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Abstract
We consider the basic statistical challenge of
designing an “all-purpose” mean estimation al-
gorithm that is recommendable across a vari-
ety of settings and models. Recent work by
Lee & Valiant (2022) introduced the first 1-d
mean estimator whose error in the standard finite-
variance+i.i.d. setting is optimal even in its con-
stant factors; experimental demonstration of its
good performance was shown by Gobet et al.
(2022). Yet, unlike for classic (but not necessar-
ily practical) estimators such as median-of-means
and trimmed mean, this new algorithm lacked
proven robustness guarantees in other settings, in-
cluding the settings of adversarial data corruption
and heavy-tailed distributions with infinite vari-
ance. Such robustness is important for practical
use cases. This raises a research question: is it
possible to have a mean estimator that is robust,
without sacrificing provably optimal performance
in the standard i.i.d. setting? In this work, we
show that Lee and Valiant’s estimator is in fact an
“all-purpose” mean estimator by proving:

(A) It is robust to an η-fraction of data corrup-
tion, even in the strong contamination model;
it has optimal estimation error O(σ

√
η) for

distributions with variance σ2.
(B) For distributions with finite zth moment, for

z ∈ (1, 2), it has optimal estimation error,
matching the lower bounds of Devroye et al.
(2016) up to constants.

We further show (C) that outlier robustness for
1-d mean estimators in fact implies neighborhood
optimality, a notion of beyond worst-case and
distribution-dependent optimality recently intro-
duced by Dang et al. (2023). Previously, such an
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optimality guarantee was only known for median-
of-means, but now it holds also for all estimators
that are simultaneously robust and sub-Gaussian,
including Lee and Valiant’s, resolving a question
raised by Dang et al. Lastly, we show (D) the
asymptotic normality and efficiency of Lee and
Valiant’s estimator, as further evidence for its per-
formance across many settings.

1. Introduction
The past decade has seen reinvigorated interest in under-
standing fundamental statistical problems, and in particular,
the foundational problem of mean estimation: given n sam-
ples from an unknown distribution, and an allowed failure
probability δ, what is the most accurate estimate of the dis-
tribution mean? The sample mean is the traditional estimate,
yet, its sensitivity to extreme values makes it an unreliable
estimator in practice. Other classic estimators, for exam-
ple the well-known median-of-means estimator (Alon et al.,
1999; Nemirovsky & Yudin, 1983; Jerrum et al., 1986), also
suffer from poor empirical performance.

Recent work by Lee & Valiant (2022), sitting in a line of re-
search initiated by the seminal paper of Catoni (2012), gave
the first 1-dimensional mean estimator whose estimation er-
ror is optimal (i.e. sub-Gaussian error) and tight even in the
leading constant. Gobet et al. (2022) further demonstrated
its good empirical performance against other competing
estimators.

Fact 1.1 (Lee & Valiant 2022). Given any distribution D
with mean µ and variance σ2 (both unknown), parameters
n, δ > 0, let X be a set of n independent samples from D.
Then, with probability at least 1− δ over the sampling pro-
cess, Estimator 1 on input δ and X will output an estimate
µ̂ with error at most

|µ̂− µ| ≤ σ ·

(
√
2 + o(1))

√
log 1

δ

n


Here, the o(1) term tends to 0 as

(
log 1

δ

n , δ
)
→ (0, 0) and,

crucially, is independent of D.

1
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Estimator 1 Mean Estimator of Lee and Valiant
Inputs: n i.i.d. samples {xi}; Confidence parameter δ.

1. Compute an initial estimate κ using any sub-Gaussian,
scale-and-translation-equivariant and robust mean esti-
mator (cf. Facts A.18 and A.23). One possible choice
is the median-of-means estimate: evenly partition the
data into log 1

δ groups and let κ be the median of the
set of means of the groups;

2. Find the solution α to the monotonic, piecewise-linear
equation ∑

i min(α(xi − κ)2, 1) = 1
3 log

1
δ

3. Output:

µ̂ = κ+ 1
n

∑
i(xi − κ)(1−min(α(xi − κ)2, 1))

The constant “
√
2” in Fact 1.1 is optimal, with matching

lower bounds. Essentially, Estimator 1 uses Step 1 to find
a preliminary estimate (e.g. using median-of-means, but it
can be other choices as well), which is then refined in Steps
2 and 3 into a better estimate—whose accuracy is optimal
even in the leading multiplicative constant. Even though the
form of the estimator is somewhat complicated—including
a function inversion in Step 2—the estimator can in fact
be computed easily in quasilinear time via a sorting opera-
tion, or even in linear time using a more subtle algorithm.
See (Lee & Valiant, 2022) for more discussion of the design
and analysis of Estimator 1.

