines on all
datasets and metrics except for the cost on the AIDS and PROTEINS datasets.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

DATASET COUNTERFACTUALS 8.52% 9.02 10.4% 8.34 0.41% 0.97 29.0% 12.95
LOCALRWEXPLAINER 19.0% 5.89 18.2% 7.19 12.9% 7.31 22.1% 11.33

GCFEXPLAINER 14.7% 7.12 11.9% 7.80 14.2% 7.07 29.8% 11.13
COMRECGC 33.4% 5.60 46.7% 6.56 24.3% 6.59 39.6% 12.04

4.4. Results for the FC problem

Baselines. The FC problem constraints the number of coun-
terfactuals used to form common recourse, which allows
us to compare our method to common local counterfactual
explainers. To evaluate the performance of our method
compared to baselines, we construct a common recourse
explanation for a counterfactual explainer as follows: a
counterfactual explainer takes the set of input graphs G and
returns a set S of counterfactuals of the same cardinality. We
form clusters on S using Algorithm 1 to generate a common
recourse explanation. The baseline counterfactual explain-
ers are GCFEXPLAINER and a local random walk explainer.
The second one performs a random walk around each input
graph to find close counterfactuals; we select the closest
counterfactual to each input graph to be part of the set of
counterfactual candidates used to generate recourse. We
have not used explainers such as CFF EXPLAINER (Bajaj
et al., 2021), RCEXPLAINER (Tan et al., 2022), as they
mainly focus on local explanation, and GCFEXPLAINER al-
ready outperforms these methods (Huang et al., 2023). They
also only generate subgraph counterfactual explanations,
whereas a random walk can also add elements to the graph
to find counterfactuals. Finally, we also add a baseline that
corresponds to Algorithm 1 processing the counterfactual
graphs given in the original dataset.

Results. Table 4 presents the outcome. We show more
detailed results for different numbers of recourse in Figure 2.
We observe that COMRECGC generates the best coverage
compared to all the baselines on the FC problem across all
datasets. The cost of the common recourse is also lower

than the recourse from other method, except on the Pro-
teins dataset, where they are comparable. The low cost of
the dataset counterfactuals common recourse for the AIDS
dataset is explained by the low number of common recourse
formed, as few θ-close counterfactuals are in the dataset.

This difference in coverage is even more striking in the FC
problem than in the FCR problem. When the number of
counterfactuals is reduced from 100, 000 to 2000, mostly
close counterfactuals are grouped together; this is why the
local RW explainer performances are better than the GCF-
EXPLAINER global counterfactual for forming common
recourse on the NCI1 and MUTAGENICITY datasets.

4.5. Common recourse explanations vs global
counterfactual explanations

Lastly, we compare common recourse explanations and
global counterfactual explanations in terms of coverage.
Since COMRECGC is the only method designed to ex-
plain through common recourse, we will compare the com-
mon recourse explanation generated by COMRECGC to
the global graph counterfactuals generated by GCFEX-
PLAINER(Huang et al., 2023), CFF EXPLAINER (Bajaj et al.,
2021), and RCEXPLAINER (Tan et al., 2022). We also add
the global graph counterfactual explanation generated by
the counterfactual given in the dataset.

For the definition of coverage for a set of counterfactual
graphs S, we refer to (Huang et al., 2023) and define it as
the ratio of the input graphs covered by at least one coun-
terfactual in S. More formally COVERAGE(S) :=

∣∣{G ∈
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Table 5. Common recourse explanation vs global counterfactual explanation for 10 explanations. COMRECGC’s common recourse
explanations outperform the baselines’ graph counterfactual explanations on most of the datasets.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Coverage Coverage Coverage

DATASET COUNTERFACTUALS 16.5% 29.0% 0.4% 8.5%
RCEXPLAINER 15.2% 32.0% 9.0% 8.7%

CFF 17.6% 30.4% 3.4% 3.8%
GCFEXPLAINER 27.9% 37.1% 14.7% 10.9%

COMRECGC 26.1% 39.4% 15.2% 18.0%

Figure 2. Common Recourse coverage and cost comparison between COMRECGC and baselines for the FC problem where ∆ =
0.02, T = |G| and R = 1 to 100 common recourse.

G|minS∈S||z(G)− z(S)||2 ≤ θ}
∣∣/|G|.

