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Abstract

Weak-to-strong generalization—where a student model trained on imperfect la-
bels generated by a weaker teacher nonetheless surpasses that teacher—has been
widely observed, but the mechanisms that enable it have remained poorly under-
stood. In this paper, through a theoretical analysis of simple models, we uncover
three core mechanisms that can drive this phenomenon. First, by analyzing ridge
linear regression, we study the interplay between the teacher and student reg-
ularization parameters and prove that a student can compensate for a teacher’s
under-regularization and achieve lower test error. We also analyze the role of
the parameterization regime of the models and show that qualitatively different
phenomena can happen in different regimes. Second, by analyzing weighted ridge
linear regression, we show that a student model with a regularization structure
better aligned to the target function, can outperform its teacher. Third, in a non-
linear multi-index learning setting, we demonstrate that a student can learn easy,
task-specific features from the teacher while leveraging its own broader pre-training
to learn hard-to-learn features that the teacher cannot capture.

1 Introduction

Weak-to-strong generalization refers to the phenomenon where a strong (student) model trained
on data produced by a weak (teacher) model can sometimes significantly surpass the teacher’s
performance. This concept was first introduced by Burns et al. [2024], where the authors fine-tuned
the GPT-2 model [Radford et al., 2019] (the teacher) for a specific task using ground-truth labels,
subsequently employing the fine-tuned model to generate synthetic samples for the same task. These
synthetic samples were then used to fine-tune GPT-4 [Achiam et al., 2023] (the student). Remarkably,
the fine-tuned student model outperformed its teacher in certain settings despite having access only
to the imperfect synthetic data generated by the teacher.

Weak-to-strong generalization is an especially important phenomenon from a practical perspective
because of its implications for the emerging question of superalignment [OpenAI, 2023]; i.e., can
humans steer models with potentially superhuman capabilities to become aligned to human norms
and values [Burns et al., 2024]? Considering the weak model as a proxy for humans, the possibility
of the weak-to-strong generalization phenomenon suggests that the answer can be affirmative.

Despite its practical importance, the mechanisms that enable weak-to-strong generalization are still
not fully understood. Regularization has empirically been shown to play a critical role in enabling
weak-to-strong generalization. However, despite recent theoretical progress demonstrating that
regularizing the student is necessary in some settings [Medvedev et al., 2025], the full picture of the
effects and the interplay of the regularization of both the student and teacher models in weak-to-strong
generalization is still unclear. For example, prior work on weak-to-strong generalization mainly focus
on ridgeless regression (see e.g., Dong et al. [2025], Xue et al. [2025], Ildiz et al. [2025], etc.).
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Additionally, prior work assumes that the teacher and student models have frozen representations, and
only a linear head is trained through a convex objective (see e.g., Ildiz et al. [2025], Medvedev et al.
[2025], Dong et al. [2025], Xue et al. [2025], Charikar et al. [2024], etc.). However, fine-tuning can
in practice go beyond this linearized regime and update model features as well. Burns et al. [2024]
empirically demonstrated that updating the features yields substantially stronger weak-to-strong gains
than only updating a linear head. For these cases, a linearized theoretical model might not suffice to
capture all the relevant phenomena. This motivates a theoretical study beyond the linearized regimes
and an analysis of the role of feature learning on weak-to-strong generalization.

To take steps towards better understanding these aspects of training on weak-to-strong generalization,
in this paper, we conduct a thorough theoretical study of this phenomenon in prototypical theoretical
models. For the linear setting, we let the student and the teacher be high-dimensional standard and
weighted ridge regression models and study how the explicit regularizations of the teacher and student
models affect weak-to-strong generalization. We also investigate the role of the parameterization
regime of the models. As the choice of regularization, we consider ridge and weighted ridge penalties.
For the nonlinear case, we consider the problem of learning from multi-index models where the
models learn relevant features through a non-convex optimization objective. By studying this setting,
we characterize how knowledge propagates between the models.

1.1 Contributions
Here we discuss the main contributions of the paper. We characterize three mechanisms that can
enable weak-to-strong generalization.

• In Section 2.1, we consider a setting where the student and the teacher are trained with
ridge regression. We fully characterize the test error of the models in the high-dimensional
proportional regime by deriving asymptotic expressions for the test errors. Using these
expressions, we study the conditions where the student model outperforms the teacher. We
show that the student model can outperform the teacher by adequately compensating the
under-regularization of the teacher. We further prove that different parameterization regimes
of the student model can result in qualitatively different phenomena.

• In Section 2.2, we consider a setting where the teacher is again trained with ridge regression.
However, we train the student with a weighted ridge regularization. We again fully charac-
terize the limiting test errors of the models in the high-dimensional proportional limit, and
show that weak-to-strong generalization can happen when the regularization structure of the
student is better suited for the task.

• In Section 3, we study learning form a nonlinear multi-index learning function that can
be decomposed to a mix of easy- and hard-to-learn components by applying a single step
of gradient descent on the first layer weights of two-layer neural networks. We assume
that the easy component is highly specialized and task-specific, but, the hard component
is a component shared across many tasks. We consider a case where the strong student
model has already learned the hard component during pre-training, but not the easy (yet
task-specific) component. We show that even if the teacher model is not able to learn the
hard components on its own, a pre-trained student can learn the easy component from the
teacher while still retaining the knowledge from pre-training for the hard component.

1.2 Related Works
The machine learning community has shown growing interest in weak-to-strong generalization. In
this section, we review these results.

Theoretical Results. Prior work examines scenarios in which both the student and teacher rely on
fixed, pre-trained feature representations. Wu and Sahai [2024] analyze a stylized classification task
under an over-parameterized spiked-covariance model with Gaussian covariates, where the teacher
model does not have the capability to fit the target function, and the student has a structure that is
better aligned with the target. Ildiz et al. [2025] investigate weak-to-strong generalization for high-
dimensional ridgeless regression. Building on this line and in a similar setting, Dong et al. [2025],
Xue et al. [2025] study how mismatches between student and teacher features affect generalization:
Dong et al. [2025] focus on a ridgeless, variance-dominated linear regime in which both models
have negligible bias and show that weak-to-strong transfer occurs when the student’s features have
lower intrinsic dimension. Xue et al. [2025] consider the same setting and propose that the overlap
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between the subspace of features that teacher model has not learned, and the subspace of features that
the student model has learned during pre-training govern weak-to-strong generalization. In contrast,
this paper analyzes linear models in the high-dimensional proportional regime, covering both under-
and over-parameterized cases, where models can have large bias. We also explicitly investigate the
role of regularization on weak-to-strong generalization. Complementing these model-centric studies,
Shin et al. [2025] take a data-centric approach and study the aspects of data enable weak-to-strong
generalization.

Relatedly, Medvedev et al. [2025] consider two-layer neural networks with random first-layer weights
(random-features models) and show that, when the student is much wider than the teacher, early
stopping is essential for weak-to-strong generalization. However, they assume the teacher is already
optimally trained and do not analyze the role of its training. Charikar et al. [2024] propose that the
erroneous knowledge that the strong model does not obtain from the weak model characterizes how
much the strong model improves over the weak model.

Empirical Studies. Following the pioneering work of Burns et al. [2024], different variants and
applications of weak-to-strong generalization have been studied. Bansal et al. [2025], Yang et al.
[2024] let the weak model generate data with chain-of-thought to supervise the student models. Ji
et al. [2024], Tao and Li [2024] use weak-to-strong generalization for the problem of alignment. Guo
et al. [2024] study this phenomenon in vision foundation models. Liu and Alahi [2024] propose
a hierarchical mixture of experts method to boost weak-to-strong generalization. Mulgund and
Pabbaraju [2025] characterize the gain in performance of the student model over the teacher model in
terms of the misfit between the models.

1.3 Notation
We denote vector quantities by bold lower-case, and matrix quantities by bold upper-case. We use
∥·∥op, ∥·∥Fr to denote the operator (spectral) and Frobenius norms. Given an indexed set of vectors

{xi}ni=1, we use the upper case to denote the (row-wise) stacked matrix, e.g. X ≜ [x1 · · · xn]
⊤.

Throughout the paper, we use the standard asymptotic notation o(·), O(·),Ω(·),Θ(·). Finally, we use
→P to denote convergence in probability.

2 The Linearized Case
During the fine-tuning of pre-trained large-scale models, the training dynamic often falls into a kernel
regime where the features are not evolved [Wei et al., 2022, Malladi et al., 2023]. Motivated by these
observations, in this section we cast the fine-tuning problem as a linear regression problem over
Gaussian features. We aim to analyze the role of student and teacher regularization, and also the
parameterization regimes of the models in weak-to-strong generalization.

Assume that the teacher model has access to nt independent samples St = {(xi, yi)}nt
i=1 drawn

according to

xi ∼ N(0, IdX
), yi = β⊤

⋆ xi + εi (1)

where β⋆ ∈ RdX is an unknown target vector, and εi ∼ N(0, σ2
ε) is an independent additive noise.

The teacher model f̂t : RdX → R is fit on the features {xi}nt
i=1 using these labeled samples. The

teacher is then used to generate synthetic labels for ns ∈ N unlabeled covariates Ss = {x̃i}ns
i=1

drawn independently from the same distribution according to x̃i ∼ N(0, IdX
) as ỹi = f̂t(x̃i). These

samples are then used to train the student model f̂s : RdX → R.

We focus on the following two settings, each showcasing a different mechanism that can enable
weak-to-strong generalization.

