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ABSTRACT

The wavelet scattering transform creates geometric invariants and deformation sta-
bility. In multiple signal domains, it has been shown to yield more discriminative
representations compared to other non-learned representations, and to outperform
learned representations in certain tasks, particularly on limited labeled data and
highly structured signals. The wavelet filters used in the scattering transform are
typically selected to create a tight frame via a parameterized mother wavelet. In
this work, we investigate if such a tight frame construction is optimal. Focusing
on Morlet wavelets, we propose to learn the scales, orientations, and aspect ratios
of the filters to produce problem-specific parameterizations of the scattering trans-
form. We show that our learned versions of the scattering transform yield signif-
icant performance gains in small-sample classification settings over the standard
scattering transform. Moreover, our empirical results suggest that tight-frames
may not always be necessary for scattering transforms to extract effective repre-
sentations.

1 INTRODUCTION

The scattering transform, proposed in Mallat (2012), is a cascade of wavelets and complex modulus
nonlinearities, which can be seen as a convolutional neural network (CNN) with fixed, predeter-
mined filters. This construction can be used to build representations with geometric invariants and is
shown to be stable to deformations. It has been demonstrated to yield impressive results on problems
involving highly structured signals (Bruna & Mallat, 2013; Oyallon et al., 2013; Andén & Mallat,
2014; Sifre & Mallat, 2014; Hirn et al., 2015; 2017; Eickenberg et al., 2018; Andén et al., 2019;
Sinz et al., 2020; Perlmutter et al., 2020), outperforming a number of other classic signal processing
techniques. Since scattering transforms are instantiations of CNNs, they have been studied as math-
ematical models for understanding the impressive success of CNNs in image classification (Bruna
& Mallat, 2013; Mallat, 2016). As discussed in Bruna & Mallat (2013), first-order scattering coeffi-
cients are similar to SIFT descriptors (Lowe, 2004), and higher-order scattering can provide insight
into the information added with depth (Mallat, 2016). Moreover, theoretical and empirical study
of information encoded in scattering networks indicates that they often promote linear separability,
which in turn leads to effective representations for downstream classification tasks (Bruna & Mallat,
2013; Oyallon et al., 2017; Andén et al., 2015; Eickenberg et al., 2018).

Scattering-based models have been shown to be useful in several applications involving scarcely
annotated or limited labeled data (Bruna & Mallat, 2013; Sifre & Mallat, 2013; Oyallon et al., 2018;
Eickenberg et al., 2018). Indeed, most breakthroughs in deep learning in general, and CNNs in
particular, involve significant effort in collecting massive amounts of well-annotated data to be used
when training deep overparameterized networks. While big data is becoming increasingly prevalent,
there are numerous applications where the task of annotating more than a small number of samples
is infeasible, giving rise to increasing interest in small-sample learning tasks and deep-learning
approaches towards them (Brigato et al., 2021; Barz & Denzler, 2020; Bendre et al., 2020; Bruintjes
et al., 2021). Recent work has shown that, in image classification, state-of-the-art results can be
achieved by hybrid networks that harness the scattering transform as their early layers followed
by learned layers based on a wide residual network architecture (Oyallon et al., 2018). Here, we
further advance this research avenue by proposing to use the scattering paradigm not only as fixed
preprocessing layers in a concatenated architecture, but also as a parametric prior to learn filters in
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Tight-Frame Random Initialization

Figure 1: Initialized wavelet filters pre and post-training. Real part of Morlet wavelet filters ini-
tialized with tight-frame (left) and random (right) schemes before (top) and after (bottom) training.
The filters were optimized on the entire CIFAR-10 training set with linear model. For the tight-frame
filters, we observe substantial changes in both scale and aspect ratio. On the other hand, all random
filters undergo major changes in orientation and scale.

a CNN. This allows us to also shed light on whether the tight-frame filterbank construction (Mallat,
1999) is an optimal approach for building filterbanks from a mother-wavelet for discriminative tasks.

Recall that the scattering construction is based on complex wavelets, generated from a mother
wavelet via dilations and rotations, aimed to cover the frequency plane while having the capacity to
encode informative variability in input signals (Bruna & Mallat, 2013). Further, discrete parameter-
ization and indexing of these operations (i.e., by dilation scaling or rotation angle) have traditionally
been carefully constructed to ensure the resulting filter bank forms an efficient tight frame Mallat
(1999; 2012) with well-established energy preservation properties. On the other hand, it has been
observed that the first layers of convolutional networks resemble wavelets but may not necessarily
form a tight frame (Krizhevsky et al., 2012). The question then arises: is it necessary to use a tight
frame when constructing wavelet filterbanks? Here, we relax the standard tight frame construction
by considering another alternative where a small number of wavelet parameters used to create the
wavelet filterbanks are optimized for the task at hand.

To our knowledge, this is the first work that aims to learn the wavelet filters of scattering net-
works in 2D signals. Related work and the empirical protocol are summarized in Sec. 3. and
Sec. 4 respectively. In Sec. 4.1, we explore the different filter construction schemes by compar-
ing the wavelet filter parameterizations they produce when optimized over different datasets. In
Sec. 4.2, we evaluate the robustness of our parametric scattering networks to deformation. In
Sec. 4.3, we demonstrate the advantages of our approach in limited labeled data settings and
study the adaptation of the wavelet parameters toward a supervised task. Finally, in Sec. 4.4, we
investigate the adaptation of the parametrized scattering using an unsupervised objective. Fur-
ther technical details appear in appendices, and code accompanying the work is available on
https://github.com/psn-iclr-submission/iclr_anon.

2 RELATED WORK

Learning useful representations from little training data (Bendre et al., 2020) is arduous and a reality
in a variety of domains such as in biomedicine and healthcare. Recent works have tried to tackle
this problem. Lezama et al. (2018) replace the categorical cross-entropy loss with a geometric
loss called Orthogonal Low-rank Embedding (OLÉ) to reduce the intra-class variance and enforce
inter-class margins. Barz & Denzler (2020) also propose to replace the categorical cross-entropy
loss, but this time with the cosine loss function in order to decrease overfitting in the small-sample
classification settings. The cosine loss function, as opposed to the softmax function used with
cross-entropy, does not push the logits of the true class to infinity as explained in Szegedy et al.
(2016). Other methods show promise by incorporating prior knowledge into the model. Oyallon
et al. (2018) introduce hybrid networks where the scattering transform with fixed wavelets was
shown to be an effective replacement for early layers of learned convolutional networks on a wide
residual network architecture. Cotter & Kingsbury (2019) also propose a hybrid network called a
learnable ScatterNet, where learning layers are intermixed between the scattering orders, unlike our
work where only a few parameters governing the wavelet construction are modified. Ulicny et al.
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Table 1: Canonical Parameters of Morlet wavelet

Param Role Param Role
σ Gaussian window scale θ Global orientation
ξ Frequency scale γ Aspect Ratio

(2019) propose Harmonic Networks (HN), a hybrid network consisting of fixed Discrete Cosine
Transform filters combined with learnable weights in CNNs.