While Fact 1.1 is a strong recommendation for Estimator 1,
getting optimal performance in this regime is not the only
practical desideratum for an estimator. Practitioners have
long observed that some real-world distributions are very
heavy-tailed, with variances that are gigantic (thus render-
ing guarantees like Fact 1.1 effectively useless), but whose
lower moments—between the first and second moments—
might be much more bounded. Further, real-world data can
be subject to random or even adversarial corruption. Per-
formance guarantees in these more demanding settings are
therefore critical for practice. However, while there are rela-
tively straightforward folklore analyses of classic algorithms
in these settings—including, notably, median-of-means and
trimmed mean—Lee and Valiant’s estimator has not been
studied in these contexts. The breadth of guarantees shown
for these classic estimators might therefore lead researchers
and practitioners to choose either of them over Lee and
Valiant’s estimator, despite the latter being a more accurate
estimator in standard finite variance i.i.d. sample settings.

The natural and pressing research question, then, is

Is it possible for a mean estimator to satisfy the important
robustness guarantees of classic estimators, without losing
the strong and optimal-constant performance that the Lee
and Valiant estimator enjoys in the standard setting?

In this paper, we show 4 strong positive results demonstrat-
ing the robustness and performance of Estimator 1:
(A) In the presence of η-fraction of arbitrary adversarial cor-
ruption, the error of Estimator 1 degrades by only O(σ

√
η)

from the sub-Gaussian error guaranteed in Fact 1.1. This
extra error term is optimal under the assumption that the
distribution has (finite) variance σ2.
(B) When samples are drawn from a distribution with fi-
nite zth moment, for z ∈ (1, 2), Estimator 1 achieves error
matching the lower bound of Devroye et al. (2016) up to
constants.
(C) Estimator 1 enjoys a fine-grained beyond-worst-case no-
tion of optimality called neighborhood optimality, recently
introduced by Dang et al. (2023). Previously, only median-
of-means was known to be neighborhood optimal, and our
result answers the question raised by Dang et al. on whether
more modern estimators are also neighborhood optimal.
(D) Under the standard finite variance and i.i.d. setting, Lee
and Valiant’s estimator is asymptotically normal and effi-
cient.

We emphasize that these new results hold without any
changes at all to either the structure or the parameters of
Estimator 1. That is, the estimator does not need to know
that it is being expected to perform in these challenging
settings. The guarantees we show also smoothly revert to
Fact 1.1 as the amount of corruption decreases to 0, or as
the zth-moment assumption tends to z → 2.

These results, in aggregate, demonstrate that Lee and
Valiant’s estimator is in fact “all-purpose”, enjoying the
same breadth of guarantees as either median-of-means or
trimmed mean, while also having what is essentially the
smallest possible estimation error (even in the leading con-
stant) in the standard setting. Thus, Lee and Valiant’s esti-
mator should be used in practice over existing estimators.

2. Our Results at a Glance
We now formally state our technical contributions.

2.1. Outlier robustness

Lee and Valiant’s estimator is robust against data corruption
from the strong contamination model, the most adversarial
data corruption model in the literature.

Definition 2.1 (Strong Contamination Model). Given a cor-
ruption parameter η and a distribution D on the uncorrupted
data, an algorithm gets a set of n η-corrupted samples from
D as follows. The algorithm specifies n and nature draws
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n i.i.d. samples from D. Then, an arbitrarily powerful ad-
versary can inspect the n samples from D, and arbitrarily
replace ⌈ηn⌉ of them before giving the (new) set of samples
to the algorithm, with no indication of which samples were
corrupted.

In the setting of η-corruption, when we only assume that D
has a finite variance σ2, it is well-known (Diakonikolas &
Kane, 2023) that the minimum estimation error is Ω(σ

√
η)

even if there are infinitely many samples. Our analysis
of Lee and Valiant’s estimator shows that it achieves this
estimation error bound, as long as the amount of corruption
is O(log 1

δ /n)—where δ, the desired failure probability, is
a parameter under the user’s control. Put differently, the
δ parameter for Estimator 1 can be viewed as “dual use”,
parameterizing not just the allowed failure probability of
the estimator, but also its desired robustness, expressing the
maximum tolerated level of corruption.