The results, shown in table 5 for 10 explanations, indi-
cate that the common recourse explanations from COM-
RECGC are comparable to the best graph counterfactual
method, GCFEXPLAINER, on the NCI1, MUTAGENICITY,
and AIDS datasets, while being significantly more com-
prehensive on the PROTEINS dataset. This difference may
be due to the sparsity of the Proteins dataset, which makes
it challenging to identify a central counterfactual graph to
explain the sparse neighborhood. Common recourse seems
to be a more suitable explanation for this dataset, at least
under the conditions of our experiments.

4.6. Experiments on different values of θ,∆

Setting. We experiment on different values of θ,∆. Those
parameters are only used in the clustering algorithm part
of COMRECGC. The results are presented in Table 6, for
COMRECGC with parameters M = 50, 000, k = 5, τ =
0.05.

Results. We do not run into issues with increasing the value
of ∆, the common recourse threshold. As expected, the
coverage goes up, and so does the cost as COMRECGC is

able to cover close to the whole of MUTAGENICITY and
NCI1 datasets, and follows the same trend for the AIDS
dataset. However, it is quite surprising that the coverage on
the PROTEINS dataset went down by 1%. An explanation
for this is a possible issue with the clustering algorithm
DBScan, which may be caused by a too big overlap on
some common recourse clusters.

Increasing the counterfactual threshold θ is proven to be
challenging, as raising it from 0.1 to 0.15 across datasets
dramatically increased the number of recourse entering the
clustering stage. For example, on the MUTAGENICITY and
NCI1 datasets, the number of recourse increased by a fac-
tor of 100, making DBScan intractable in its current form.
As expected, increasing θ results in greater coverage in the
common recourse explanations produced by COMRECGC,
but it also raises the cost, as longer recourse are allowed. In
particular, on the AIDS dataset, the increase in coverage
was minimal, suggesting a potential bottleneck in the effec-
tiveness of common recourse explanations for that dataset
with common recourse threshold set at ∆ = 0.02.

In Table 7 we experiment with a finer variation of ∆ and its
effect on the coverage variation. We observe that a higher ∆
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Table 6. Results on the FCR problem of COMRECGC for different values of θ and ∆. We find that increasing the common recourse and
counterfactual threshold tends to improve coverage, particularly for more dense datasets, such as MUTAGENICITY and NCI1. The effect
on more sparse datasets such as PROTEINS and AIDS is more contrasted, with moderate to no added coverage. The cost rises as we allow
more distant counterfactuals. For configurations where θ = 0.15 and ∆ = 0.02, the number of recourse entering the clustering stage is
large, making the DBScan clustering algorithm intractable, resulting in missing values (’x’).

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

θ = 0.1,∆ = 0.02 42.9% 4.95 51.8% 5.63 34.7% 6.74 42.8% 7.21
θ = 0.1,∆ = 0.04 86.5% 8.05 90.0% 8.11 47.0% 8.4 41.5% 6.36
θ = 0.15,∆ = 0.02 x x x x 34.8% 7.65 46.4% 11.59

Table 7. Results on the FCR problem of COMRECGC for different
values of θ and ∆ on the Mutagenicity dataset.

MUTAGENICITY
Coverage Cost

θ = 0.1,∆ = 0.02 51.8% 5.63
θ = 0.1,∆ = 0.025 67.15% 6.99
θ = 0.1,∆ = 0.03 75.35% 7.59
θ = 0.1,∆ = 0.035 83.88% 8.03
θ = 0.1,∆ = 0.04 90.0% 8.11

allows for a more comprehensive explanation, as we allow
similar recourse to be considered ”common” more easily.
The cost naturally rises as more explanations are covered.

4.7. Discussions

We make a few important observations, including a few
limitations of COMRECGC. Thee observations will be help-
ful in practice. First, since the FCR and FC problems are
novel, our method is the only one specifically designed
to generate common recourse. It is therefore unsurprising
that we outperform the existing counterfactual explainers.
Second, determining the appropriate parameters θ and ∆
for the FCR problem is challenging and application de-
pendent. Since these parameters serve as thresholds for a
normalized distance, larger graphs generally work well with
smaller values of θ and ∆, while smaller graphs require
larger values. Third, we believe that relaxing the values of θ
and ∆ could lead to richer and more diverse explanations.
However, as more common recourse would be generated
in that process, we need an appropriate filtering system to
select the most meaningful ones. Fourth, we explore the
graph edit map without considering the physical feasibility
of the changes, especially if the domain has specific con-
straints (e.g., chemical bonds in molecules). As a result, the
generated counterfactual graphs may not correspond to the
real-world entities depending on the domain.