Related to our work, adding learnable components to existing wavelet-based representations
has been considered in a number of recent works in the context of time-series (Balestriero et al.,
2018; Seydoux et al., 2020; Cosentino & Aazhang, 2020; Balestriero et al., 2020). Balestriero
et al. (2018); Seydoux et al. (2020) learn a spline parametrized mother wavelet for 1D problems.
Similarly, Cosentino & Aazhang (2020) parametrized the group transform in the context of
time-series data. Our work, alternatively, focuses on 2D problems and maintains the canonical
Morlet wavelet parameterization, but allows deviation from a tight-frame filter bank.

3 PARAMETRIZATION OF SCATTERING NETWORKS

We first revisit the formulation of traditional scattering convolution networks in Sec. 3.1 and intro-
duce our parametric scattering transform in Sec. 3.2 and 3.3. Finally, Sec. 3.4 discusses scattering
parameter initialization.

3.1 SCATTERING NETWORKS

For simplicity, we focus here on 2D scattering networks up to their 2nd order. Subsequent orders
can be computed by following the same iterative scheme, but have been shown to yield negligible
energy (Bruna & Mallat, 2013). Given a signal x(u), where u is the spatial position index, we
compute the scattering coefficients S0x, S1x, S2x, of order 0, 1, and 2 respectively. For an integer
J , corresponding to the spatial scale of the scattering transform, and assuming anN×N signal input
with one channel, the resulting feature maps are of size N

2J
× N

2J
, with channel sizes varying with

the scattering coefficient order (i.e., 1 channel at order 0, JL channels at order 1 and L2J(J − 1)/2
channels at order 2).

To calculate 0th-order coefficients, we consider a low pass filter φJ with a spatial window of scale
2J , such as a Gaussian smoothing function. We then convolve this filter with the signal and down-
sample by a factor of 2J to obtain S0x(u) = x ∗ φJ(2Ju). Due to the low-pass filtering, high-
frequency information is discarded here and is recovered in higher-order coefficients via wavelets
introduced as in a filter bank.

Morlet wavelets are a typical example of filters used in conjunction with the scattering transform,
and are defined as

ψσ,θ,ξ,γ(u) = e−‖DγRθ(u)‖
2/(2σ2)(eiξu

′
− β), (1)

where β is a normalization constant to ensure wavelets integrate to 0 over the spatial domain, u′ =

u1 cos θ + u2 sin θ, Rθ is the rotation matrix of angle θ and Dγ =

(
1 0
0 γ

)
. The four parameters

can be adjusted and are presented in Table 1. From one wavelet ψσ′,θ′,ξ′,γ′(u), a tight frame is
obtained by dilating it by factors 2j , 0 ≤ j < J , and rotating by L angles θ equally spaced over the
circle, to get {2-2jψσ′,θ′,ξ′,γ′(2-jRθ(u))}, which is then completed with the lowpass φJ . This can
be written in terms of the parameters in Table 1 as ψ2jσ′,θ′−θ,2-jξ′,γ′(u) = ψ(2-jRθ(u)). By slight
abuse of notations, we use ψλ here, λ = (σj , θ, ξj , γj), to denote such wavelets indexed by θ and j.
The resulting set of filters is visualized in the frequency domain in Figure 2.

First-order scattering coefficients are calculated by first convolving the input signal with one of
the generated complex wavelets (i.e., indexed by the parameters in Table 1) and downsampling the
resulting filtered signal by the scale factor 2j1 of the wavelet chosen. Then, a pointwise complex
modulus is used to add nonlinearity, and the resulting real signal is smoothed via a low-pass filter.
Finally, another downsampling step is applied, this time by a factor of 2J−j1 , to obtain an optimally
compressed output size. Mathematically, we have

S1x(λ1, u) = |x ∗ ψλ1 | ∗ φJ(2Ju).
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The resulting feature map has J · L channels, based on the number of wavelets in the generated
family.

Second-order coefficients are generated similarly, with the addition of another cascade of wavelet
transform and modulus operator before the low-pass smoothing, i.e.,

S2x(λ1, λ2, u) = ||x ∗ ψλ1 | ∗ ψλ2 | ∗ φJ(2Ju).

Due to the interaction between the bandwidths and frequency supports of first and second order, only
coefficients with j1 < j2 have significant energy. Hence, the second-order output yields a feature
map with 1

2J(J − 1)L2 channels.

3.2 MORLET CANONICAL WAVELET PARAMETERIZATION

While the wavelet filters are traditionally fixed to approximate a tight frame, we let the network
learn the optimal parameters of each wavelet. In other words, we constrain our filters to always be
Morlet wavelets by only optimizing the parameters in Table 1. We call this approach the Morlet
canonical parameterization of the wavelet. We adapted the Kymatio software package (Andreux
et al., 2020) to create the learnable scattering network. To provide such data-driven optimization
of scattering parameters, we show, in Appendix A, that it is possible to backpropagate through
this construction. We can now learn the parameters jointly with other parameters in an end-to-end
differentiable architecture.

3.3 MORLET EQUIVARIANT PARAMETERIZATION

In the Morlet canonical parameterization approach, the canonical parameters of each filter are
learned. As an alternative method, we consider the Morlet equivariant parameterization in which
the number of learnable parameters is reduced by a factor L compared to the Morlet canonical pa-
rameterization. Each filter per scale is constructed using the same four parameters in Table 1: σ, ξ,
γ and Θ. However, the global orientation of the L filters for each scale are set to be [Θ, Θ + π

L ,
Θ + 2π

L , . . . , Θ + (L−1)π
L ]. By construction, the tight-frame filters are equivariant.

3.4 INITIALIZATION

To evaluate the importance of the tight-frame construction, we consider two initializations and study
their impact on resulting performance in both learned and nonlearned settings. First, a tight-frame
initialization follows common implementations of the scattering transform by setting σj,` = 0.8×2j ,
ξj,` = 3π

4 2-j , and γj,` = 4
L for j = 1, . . . , J , ` = 1, . . . , L, while for each j, we set θj,` to be

equally spaced on [0, π). Second, as an alternative, we consider a random initialization where these
parameters are sampled as σj,` ∼ log(U [exp 1, exp 5]), ξj,` ∼ U [0.5, 1], γj,` ∼ U [0.5, 1.5], and
θj,` ∼ U [0, 2π]. That is, orientations are selected uniformly at random on the circle, the filter width
σ is selected using an exponential distribution across available scales and the spatial frequency ξ is
chosen to be in the interval [0.5, 1], which lies in the center of the feasible range between aliasing
(> π) and the fundamental frequency of the signal size (2π/N where N is the number of pixels).
Finally, we select the aspect ratio variable to vary around the spherical setting of 1.0, with a bias
towards stronger orientation selectivity (0.5) compared to lesser orientation selectivity (1.5).

4 EXPERIMENTS

Our empirical evaluations are based on three image datasets: CIFAR-10, COVIDx CRX-2, and
KTH-TIPS2. CIFAR-10 and KTH-TIPS2 are natural image and texture recognition datasets, corre-
spondingly. They are often used as general-purpose benchmarks in similar image analysis settings
(Azuri & Weinshall, 2021; Sifre & Mallat, 2013). COVIDx CRX-2 is a dataset of X-ray scans for
COVID-19 diagnosis; its use here demonstrates the viability of our parametric scattering approach
in practice, e.g., in medical imaging applications.