We emphasize that in the following theorem, Estimator 1
does not need to know the precise value of η, the frac-
tion of corruption. It only makes the assumption that
η ≤ O(log 1

δ /n), or in other words, Estimator 1 adapts
to the level of corruption.

Theorem 2.2. Given any distribution D with mean µ and
variance σ2, parameters n, δ, η > 0, let X̃ be a set of n
η-corrupted samples from D.

Suppose both log 1
δ

n and δ are bounded by some small uni-
versal constant, and suppose η ≤ 1

24n log
1
δ . Then, with

probability at least 1− δ over the sampling process, Estima-
tor 1 on input δ and X̃ will output an estimate µ̂ with error
at most

|µ̂− µ| ≤ σ ·

(
√
2 + o(1))

√
log 1

δ

n
+ 222

√
η


In the above theorem, Estimator 1 gets δ as its input param-
eter, and fails with probability δ. Accordingly, the estimator
error is the sum of the sub-Gaussian error term from Fact 1.1,
and a new “robustness” term ofO(σ

√
η). On the other hand,

the standard robustness analysis and guarantee of trimmed
mean takes a different form (see Oliveira et al. (2025))—if
the desired failure probability is δ′ and the corruption pa-
rameter is η, then the number of trimmed samples is chosen
as log 1

δ = Θ(log 1
δ′ + ηn). We give an analogous theo-

rem for Estimator 1, where again we preserve the optimal
constant of

√
2 in the sub-Gaussian error term. Comparing

Theorem 2.2 with Theorem 2.3, the latter asks for a fail-
ure probability δ′ > δ, but correspondingly has a smaller
sub-Gaussian error term (since log 1

δ′ < log 1
δ ).

Theorem 2.3. Given any distribution D with mean µ and
variance σ2, parameters n, δ, η > 0, let X̃ be a set of n
η-corrupted samples from D.

Suppose both log 1
δ

n and δ are bounded by some small uni-
versal constant, and suppose η ≤ 1

9n log
1
δ . Let δ′ be so that

1
3 log

1
δ = 1

3 log
1
δ′ + 3ηn. Then, with probability at least

1 − δ′ over the sampling process, Estimator 1 on input δ
and X̃ will output an estimate µ̂ with error at most

|µ̂−µ| ≤ σ ·

(
√
2 + o(1))

√
log 1

δ′

n
+ (135 + o(1))

√
η



We emphasize again that, similar to Theorem 2.2, Theo-
rem 2.3 says that Estimator 1 adapts to the value of η with-
out knowing what it is precisely. Namely, Theorem 2.3
simultaneously holds for all values of δ′ even though the
algorithm is only given a fixed δ.

We sketch the proof of the above two theorems in Section 4
and give full details in Appendix A. While the

√
2 con-

stant in the sub-Gaussian terms is tight, we expect that the
constants in the robust error terms (222 and 135) might be
significantly improved with a different proof strategy.

In Appendix B, we also show that Estimator 1 is robust in
the Huber and Total Variation Contamination Models, in
addition to the Strong Contamination Model above.

Median-of-means also has guarantees analogous to the
above, but they are folklore. See the proofs of Theorem 2.2
and Theorem 2.3 in Appendix A.4 and Appendix A.3 respec-
tively for the formal statements and proofs of these folklore
guarantees. Trimmed mean also gives analogous robustness
guarantees, but current analysis (see Oliveira et al. (2025))
requires precise knowledge of η in order to match the op-
timal rate. In contrast, although Estimator 1 does require
an upper bound on η (from the necessary assumption that
η ≤ 1

24n log 1
δ ), the accuracy will gracefully improve if

the actual corruption rate is less than the pessimistic upper
bound.

We further stress that, while median-of-means and trimmed
mean both have relatively straightforward and folklore
proofs of robustness, the analysis required for the Lee and
Valiant estimator is much more intricate—this is due to the
fact that Lee and Valiant’s estimator is (a lot) more compli-
cated, in order to yield optimal constants in the i.i.d. setting.

2.2. Low moment performance

Next, we study the performance of Lee and Valiant’s estima-
tor when given data drawn from a distribution that only has
finite low moments, specifically, moments between 1 and 2.