Setting 1: Ridge Regression. We train the teacher f̂t(x) = β̂⊤
t x and the student f̂s(x) = β̂⊤

s x
using (standard) ridge regression. We prove that a properly regularized student can outperform
the teacher, in the case where the regularization parameter of the teacher is set to be smaller that
the optimal regularization parameter. This is an example of weak-to-strong generalization through
adequately compensating under-regularization. Furthermore, we show that two qualitatively different
scenarios can arise depending whether the student model is over- or under-parametrized. This
aligns with Burns et al. [2024] and Medvedev et al. [2025], which show that student regularization is
necessary for weak-to-strong generalization; we extend their work by analyzing the role of teacher
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regularization, and a finer-grained analysis of student regularization and model parameterization,
revealing new phenomena.

Setting 2: Weighted Ridge Regression. We train f̂t(x) = β⊤
t x using (standard) ridge regression

and f̂s(x) = β⊤
s x using weighted ridge regression [Hoerl and Kennard, 1970, Casella, 1980]. We

show that the strong student model can leverage better regularization structure and outperform the
weak teacher, even if the regularization parameter for the teacher is tuned optimally. We argue that a
student model can have a more suitable regularization either by using an architecture that is better
tailored to the task or by benefiting from more effective pre-training.

We consider growing ns, nt,dX following the high-dimensional limit. Although our results are proven
for this asymptotic regime, through numerical experiments, we show that they still match simulations
very well, even for moderately large values of ns, nt,dX.

Assumption 1. Assume that nt, ns and dX all tend to infinity with a proportional rate; i.e.,
dX/ns → γs > 0, and dX/nt → γt > 0.

In this high-dimensional limit, we characterize the test errors achieved by the teacher and student
models given by

Lt = Ex,y

(
y − β̂⊤

t x
)2

= σ2
ε + ∥β̂t − β⋆∥22 (2)

Ls = Ex,y

(
y − β̂⊤

s x
)2

= σ2
ε + ∥β̂s − β⋆∥22

where (x, y) is an independent test sample drawn from (1). We then use these characterizations to
study the conditions under which the student model outperforms the teacher.

2.1 Setting 1: High-Dimensional Ridge Regression
In this section, we assume that the teacher fits a linear regression model f̂t(x) = β̂⊤

t x trained on the
samples St, and is given by

β̂t = argmin
β∈RdX

 1

nt

∑
(xi,yi)∈St

(
yi − β⊤xi

)2
+ λt∥β∥22

 (3)

where λt ∈ R is the teacher ridge regularization parameter. The student is also a linear model
f̂s(x) = β̂⊤

s x trained on fresh samples Ss labeled by the teacher model, and is given by

β̂s = argmin
β∈RdX

[
1

ns

∑
x̃i∈Ss

(
β⊤x̃i − β̂⊤

t x̃i

)2
+ λs∥β∥22

]
(4)

in which λs ∈ R is the student regularization parameter. We characterize the test error of these
models in the high-dimensional proportional limit of Assumption 1. Our characterization of the test
errors Ls,Lt will be in terms of the following quantities from the random matrix theory literature
(see e.g., Bai and Silverstein [2010]).

Definition 2. Let m(λ; γ) be the Stieltjes transform of the Marchenko-Pastur law with parameter γ
evaluated at −λ; i.e.,

m(λ; γ) =

∫
dµMP(γ)(s)

s+ λ
= − 1

2γλ

[
1− γ + λ−

√
(1 + γ + λ)2 − 4γ

]
.

Also, for p ∈ {s, t}, we define mp,1 = m(λp, γp) and mp,2 = −∂m
∂λ

∣∣
λp,γp

.

The test error of β̂t in the high-dimensional proportional limit has been studied extensively in the
literature [Tulino and Verdú, 2004, Dobriban and Wager, 2018, Hastie et al., 2022]. The following
proposition characterizes the test error of β̂t in our setting.

Proposition 3. Under the condition that β⋆ ∼ N(0,d−1
X IdX

) independent of other sources of ran-
domness in the problem, in the high-dimensional proportional limit of Assumption 1, we have

Lt →P σ2
ε +

(
λt − σ2

εγt
)
λtmt,2 + σ2

εγtmt,1,

where mt,1 and mt,2 are defined in Definition 2.
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Figure 1: Test-error difference Ls −Lt as a function of (λt, λs) in the setting of Section 2.1. Filled
contours are numerical simulations, and the dashed red contours follow the expressions of Theorem 4.
The solid curve marks Ls = Lt, and the dashed black curve is λt = λ⋆

t . Left: under-parameterized
student. Right: over-parameterized student. See Section 4 for more details.

In the following theorem, we study test error of the student model β̂s.

Theorem 4. Under the same assumptions as Proposition 3, the test errors of β̂s and β̂t satisfy

Ls − Lt →P ∆ := (σ2
εγt − λt)

[
(mt,1 − λtmt,2)

(
λ2
sms,2 − 2λsms,1

)]
+ λ2

sms,2 (1− λtmt,1) .

where mt,1,mt,2,ms,1,ms,2 are defined in Definition 2.

This theorem fully characterizes the limit of the test error of the student model in the high dimensional
proportional limit. The formulas for the limiting errors derived in this theorem can be used to make
numerical predictions for Ls − Lt. Figure 1 shows an example, supporting that the theoretical
predictions of Theorem 4 match very well with simulations even for moderately large d, ns, nt. See
Section 4 for more details on the experimental settings. We use this theorem to study the test error of
the models as a function of overparamterization in Section E.

In the next theorem, we use the formula for the limiting value of Ls − Lt from Theorem 4 to study
the conditions on γs, γt, λs, λt, σ

2
ε under which the student model outperforms the teacher; i.e., the

conditions of weak-to-strong generalization.

Theorem 5. Under the conditions of Theorem 4, the (limiting) test errors of the student and teacher
models satisfy the following:

• If λt ≥ σ2
εγt, we have Ls ≥ Lt.

• If λt < σ2
εγt, two cases can happen:

– If 0 < γs < 1, there exists λ̄ ≥ 0 such that Ls < Lt for all λs ∈ (0, λ̄).

– If γs > 1 and if the parameters γt, γs, λt, σε satisfy

λt − γtσ
2
ε√

(1 + γt + λt)2 − 4γt
>

1

1− 4γs − 4
√

γ2
s − γs

, (5)

then there exists λ̄−, λ̄+ ≥ 0 such that Ls < Lt for all λs ∈ (λ̄−, λ̄+). Moreover, if
(5) does not hold, we have Ls ≥ Lt.

Note that under the setting of this section, the optimal ridge regularization parameter for the weak
model is known to be equal to λ⋆

t = σ2
εγt [Dobriban and Wager, 2018, Theorem 2.1]. Theorem 5

states that if the teacher is over-regularized (λt ≥ λ⋆
t ), the student can never outperform it. In the

case that the teacher is under-regularized (λt < λ⋆
t ), the parameterization regime of the student

model γs plays a key role. In particular, if γs < 1 (i.e., the student is under-parameterized), the
student model can outperform the teacher by further regularization as long as 0 < λs < λ̄. However,
if γs > 1 (i.e., the student in over-parameterized), as long as (5) holds, λs should be larger than a
certain threshold for it to outperform the teacher. Otherwise, the student will always have a worse
performance compared to the teacher.
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The phase transitions predicted in Theorem 5 can be seen in Figure 1, where for each (λt, λs) pair,
we plot the contours of Ls − Lt for a given γs, γt, σε. In these plots, the solid red curves show the
pairs (λw, λs) for which Ls = Lt. The left plot corresponds to the case where γs < 1. It can be
seen that when λt < λ⋆

t , the student model outperforms the teacher as long λs < λ̄(λt; γs, γt, σε).
Moreover, the student is always worse than the teacher when λt > λ⋆

t . The right plot corresponds to
the case with γs > 1. In this case, it is seen that as predicted in Theorem 5, for some values of λt, the
student outperforms the teacher only if λs ∈ (λ̄−, λ̄+) for some 0 < λ̄− < λ̄+. See Section 4 for
more details on the experimental setting.

Mechanism of Weak-to-Strong Generalization. In this section, we show that the student’s reduced
error stems from compensating for the teacher’s insufficient regularization. Thus, intuitively, similar
to what is proven in Theorem 5, when the teacher is already over-regularized, the student is unable to
achieve a better performance by leveraging this mechanism. Also, note that when γs > 1, the student
model is over-parameterized and as a result, some information is lost. Thus, more regularization is
required for the student to outperform the teacher. This can be seen as the reason why in this regime,
a non-zero lower bound exists for λs to ensure this. Our results complement the results of Medvedev
et al. [2025] who demonstrated that regularizing the student is essential to avoid overfitting to the
mistakes in a setting where the teacher is optimally trained.

Non-Monotone Student Test Error Curves. Studying the test error Ls as a function of the the
teacher overparameterization γt using Theorem 4, we observe that student model also exhibits the
double descent phenomenon, where we can see a second bias-variance tradeoff in the test error
beyond the interpolation limit [Belkin et al., 2019]. See Section E for more details. This is in line
with findings in different linear regression setups such as standard ridge/ridgeless regression [Hastie
et al., 2022, Nakkiran et al., 2021] (which corresponds to double descent in the teacher model in our
setting), ridge regression with correlated samples [Atanasov et al., 2024, Moniri and Hassani, 2025],
and weighted ridge regression [Wu and Xu, 2020].