We evaluate the use of the parametrized scattering with two common models. In the first case, we
consider the scattering as feeding into a simple linear model (denoted LL). The LL configurations
are used to evaluate the linear separability of the obtained scattering representations and have the
added benefit of providing a more interpretable model. In the second case, we take the approach
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Figure 2: Parametric scattering network learns dataset specific filters. The graph (top right)
shows the filterbank distance over epochs as the filters are trained on different datasets. We visualize
dataset specific parameterizations of scattering filterbanks (border colors from the legend) in Fourier
space. Scattering filters optimized for natural (CIFAR-10) and medical image (COVIDx CRX2)
become more orientation-selective, i.e., thinner in the Fourier domain. On the other hand, filters
optimized for texture discrimination (KTH-TIPS2) become less orientation-selective and deviate
most from a tight-frame setup.

of Oyallon et al. (2018) and consider the scattering as the first stage of a deeper CNN, specifically
a Wide Residual Network (WRN) (Zagoruyko & Komodakis, 2016). The architecture of the WRN
hybrid is described in more detail in Appendix C.

For both models (LL and WRN), we compare learned parametric scattering networks (LS) to fixed
ones (S). For learned scattering (LS), we consider two scattering parameterization approaches: Mor-
let canonical, described in Sec. 3.2 and Morlet equivariant, described in Sec. 3.3. To show the im-
portance of the parametric approach, we also ablate the naive parameterization where all pixels of
the wavelets are adapted, which we refer to as a pixel-wise parameterization. For each scattering ar-
chitecture, we consider both random and tight-frame (TF) initialization. The fixed scattering models
determined by the TF construction are equivalent to traditional scattering transforms. Finally, we
also compare our approach to a fully learned WRN (with no scattering priors) and ResNet-50 (He
et al., 2016) applied directly to input data.

Across all scattering configurations, a batch-normalization layer with learnable affine parameters is
added after all scattering layers. Classification is performed via a softmax layer yielding the final
output. All models are trained using cross-entropy loss, minimized by stochastic gradient descent
with momentum of 0.9. Weight decay is applied to the linear model and to the WRN. The learning
rate is scheduled according to the one cycle policy (Smith & Topin, 2019). The scheduler’s div factor
is always set to 25. Implementation details specific to each dataset are described in Appendix B. We
replicate some of the experiments with learnable scattering networks followed by WRN on CIFAR-
10, COVIDx-CRX2, and KTH-TIPS2 using the cosine loss function (Barz & Denzler, 2020). The
results are reported in Appendix G.

4.1 EXPLORING DATASET-SPECIFIC PARAMETERIZATIONS

We first compare dataset-specific Morlet wavelet parameterizations and evaluate their similarities to
a tight frame. Specifically, we train our parametric scattering networks using the canonical morlet
wavelet formulation with a linear classification layer and quantitatively and qualitatively compare
the similarities of the learned filter bank to the tight-frame initialization. To facilitate quantitative
comparison, we use a distance metric for comparing the sets of Morlet wavelet filters and Morlet
wavelet filterbanks (i.e., scattering network instantiations), allowing us to measure deviations from
the tight-frame initialization.

We evaluate distances between two individual Morlet wavelets as Υ(M1,M2) =∥∥(σ1, ξ1, γ1)T − (σ2, ξ2, γ2)T
∥∥
2

+ arcdist(θ1, θ2) where Mi = (σi, ξi, γi, θi)
T denotes the
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parameterization of the Morlet wavelet. We use the arc distance on the unit circle to compare values
of theta. Since the set of learned scattering filters does not have a canonical order, to compare a
learned scattering network to the tight frame scattering network, we use a matching algorithm to
match one set of filters to another. Specifically, we first compute Υ between all combinations of
filter pairs from both networks, then use a minimum cost bipartite matching algorithm (Kuhn, 1955)
to find the minimal distance match between the two sets of filters. The final distance we use as a
notion of similarity between two scattering networks is the sum of Υ for all matched pairs in the
bipartite graph. Henceforth, we will refer to this distance as the filterbank distance.

The graph in Figure 2 leverages the filterbank distance to show the evolution of scattering networks
initialized from a tight frame and trained on different datasets. Each network is trained on 1188
samples of its respective dataset (the standard size for KTH-TIPS2). All filters deviate quickly from
a tight frame, but KTH-TIPS2’s keep changing the longest and ultimately deviate the most. We also
observe that, filters initialized with the random initialization of Sec. 3 become more similar to our
tight-frame initialization during the course of training (see Figure 9 in Appendix D.4).

On the left-hand side of Figure 2, we visualize the dataset-specific scattering network parameteriza-
tions in Fourier space. White contours are drawn around each Morlet wavelet for clarity. The top
black border corresponds to tight-frame initialization at J=2, shown for comparison to CIFAR-10 in
blue (also J=2). The bottom black border corresponds to tight-frame initialization at J=4, shown for
comparison to COVIDX-CRX2 red and KTH-TIPS2 yellow (both J=4).

The filters optimized on the KTH-TIPS2 texture dataset (yellow) become less orientation-selective
(wider in Fourier space) than the tight-frame initialization, with filters at J=0 becoming the least
orientation-selective of the whole filter bank. We note that the filters at spatial scales J= 2 and 3
seem to change the most from a tight frame as illustrated in the appendix (Fig. 7). In contrast,
the filters optimized on COVIDx-CRX2 become more orientation-selective in general i.e., thinner
in Fourier space, while changing the most at spatial scale J=0 as shown in the appendix (Fig. 5).
The filters optimized on CIFAR-10 mirror those optimized on COVIDx-CRX2, also becoming more
orientation-selective than their tight-frame counterparts. We suspect that this is due to a reliance on
edges for object classification datasets, which seem to require more orientation-selective filters. On
the other hand, the morlet wavelets optimized for texture classification seem to discard some edge
information in favor of less orientation-specific filters. Each dataset-specific parameterization seems
to discard unneeded information from the tight-frame initialization in favor of accentuating problem-
specific attributes. In Sec. 4.3, we demonstrate these learned filters are not only interpretable but
improve task performance, suggesting the tight frame is not optimal for many problems of interest.
Nonetheless, a tight-frame does constitute a good starting point for learning. Indeed, the dataset-
specific parameterizations for COVIDX-CRX2 and KTH-TIPS2 are, visually, very different, yet
they move similar filterbank distances from the tight-frame initialization (see fig.2), which are small
relative to the distances observed for randomly initialized and trained models (see Appendix D.4).
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Figure 3: Normalized distances between scattering representations of an image and its defor-
mation. Our parametric scattering transform shares similar stability to deformations as the scattering
transform.
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4.2 ROBUSTNESS TO DEFORMATION

In Mallat (2012), it is shown that the scattering transform is stable to small deformations of the form
x(u − τ(u)) where x(u) is a signal and τ a diffeomorphism. Given the substantial changes to the
filter composition in the learning process, we ask now whether these seem to significantly deviate
from the stability result obtained from the carefully handcrafted construction proposed in Mallat
(2012), and extensively used in previous work (e.g., Bruna & Mallat, 2013; Eickenberg et al., 2018).
To evaluate the robustness of our parametric scattering network to different geometric distortions,
we apply several tractable deformations to a chest X-ray image x with varying deformation strength.
The transformed image is denoted by x̃. For each of the different deformation strengths, we plot the
Euclidean distance between the scattering feature constructed from the original image S(x) and the
scattering feature constructed from the transformed image S(x̃). We then normalize the obtained
distance by S(x) to measure the relative deviation in scattering coefficients (handcrafted or learned).
Figure 3 demonstrates representative results for a small rotation and translation on images from the
COVIDx datasets, while additional deformations are shown in Appendix H. We observe that the
substantial change in the filter construction retains the scattering robustness properties for these
simple deformations, thus indicating that the use of learned filters (instead of designed ones) does
not necessarily detract from the stability of the resulting transform.