We discuss the choice of the random walk parameters in
Appendix E.1.We present running times of our method in
Appendix E.2, an ablation study in E.3, and other examples

of common recourse in E.4. In Appendix E.5 we present
results on the different types of GNNs. In Appendix E.6 we
test our method on a network dataset and add a comparison
of our method to a local CE explainer in Appendix E.7.

5. Conclusion
In this work, we have formalized the problem of generating
global counterfactual explanations for GNNs with common
recourse. This novel problem setting includes the FCR
and FC problems. These problems are NP-hard and thus,
we have designed COMRECGC, a method specifically tai-
lored to extract high-quality common recourse explanations.
Through extensive experiments on real-world datasets, we
have benchmarked COMRECGC against popular counter-
factual explainers in the common recourse task. Our results
demonstrate that COMRECGC produces global common
recourse of significantly higher quality than the baselines
across both the FCR and FC problems. Finally, COM-
RECGC’s common recourse explanations can account for a
similar number of input graphs as those generated by global
counterfactual explainers, providing a robust and scalable
alternative to global graph counterfactual explanation.
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Appendix

A. Additional Related Work
We summarize recent approaches for counterfactual explanations. (Abrate et al.) propose counterfactual explanations by
sparsifying and densifying graphs, to find counterfactuals through pattern deletion or generation. ARES (Rawal & Lakkaraju,
2020) produces actionable two-level recourse summaries on non-graphical datasets through an optimization problem. Lastly,
in (Magister et al., 2021), the “Human-in-the-Loop” framework integrates human feedback to enhance the relevance and
interpretability of counterfactual explanations. Recent advancements include (He et al., 2024) generative flow network, (Qiu
et al., 2024) robust counterfactual witnesses,(Kang et al., 2024) focus on unsupervised node representation learning.

B. Example for the FC problem
Setup. We follow the setting described below.

• Given a set of input graphs: G = {G1, G2, G3}.

• And counterfactual graphs: H = {H1, H2, H3, H4}.

• Each counterfactual H is obtained by applying a recourse f , i.e., a graph transformation, to an input graph G according
to the following table:

Finding Counterfactuals to Maximize Common Recourse Coverage. Suppose the recourse transforms the input graph
as follows:

Input Graphs Recourse Counterfactual Graphs

G1 f1 H1

G1 f2 H2

G2 f3 H3

G3 f1 H4

G3 f3 H1

We will write f1(G1) = H1 to denote that the recourse f1 applied to the input graph G1 yields the counterfactual graph H1.
We say that an input graph G ∈ G is covered by recourse f if:

(i) both H and f have been chosen within the budget, and

(ii) f(G) = H .

Given budgets R = 2 (recourse) and T = 2 (counterfactuals), the goal of the FC problem is to select 2 counterfactuals in H
that yield the best coverage on G using at most 2 recourse.

Application. Suppose we choose counterfactual graphs H1 and H3, then the best two recourse to pick are: FH∗ = {f1, f3},
which allows us to cover the three input graphs as follows:

f1(G1) = H1, f1(G3) = H1, f3(G2) = H3.

An intuitive way to see this problem is as a “max 2-budget 2-cover problem”, where 2-cover means that to “cover” an
element, one has to cover it in the two budgets.

C. Additional Proofs and Analyses for Section 2
C.1. Proof of Theorem 1

Proof. We prove that the FCR problem is NP-Hard through a reduction from the maximum coverage problem. Consider the
problem of covering U using the sets (Si)i≤m, we build the following instance of the FCR problem:
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Let X be a graph binary classifier that accepts a graph if and only if the graph has two nodes of the same color. To each
uj ∈ U , we associate Gj , a star graph with an unlabelled central node and m peripheral vertices. If uj is in k elements of S,
we one-color k peripheral vertices with the colors {i : uj ∈ Si}. We define the common recourse ri, for i ≤ m, as follows:
ri colors the middle vertex of a star graph using color i, and we take the corresponding counterfactuals as the inputs to this
FCR problem.
Thus X(Gj) = 0 for all j and X(ri(Gj)) = 1 if and only if uj ∈ Si. Hence from an optimal solution to this FCR problem,
we derive an optimal solution for the maximum coverage problem (U, (Si)i). Therefore FCR is NP-hard.