Universality. Similar to other high-dimensional ridge regression problems (see e.g., Hastie et al.
[2022], Hu and Lu [2023], Montanari and Saeed [2022], etc.), we can use a simple Lindeberg
exchange argument [Lindeberg, 1922, Korada and Montanari, 2011] to show that ∆ from Theorem 4
exhibits universality; i.e., the actual distribution of the samples does not matter and the limiting value
of Ls − Lt is determined only by the first and second moment of the covariates. Thus, our results
in theory do hold much more broadly than the Gaussian case. The study of this universality is not
central to our discussion and we leave it as future work.

Other Related Work. The high-dimensional ridge regression setting considered in this section is
related to the linear regression setting considered by Dohmatob et al. [2024] to study model collapse.
However, in their setting, only the downstream model (which corresponds to the student model
in our setting) has a non-zero ridge regularization. Similar settings have also been studied in the
self-distillation literature (see e.g., Das and Sanghavi [2023], Pareek et al. [2024], etc.). However, the
training procedure of the models are different; e.g. in their setting, the teacher generates synthetic
labels for its own training set and not for a fresh set of covariates. Additionally, in the self distillation
setting, the student model still has access to ground truth labels.

2.2 Setting 2: High-Dimensional Weighted Ridge Regression
In this section, we consider a setting where the strong model is a linear model trained using weighted
ridge regression [Hoerl and Kennard, 1970, Casella, 1980, Wu and Xu, 2020, Richards et al., 2021].
Given samples S ⊂ RdX × R, the estimator WRidge(S, λ,Γ) is defined as

WRidge(S, λ,Γ) := argmin
β∈RdX

 1

n

∑
(xi,yi)∈S

(
yi − β⊤xi

)2
+ λ∥Γ−1β∥22

 , (6)

where Γ ∈ RdX×dX is a weighting matrix and λ ∈ R is a scalar. In this section, we assume that the
teacher is still a (standard) ridge regression estimator. However, unlike the previous section, we let
the student model be a weighted ridge estimator; i.e.,

β̂t = WRidge(St, λt, IdX
), β̂s = WRidge(Ss, λs,Γ). (7)

In this model, the matrix Γ is assumed to be given and fixed. The matrix Γ determines the structure
of the student regularization enforcing different levels of regularization in different directions. In the
next remark, we provide a linear neural-network interpretation for Γ.
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Figure 2: Test-error difference Ls −Lt as a function of (λt, λs) in the setting of Section 2.2. Filled
contours are numerical simulations; dashed red contours follow the theory of Theorem 8. The solid
curve marks Ls = Lt, and the dashed black curve is λt = λ⋆

t . Left: under-parameterized student.
Right: over-parameterized student. See Section 4 for more details.

Remark 6. The weighted ridge estimator WRidge(S, λ,Γ) can also be seen as training the second
layer of a two-layer linear neural network fNN(x) = x⊤Γα; i.e., β̂ = Γα̂ in which

α̂ = argmin
α∈RdX

 1

n

∑
(xi,yi)∈S

(
yi − x⊤

i Γα
)2

+ λ∥α∥22

 .

In light of the connection to linear neural networks in Remark 6, one can think of the student model
as a pre-trained neural network. During the pre-training, we assume that the student model has had
access to data from various sources with a shared structure with β⋆. The goal of the pre-training is to
use this data to learn features that align well with the underlying task β⋆ [Sun et al., 2021]. Motivated
by a recent line of results in deep learning theory where the updated first layer weights are shown to
have a spiked structure with a few directions having information about the target function [Ba et al.,
2022, Moniri et al., 2024, Cui et al., 2024, Zhang et al., 2025, Ba et al., 2024, Demir and Doğan, 2024,
Moniri and Hassani, 2024, Li and Sonthalia, 2024, Mousavi-Hosseini et al., 2023, Radhakrishnan
et al., 2024], we model the alignment of Γ with the task structure using a non-informative bulk
component plus an informative low-rank component.

Assumption 7. We assume that the matrix Γ ∈ RdX×dX is given by

Γ = IdX
+ dX β̂β̂

⊤ with
|β̂⊤β⋆|

∥β̂∥2 ∥β⋆∥2
→P ζ (8)

where ζ ∈ [0, 1] is the correlation of the learned direction β̂ to the target direction β⋆ which is a
measure of how much β̂ aligns with the target direction β⋆.

The prefactor dX for the spike term in (8) is chosen in a way to ensure that ∥I∥Fr ≍ ∥dX β̂β̂
⊤∥Fr.

This closely resembles the scaling of the updated weights with maximal update parameterization in
the feature learning theory literature [Yang and Hu, 2021, Ba et al., 2022]. In the following theorem,
we characterize the test error difference of the models Ls−Lt for this setting in the high-dimensional
proportional regime of Assumption 1.

Theorem 8. Under the conditions of Proposition 3, the test errors of the student and teacher model
from (7) with Γ from Assumption 7 satisfy Ls − Lt →P ∆ − ζ2∆Γ where the expression for ∆ is
given in Theorem 4, and

∆Γ := λs (−1 + λtmt,1)
[
− 2λtms,1mt,1 + λsms,2(−1 + λtmt,1)

]
.

where mt,1,mt,2,ms,1,ms,2 are defined in Definition 2. Additionally, we have ∆Γ ≥ 0.
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In the limiting formula for Ls − Lt, the term ∆ is equal to the limiting value Ls − Lt in the setting
of Section 2.1 where both models are trained using (standard) ridge regression, and the benefit of the
learned features for the student is due to the term −ζ2∆Γ, which is always non-positive. Because of
this term, even in the settings that ∆ ≥ 0 (i.e., the mechanism of Section 2.1 is not enough on its own
for weak-to-strong generalization), the student may still outperform the teacher.

Figures 2 and 3 demonstrate that the asymptotic characterization of Theorem 8 match simulations
very well even for moderately large ns, nt,dX. In Figure 2, we fix γs, γt and σ2

ε and plot the contours
of Ls − Lt for different (λt, λs) pairs. We show that unlike Section 2.1, in both settings with γs > 1
or γs < 1, pairs (λt, λs) with λt > λ⋆

t = σ2
εγt (i.e., over-regularized teacher) exist where the

student model outperforms the teacher. In Figure 3, we set λt = λ⋆
t and plot Ls as a function of λs

for different values of the feature quality parameter ζ. We see that for small ζ, the student never
outperforms the teacher, similar to the case in Section 2.1. However, this changes when ζ is increased,
and the student can have a smaller test error for some values of λs.

Mechanism of Weak-to-Strong Generalization. Theorem 8 shows that if the student model has
been pre-trained and has learned features that are better suited for the task of predicting the target
function (or equivalently is fine-tuned using a better regularization structure), it can leverage this
advantage to achieve a better performance compared to the teacher, despite being trained on labels
generated by the teacher. This shows yet another mechanism of weak-to-strong generalization.

3 The Nonlinear Case

Figure 3: Student error Ls versus log λs

in the setting of Section 2.2, plotted for
several values of ζ with the teacher op-
timally regularized. Circles show simu-
lation results, and dashed curves are the
predictions of Theorem 8. The dashed
black line marks the teacher error Lt.
See Section 4 for details.

In Section 2, we considered a setting where both the stu-
dent and the teacher model trained a linear head through a
convex objective. Although this is a very effective model
for the analysis of the roles of regularization and over-
parameterization, it coincides to the linearized regime of
neural network training where features are frozen at their
initialization. As a result, the linearized models are not
rich enough to study phenomena that happen as a result of
(nonlinear) feature learning.

Consider the problem of learning a few distinct skills and
abilities using data from a compositional task, where a
blend of different skills are needed in order to succeed.
We model each skill as a vector in the high-dimensional
input space RdX , and learning a skill as learning the cor-
responding direction. Take, as a running example the task
of holding a coherent conversation in an unfamiliar lan-
guage. To succeed, the model needs to blend abilities such
as logical reasoning, with language-specific skills. Abil-
ities such as logical reasoning are difficult to acquire, but
transferable across domains. However, language-specific
abilities such as vocabulary and grammar, are conceptually
straightforward, but they are task-specific and often cannot
be learned from other related tasks.

Motivated by this setting, in our model, we let the samples for the teacher model be generated
according to a multi-index function (e.g., Box and Cox [1964], Bickel and Doksum [1981]) with an
easy and a hard component. Here, the teacher has access to St = {(xi, yi)}nt

i=1 drawn from

xi ∼ N(0, IdX
), and yi = σe(x

⊤βe) + σh(x
⊤βh), (9)

where βe,βh ∈ RdX are two orthonormal directions that we want to learn, and σe, σh : R → R
are two link functions. In this problem, the hardness of learning each direction βe,βh from these
samples is known to be characterized by the information-exponent of their link function [Dudeja
and Hsu, 2018, Ben Arous et al., 2021]. For any real-valued function σ : R → R with Hermite
coefficients {cσ,k}∞k=0, the information-exponent is defined as κσ := min{k ∈ N : cσ,k ̸= 0}. We
make the following assumption on σe and σh.

Assumption 9. Assume that κσe
= 1 and κσh

> 1 (i.e., σe is an easy and σh is a hard link function).
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We let the student f̂s and teacher f̂s models be neural networks given by f̂s(x) = a⊤s σ(Wsx) and
f̂t(x) = a⊤t σ(Wtx), where σ : R → R is an activation function with κσ = 1, and at ∈ Rpt ,as ∈
Rps , Wt ∈ Rpt×dX , and Ws ∈ Rps×dX . To learn the relevant directions βe,βh, we update the first
layer weights to align them to these directions; a task also referred to as weak recovery [Ben Arous
et al., 2021, Dandi et al., 2023, 2024, Arnaboldi et al., 2024, Lee et al., 2024].