Theorem 2.4. Given any distribution D with mean µ and
zth moment Mz for some z ∈ (1, 2), let X be a set of n
i.i.d. samples from D. Then, with probability at least 1− δ
over the randomness of X , Estimator 1 on input δ and X
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will output an estimate µ̂ with error at most

|µ̂− µ| ≤ (Mz)
1
z · (1 + o(1))

(
cz

log 1
δ

n

)1− 1
z

where cz = 2(5.6)
1

z−1−1. Here, the o(1) term tends to 0

as
(

log 1
δ

n , δ
)
→ (0, 0), in a manner independent of D and

independent of z.

The above result matches the lower bounds shown by De-
vroye et al. (2016) up to constants. As z → 2, the guar-
antee converges to Fact 1.1. Analogous results (up to con-
stants) were shown for median-of-means in Bubeck et al.
(2012), but the multiplicative constant we achieve for Es-
timator 1, (2(5.6)

1
z−1−1) is better than that of median-of-

means (8
√
3(12)

1
z−1−1) across all values of z ∈ (1, 2].

2.3. Neighborhood optimality

Going beyond the worst-case analysis of Estimator 1, we
give a finer-grained analysis of its performance. We provide
finite-sample error bounds that optimally adapt to the under-
lying distribution on an instance-by-instance basis, which
is far stronger than just having optimal dependence on the
variance.

Recent work by Dang et al. (2023) gave a first study of
the fine-grained optimality of 1-dimensional mean estima-
tors, providing upper and lower bounds that match up to
constants. At a high level, they showed that sub-Gaussian
error bounds are essentially all one can hope for, for any
distribution with a finite mean. More specifically, they de-
fine an error rate function ϵn,δ(D) over distributions D,
and prove that i) median-of-means attains this error bound;
and ii) for any distribution D, there exists a “reasonable”
counterpart distribution D′ such that no algorithm can dis-
tinguish between the distributions, and thus no estimator can
simultaneously get error ≪ ϵn,δ(D) using samples from D,
while also getting error ≪ ϵn,δ(D

′) using samples from D′.
We define ϵn,δ(D) below. The combination of lower and
upper bounds of i) and ii) is extended into a new optimality
notion called neighborhood optimality by Dang et al.

Intuitively, these are bounds that are optimal in an instance-
by-instance basis, because property (ii) shows that no al-
gorithm can get error better than ϵn,δ(D) on samples from
distribution D—even an algorithm customized specifically
for distribution D—without getting unacceptably bad error
on a designated nearby distribution D′.

For concreteness, we define ϵn,δ(D) below.

Definition 2.5 (Dang et al. 2023). Given a (continuous)
distribution D with mean µ and a real number t ∈ [0, 1],
define the t-trimming operation on D as follows: select a
radius r such that the probability mass in [µ − r, µ + r]

equals 1− t; then, return the distribution D conditioned on
lying in [µ− r, µ+ r].

Given n and δ, define the trimmed distribution D∗n,δ to be
the 0.45

n log 1
δ -trimmed version of D. When δ is implicit,

we may denote this as D∗n. Now define the error function

ϵn,δ(D) = |µ− µ∗n|+ σ∗n

√
log 1

δ

n , where µ∗n and σ∗n are the
mean and standard deviation of D∗n respectively.

Dang et al. show that median-of-means achieves error
O(ϵn,δ(D)), and raises the question of whether more mod-
ern estimators such as Lee and Valiant’s (Estimator 1) also
achieve this error bound and are hence neighborhood op-
timal. We show a more general result: in fact, every sub-
Gaussian and robust estimator (satisfying a slight variant of
Theorem 2.2) achieves this error bound.
Proposition 2.6. Let µ̂ be an arbitrary estimator that, when
given δ > 0 and a set of n η-corrupted samples from any
distribution D with mean µ and variance σ2, outputs a
mean estimate satisfying

|µ̂− µ| ≤ O

σ
√ log 1

δ

n
+

√
η


with probability at least 1− δ

2 over the randomness of the
(uncorrupted) samples.

Then, the same estimator µ̂, on input n i.i.d. samples drawn
from a distribution D with finite mean, will output an esti-
mate with error upper bounded by O(ϵn,δ(D)) (as defined
in Definition 2.5) with probability at least 1− δ.