C.2. Analysis for The FCR problem

Let us define f as the function that associates to a set of common recourse its total coverage. It is not hard to see that f is
monotone, i.e f(F ∪ {r}) ≥ f(F) for every set of recourse F, and recourse r. We recall the definition of submodularity
(Santiago & Yoshida, 2020), a function h is submodular if for any two sets A ⊆ B and for any element e:

h(A ∪ {e})− h(A) ≥ h(B ∪ {e})− h(B) (4)

In the rest of the paper, we denote by hA(B) the marginal gain of adding the set B to A, i.e h(A ∪ B)− h(A). We now
prove that f is submodular:

Proof. Let A ⊆ B be sets of recourse, and let r be a recourse. Suppose G is a counterfactual graph covered by r but no the
any recourse in B, since A ⊆ B, r is not covered by any elements of A. Therefore fA({r}) ≥ fB({r}).

C.3. Budget Version of the FC problem

When we assume that the counterfactuals and recourse are all known, the FC problem becomes a budget problem:
Problem 3 (max 2-budget 2-cover problem). Given two budgets k1 and k2, and two families of sets S1, S2, the goal is to
find S1 ⊂ S1, S2 ⊂ S2 verifying :

maxS1,S2
S1 ∩ S2 st. (S1) ≤ k1 and size(S2) ≤ k2,

where Si =
⋃

S∈Si
S.

To the best of our knowledge, this problem has not been studied. This is a variation of the maximum coverage problem. The
budgeted maximum coverage problem (Khuller et al., 1999) is another budget variation, where only one budget is considered,
there is no constraint about the intersection, but the sets costs and the rewards for covering elements can be different from 1.
The multi-budget maximum coverage problem is another variation between knapsack and maximum coverage (Cellinese
et al., 2021), but there is only one family of sets to pick from, and we do not require double coverage. Another variation of
the maximum coverage problem is called multi-coverage (Barman et al., 2019), where covering multiple times one element
raises the objective value.
Another variation is called multi-set multi-cover, which uses one budget, and each element must be covered a certain number
of times (Hall & Hochbaum, 1986; Hua et al., 2009; Gorgi et al., 2021).

C.4. Proof of Theorem 2

A function h is called pseudo-modular if there exists γ ∈ (0, 1] such that for any pair of disjoint sets A,B:∑
e∈B

hA(e) ≥ γhA(B) (5)

Note that this γ is the minimum over all the γA,B , for all sets A,B, where γA,B is a specific value of γ for given A,B in
equation 5. We now proceed to the proof of Theorem 2:

Proof. Recall g is the function that associates a set of counterfactuals with its best coverage through building common
recourse.
We give an instance of the FC problem, and two sets A,B such that equation 5 is only true for γA,B = 0, which means
that there is no local pseudo-submodularity bound. Consider the instance of the FC problem where R = 2, T ≥ 4 and
(Gi)1≤i≤4 some counterfactual graphs such that they each cover a different input graphs, G1 is part of R1 (recourse 1), G2

part of R2 (recourse 2), G3, G4 parts of R3 (recourse 3). We set A to {G1, G2} and B to {G3, G4}.
Then gA(G3) = gA(G4) = 0 and gA(B) = 1.
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C.5. Proof of Theorem 3

We first prove that g, the optimization function for the FC problem with the added constraint C1, is pseudo-modular.

Proof. For every set A, and for every graph e in the problem space we have that R ≥ gA(e) by problem definition, we also
have that gA(e) > 0 by C1. So for two disjoint sets A,B part of the solution :∑

e∈B

gA(e) ≥
1

R|B|
gA(B).

Hence, g is pseudo-modular.

The pseudo code of the Greedy algorithm for the FC problem with C1 is as follows, where g denotes the function that
associates to a set of counterfactual its best coverage through building common recourse and selecting the R best for
coverage, and T is the maximum number of counterfactuals to use for the explanations. This algorithm was first introduced

Algorithm 4 GREEDY FC(g, T )
1: Initialize the set of counterfactuals: S0 ← ∅
2: for i ∈ 1 : T do
3: Let Mi ⊆ E \ Si−1 be a subset of size T maximizing

∑
e∈Mi

gSi−1(e)
4: Let ei be an element uniformly chosen at random of Mi

5: Si ← Si−1 + ei
6: end for
7: return ST

in the work of (Buchbinder et al., 2014). Applying Theorem 1.10 of (Santiago & Yoshida, 2020) to the monotone and
pseudo-modular function g (Theorem 3), shows that Algorithm 4 yields a 1− e−1/R approximation in expectation to the
FC problem, where R is the maximum number of common recourse of the FC problem.