For training, we update the teacher model f̂t using the samples S and use f̂t to generate synthetic
labels for ns ∈ N unlabeled covariates Ss = {x̃i}ns

i=1 drawn from the same distribution according
to x̃i ∼ N(0, IdX

) as ỹi = f̂t(x̃i). We then use these samples to update the student model f̂s. We
consider the correlation loss defined as

L̂t := −n−1
t

nt∑
i=1

yif̂t(xi), and L̂s := −n−1
s

ns∑
i=1

ỹi f̂s(x̃i). (10)

Fixing at ∈ Rpt with ∥at∥2 = Θ(1), and initializing Wt at Wt,0 with i.i.d. N(0,d−1
X ) entries, we

update Wt using one-step of gradient descent on Lt given by

Ŵt = Wt,0 − ηt∇Wt
L̂t|Wt,0,at

.

The following result, which is a corollary of Ba et al. [2022, Proposition 2], shows that the after
this update, Wt aligns to the easy direction βe, but does not align to the hard direction βh; i.e., the
teacher model could not learn the hard direction using these samples.

Proposition 10. Under the high-dimensional proportional limit of Assumption 1, and assuming that
ηt = O(1) and pt = Θ(dX), we have

∥Ŵtβe∥2 →P c > 0 and ∥Ŵtβh∥2 →P 0.

After this update, we set f̂t(x) = a⊤t σ(Ŵtx). We assumed that the teacher has not gone through
extensive pre-training on other tasks that depend on the directions βe,βh; thus, we made the
assumption that the Wt is initialized at random. Recall that β̂h is a hard direction, but it is relevant
for a variety of tasks. Thus, we assume that the student has been pre-trained on a variety of different
relevant tasks, and has already learned the hard but cross-domain ability that corresponds to βh;
thus Ws at initialization is aligned to βh. In particular, we set Ws,0 = W̄s,0 + τ āβ⊤

h where
W̄s,0 ∈ Rps×dX has N(0,d−1

X ) entries, τ ∈ R and ā ∈ Rps is a unit norm vector. We update Ws

using one-step of gradient descent on Ls; i.e.,

Ŵs = Ws,0 − ηs∇Ws
L̂s|Ws,0,as

.

Note that training Ws excessively on data generated from the teacher can result in the student to

forget the direction βh. However, in the next theorem, we show that a single step of SGD on L̂s

can induce non-trivial alignment between Ws and the easy direction βe while keeping the weights
aligned to βh. This aligns to the empirical and theoretical findings of Burns et al. [2024], Medvedev
et al. [2025] that show that early stopping the teacher is required for weak-to-strong generalization.

Theorem 11. In the asymptotic regime of Assumption 1 with pt, ps = Θ(dX), assuming that ηt, ηs =
O(1) and τ = o(

√
dX), we have

∥Ŵsβe∥2 →P ce > 0 and ∥Ŵsβh∥op →P ch > 0

This theorem is a extension of [Ba et al., 2022, Proposition 2] to the case where the first-layer weight
is initialized as a spiked random matrix and the labels are also generated by another one-step updated
two-layer neural network, which can be also of independent interest. This theorem shows that, under
this setting, the student model is still able to learn the direction βe from the imperfect labels generated
by the teacher, and achieve non-vanishing alignment to both the directions βe,βh, although the
student was unable to learn the hard direction βh.

Mechanism of Weak-to-Strong Generalization. In this setting, a teacher model can acquire
the easier, yet specialized skills through fine-tuning, even though it cannot learn abilities that are
challenging to learn. By contrast, the student is pretrained on vast, heterogeneous corpora and already
possesses those hard, yet cross-domain, skills. As a result, weak-to-strong generalization can happen
when the teacher teaching the student the specialized language abilities, thereby complementing the
student’s strengths from pre-training.
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4 Numerical Validation
In this section, we provide the details of the simulations presented throughout the papers.

Figures 1 and 2. We fix the values of dX, nt, ns and σε and plot the contours of Ls−Lt using numer-
ical simulations and also the results of Theorem 4 and 8. The simulation results are averaged over ten
trials. See Section 2.1 and 2.2 for discussions of the results. In Figure 1, for the under-parameterized
regime (left), we set dX = 500, nt = ns = 2000, σε = 1 and for the over-parameterized regime
(right), we set dX = 500, nt = 2000, ns = 416, σε = 2. In Figure 2, for the under-parameterized
regime (left), we set ζ = 0.8, dX = 500, nt = ns = 2000, σε = 1, and the over-parameterized
regime (right), we set ζ = 0.88, dX = 500, nt = 2000, ns = 416, σε = 1.

Figure 3. In these experiments, we set dX = 500, nt = ns = 2000, σε = 1 and set λt = σ2
εγt =

0.25. We compare the theoretical curves of Ls as a function of γs with numerical simulation, for
ζ ∈ {0, 0.68, 0.89, 0.98}. The simulations in this experiment have not been averaged over multiple
trials. See Section 2.2 for discussion of the results.

5 Conclusion
In this paper, we show that weak-to-strong generalization is not unique to complex language models
and can happen even in much simpler theoretical setups. By studying three natural and tractable
learning theoretical settings, we identified and theoretically analyzed three distinct routes by which a
student model can outperform its teacher: (1) compensating for under-regularization, (2) harness-
ing a more task-aligned regularization structure, and (3) combining teacher-taught, easy-to-learn
components with pretrained, hard-to-learn features. Our results clarify when and why these effects
arise, complementing prior empirical and theoretical insights about the roles of regularization and
overparameterization, and the role of feature adaptation.
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A Preliminaries
Given two matrices A,B ∈ Rn1×n2 , we denote their Hadamard product (element-wise product) by
A⊙B ∈ Rn1×n2 . Also, for for k ∈ N, we define the Hadamard power as

A⊙k = A⊙ · · · ⊙A︸ ︷︷ ︸
k times

∈ Rn1×n2 .

Lemma 12. For any v ∈ Rn1 , u ∈ Rn2 , and C ∈ Rn1×n2 , we have

(vu⊤)⊙C = diag(v)Cdiag(u).

Proof. The proof is immediate by writing the entries of the two sides.

We also heavily leverage the following theorem to prove the concentration inequality for quadratic
forms. See e.g., Rudelson and Vershynin [2013] for a modern proof.

Theorem 13 (Hanson-Wright Inequality [Hanson and Wright, 1971]). Let x = (X1, . . . , Xn) ∈ Rd

be a random vector with independent sub-gaussian components Xi with EXi = 0. Let D be an n×n
matrix. Then, for every t ≥ 0, we have

P
[ ∣∣x⊤Dx− E

[
x⊤Dx

]∣∣ > t
]
≤ 2 exp

[
−cmin

(
t2

∥D∥2F
,

t

∥D∥op

)]
,

where c is a constant that depends only on the sub-gaussian constants of Xi.

To analyze spiked random matrices, we will use the following matrix identity.

Lemma 14. (Sherman-Morrison Formula). Let A ∈ Rn×n be an invertible matrix, and let u,v ∈ Rn

be column vectors such that 1 + v⊤A−1u ̸= 0. Then the inverse of the rank-one update A+ uv⊤ is
given by:

(A+ uv⊤)−1 = A−1 − A−1uv⊤A−1

1 + v⊤A−1u
.

A.1 Hermite Polynomials
We let Hk be the k-th (probabilist’s) Hermite polynomial on R defined by

Hk(x) = (−1)k exp(x2/2)
dk

dxk
exp(−x2/2) ∀x ∈ R.

These polynomials form an orthogonal basis in the Hilbert space L2 of measurable functions f :
R → R such that ∫

f2(x)e−
x2

2 dx < ∞

with inner product

⟨f, g⟩ =
∫

f(x)g(x) e−
x2

2 dx.

The first few Hermite polynomials are

H0(x) = 1, H1(x) = x, and H2(x) = x2 − 1.

Lemma 15. For any k ∈ N and x, y ∈ R, we have

Hk(x+ y) =

k∑
j=0

(
k

j

)
xjHk−j(y)

Proof. Note that using [Abramowitz and Stegun, 1968, Equation 22.8.8] we have

d

dx
Hk(x) = kHk−1(x).
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Thus, the j-th derivative of Hk is given by

dj

dxj
Hk(x) =

k!

(k − j)!
Hk−j(x).

By Taylor expanding Hk(x+ y) at y, we find

Hk(x+ y) =

k∑
j=0

xj

j!

dj

dyj
Hk(y) =

k∑
j=0

(
k

j

)
xjHk−j(y),

proving the lemma.

A.2 Random Matrix Theory
We first define the following empirical covariance and resolvent matrices that will appear throughout
the proofs.

Σ̂ = X⊤X/nt, Σ̃ = X̃⊤X̃/ns,

R̂ = (Σ̂+ λtIdX
)−1, and R̃ = (Σ̃+ λsIdX

)−1.

We will use the following characterization of the eigenvalues of Σ̂, Σ̃ in the high-dimensional
proportional limit by Marchenko and Pastur [1967].