4.3 SMALL DATA REGIME

We evaluate the parametric scattering network in limited labeled data settings. Following the eval-
uation protocol from Oyallon et al. (2018), we subsample each dataset at various sample sizes to
showcase the performance of scattering-based architectures in the small data regime. In our exper-
iments, we train on a small random subset of the training data but always test on the entire test set
as done in Oyallon et al. (2018). To obtain comparable and reproducible results, we control for
deterministic GPU behavior and assure that each model is initialized the same way for the same
seed. Furthermore, we use the same set of seeds for models evaluated on the same number of sam-
ples. For instance, the TF learnable hybrid with a linear model would be evaluated on the same ten
seeds as the fixed tight-frame hybrid with a linear model when trained on 100 samples of CIFAR-10.
Some fluctuation is inevitable when subsampling datasets. Hence all our figures include averages
and standard error calculated over different seeds.

CIFAR-10 consists of 60,000 images from ten classes. The train set contains 50,000 class-balanced
samples, while the test set contains the remaining images. Table 2 reports the evaluation of our
learnable scattering approach on CIFAR-10 with training sample sizes of 100, 500, 1K, and 50K.
The training set is augmented with horizontal flipping, random cropping, and pre-specified autoaug-
ment (Cubuk et al., 2018) for CIFAR-10. We used autoaugment (Cubuk et al., 2018) to showcase
the best possible small-sample results and ablate this component in Appendix F. We use a spatial
scale of J = 2 in the scattering transforms.

As shown in Table 2, the scattering networks with wavelets optimized pixel-wise perform the worst
in the small-data regime. It shows that with limited labeled samples, there is not enough data and
too many learnable parameters to learn effectively the pixels of the wavelets. Adding more con-
straints (i.e., constraining the wavelets to be Morlet) is beneficial in this setting. We also observe
that the Morlet canonical parameterization yields a similar performance to the Morlet equivariant
parameterization (i.e., most standard errors overlap). Thus, adding even more constraints, by reduc-
ing the number of learnable parameters in the parametric scattering transform, does not degrade the
performance in the small-data regime.

We observe that randomly initialized learnable with canonical parameterization only achieves simi-
lar performance to TF learnable canonical when trained on the whole dataset. These results suggest
the TF initialization, derived from rigorous signal processing principles, is empirically beneficial as
a starting point in the very few sample regime but can be improved upon by learning.

Among the linear models, our TF-initialized learnable scattering networks (i.e., Morlet canonical
and equivariant) significantly outperform all others in few sample settings. This demonstrates that
learnable scattering networks obtain a more linearly separable representation than their fixed coun-
terparts, perhaps by building greater dataset-specific intra-class invariance. Figure 1 shows the real
part of the canonical wavelet filters before and after optimization on the entire training set. In Ap-
pendix E, we visualize canonical equivariant wavelet filters.
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Table 2: CIFAR-10 mean accuracy and std. error over 10 seeds, with J = 2 and multiple training
sample sizes. Learnable scattering with TF initialization improves performance for all architectures,
while randomly initialized scattering requires more training data to reach similar performance.

Arch. Init. Parametrization 100 samples 500 samples 1000 samples All

LS+LL† TF Canonical 37.84± 0.57 52.68± 0.31 57.43± 0.17 69.57
LS+LL† TF Equivariant 39.69± 0.56 51.98± 0.25 57.01± 0.16 66.65
LS+LL TF Pixel-Wise 32.30± 0.69 47.14± 0.91 51.87± 0.34 64.53
S +LL TF - 36.01± 0.55 48.12± 0.25 53.25± 0.24 65.58
LS+LL† Rand Canonical 34.81± 0.60 49.6± 0.39 55.72± 0.39 69.39
LS+LL† Rand Equivariant 34.67± 0.73 46.59± 0.60 52.95± 0.36 65.64
LS+LL Rand Pixel-Wise 29.44± 0.41 42.14± 0.27 47.44± 0.43 62.72
S +LL Rand - 29.77± 0.47 41.85± 0.41 46.3± 0.37 57.72

LS+WRN† TF Canonical 43.60± 0.87 63.13± 0.29 70.14± 0.26 93.61
LS+WRN† TF Equivariant 39.86± 1.59 62.85± 0.32 69.52± 0.23 92.57
LS+WRN TF Pixel-Wise 39.20± 0.80 54.14± 0.68 57.59± 0.48 92.97
S +WRN TF - 43.16± 0.78 61.66± 0.32 68.16± 0.27 92.27
LS+WRN† Rand Canonical 41.42± 0.65 59.84± 0.40 67.40± 0.28 93.36
LS+WRN† Rand Equivariant 40.84± 1.02 60.81± 0.40 68.62± 0.31 92.53
LS+WRN Rand Pixel-Wise 31.49± 0.63 45.85± 0.43 50.72± 0.28 91.86
S +WRN Rand - 32.08± 0.46 46.84± 0.21 52.76± 0.33 85.35
WRN-16-8 - - 38.78± 0.72 62.97± 0.41 71.37± 0.31 96.84
ResNet-50 - - 33.17± 0.92 52.13± 0.74 64.42± 0.40 91.23

# params : 156k for S+LL; 155k for LS+LL; 22.6M for S+WRN; 22.6M for LS+WRN; 22.3M for WRN; and 22.5M for ResNet
†: ours; TF: Tight-Frame; LS: Learnable Scattering; S: Scattering; Rand: Random

Among the WRN hybrid models, the TF-initialized canonical learnable scattering performs best.
Canonical TF learnable still improves over TF fixed when paired with a WRN, indicating some loss
of information in the fixed scattering representation is mitigated by data-driven tuning or optimiza-
tion. Finally, our approach outperforms the fully trained ResNet-50 and outperforms the WRN-16-8
on 100 and 500 training samples, demonstrating the effectiveness of the scattering prior in the small
data regime. However, the WRN-16-8 outperforms our model on 1,000 samples and 50,000 samples.

COVIDx CRX-2 is a two-class (positive and negative) dataset of chest X-Ray images of COVID-
19 patients (Wang et al., 2020). The train set contains 15,951 unbalanced images, while the test set
contains 200 positive and 200 negative images. The spatial scale of the scattering transform is set
to J = 4. Table 3 reports our evaluation on sample sizes of 100, 500, and 1K images. We use the
same protocol as for CIFAR-10. Morlet canonical parameterization yields similar performance to
the Morlet equivariant parameterization (i.e., most standard errors overlap), as also observed with
CIFAR-10.