D. Detail of our method, COMRECGC for Section 3
D.1. The Pseudocode of MULTI-HEAD VRRW

The pseudo code for our multi-head VRRW is presented in Algorithm 5, where Gi denotes the input graph where the
random walk started or was last teleported for the i-th head, and Hi denotes the current graph head i is occupying: Lines
1-2 describe the initialization of the random walk, where S represents the set of counterfactuals we aim to find. Lines 5-12
outline the regular behavior of the random walk as it moves towards counterfactuals. Lines 13-15 cover the teleportation
process. Finally, lines 17-21 detail the update of the counterfactual set. In line 23, we advance one step in the random walk,
and in line 24, we update the visit count of the graphs reached by the k heads during this step, following the principles of
VRRW. This visit count influences the transition probabilities in Equation 2.

D.2. Analysis of the Random Walks

VRRW. A vertex reinforced random walk is a random process with reinforcement that focuses on the number of visits of
vertices (Pemantle, 2004) (Pemantle, 2007). To the best of our knowledge, theorical guarantees have only been derived
for the special case where the initial transition matrix is symmetric (Volkov, 2001) (Benaı̈m & Tarrès, 2011), which is not
relevant for our application, as we want to identify counterfactuals with the random walk, as described in Equation 2.

RW. Let us consider a classic, non-reinforced, random walk with the following transition rule:

p(uℓ, v) ∝ pϕ(v) (6)

Where pϕ(v) is the probability, assigned by the GNN, of vertex v being a counterfactual, and uniform teleportation:

pτ (G) =
1

|G|
(7)

We refer to (Lovász, 1993) for the theoretical results. The main purpose of the analysis for our application is to determine
the mixing time and mixing rate of our walk, to tune the parameter M , the number of steps. We add to the random walk the
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Algorithm 5 MULTI-HEAD VRRW(ϕ, G, k, M , τ )
1: (G1, . . . , Gk)← random input graph from G, S = ∅
2: (H1, . . . , Hk)← (G1, . . . , Gk)
3: for t ∈ 1 : M do
4: Let ϵ, ℓ ∼ Bernoulli(τ), U{1, . . . k}
5: if ϵ = 0 then
6: for v ∈ N (Hℓ) do
7: Compute P (Hℓ, v) based on equation 2.
8: end for
9: vℓ ← random neighbor of Hℓ based on p(Hℓ, v)

10: for i ∈ 1 : k, i ̸= ℓ do
11: vj ← argminv∈N (ui)||

−−−−−−−→
z(Gℓ)z(uℓ)−

−−−−−−→
z(Gi)z(v) ||2

12: end for
13: else
14: (G1, . . . , Gk)← random input graphs from G based on equation 3.
15: (v1, . . . , vk)← (G1, . . . , Gk).
16: end if
17: for i ∈ 1 : k do
18: C(vi)← C(v) + 1
19: if ϕ(vi) > 0.5 then
20: S← S+ {vi}
21: end if
22: end for
23: (H1, . . . , Hk)← (v1, . . . , vk).
24: N(H1) = N(H1) + 1, . . . , N(Hk) = N(Hk) + 1.
25: end for
26: return S

following constraint: the maximum distance of the head from its starting point is at most 3θ/2, to make the space of the
random walk finite. By Corollary 5.2 in (Lovász, 1993), the mixing rate of the walk is max(|λ2|, |λn|), where λi is the i-th
largest eigenvalue of the matrix D−1/2MrwD

1/2, where Mrw is the transition matrix associated to our random walk and D
is the diagonal matrix with value 1/degree(i).

Unfortunately, there are two main obstacles that make this approach untractable: (1) The search space, the number of nodes
of the graph on which we do the random walk, is of size O(|G|erθ), hence making it hard to extract the eigenvalues of the
matrix Mrw (2) Each node’s transition rule is determined by the GNN’s prediction, making the construction of the matrix
Mrw difficult.