Theorem 16 (Marchenko–Pastur Theorem). In the high-dimensional proportional limit where
nt, ns,dX → ∞ such that dX

ns
→ γs and dX

nt
→ γt, the empirical spectral distribution (ESD) of

Σ̂ (and Σ̃) converges almost surely to the Marchenko–Pastur distribution µMP (γt) (and µMP (γs)).

Recall from definition 2 that the function m(·, ·) → R is defined as

m(λ; γ) =

∫
dµMP (γ)(s)

s+ λ
.

Hence, taking derivatives with respect to λ, we get

m′(λ; γ) =
∂

∂λ
m(λ; γ) = −

∫
dµMP (γ)(s)

(s+ λ)2
.

In the following section, we write the test error Ls and Lt as a function of m and its derivatives. In
particular, note that using the Marchenko-Pastur theorem, we have

d−1
X Tr

(
R̂
)
→P mt,1, d−1

X Tr
(
R̂2
)
→P mt,2, and

d−1
X Tr

(
R̃
)
→P ms,1, d−1

X Tr
(
R̃2
)
→P ms,2,

where for p ∈ {s, t}, we define mp,1 = m(λp, γp) and mp,2 = −∂m
∂λ

∣∣
λp,γp

.

In the following proofs, we will also use the asymptotic freeness of independent Wishart random
matrices [Voiculescu, 1991, Capitaine and Donati-Martin, 2007]. See [Feier, 2012, Section 3.4 and
4.4] for a brief overview of free probability theory for random matrix theory.

B Proof of Proposition 3

To prove this theorem, note that the vector β̂t can be written as

β̂t = (X⊤X+ λtntIdX
)−1X⊤y

= (X⊤X+ λtntIdX
)−1X⊤ (Xβ⋆ + ε)

= (Σ̂+ λtIdX
)−1Σ̂β⋆ + n−1

t (Σ̂+ λtIdX
)−1X⊤ε,
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where we have used the fact that y = Xβ⋆ + ε. Thus, recalling the definition of Σ̂ and R̂ from the
Section A, we can write

β̂t − β⋆ = (R̂ Σ̂− IdX
)β⋆ + n−1

t R̂X⊤ε

The test error of the teacher model is given by Lt = σ2
ε + ∥β̂ − β⋆∥22 in which

∥β̂t − β⋆∥22 = β⊤
⋆ (R̂ Σ̂− IdX

)⊤(R̂ Σ̂− IdX
)β⋆ + n−2

t ε⊤
(
XR̂2X⊤

)
ε+ oP(1),

where we have used the Hanson-Wright inequality and the facts that ε and β⋆ are independent
mean zero random vectors. Again, by using the Hanson-Wright inequality and recalling that (ε,β⋆)
is independent of other sources of randomness in the problem, we can further simplify the above
expression to arrive at

∥β̂t − β⋆∥22 →P d−1
X Tr

[
(R̂ Σ̂− IdX

)⊤(R̂ Σ̂− IdX
)
]
+ σ2

εγtd
−1
X Tr

[
Σ̂ R̂2

]
Note that R̂Σ̂ = IdX

− λtR̂. Thus, denoting the eigenvalues of Σ̂ by {σk}dk=1, we can use the
Marchenko-Pastur Theorem for covariance matrices to write

d−1
X Tr

[
(R̂ Σ̂− IdX

)⊤(R̂ Σ̂− IdX
)
]
= λ2

td
−1
X Tr

[
R̂2
]
→P λ2

tmt,2.

Similarly, we have

d−1
X Tr

[
Σ̂ R̂2

]
= d−1

X Tr
[
(R̂− λtR̂

2)
]
→P mt,1 − λtmt,2.

Putting these together yields

∥β̂t − β⋆∥22 →P λ2
tmt,2 + σ2

εγt (mt,1 − λtmt,2) .

= λtmt,2

(
λt − σ2

εγt
)
+ σ2

εγtmt,1.

Plugging this into the expression of Lt gives

Lt →P σ2
ε + λtmt,2

(
λt − σ2

εγt
)
+ σ2

εγtmt,1,

which concludes the proof for Proposition 3.

C Proof of Theorem 4
Recalling that ỹ = X̃β̂t and β̂t = (X⊤X+λtntIdX

)−1X⊤y, the vector β̂s can be written as

β̂s = (X̃⊤X̃+ λsnsIdX
)−1X̃⊤ỹ

= (X̃⊤X̃+ λsnsIdX
)−1 X̃⊤X̃ (X⊤X+ λtntIdX

)−1X⊤y

= (X̃⊤X̃+ λsnsIdX
)−1 X̃⊤X̃ (X⊤X+ λtntIdX

)−1X⊤(Xβ⋆ + ε),

where we have used y = Xβ⋆ + ε. Using the definition of the matrices Σ̃, R̂, Σ̂, R̃ from Section A,
we can simplify the above expression as

β̂s − β⋆ = (R̃Σ̃R̂Σ̂− IdX
)β⋆ + n−1

t R̃Σ̃R̂X⊤ε.

Hence, we have

∥β̂s − β⋆∥22 = β⊤
⋆ (R̃Σ̃R̂Σ̂− IdX

)⊤(R̃Σ̃R̂Σ̂− IdX
)β⋆ + n−2

t ε⊤XR̂Σ̃R̃2Σ̃R̂X⊤ε+ oP(1)

= d−1
X Tr

[
(R̃Σ̃R̂Σ̂− IdX

)⊤(R̃Σ̃R̂Σ̂− IdX
)
]

+ σ2
εγtd

−1
X Tr

[
(R̂Σ̂R̂)(Σ̃R̃2Σ̃)

]
+ oP(1),

where we have used the Hanson-Wright inequality and the facts that ε and β⋆ are independent of
other sources of randomness in the problem. Now, it remain to analyze the following traces in the
high-dimensional proportional limit:

τ1 = d−1
X Tr

[
(R̃Σ̃R̂Σ̂− IdX

)⊤(R̃Σ̃R̂Σ̂− IdX
)
]
, and

τ2 = d−1
X Tr

[
(R̂Σ̂R̂)(Σ̃R̃2Σ̃)

]
.
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Analysis of τ1. Note that R̃Σ̃ = IdX
− λsR̃ and R̂Σ̂ = IdX

− λtR̂, which gives

R̃Σ̃R̂Σ̂− IdX
= −λsR̃− λtR̂+ λsλtR̃R̂.

Plugging this into the expression for τ1, we arrive at

τ1 = λ2
sd

−1
X Tr

[
R̃2
]
+ λ2

td
−1
X Tr

[
R̂2
]
+ λ2

sλ
2
td

−1
X Tr

[
R̂2R̃2

]
+ 2λsλtd

−1
X Tr

[
R̃R̂

]
− 2λsλ

2
td

−1
X Tr

[
R̃R̂2

]
− 2λ2

sλtd
−1
X Tr

[
R̂R̃2

]
The limiting values of these traces can be computed as follows:

• Term 1 and 2: Let s̃k be the k-th eigenvalue of Σ̃. We can use the arguments in Section A
to write

d−1
X Tr

[
R̃2
]
→P ms,2,

where ms,2 is defined in Definition 2. Similarly, for the second term, we have

d−1
X Tr

[
R̂2
]
→P mt,2,

where the term mt,2 is defined in Definition 2.

• Term 3, 4, 5, and 6: To analyze d−1
X Tr

[
R̂2R̃2

]
, we can use the asymptotic freeness of

independent Wishart random matrices [Voiculescu, 1991] (see also Capitaine and Donati-
Martin [2007]), and the Stone-Weierstrass theorem to approximate the function f(x) =
(x+ s)−2 using polynomials, to write

d−1
X Tr

[
R̂2R̃2

]
=
(
d−1

X Tr
[
R̂2
])(

d−1
X Tr

[
R̃2
])

+ oP(1)

→P ms,2mt,2.

Similarly, for the remaining terms, we have

d−1
X Tr

[
R̂R̃

]
→P mt,1ms,1

d−1
X Tr

[
R̂R̃2

]
→P mt,1ms,2, and

d−1
X Tr

[
R̂2R̃

]
→P mt,2ms,1.

Putting these together, we arrive at the following conclusion:

τ1 →P λ2
t mt,2 + λ2

s ms,2 + λ2
sλ

2
tms,2mt,2

+ 2λtλsmt,1ms,1 − 2λsλ
2
tms,1mt,2 − 2λ2

sλtms,2mt,1.

Analysis of τ2. Again, we can use the identities R̃Σ̃ = IdX
− λsR̃ and R̂Σ̂ = IdX

− λtR̂, and the
asymptotic freeness of independent Wishart random matrices to write

τ2 = d−1
X Tr

[
(R̂Σ̂R̂)(Σ̃R̃2Σ̃)

]
= d−1

X Tr

[(
R̂− λtR̂

2
)(

IdX
− λsR̃

)2]
= d−1

X Tr
[(

R̂− λtR̂
2
)]

· d−1
X Tr

[(
IdX

− λsR̃
)2]

Hence, we can use an argument similar to the argument for the term 3 above to write

τ2 →P

(
mt,1 − λt mt,2

)(
1 + λ2

sms,2 − 2λsms,1

)
.
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Putting everything together. Putting the conclusions above together, the limiting loss difference
can be written as

Ls − Lt = σ2
ε + τ1 + τ2 + oP(1)

→P (σ2
εγt − λt)

[
(mt,1 − λtmt,2)

(
λ2
sms,2 − 2λsms,1

)]
+ λ2

sms,2 (1− λtmt,1) := ∆

which completes the proof of the theorem.