When the scattering networks are postpended with a linear layer, TF-initialized learnable (i.e., Mor-
let canonical and equivariant) performs better than TF fixed, showing the viability of our approach
on real-world data. We observe that randomly initialized learnable yields lower performance than
TF learnable on 100 and 500 samples. On 1K, it achieves similar performance, demonstrating that
random initialization can achieved comparable performance to TF with enough data. WRN-16-8
performs worse than TF-initialized learnable followed with a linear layer. When combined with a
CNN, TF-initialized learnable also performs better than TF fixed and outperforms WRN-16-8 and
ResNet-50.

KTH-TIPS2 contains 4,752 images from 11 material classes. The images captured the material
at scales. Each class is divided into four samples (108 images each) of different scales. Using the
standard protocol, we train the model on one sample (11 ∗ 108 images), while the rest are used for
testing (Song et al., 2017). In total, each training set contains 1,188 images. Table 3 reports the
classification accuracies.

With TF initialization and a linear layer, we observe that the performance is similar for the different
architectures. The performance of randomly initialized learnable is also similar to TF. The fixed and
randomly initialized model perform the worst, showing that even poorly initialized filters can effec-
tively be optimized. Altogether, these results further corroborate our previous findings, notably that
TF initialization acts as a good prior for scattering networks. Out of all the WRN hybrid models,
the TF-initialized learnable model using canonical parameterization achieves the highest average
accuracy. We note that while WRN increases the performance compared to the linear layer, it also
significantly increases the total number of parameters, therefore exhibiting a tradeoff between per-
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Table 3: COVIDx CRX-2 and KTH-TIPS2 mean accuracy & std. error with J = 4 over 10 seeds
and 16 seeds respectively. (COVIDx CRX-2) TF-initialized learnable scattering network performs
better than models that do not incorporate scattering priors. (KTH-TIPS2) Similarly, the WRN-16-8
and ResNet-50 perform extremely poorly relative to hybrid models trained on KTH-TIPS2.

Arch. Init. Parameterization C-100 samples C-500 samples C-1000 samples KTH-1188 samples
LS+LL† TF Canonical 82.30± 1.78 88.50± 0.71 89.90± 0.40 66.09± 1.05
LS+LL† TF Equivariant 83.06± 1.53 87.56± 0.94 89.15± 0.60 66.41± 1.24
S +LL TF - 81.08± 1.88 87.20± 0.77 89.23± 0.69 66.17± 1.10
LS+LL† Rand Canonical 76.85± 1.50 86.45± 0.95 89.70± 0.65 65.79± 0.85
LS+LL† Rand Equivariant 76.73± 1.57 85.64± 1.38 87.98± 0.55 65.31± 1.42
S +LL Rand - 76.08± 1.56 84.13± 0.91 86.80± 0.41 61.37± 0.82

LS+WRN† TF Canonical 81.20± 1.73 90.50± 0.70 93.68± 0.35 69.23± 0.67
LS+WRN† TF Equivariant 81.86± 2.07 91.56± 0.52 93.97± 0.34 68.55± 0.80
S +WRN TF - 80.85± 1.85 89.05± 0.59 91.90± 0.54 68.84± 0.71
LS+WRN† Rand Canonical 80.95± 1.54 88.08± 0.70 91.65± 0.55 68.30± 0.47
LS+WRN† Rand Equivariant 80.12± 1.76 87.44± 1.17 91.40± 0.67 67.50± 0.72
S +WRN Rand - 80.63± 1.73 86.68± 0.59 90.60± 0.50 66.29± 0.36
WRN-16-8 - - 80.50±1.15 85.95± 2.04 88.82± 1.64 51.24± 1.37
ResNet-50 - - 74.04± 1.35 86.45± 0.51 90.86± 0.57 44.95± 0.65

C: COVIDx CRX-2 # params : 493K for LS/S+LL; 23.05M for LS/S+WRN; 22.3M for WRN;23.5M for ResNet
KTH: KTH-TIPS2 # params : 883K for LS/S+LL; 23.7M for LS/S+WRN; 22.3M for WRN; 23.5M for ResNet
†: ours; TF: Tight-Frame; LS: Learnable Scattering; S: Scattering; Rand: Random

Table 4: Scattering and Learned Unsupervised Scattering features evaluated by training a linear clas-
sifier on CIFAR-10. We observe the unsupervised learned scattering improves the representation.

Method 100 samples 500 samples 1000 samples All
Scattering (Fixed) 36.01± 0.55 48.12± 0.25 53.25± 0.24 65.58± 0.04
Unsupervised Learnt Scattering 38.05 ± 0.45 52.92 ± 0.28 57.76 ± 0.25 68.47 ± 0.04

formance and model complexity. The WRN-16-8 and ResNet-50 perform extremely poorly relative
to hybrid models, showing the effectiveness of the scattering priors for texture discrimination.

4.4 UNSUPERVISED LEARNING OF SCATTERING PARAMETERS

We have studied the adaptation of the wavelet parameters towards a supervised task. We now per-
form a preliminary investigation to determine if the scattering representation can be improved in a
purely unsupervised manner. We consider the recently popularized SimCLR framework (Chen et al.,
2020), which encourages representations from two data augmentations of the same input to lie close
together. We learn scattering network parameters on CIFAR-10 using this unsupervised objective
function and subsequently evaluate the discriminativeness of the features under a standard linear
evaluation experiment on the full CIFAR-10 dataset and in the small data regimes comparing them
to the standard scattering transform. The results are shown in Table 4. We observe the unsupervised
learning of filter parameters can improve the scattering representation under standard unsupervised
learning evaluation protocols.

5 CONCLUSION
This work demonstrated the competitive results of adapting a small number of Morlet wavelet fil-
ter parameters in the scattering network. We illustrated that filters learned by parametric scattering
can be interpreted in relation to the specific task (e.g., becoming thinner in object recognition tasks
that require sensitivity to edges). We also empirically demonstrate that our parametric scattering
transform shares similar stability to deformations as the traditional scattering transforms. Overall
we find that the parametric scattering network provides state-of-the-art results for classification in
the low-data regime when combined with a linear layer and as well in a hybrid CNN. These results
go towards bridging the gap between the handcrafted filter design in scattering transforms, which
provides tractable properties and supports low-parameter models, and the fully (unparametrized)
learned ones commonly used in CNN work, especially in computer vision and generally on 2D
structured data. In particular, our results can lead to future work investigating the impact of down-
sampling on the representations learned by the parametric scattering network, as well as application
to uncertainty estimation by leveraging the low parameter CNN in a Bayesian framework.

9



Under review as a conference paper at ICLR 2022

6 REPRODUCIBILITY STATEMENT

The results presented in the paper are reproducible. We provide an anonymized direct link to the
source code. The content of this link contains complete instructions on how to run the code to
reproduce the results presented for the paper. In addition, all details for the models and training
procedures are described in the main paper under Sec. 4 and the Appendix B.
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A BACKPROPAGATION THROUGH THE PARAMETRIC SCATTERING NETWORK

We show here that it is possible to backpropagate through this construction. Namely, we verify the
differentiability of this construction by explicitly computing the partial derivatives with respect to
these parameters. First, the R-linear derivative of the complex modulus f(z) = |z| is f ′(z) = z

|z| .
Next, we show the differentiation of convolution with wavelets with respect to their parameters.
For simplicity, we focus here on differentiation of the Gabor portion1 of the filter construction from
Eq. 1, written as:

ϕ(u) = exp(− 1

2σ2
(u21(cos2(θ) + sin2(θ)γ2) + u22(cos2(θ)γ2 + sin2(θ))

+ 2 cos(θ) sin(θ)u1u2(1− γ2)) + iξ(cos(θ)u1 + sin(θ)u2)).