We formally prove Proposition 2.6 in Appendix C. The
precondition of Proposition 2.6 is implied by a mild variant
of Theorem 2.2 (decreasing the failure probability from δ to
δ/2), which holds also for Estimator 1. As a consequence:
Corollary 2.7 (Informal). Estimator 1 is neighborhood
optimal, in the sense of Dang et al. (2023).

In Section 5, we state the formal definition of neighborhood
optimality and discuss the intuition on Proposition 2.6.

2.4. Asymptotic normality and efficiency

Lastly, we show that Lee and Valiant’s estimator is asymptot-
ically normal and efficient, under the standard finite variance
and i.i.d. sample assumption. In particular, we show that,
if the δ parameter in Estimator 1 is fixed, and the number
of samples n → ∞, then Estimator 1 converges in prob-
ability to the sample mean at the appropriate scale. The
Central Limit Theorem for the sample mean then implies
the asymptotic optimality of Lee and Valiant’s estimator as
a corollary.
Theorem 2.8. Let D be a distribution with mean µ and
variance σ2.
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Let µ̂ denote Estimator 1 on input parameter δ and n
i.i.d. samples from D. Also let X̄n denote the sample mean.
Then, fixing δ and D and taking n→ ∞, we have

√
nµ̂

p→
√
nX̄n

that is, |
√
nµ̂−

√
nX̄n|

p→ 0, that
√
nµ̂ converges to

√
nX̄n

in probability.

As a corollary, by the Central Limit Theorem, we have

√
n(µ̂− µ)

d→ N
(
0, σ2

)
That is, µ̂ is asymptotically normal and efficient.

The above theorem contrasts with the asymptotic behavior of
median-of-means, whose error—scaled by

√
n—converges

to N (0, (π/2)σ2) (Minsker, 2023); median-of-means thus
has asymptotic variance a π/2-factor larger than desired.

3. Related Work
Mean estimation in 1 dimension. Mean estimation, even
in 1-dimension, has been studied algorithmically since the
1980s. The classic median-of-means estimator was the first
big-O optimal sub-Gaussian mean estimator proposed in
the literature, independently invented by different groups of
authors (Alon et al., 1999; Nemirovsky & Yudin, 1983; Jer-
rum et al., 1986). Catoni’s influential work (2012) gave the
first sub-Gaussian mean estimator that yields the tight multi-
plicative constant in its error, but under strong assumptions
that either the variance is known (to extremely high accu-
racy) or the distribution kurtosis (normalized 4th moment) is
bounded. Followup work by Devroye et al. (2016) studied
“multiple-δ” estimators, also with sharp error constants, in
the same setting. More recently, Lee & Valiant (2022) con-
structed a sub-Gaussian mean estimator with tight constants,
under the bare minimum assumption that the variance exists,
and absent any extra knowledge or moment assumptions—
this estimator is the subject of study in the current work.

See the survey of Lugosi & Mendelson (2021) on mean
estimation results prior to 2019.

In low moment settings where the underlying distribution
might have infinite variance, Bubeck et al. (2012) studied
the performance of median-of-means. Devroye et al. (2016)
then showed lower bounds that match up to constants. Our
work shows that Lee and Valiant’s estimator achieves anal-
ogous results as median-of-means in these regimes (Theo-
rem 2.4), with sharper dependence on the zth moment, for
every z ∈ (1, 2].

“Beyond worst-case analysis” of 1-d mean estimators is a
new research topic of recent interest in the community. In
the standard i.i.d. setting, Dang et al. (2023) characterized
the optimal distribution-specific error rates up to constants,

showing that median-of-means achieve such rates. Our work
shows that in fact all estimators that simultaneously achieve
(big-O) optimal sub-Gaussian and robust estimation error
must also achieve the distribution-specific optimal error
rates (Proposition 2.6). In addition to the standard i.i.d. set-
ting, a different line of work has also studied distribution-
specific mean estimation error rates for various differential
privacy settings (Asi & Duchi, 2020a;b; Huang et al., 2021).

Robust mean estimation. Robust statistics, the setting
where part of the input data can be corrupted by an adversary,
has been an active area of research in the statistics commu-
nity since the 1960s (Huber, 1992; Tukey, 1960). However,
it was only in the past decade that polynomial-time algo-
rithms for these statistical problems were found. See the
textbook of Diakonikolas & Kane (2023) for a detailed in-
troduction to these recent advances. Most directly relevant
to our present work are results that give simultaneously
sub-Gaussian and robust mean estimators, even in arbitrary
high dimensions (Diakonikolas et al., 2020; Depersin &
Lecué, 2022; Hopkins et al., 2020). Median-of-means is
also known to be such a robust and sub-Gaussian estimator
in 1-dimension — this is a folklore result, but see Laforgue
et al. (2021) for more details on the analysis in the robust
setting. Similarly, trimmed mean also has a folklore analysis
for its robustness, and see Oliveira et al. (2025) for more re-
sults on the robustness and additional properties of trimmed
mean.