D Proof of Theorem 5
From Theorem 4, we know that in the high-dimensional proportional limit, we have

Ls − Lt →P ∆ = (σ2
εγt − λt)

[
(mt,1 − λtmt,2)

(
λ2
sms,2 − 2λsms,1

)]
+ λ2

sms,2 (1− λtmt,1) .

To study the (λs, λt) pairs for which the strong model can outperform the teacher, we study the
non-zero roots of the nonlinear equation ∆ = 0, which are the solutions to

(σ2
εγt − λt)

(
mt,1 − λtmt,2

λtmt,1 − 1

)
=

λsms,2

λsms,2 − 2ms,1
(11)

where the left-hand side is a function of teacher parameters, and the right-hand side is a function of
the student parameters.

Right-Hand Side. First, recall from Definition 2 that

ms,1 = m(λs; γs), ms,2 = − ∂

∂λ
m(λ; γ)|λs,γs .

in which

m(λ; γ) = − 1

2γλ

[
1− γ + λ−

√
(1 + γ + λ)2 − 4γ

]
.

Thus, after simple Algebraic manipulations, we can write the right-hand side of (11) as

H1 :=
λsms,2

λsms,2 − 2ms,1

=
λs

1 + γ2
s + 2γs(λs − 1) + λs + λ2

s + (1− γs − λs)
√
−4γs + (1 + γs + λs)2

≤ 0.

We plot H1 as a function of λs for different values of γs in Figure 4. It can be seen that this function
H1 undergoes a phase transition at γs = 1. When γs < 1, the equation H1(λ, γ) = c for any c ≤ 0
has only one solution for λs and the function is strictly decreasing. However, for γs > 0, the function
H1 is non-monotone and H1(λ, γ) = c can have either none, one, or two solutions for λs. We will
algebraically prove this fact below.

After simple algebraic manipulations, we find that setting H1(λs, γs) = c for some c ≤ 0, we can
have two potential solutions for λs given by

λ±
s (c, γs) = −

1 + 2c+ 5c2 + 4cγs + 4c2γs ± (1 + 3c)
√
(c− 1)2 + 8c(1 + c)γs

4c(1 + c)
. (12)

By inspecting the solutions, we find that when γs ≤ 1, only the solution λ−
s is valid. However, when

γs > 1, both λ+
s and λ−

s become valid solutions as long as

c <
1

1− 4γs +
√
γs(γs − 1)

, (13)

which ensures that (c− 1)2 + 8c(1 + c)γs ≥ 0.

Figure 5 shows the values of λs for which H2(λs, γs) = c as a function of c, for different values of
γs. The case of γs = 1 is shown with a blue dashed line. When γs > 1, two solutions can exist for
λs. In this case, the largest c for which two solutions exits are given by (13). However, for γs < 1,
there is always one solution.
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Figure 4: The function H1, as a function of λs, for different values of γs. For the case with γs > 1,
the equation H1(λs) = c with c < 0 can have two solutions. However, for γs < 1, there is always
one solution.

Figure 5: The parameters λs for which H1(λs) = c, for different values of c. Two solutions can exist
when γs > 1. However, for γs < 1, only one solution can exist.

20



Left-Hand Side. We will now turn our attention to the left-hand side of (11). Recall that

mt,1 = m(λt; γt), mt,2 = − ∂

∂λ
m(λ; γ)|λt,γt

.

We plug these into the right-hand side of (11), and after simplification, we arrive at

H2 := (σ2
εγt − λt)

(
mt,1 − λtmt,2

λtmt,1 − 1

)
=

σ2
εγt − λt√

−4γt + (1 + γt + λt)2
.

Hence, σ2
εγt − λt determines the sign of H2.

Putting Everything Together. After characterizing the functions H1 and H2, we can use these
characterizations to prove the theorem.

• When σ2
εγt < λt, we have H2 > 0. Noting that H1 ≤ 0, we find that in this case, there is

no solution for λs such that H1 = H2.

• When σ2
εγt ≥ λt, we have H2 ≤ 0. Based on the analysis above for the right-hand side of

(11), two cases can happen:

– If γs < 1, we always have a solution λ̄ given by λ−
s (c, γs) from (12) with

c =
σ2
εγt − λt√

−4γt + (1 + γt + λt)2
(14)

such that H1 = H2.

– If γs > 1, as long (13) holds; i.e.,

c =
σ2
εγt − λt√

−4γt + (1 + γt + λt)2
≤ 1

1− 4γs +
√

γs(γs − 1)
,

two solutions exists for λs that satisfy for H1 = H2. The solutions are given by
(λ−

s , λ
+
s ) from (12). Consequently, we have ∆ < 1 as long as λs ∈ (λ−

s , λ
+
s ).

These together finish the proof.

E Non-Monotone Error Curves
We use the theoretical prediction from Theorem 4 and plot the test error of the student model Ls

as a function of γt. In Figure 6, we set the teacher regularizer to λt → 0 (ridgeless regression) and
set γs = 0.1, σε = 0.2. We consider the same setting but with σε = 1 in Figure 7. We observe that
in both settings, the student has a non-monotone behavior for different values of λs, with a peak
happening at the interpolation threshold γt = 1.

In Figure 8, we consider the same setting as Figure 7 with γs = 0.1, σε = 1 and set λt = λ⋆
t = σ2

εγt
(i.e., the optimal ridge regularizer). We observe that optimal regularization of the teacher model
completely mitigates double descent in the student model; i.e., the test loss of the student model
becomes monotone as a function of γt. This is in line with the findings of [Nakkiran et al., 2021] for
standard ridge regression. Also, we observe that as predicted by Theorem 5, the student can never
outperform the teacher.

In Figure 9, we consider the same setting as 8 but we set λt = 0.15λ⋆
t . We observe the in this setting

where the teacher is still under-regularized, the student model still exhibits a non-monotone test error
as a function of γt.

F Proof of Theorem 8
First, recall from Definition 8 that

Γ = IdX
+ dX β̂β̂

⊤.

Using the Sherman-Morrison formula, we have

Γ−1 = IdX
− dXβ̂β̂

⊤

1 + dXβ̂⊤β̂
= IdX

− (1 + o(1)) β̂β̂⊤.
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Figure 6: The test error of the student model Ls as a function of γt for σε = 0.2, γs = 0.1, λt → 0
(ridgeless), and different values of λs.

Figure 7: The test error of the student model Ls as a function of γt for σε = 1, γs = 0.1, λt → 0
(ridgeless), and different values of λs.
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Figure 8: The test error of the student model Ls as a function of γt for σε = 1, γs = 0.1, λt = λ⋆
t =

σ2
εγt (optimal ridge regularizer), and different values of λs.

Figure 9: The test error of the student model Ls as a function of γt for σε = 1, γs = 0.1, λt =
0.15λ⋆

t = 0.15σ2
εγt, and different values of λs.
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In the setting of this theorem, we have β̂s = (Σ̃+ λsΓ
−1)−1X̃⊤ỹ/ns. Thus, we now focus on the

generalized resolvent matrix (Σ̃+ λsΓ
−1)−1. Using the Sherman-Morrison formula, this matrix can

be expanded as

(Σ̃+ λsΓ
−1)−1 = (Σ̃+ λsIdX

− λsβ̂β̂
⊤)−1 = R̃+

λs

1− λsβ̂⊤R̃β̂
R̃ β̂β̂⊤R̃.

For simplicity, we define the scaler

ν :=
λs

1− λsβ̂⊤R̃ β̂
.

Hence, plugging the Sherman-Morrison expression back into the expression for β̂s, we have

β̂s =
[
R̃+ ν R̃ β̂β̂⊤R̃

]
X̃ỹ/ns =

[
R̃+ ν R̃ β̂β̂⊤R̃

]
Σ̃β̂t

=
[
R̃+ ν R̃ β̂β̂⊤R̃

]
Σ̃
(
RΣ̂β⋆ +RX⊤ε/nt

)
= R̃Σ̃RΣ̂β⋆ + R̃Σ̃R

X⊤ε

nt
+ ν

[
R̃β̂β̂⊤R̃Σ̃R̂Σ̂β⋆ + R̃β̂β̂⊤R̃Σ̃R̂

X⊤ε

nt

]
.

We define t1, t2, t3 ∈ RdX as

t1 = R̃Σ̃RΣ̂β⋆ − β⋆, t2 = R̃Σ̃R
X⊤ε

nt
,

t3 = ν

[
R̃β̂β̂⊤R̃Σ̃R̂Σ̂β⋆ + R̃β̂β̂⊤R̃Σ̃R̂

X⊤ε

nt

]
.

With this definition, Ls = σ2
ε + ∥βs − β⋆∥22 can be written as

Ls = σ2
ε + ∥t1 + t2 + t3∥22

= ∥t1∥22 + ∥t2∥22 + ∥t3∥22 + 2t⊤1 t2 + 2t⊤2 t3 + 2t⊤1 t3.

We will analyze each term separately:

• The first and second terms ∥t1∥22 + ∥t2∥22 have already been calculated in in the proof of
Theorem 4, we have

∥t1∥22 + ∥t2∥22 − Lt →P ∆,

where ∆ is defined in Theorem 4.

• For the third term, we can write

∥t3∥22 = (β̂⊤R̃2 β̂) ·
(

λs

1− λsβ̂⊤R̃ β̂

)2

·
(
β̂⊤R̃Σ̃R̂Σ̂β⋆

)2
.