Its derivatives with respect to the parameters are
∂ϕ

∂θ
(u) =

1

σ2
(u2 cos θ − u1 sin θ)(iξσ2 + u1(γ2 − 1) cos θ + u2(γ2 − 1) sin θ)ϕ(u);

∂ϕ

∂σ
(u) =

1

σ3
(u21(cos2 θ + γ2 sin2 θ) + u22(γ2 cos2 θ + sin2 θ) + 2u1u2 cos θ sin θ(1− γ2))ϕ(u);

∂ϕ

∂ξ
(u) = i(u1 cos θ + u2 sin θ)ϕ(u); and

∂ϕ

∂γ
(u) =− 1

σ2
(u21γ sin2 θ + u22γ cos2 θ − 2u1u2γ cos θ sin θ)ϕ(u).

Finally, the derivative of the convolution with such filters is given by ∂
∂ζ (f ∗ ϕ)(t) =

∫
f(t −

u)∂ϕ∂ζ (u)du where ζ is any of the filter parameter from Table 1. It is easy to verify that these
derivations can be chained together to propagathe through the scattering cascades defined in Sec. 3.1.

B IMPLEMENTATION DETAILS

This section describes the implementation details for each dataset.

B.1 CIFAR-10

CIFAR-10 consists of consists of 60,000 images of size 32 × 32 × 3 from ten classes. The linear
models were trained using a max learning rate of 0.06 for all parameters on 5K, 1K, 500, and 500
epochs for 100, 500, 1K, 50K samples, respectively. The hybrid WRN models were trained using
a max learning rate of 0.1 on 3K, 2K, 1K, and 200 epochs for 100, 500, 1K, and 50K samples
respectively. We use batch gradient descent except when the models are trained with 50K samples
where we use mini-batch gradient descent of size 1024. On the entire training set, we also train the
models on 10 seeds and, in all cases, the standard errors are always inferior to 0.3. All scattering
networks use a spatial scale J = 2.

B.2 COVIDX CRX-2

COVIDx CRX-2 is a two-class (positive and negative) dataset of 1024 × 1024 × 1 chest X-Ray
images of COVID-19 patients (Wang et al., 2020). In our experiments, we always train on a class-
balanced subset of the training set. We resize the images to 260 × 260 and train our network with
random crops of 224×224 pixels. The only data augmentation we use is random horizontal flipping.
All models were trained on 400 epochs using a max learning rate of 0.01. All hybrid models are
trained with a mini-batch size of 128. All scattering networks use a spatial scale J = 4.

B.3 KTH-TIPS2

We resize the images to 200 × 200 and train our network with random crops of 128 × 128 pixels.
The training data is augmented with random horizontal flips and random rotations. All scattering

1It is not difficult to extend this derivation to Morlet wavelets, but the resulting expressions are rather
cumbersome and left out for brevity.
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networks use a spatial scale of 4. We set the maximum learning rate of the scattering parameters to
0.1 while it is set to 0.001 for all other parameters. All hybrid models are trained with a mini-batch
size of 128. The hybrid linear models are trained for 250 epochs, while the hybrid WRN models are
trained for 150 epochs. We evaluate each model, training it with four different seeds on each sample
of material, amounting to 16 total runs.

C WIDE RESIDUAL NETWORK HYBRID ARCHITECTURE

In the experiments of Sec. 4, the scattering networks are combined with a WRN hybrid described
in Oyallon et al. (2017). We follow a similar architecture to the WRN hybrid used in Oyallon et al.
(2018). The description of the architecture used for the experiments is given in Table 5. We use the
same architecture for all the datasets. The architecture consists of a scattering network that greatly
reduces the spatial resolution of the input. The CIFAR-10 scattering stage yields output with 8 × 8
spatial resolution (Scattering with J=2). Similarly, the KTH-TIPS2 data and COVIDx-CRX2 data
give outputs with 16× 16 and 8× 8 spatial resolutions respectively.

Stage Description

scattering Learned or Tight Frame

conv1 3× 3, CONV LAYER 128→ 256

conv2

[
3× 3,CONV LAYER 256

3× 3,CONV LAYER 256

]
× 4

conv3

[
3× 3,CONV LAYER 256

3× 3,CONV LAYER 256

]
× 4

avg-pool Avg pooling to a size 1x1

Table 5: Description of WRN hybrid architecture used for the experiments. Each conv layer repre-
sents a 2D Convolution followed by a batch normalization and a ReLU non-linearity.

D DATASET SPECIFIC PARAMETERIZATIONS

The following figures show the configuration obtained by our minimal bipartite matching algorithm.
Each wavelet titles share a common naming scheme. The first letter of the title is either F (fixed
filters) or O (optimized filters). The next character is always a number and corresponds to the ID
of the match. For all Oixxxxxxx titles, there will be a corresponding Fixxxxxxxx title. These
filters are matched to each other. The next character is always D (distance). It is superseded by a
numerical value, the Morlet wavelet distance between the filter and its match. The next character is
σ, followed by a number corresponding to the magnitude of the distances between the σ parameters
of both filters. The next character is γ, followed by a number corresponding to the magnitude of the
distances between the γ parameters of both filters. The next character is ξ, followed by a number
corresponding to the magnitude of the distances between the ξ parameters of both filters.
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D.1 COVIDX-CRX2

O0D0.8 0.6 0.0 0.3 O1D0.4 0.4 0.0 0.1 O2D0.6 0.5 0.2 0.1 O3D1.0 0.7 0.1 0.3 O4D0.7 0.6 0.1 0.2 O5D0.6 0.6 0.1 0.3 O6D0.9 0.8 0.0 0.4 O7D1.0 0.7 0.1 0.6

F0D0.8 0.6 0.0 0.3 F1D0.4 0.4 0.0 0.1 F2D0.6 0.5 0.2 0.1 F3D1.0 0.7 0.1 0.3 F4D0.7 0.6 0.1 0.2 F5D0.6 0.6 0.1 0.3 F6D0.9 0.8 0.0 0.4 F7D1.0 0.7 0.1 0.6

O8D0.5 0.3 0.1 0.3 O9D0.7 0.4 0.3 0.3 O10D0.5 0.4 0.1 0.2 O11D0.3 0.2 0.0 0.2 O12D0.4 0.3 0.0 0.2 O13D0.2 0.2 0.1 0.1 O14D0.5 0.3 0.1 0.3 O15D0.2 0.1 0.1 0.2

F8D0.5 0.3 0.1 0.3 F9D0.7 0.4 0.3 0.3 F10D0.5 0.4 0.1 0.2 F11D0.3 0.2 0.0 0.2 F12D0.4 0.3 0.0 0.2 F13D0.2 0.2 0.1 0.1 F14D0.5 0.3 0.1 0.3 F15D0.2 0.1 0.1 0.2

O16D0.4 0.3 0.2 0.1 O17D0.5 0.3 0.2 0.3 O18D0.6 0.2 0.3 0.3 O19D0.4 0.2 0.2 0.0 O20D0.6 0.2 0.3 0.3 O21D0.5 0.3 0.2 0.3 O22D0.4 0.2 0.2 0.1 O23D0.2 0.1 0.1 0.1