E. Additional Details on Experiments & Results
E.1. Choice of the random walk parameters k,M, τ

The values of parameters k and τ have been chosen through experiments on the Mutagenicity datasets. We chose τ ,
the probability of teleportation, to be a compromise between the random walk being able to look far enough to find
counterfactuals, while still being able to explore a good number of paths. Although higher values of k seem to yield slightly
better coverage, as seen in Table 3, k increases the running time, the number of steps for the random walk to converge, and
the memory usage. Hence, we decide to limit k to 5 heads and to set M to a relatively low 50, 000 steps.

E.2. Running time

We show the running time of COMRECGC, its VRRW (Algorithm 5) and Clustering (Algorithm 1) components, for the
FCR problem in the datasets of our study in Table 8. The running time follows the complexity given in Section 3, with
shorter running times for small datasets such as AIDS compared to Mutagenicity. The sparsity and size of the graphs in the
datasets also play a role, allowing the walk to explore more graphs in dataset such as Proteins.
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Table 8. The running time in minutes of the different parts of COMRECGC for the experiments of Table 3.
NCI1 MUTAGENICITY AIDS PROTEINS

Algorithm 5 101 172 61 152
Algorithm 1 23 27 14 14

COMRECGC 124 199 75 166

E.3. Ablation Study

We give the performance of the variation of COMRECGC without some of its features on the FCR problem for the datasets
in our study. We find the clustering to be very important on large datasets such as MUTAGENICITY, but less so on the smaller
PROTEINS. This is possibly explained by the ability of the VRRW to spend a longer time pairing the same elements through
different recourse, hence somewhat harmonizing some recourse.

Table 9. Results on the FCR problem of different variations of COMRECGC, in the same parameters setting as Section 4.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

COMRECGC 42.9% 4.95 51.8% 5.63 34.7% 6.74 46.4% 11.59
COMRECGC w/o clustering 10.1% x 8.2% x 13.6% x 33.9% x
COMRECGC w/o multi-head 21.4% 5.75 20.6% 6.91 14.2% 6.97 32.8% 10.65

E.4. Additional examples of common recourse

We provide additional examples of common recourse identified through COMRECGC, in the settings θ = 0.1 and ∆ = 0.02.,
in Figures 3 and 4.

In Figure 3, we observe larger molecules, which allow for a ’larger recourse’ consisting of three transformations. This is
because transformations on larger molecules correspond to smaller variations in the embedding for the ”same transformation”,
which is capped by ∆.

In Figure 4, on smaller molecules, we observe two types of transformations in the recourse, likely due to the increased value
of the θ parameter compared to Figure 1. Indeed, a larger θ allows for more distant counterfactuals.

E.5. Experiments with GAT, SAGE, GIN types of GNN

We train GAT(Velickovic et al., 2018), GraphSAGE(Hamilton et al., 2017), GIN (Xu et al.) GNNs model for a binary
classification task, consisting of three convolutional layers, a max pooling layer, and a fully connected layer, following
best practices from the literature (Vu & Thai, 2020). The model is trained with the Adam optimizer (Kingma & Ba, 2014)
and a learning rate of 0.001 for 1000 epochs. The training/validation/testing split is 80%/10%/10%, and the corresponding
accuracy measures are presented in Tables 10, 11, and 12.

Table 10. Accuracy of GAT on the graph binary classification task on NCI1, MUTAGENICITY, AIDS and PROTEINS.
NCI1 MUTAGENICITY AIDS PROTEINS

Training 0.788 0.845 0.991 0.780
Validation 0.741 0.802 0.973 0.820

Testing 0.748 0.781 0.973 0.730

We experiment on COMRECGC and get the results for the FCR problem in Tables 13, 14 and 15. The parameters for
COMRECGC are the same as for the experiments in Section 4 and Table 3, in particular θ = 0.1 and ∆ = 0.02.
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Figure 3. Common Recourse on the MUTAGENICITY dataset: removing two Hydrogen and one Carbon, on the left two mutagenetic input
graphs, on the right two non-mutagenetic graphs.

Table 11. Accuracy of GraphSAGE on the graph binary classification task on NCI1, MUTAGENICITY, AIDS and PROTEINS.
NCI1 MUTAGENICITY AIDS PROTEINS

Training 0.854 0.896 0.992 0.825
Validation 0.783 0.856 0.978 0.847

Testing 0.809 0.795 0.940 0.748

E.6. Additional Dataset

.