From the definition of ms,1 and ms,2 and using the Marchenko-Pastur theorem, we have
β̂⊤R̃2 β̂ →P ms,2, and also β̂⊤R̃ β̂ →P ms,1. Also, we can write

β̂⊤R̃Σ̃R̂Σ̂β⋆ = ζd−1
X Tr

(
R̃Σ̃R̂Σ̂

)
= ζ d−1

X Tr
(
R̃Σ̃

)
· d−1

X Tr
(
R̂Σ̂

)
→P ζ · (1− λsms,1) · (1− λtmt,1) ,

where ζ is defined in Assumption 7, and we have used the asymptotic freeness of independent
Wishart random matrices [Voiculescu, 1991, Capitaine and Donati-Martin, 2007]. Hence,

∥t3∥22 →P
λ2
sζ

2ms,2

(1− λsms,1)2
(1− λsms,1)

2(1− λtmt,1)
2 = λ2

sζ
2ms,2(1− λtmt,1)

2.

• For the fourth term, note that

2t⊤1 t3 = 2((R̃Σ̃R̂Σ̂− IdX
)Σ̂β⋆)

⊤Σ̃R̂X⊤ε/nt →P 0,

using the Hanson-Wright inequality and the fact that ε is mean zero and independent of all
other sources of randomness in the problem.
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• Similarly to the fourth term, for the fifth term we can write

2t⊤2 t3 = 2ν

(
R̃Σ̃R̂

X⊤ε

nt

)⊤ [
R̃β̂β̂⊤R̃Σ̃R̂Σ̂β⋆ + R̃β̂β̂⊤R̃Σ̃R̂

X⊤ε

nt

]
= 2ν

(
β⊤R̃Σ̃R̂Σ̂β⋆

)(
n−1
t ε⊤XR̂Σ̃R̃2β̂

)
+ 2ν

(
n−1
t β̂⊤R̃Σ̃R̂X⊤ε

)(
n−1
t ε⊤XR̂Σ̃R̃2β̂

)
.

Using the Hanson-Wright inequality and the fact that ε is mean zero and independent of all
other sources of randomness in the problem, we have n−1

t ε⊤XR̂Σ̃R̃2β̂ →P 0. Hence,

2t⊤2 t3 →P 0.

• The sixth term can be expanded as follows:

2t⊤1 t3 = 2ν
(
β̂⊤R̃Σ̃R̂Σ̂β⋆ + n−1

t β̂⊤R̃Σ̃R̂X⊤ε
)
·
(
β̂⊤R̃(R̃Σ̃R̂Σ̂− IdX

)β⋆

)
= 2ν

(
β̂⊤R̃Σ̃R̂Σ̂β⋆

)
·
(
β̂⊤R̃2Σ̃R̂Σ̂β⋆ − β̂⊤R̃β⋆

)
+ oP(1),

where again we have used the Hanson-Wright inequality and the fact that ε is mean zero
and independent of all other sources of randomness in the problem. Above we have already
shown above that

β̂⊤R̃Σ̃R̂Σ̂β⋆ →P ζ · (1− λsms,1) · (1− λtmt,1) .

With a similar argument, we have

β̂⊤R̃2Σ̃R̂Σ̂β⋆ = ζ · d−1
X Tr

(
R̃2Σ̃R̂Σ̂

)
+ oP(1)

= ζ · d−1
X Tr

(
R̃2Σ̃

)
· d−1

X Tr
(
R̂Σ̂

)
+ oP(1)

→P ζ(1− λtmt,1) · (1− λtmt,1) · (ms,1 − λsms,2).

Also, β̂⊤R̃β⋆ →P ζms,1. Hence, putting all together, we get

2t⊤1 t3 →P 2ζ2λs(1− λtmt,1) [λtλsmt,1ms,2 − λtmt,1ms,1 − λsms,1] .

Thus, adding all the terms together, we have

Ls − Lt →P ∆− ζ2∆Γ

where the expression for ∆ is given in Theorem 4, and ∆Γ is given by

∆Γ := λs (−1 + λtmt,1)
[
− 2λtms,1mt,1 + λsms,2(−1 + λtmt,1)

]
.

This concludes the proof.

G Proof of Proposition 10
The training loss for the teacher model is given by

L̂t := − 1

nt

nt∑
i=1

yif̂t(xi) = − 1

nt

nt∑
i=1

yia
⊤
t σ(Wtxi).

Taking derivatives with respect to the matrix Wt, we arrive at

∇WtL̂t = − 1

nt

[(
at y

⊤)⊙ σ′(WtX
⊤)
]
X

Let cσ,1 be the first Hermite coefficient of the activation function σ, and define σ⊥ : R → R as

σ⊥(z) = σ(z)− cσ,1z, ∀z ∈ R,
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where Ez∼N(0,1)[σ⊥(z)] = 0. Thus, we can write

∇WtL̂t = − 1

nt

[(
at y

⊤)⊙ (cσ,1 + σ′
⊥(Wt,0X

⊤)
)]

X

= −cσ,1
nt

at y
⊤X− 1

nt

[(
at y

⊤)⊙ σ′
⊥(Wt,0X

⊤)
]
X

By construction, the matrix σ′
⊥(Wt,0X

⊤) has mean zero entries. Thus, using [Vershynin, 2012,
Theorem 5.44], we have ∥σ′

⊥(Wt,0X
⊤)∥op = O(

√
nt). Hence, using Lemma 12, we have

1

nt

∥∥∥ [(at y⊤)⊙ σ′
⊥(Wt,0X

⊤)
]
X
∥∥∥
op

=
1

nt

∥∥∥diag (at)σ′
⊥(Wt,0X

⊤) diag(y)X
∥∥∥
op

=
1

nt
· polylog(pt)√

pt
·
√
nt · polylog(nt)

√
nt

= Õ

(
1

√
pt

)
,

where we have used the fact that ∥X∥op = O(
√
nt) [Vershynin, 2012, Theorem 7.3.1], and the

sub-gaussian maximal inequality to get ∥a∥∞ = p
−1/2
t polylog(pt). Similarly, using the sub-Weibull

maximal inequality [Kuchibhotla and Chakrabortty, 2022, Proposition A.6 and Remark A.1], we
have ∥y∥∞ = O(polylog(nt)). As a result, for any β ∈ RdX with ∥β∥2 = 1, we have

∥∇Wt
L̂t β∥2 = n−1

t β⊤X⊤y + oP(1).

We will now study the case where β is the easy or the hard direction.

Easy direction. First, we let β = βe. In this case, we have

∥∇Wt
L̂t βe∥2 = n−1

t β⊤
e X

⊤ (σe(Xβe) + σh(Xβh)) + oP(1).

Note that Xβe ∈ Rnt is a vector of i.i.d. N(0, 1) entries. Thus, using the weak law of large numbers,
we have

n−1
t β⊤

e X
⊤σe(Xβe) →P Ez∼N(0,1)[zσe(z)] = cσe,1.

Also, recall the assumption that βe and βh are orthonormal vectors and X is a matrix with i.i.d.
N(0, 1) entries. Thus, Xβe and Xβh are independent and we have

n−1
t β⊤

e X
⊤σh(Xβh) →P 0.

Thus, the gradient has a non-trivial alignment to the easy direction. Consequently, for Ŵt =

Wt,1 − ηt∇W0
L̂t, with ηt = Θ(1), we have ∥Ŵtβe∥op →P c > 0, proving the first part of the

proposition.

Hard direction. For the hard direction β = βh, we have

∥∇WtL̂t βh∥2 = n−1
t β⊤

h X
⊤ (σe(Xβe) + σh(Xβh)) + oP(1).

The first term n−1
t β⊤

h X
⊤σe(Xβe) can be shown to be o(1) with an argument identical to the

argument above. For the second term, note that Xβh ∈ Rnt is a vector with independent N(0, 1)
entries. Using the weak law of large numbers, we have

n−1
t β⊤

h X
⊤σh(Xβh) →P EzN(0,1)[z ∼ σh(z)] = cσh,1 = 0,

where we have used the fact that the information exponent of σh is lager than one; i.e., cσh,1 = 0.
This shows that the gradient has no alignment to the hard direction, completing the proof.

H Proof of Theorem 11
From the proof of Proposition 10, we have

Ŵt = Wt,0 + cσ,1ηtatβ̂
⊤
e +∆,
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where β̂e = n−1
t X⊤y and ∥∆∥op = o(1). Given the fresh indepednent set of samples X̃, the

updated teacher model labels them as

ỹ = F̃at, with F̃ = σ(X̃Ŵ⊤
t ) ∈ Rns×pt

and the training loss for the student model given by

L̂s := − 1

ns

ns∑
i=1

ỹif̂t(x̃i) = − 1

ns

ns∑
i=1

ỹia
⊤
s σ(Wsx̃i).

Taking derivatives with respect to the matrix Wt, we arrive at

∇WsL̂s

∣∣∣
Ws,0

= − 1

ns

[(
as ỹ

⊤)⊙ σ′(Ws,0X̃
⊤)
]
X̃. (15)

To analyze the gradient, we should first characterize σ′(Ws,0X̃
⊤) and ỹ.