F16D0.4 0.3 0.2 0.1 F17D0.5 0.3 0.2 0.3 F18D0.6 0.2 0.3 0.3 F19D0.4 0.2 0.2 0.0 F20D0.6 0.2 0.3 0.3 F21D0.5 0.3 0.2 0.3 F22D0.4 0.2 0.2 0.1 F23D0.2 0.1 0.1 0.1

O24D0.1 0.2 0.1 0.1 O25D0.3 0.2 0.2 0.1 O26D0.3 0.2 0.2 0.2 O27D0.1 0.1 0.0 0.1 O28D0.2 0.2 0.1 0.1 O29D0.3 0.1 0.2 0.1 O30D0.3 0.2 0.2 0.0 O31D0.3 0.2 0.3 0.2

F24D0.1 0.2 0.1 0.1 F25D0.3 0.2 0.2 0.1 F26D0.3 0.2 0.2 0.2 F27D0.1 0.1 0.0 0.1 F28D0.2 0.2 0.1 0.1 F29D0.3 0.1 0.2 0.1 F30D0.3 0.2 0.2 0.0 F31D0.3 0.2 0.3 0.2

Figure 4: Filters trained on 1188 samples of COVIDx-CRX2 for 500 epochs, the first, third, fifth, and
seventh rows correspond to filters optimized from a tight-frame, while the second, fourth, sixth, and
eighth rows correspond to tight-frame initialized filters. The filters are displayed in pairs correspond
to the ’closest’ (by our distance metric defined above) filters of both types. For instance, the first
filter of row one matches the first filter of row 2.
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O0D0.2 0.0 0.1 0.1 O1D0.2 0.1 0.0 0.2 O2D0.3 0.2 0.1 0.2 O3D0.3 0.3 0.1 0.1 O4D0.3 0.2 0.0 0.2 O5D0.4 0.3 0.1 0.0 O6D0.4 0.2 0.0 0.3 O7D0.4 0.3 0.1 0.0

F0D0.2 0.0 0.1 0.1 F1D0.2 0.1 0.0 0.2 F2D0.3 0.2 0.1 0.2 F3D0.3 0.3 0.1 0.1 F4D0.3 0.2 0.0 0.2 F5D0.4 0.3 0.1 0.0 F6D0.4 0.2 0.0 0.3 F7D0.4 0.3 0.1 0.0

O8D0.4 0.4 0.0 0.2 O9D0.5 0.4 0.1 0.2 O10D0.5 0.2 0.2 0.3 O11D0.5 0.2 0.2 0.3 O12D0.5 0.4 0.2 0.2 O13D0.6 0.4 0.1 0.1 O14D0.6 0.4 0.1 0.2 O15D0.6 0.5 0.2 0.2

F8D0.4 0.4 0.0 0.2 F9D0.5 0.4 0.1 0.2 F10D0.5 0.2 0.2 0.3 F11D0.5 0.2 0.2 0.3 F12D0.5 0.4 0.2 0.2 F13D0.6 0.4 0.1 0.1 F14D0.6 0.4 0.1 0.2 F15D0.6 0.5 0.2 0.2

O16D0.6 0.5 0.2 0.2 O17D0.6 0.2 0.2 0.2 O18D0.6 0.5 0.0 0.2 O19D0.6 0.5 0.1 0.3 O20D0.7 0.2 0.1 0.3 O21D0.7 0.4 0.2 0.1 O22D0.7 0.2 0.2 0.4 O23D0.7 0.7 0.1 0.2

F16D0.6 0.5 0.2 0.2 F17D0.6 0.2 0.2 0.2 F18D0.6 0.5 0.0 0.2 F19D0.6 0.5 0.1 0.3 F20D0.7 0.2 0.1 0.3 F21D0.7 0.4 0.2 0.1 F22D0.7 0.2 0.2 0.4 F23D0.7 0.7 0.1 0.2

O24D0.8 0.6 0.2 0.4 O25D0.8 0.3 0.2 0.4 O26D0.9 0.0 0.8 0.1 O27D0.9 0.2 0.7 0.4 O28D1.0 0.5 0.2 0.6 O29D1.1 0.8 0.1 0.2 O30D1.1 0.9 0.1 0.2 O31D1.1 0.4 0.7 0.8
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Figure 5: Filters trained on 1188 samples of COVIDx-CRX2 for 500 epochs, the first, third, fifth, and
seventh rows correspond to filters optimized from a tight-frame, while the second, fourth, sixth, and
eighth rows correspond to tight-frame initialized filters. The filters are displayed in pairs correspond
to the ’closest’ (by our distance metric defined above) filters of both types. For instance, the first
filter of row one matches the first filter of row 2. The filters are displayed in increasing order of their
distances. The top left corner corresponds to the filters that changed the least from their initialization,
while the filters in the bottom right corner changed the most.
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D.2 KTH-TIPS2
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Figure 6: Filters trained on 1188 samples of KTH-TIPS2 for 500 epochs, the first, third, fifth, and
seventh rows correspond to filters optimized from a tight-frame, while the second, fourth, sixth, and
eighth rows correspond to tight-frame initialized filters. The filters are displayed in pairs correspond
to the ’closest’ (by our distance metric defined above) filters of both types. For instance, the first
filter of row one matches the first filter of row 2.
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Figure 7: Filters trained on 1188 samples of KTH-TIPS2 for 500 epochs, the first, third, fifth, and
seventh rows correspond to filters optimized from a tight-frame, while the second, fourth, sixth, and
eighth rows correspond to tight-frame initialized filters. The filters are displayed in pairs correspond
to the ’closest’ (by our distance metric defined above) filters of both types. For instance, the first
filter of row one matches the first filter of row 2. The filters are displayed in increasing order of their
distances. The top left corner corresponds to the filters that changed the least from their initialization,
while the filters in the bottom right corner changed the most.
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D.3 CIFAR-10
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Figure 8: Filters trained on 1190 samples of CIFAR-10 for 500 epochs, the first and third, rows
correspond to filters optimized from a tight-frame, while the second and fourth rows correspond to
tight-frame initialized filters. The filters are displayed in pairs correspond to the ’closest’ (by our
distance metric defined above) filters of both types. For instance, the first filter of row one matches
the first filter of row 2.

D.4 DATASET SPECIFIC INITIALIZATIONS WITH A RANDOM INITIALIZATION

In Figure 9, we show how the filters adapt when initialization begins from a random setting. We
note the deviation to tight frame is much greater than in the case where we initialize in a tight frame.
However, as per our filterbank distance, we observe the filters do move closer to the tight frame than
their initialization.
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Figure 9: The graph shows the filterbank distance over epochs as the filters, initialized from random
init, are trained on different datasets. To the left, we visualize dataset specific parameterizations of
scattering filterbanks in Fourier space. The graph on the right shows that the randomly initialized
filterbanks become more similar to a tight frame during training.
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E EQUIVARIANT FILTERS

We observe that, in some cases, using equivariant filters yields better accuracy, as shown in Table
2. Figure 10 illustrates equivariant filters initialized using tight frame construction before and after
optimization on 500 training samples of CIFAR-10, where the scattering network is combined with
a linear layer. The spatial scale is set to J = 2. Similarly, Figure 11 illustrates equivariant filters
initialized randomly before and after optimization. In the two figures, each row corresponds to a
different scale. Since J is set to 2, we have two rows. We observe that the equivariant filters in each
scale/row are the same, except for the global orientation.