We study the MDB-BINARY and MDB-MULTI datasets (Yanardag & Vishwanathan, 2015). The MDB-BINARY features
movies from two genres (Action and Romance), where each graph represents a co-occurrence network of actors in a movie.
A recourse represents a way to change the prediction from an action movie to a romance movie. The IMDB-MULTI
includes movies from three genres (Comedy, Romance, and Sci-Fi). Since our current method is only interested in binary
classification, we consider the following labels: Comedy and non-Comedy (i.e, Romance and Sci-fi). A recourse represents
a way to change the prediction from a comedy movie to a non-comedy movie.

The parameters for COMRECGC are the same as for the experiments in Section 4 and Table 3, in particular Θ = 0.1 and
∆ = 0.02. The results are presented in Table 16.

E.7. Comparison to local CE explainer

.

We compare our method and GCFE to the popular local counterfactual baseline CF-GNNExplainer (Lucic et al., 2022) in
Table E.7.

The coverage of building common recourse explanations using only CF-GNNExplainer-generated counterfactuals is
noticeably worse than the counterfactual mining methods, such as ours or GCFExplainer. This is likely explained by
a number of reasons, such as (i) generating fewer counterfactual graphs (around 2k5 graphs for CF-GNNexplainer on
Mutagenicity vs 50k+ for GCFExplainer and our method), (ii) only considering subgraphs of input graphs and (iii) not
taking into account the θ and ∆ parameters of the CR explanation.
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Figure 4. Common Recourse on the MUTAGENICITY dataset: removing one Nitrogen, one Hydrogen, adding one Oxygen and one Carbon,
on the left two mutagenetic input graphs, on the right two non-mutagenetic graphs.

Table 12. Accuracy of GIN on the graph binary classification task on NCI1, MUTAGENICITY, AIDS and PROTEINS.
NCI1 MUTAGENICITY AIDS PROTEINS

Training 0.863 0.849 0.999 0.810
Validation 0.826 0.800 0.951 0.847

Testing 0.789 0.784 0.946 0.748

Table 13. Results on the FCR problem for the task of explaining the GAT trained model. The parameters for recourse are the same as for
the experiments in Section 4 and Table 3, in particular θ = 0.1 and ∆ = 0.02.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

GCFEXPLAINER 24.4% 5.26 47.3% 5.82 27.6% 7.12 42.6% 10.54
COMRECGC (Ours) 35.6% 5.02 55.7% 6.05 30.7% 6.89 42.9% 10.27

Table 14. Results on the FCR problem for the task of explaining the GraphSAGE trained model. The parameters for recourse are the
same as for the experiments in Section 4 and Table 3, in particular θ = 0.1 and ∆ = 0.02

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

GCFEXPLAINER 32.8% 4.86 46.5% 5.46 20.3% 7.38 68.6% 11.53
COMRECGC (Ours) 47.9% 4.76 50.9% 5.90 21.5% 7.16 69.4% 11.51

Table 15. Results on the FCR problem for the task of explaining the GIN trained model. The parameters for recourse are the same as for
the experiments in Section 4 and Table 3, in particular θ = 0.1 and ∆ = 0.02

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

GCFEXPLAINER 31.2% 5.13 30.4% 6.05 14.7% 7.68 47.3% 12.21
COMRECGC (Ours) 45.6% 4.58 33.7% 6.41 16.6% 7.34 48.6% 11.32
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Table 16. Results on the FCR problem for the task of explaining the GIN trained model. The parameters for recourse are the same as for
the experiments in Section 4 and Table 3, in particular θ = 0.1 and ∆ = 0.02.

IMDB-BINARY (Yanardag & Vishwanathan, 2015) IMDB-MULTI(Yanardag & Vishwanathan, 2015)

Coverage Cost Coverage Cost

GCFEXPLAINER 76.5% 8.33 19.9% 7.65
COMRECGC 80.9% 8.10 21.9% 7.70

Table 17. Results on the FCR problem. Higher coverage corresponds to generating common recourse that is shared by more input graphs.
The cost (lower is better) refers to the total length of the recourse.

NCI1 MUTAGENICITY AIDS PROTEINS
Coverage Cost Coverage Cost Coverage Cost Coverage Cost

CF-GNNEXPLAINER 9.1% 7.5 8.4% 8.90 0.1% 0.35 0% 0
GCFEXPLAINER 21.4% 5.75 20.6% 6.91 14.2% 6.97 32.8% 10.65

COMRECGC (OURS) 42.9% 4.95 51.8% 5.63 34.7% 6.74 46.4% 11.59
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