Analysis of ỹ. The feature matrix F̃ is given by

F̃ = σ(X̃Ŵ⊤
t ) = σ(X̃W⊤

t,0 + cσ,1ηtX̃β̂ea
⊤
t ),

which is a nonlinear transform applied element-wise to a spiked random matrix. Following the recent
results in nonlinear random matrix theory (e.g., Moniri et al. [2024], Wang et al. [2022], Moniri
and Hassani [2024], Guionnet et al. [2023], Feldman [2025]), in the regime where ηt = Θ(1), we
Hermite expand the nonlinearity as follows:

F̃ = σ
(
X̃Ŵ⊤

t

)
= σ

(
X̃W⊤

t,0 + cσ,1ηtX̃β̂ea
⊤
t

)
=

∞∑
k=1

cσ,kHk

(
X̃W⊤

t,0 + cσ,1ηtX̃β̂ea
⊤
t

)
.

Using Lemma 15 element-wise, we can expand this matrix further

F̃ =

∞∑
k=1

k∑
j=0

(
k

j

)
cjσ,1η

j
t cσ,kHk−j

(
X̃W⊤

t,0

)
⊙
(
(X̃β̂e)

⊙ja⊙j⊤
t

)
=

∞∑
k=1

cσ,kHk

(
X̃W⊤

t,0

)
+

∞∑
k=1

ckσ,1η
k
t cσ,k

(
(X̃β̂e)

⊙ka⊙k⊤
t

)
+

∞∑
k=1

k−1∑
j=1

(
k

j

)
cjσ,1η

j
t cσ,kHk−j

(
X̃W⊤

t,0

)
⊙
(
(X̃β̂e)

⊙ja⊙j⊤
t

)
.

Note that the first sum can be written as
∞∑
k=1

cσ,kHk

(
X̃W⊤

t,0

)
= σ(X̃W⊤

t,0).

In the second sum, by a simple sub-multiplicativity argument, the k-th term has an operator norm
bounded by ∥∥∥ckσ,1ηkt cσ,k ((X̃β̂e)

⊙ka⊙k⊤
t

)∥∥∥
op

= O
(
p
1−k/2
t

)
which is o(

√
pt) when k > 1. Moreover, using Lemma 12, the (k, j)-th term of the third sum has an

operator upper bounded by∥∥∥(k
j

)
cjσ,1η

j
t cσ,kHk−j

(
X̃W⊤

t,0

)
⊙
(
(X̃β̂e)

⊙ja⊙j⊤
t

)∥∥∥
op

=
∥∥∥(k

j

)
cjσ,1η

j
t cσ,k diag

(
(X̃β̂e)

⊙j
)
Hk−j

(
X̃W⊤

t,0

)
diag

(
a⊙j
t

)∥∥∥
op

= Õ
(
p
−j/2
t · n1/2

s

)
= o(p

1/2
t ).
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Putting everything together, we have

F̃ = σ(X̃W⊤
t,0) + c2σ,1ηt(X̃β̂e)a

⊤
t +∆,

where ∥∆∥op = o
(√

ns

)
. Hence, recalling that ∥at∥2 = Θ(1), we have

ỹ = F̃at = σ(X̃W⊤
t,0)at + c2σ,1ηt(X̃β̂e) + δ (16)

in which ∥δ∥2 = o(
√
ns).

Derivative Term σ′(XW⊤
s,0). Recall that we have Ws,0 = W̄s,0 + τ āβ⊤

h . Hence,

σ′(X̃W⊤
s,0) = σ′(X̃W̄⊤

s,0 + τ (X̃βh) ā
⊤).

This is again a nonlinearity applied element-wise to a spiked random matrix. Similar to the argument
for F̃, we can use Lemma 15 to write

σ′(X̃W⊤
s,0) =

∞∑
k=1

k∑
j=0

(
k

j

)
τ jcσ′,kHk−j

(
X̃W̄⊤

s,0

)
⊙
(
(X̃βh)

⊙j ā⊙j⊤
)

=

∞∑
k=1

cσ′,kHk

(
X̃W̄⊤

s,0

)
+

∞∑
k=1

τkcσ′,k

(
(X̃βh)

⊙k ā⊙k⊤
)

+

∞∑
k=1

k−1∑
j=1

(
k

j

)
τ jcσ′,k Hk−j

(
X̃W̄⊤

s,0

)
⊙
(
(X̃βh)

⊙j ā⊙j⊤
)
.

Similar to the reasoning used for F̃, we have∥∥∥(k
j

)
τ jcσ′,k Hk−j

(
X̃W̄⊤

s,0

)
⊙
(
(X̃β̂h)

⊙j ā⊙j⊤
)∥∥∥

op
= Õ

(
n1/2
s

(
τ

√
ps

)j
)

which is o(
√
ns) as long as τ = o(

√
ps). Thus, we have

σ′
(
X̃W⊤

s,0

)
= σ′

(
X̃W̄⊤

s,0

)
+

∞∑
k=1

τkcσ′,k

(
(X̃β̂h)

⊙k ā⊙k⊤
)
+ ∆̄ (17)

in which ∥∆̄∥op = o(
√
ns).

Gradient of the Loss. Now, we have all the ingredients to study the gradient of the loss function of
the student model. Plugging (17) into (15), we have

∇WsL̂s

∣∣∣
Ws,0

= − 1

ns

[(
as ỹ

⊤)⊙ [σ′
(
W̄s,0X̃

⊤
)
+

∞∑
k=1

τkcσ′,k

(
ā⊙k (X̃β̂h)

⊙k⊤
)
+ ∆̄

]]
X̃,

which we decompose as ∇Ws
L̂s

∣∣∣
Ws,0

= G1 +G2 where G1 and G2 are defined as

G1 = − 1

ns

[(
as ỹ

⊤)⊙ σ′
(
W̄s,0X̃

⊤
)]

X̃,

G2 = − 1

ns

[(
as ỹ

⊤)⊙( ∞∑
k=1

τkcσ′,k

(
ā⊙k(X̃β̂h)

⊙k⊤
)
+ ∆̄

)]
X̃.

We will analyze each component separately.

Analysis of G1. This term can be written as

G1 = − 1

ns

[(
as ỹ

⊤)⊙ σ′
(
W̄s,0X̃

⊤
)]

X̃.

Let cσ,1 be the first Hermite coefficient of the activation function σ, and define σ⊥ : R → R as

σ⊥(z) = σ(z)− cσ,1z, ∀z ∈ R,
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where Ez∼N(0,1)[σ⊥(z)] = 0. We can write write

G1 = −as

(
ỹ⊤X̃

ns

)
− 1

ns

[(
as ỹ

⊤)⊙ σ′
⊥

(
W̄s,0X̃

⊤
)]

X̃. (18)

By using Lemma 12 and by a similar argument to the one used in the proof of Proposition 10, the
operator norm of the second term of (18) be upper bounded as∥∥∥∥ 1

ns

[(
as ỹ

⊤)⊙ σ′
⊥

(
W̄s,0X̃

⊤
)]

X̃

∥∥∥∥
op

= o(1).

Using the characterization of ỹ in (16), the first term of (18) can be written as −asβ̂
⊤ with

β̂ =
1

ns
X̃⊤ỹ =

1

ns
X̃⊤

[
σ(X̃W⊤

t,0)at + c2σ,1ηt(X̃β̂e) + δ
]

This vector aligns to the easy target direction:

β⊤
e β̂ =

1

ns
(X̃βe)

⊤
[
σ(X̃W⊤

t,0)at + c2σ,1ηt(X̃β̂e) + δ
]

=
1

ns
(X̃βe)

⊤
[
σ(X̃W⊤

t,0)at + c2σ,1ηt(X̃β̂e)
]
+ o(1)

=
c2σ,1ηt

ns
(X̃βe)

⊤(X̃β̂e) + o(1) →P ce > 0. (19)

Analysis of G2. To analyze this component, first note that we can write

G2 = −

( ∞∑
k=1

τkcσ′,k

ns

((
as ⊙ ā⊙k

) (
ỹ ⊙ (X̃β̂h)

)⊙k⊤
)
+ ∆̄

)
X̃.

The operator norm of the k−th term of the sum is given by∥∥∥∥∥
[
τkcσ′,k

ns

((
as ⊙ ā⊙k

) (
ỹ ⊙ (X̃β̂h)

)⊙k⊤
)
+ ∆̄

]
X̃

∥∥∥∥∥
op

= O

((
τ

√
ps

)k
)

= o(1),

where we have used the sub-multiplicativity of the operator norm, τ = o(
√
ps), and the fact that

∥ỹ ⊙ (X̃β̂h)∥2 = Θ(
√
ns) and ∥as ⊙ ā⊙k∥2 = O(p

−k/2
s ).

Putting everything together. Using the the results of the analyses above, we have

Ŵs = W̄s,0 + τ āβ⊤
h + ηsasβ̂

⊤ + ∆̊

where ∥∆̊∥op = o(1). Hence, recalling (19), the updated weight matrix has non-vanishing correlation
with both the easy and hard directions, completing the proof.

29



NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.

• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include theoretical results.

• All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

• All assumptions should be clearly stated or referenced in the statement of any theorems.

• The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper only has simple synthetic experimetns with a clear instruction on
how to replicate them.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.

• The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).

• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The small scale experiments can be easily ran on all typical personal computers.

Guidelines:

• The answer NA means that the paper does not include experiments.

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

33

https://neurips.cc/public/EthicsGuidelines


Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The focus of this paper is on theoretical aspects of deep learning. We expect
the results to be illuminating for the deep learning theory community. We do not anticipate
any negative societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.

• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper poses no such risks.

• Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [NA]

Guidelines:

• The answer NA means that the paper does not use existing assets.

• The authors should cite the original paper that produced the code package or dataset.

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.

• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not release new assets.

• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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