Figure 10: Example of equivariant filters initialized using tight frame construction (Top) Real part
of wavelet filters before optimization (Bottom) Real part of wavelet filters after optimization.

Figure 11: Example of equivariant filters initialized randomly (Top) Real part of wavelet filters
before optimization (Bottom) Real part of wavelet filters after optimization.

F NO AUTOAUGMENT ON CIFAR-10

The training set of CIFAR-10 is augmented with pre-specified autoaugment in Table 2 to demon-
strate the best possible results. To understand the effect of autoaugment, we replicate the same
experiments except for not augmenting the training set with autoaugment. Table 6 reports the perfor-
mance of the different architectures on CIFAR-10. We observe that the scattering networks followed
by WRN underperform when no autoaugment is used. The difference in performance between using
autoaugment and not using it is smaller when the scattering network is followed with a linear layer.
Surprisingly, the performance of the scattering networks followed with a linear layer trained on all
data increased without autoaugment. It seems that in the case of a scattering network followed by a
linear model, autoaugment is not as useful as with a deep model on top and can also be harmful in
some cases.

G COSINE LOSS

We replicate the experiments of Sec. 4 with learnable scattering networks followed by WRN on
CIFAR-10, COVIDx-CRX2, and KTH-TIPS2 using the same parameters, except for using the cosine
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Table 6: CIFAR-10 mean accuracy and std. error over 10 seeds with J = 2 and multiple train-
ing sample sizes. The table compares the effect of augmenting the training set with pre-specified
autoaugment. When the scattering network is followed by a WRN, then using autoaugment is nec-
essary to obtain better performance.

Init. Arch. AA 100 samples 500 samples 1000 samples All
TF LS+LL† Yes 37.84± 0.57 52.68± 0.31 57.43± 0.17 69.57± 0.1
TF LS+LL† No 39.70± 0.62 50.74± 0.30 54.76± 0.22 74.94± 0.06
TF S +LL Yes 36.01± 0.55 48.12± 0.25 53.25± 0.24 65.58± 0.04
TF S +LL No 37.55± 0.62 49.67± 0.33 53.96± 0.48 70.71± 0.03
Rand LS+LL† Yes 34.81± 0.60 49.6± 0.39 55.72± 0.39 69.39± 0.41
Rand LS+LL† No 32.64± 0.38 42.88± 0.23 47.40± 0.32 74.71± 0.08
Rand S +LL Yes 29.77± 0.47 41.85± 0.41 46.3± 0.37 57.72± 0.1
Rand S +LL No 31.71± 0.34 40.57± 0.32 44.42± 0.51 61.79± 0.31
TF LS+WRN† Yes 43.60± 0.87 63.13± 0.29 70.14± 0.26 93.61± 0.12
TF LS+WRN† No 34.95± 0.96 54.21± 0.39 62.17± 0.28 90.17± 0.34
TF S +WRN Yes 43.16± 0.78 61.66± 0.32 68.16± 0.27 92.27± 0.05
TF S +WRN No 35.15± 0.43 52.77± 0.35 60.72± 0.21 89.05± 0.38
Rand LS+WRN† Yes 41.42± 0.65 59.84± 0.40 67.4± 0.28 93.36± 0.19
Rand LS+WRN† No 31.08± 1.00 48.37± 0.76 55.41± 0.49 88.80± 0.47
Rand S +WRN Yes 32.08± 0.46 46.84± 0.21 52.76± 0.33 85.35± 1.06
Rand S +WRN No 27.73± 0.43 41.05± 0.32 47.19± 0.37 79.67± 0.59

†: ours TF: tight-frame LS: Learnable Scattering AA: Autoaugment
# params : 156k for S+LL; 155k for LS+LL; 11M for S+WRN; 22.6M LS+WRN; and 22.3M for WRN only
? From Oyallon et al. (2018)

loss (Barz & Denzler, 2020) function. The wavelet filters were initialized using the tight-frame
construction. Table 7 demonstrates the average accuracy on the three datasets. For CIFAR-10,
models trained with cosine loss underperform networks trained with cross-entropy loss. We do not
observe the same behavior when the models are trained on KTH-TIPS2 where the performance
increases slightly by using the cosine loss function. Thus, cosine loss can improve performance on
small data regimes for certain datasets.

Table 7: CIFAR-10, COVIDx-CRX2 and KTH-TIPS2 mean accuracy and std. error using cosine
loss function.

Init. Arch. Dataset Loss 100 samples 500 samples 1000 samples 1188 samples
TF LS+WRN CIFAR-10 CE 43.6± 0.87 63.13± 0.29 70.14± 0.26 -
TF LS+WRN CIFAR-10 Cosine 42.94± 0.77 61.42± 0.26 68.29± 0.18 -
TF LS+WRN COVIDx CE 81.20± 1.73 90.50± 0.70 93.68± 0.35 -
TF LS+WRN COVIDx Cosine 80.03± 2.16 89.53± 0.89 92.75± 0.65 -
TF LS+WRN KTH-TIPS2 CE - - - 69.23± 0.67
TF LS+WRN KTH-TIPS2 Cosine - - - 70.86± 0.67

TF: tight-frame LS: Learnable Scattering S: Scattering CE: Cross-Entropy Loss

H ROBUSTNESS TO DEFORMATIONS

Models used were pre-trained and evaluated using the COVIDx CRX-2 setup mentioned in Section
4.2 with a linear classifer head. Deformations used are rotation, shear, translation, and several
diffeomorphisms (denoted Custom 1 and Custom 2), and strengths for the deformations ranges from
0 to the maximum value for the deformation given in Table 8. Additional results are depicted in
Figure 12.

Table 8: Deformations and their maximum value
Deformation Maximum Value
Rotation 10
Shear 5
Translation 22
Custom1 1
Custom2 1

Custom 1, τ1ε (u), and Custom 2, τ2ε (u), are defined as such:

τ1ε (u) = ε

[
0.3u21 + 0.2u22

0.2(0.2u1)

]
, τ2ε (u) = ε

[
0.3(u21 + u22)
−0.3(2u1u2)

]
.
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Figure 12: Normalized distances between scattering representations of an image and its defor-
mation. (Top Left) Custom 1 Transformation. (Top Right) Custom 2 Transformation. (Bottom)
Shear.

I DETAILS OF TRAINING UNSUPERVISED SCATTERING WITH SIMCLR
OBJECTIVE

The learnable scattering networks with tight-frame and random initializations were pretrained on
CIFAR-10 via the SimCLR method using a temperature of 0.5 and batch size of 128 for 500 epochs.
The following basic augmentations were used as part of the SimCLR augmentation pipeline: random
crop and resize, random flip, and color distortion. The optimizer used was Adam, with a learning
rate of 1e-3, similar to settings from Chen et al. (2020). Scattering weights were then frozen and
used as the backbone for a linear evaluation. For linear evaluation, we used SGD with the same
optimization settings as our experiments on CIFAR-10, described in B.1.
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