4. Outlier Robustness
In this section, we outline the proof of Theorem 2.2 (re-
stated below for the reader’s convenience), which says that
Estimator 1 is robust against adversarial data contamination
from the strong contamination model of Definition 2.1. The
proof of Theorem 2.3 has analogous structure.

Theorem 2.2. Given any distribution D with mean µ and
variance σ2, parameters n, δ, η > 0, let X̃ be a set of n
η-corrupted samples from D.

Suppose both log 1
δ

n and δ are bounded by some small uni-
versal constant, and suppose η ≤ 1

24n log
1
δ . Then, with

probability at least 1− δ over the sampling process, Estima-
tor 1 on input δ and X̃ will output an estimate µ̂ with error
at most

|µ̂− µ| ≤ σ ·

(
√
2 + o(1))

√
log 1

δ

n
+ 222

√
η


The proof strategy is to bound the difference between the
estimates returned by Estimator 1 on (corrupted) samples
X̃ versus its behavior on uncorrupted samples X , fixing the
confidence parameter δ.
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Changing the input from uncorrupted samples to corrupted
samples has two effects on the resulting estimate:

1. The α “influence parameter” (as computed in Step 2
of Estimator 1) may change. However, we show that in a
certain sense, when the fraction of corruption η is small
compared to log 1

δ /n, this corruption will not change the
computed α value by much (Lemma 4.2). We further show
that artificially changing the α value by a small amount will
not change the mean estimate of Step 3 by much, with high
probability, when given uncorrupted samples.

2. For a fixed influence parameter α, corrupting the samples
from X to X̃ changes the returned mean estimate. However,
we show a (high probability) lower bound on the value α
computed by the algorithm on input X̃ (Lemma 4.3); and
this lower bound on α gives us a natural upper bound on
how much any corrupted input value can affect the final
mean estimate.

We state here the two key structural lemmas (and a corre-
sponding prerequisite definition) for the α value computed
from corrupted samples X̃ .

Definition 4.1. Let X = {xi} be a set of clean samples,
and let X̃ = {x̃i} be the corresponding set of η-corrupted
samples. Denote by αρ the “influence parameter” computed
from the clean samples so as to satisfy a version of Step 2
but with a modified right hand side ( 13 log

1
δ + ρn instead of

1
3 log

1
δ ):

∑
i

min(αρx
2
i , 1) =

1

3
log

1

δ
+ ρn

and denote by α̃ρ the corresponding “influence parameter”
computed instead from the corrupted samples:∑

i

min(α̃ρx̃
2
i , 1) =

1

3
log

1

δ
+ ρn

Lemma 4.2. Consider an arbitrary set of samples X and
a new sample set X̃ η-corrupted from X . Consider also
an arbitrary input parameter δ. Using α̃ to denote the
influence parameter of Estimator 1 on inputs (δ, X̃), i.e. α̃0

in Definition 4.1, we have

α−2η ≤ α̃ ≤ α2η

Considering the right hand side of the condition in Step 2 of
Estimator 1 as expressing the level of “desired robustness”:
Lemma 4.2 states that the modified influence parameter
from η-corruption is always sandwiched between the uncor-
rupted influence parameters, but at slightly different levels
of desired robustness. We point out that Lemma 4.2 is a
deterministic lemma, that always holds, regardless of the
sampling over X .

Lemma 4.3. In the setting of Lemma 4.2, suppose both log 1
δ

n
and δ are bounded by some small universal constant, and
suppose η ≤ 1

24n log
1
δ . With probability at least 1− 4δ/11

over the sampling of n samples X from a distribution D
with variance σ2, we have α̃ ≥ 0.0008496η.

These lemmas let us bound α̃ even when given corrupted
data, and relate it to the uncorrupted α; these bounds are
the crucial tools needed to bound the mean estimation er-
ror in both Theorem 2.2 and Theorem 2.3. Lemma 4.3 is
used in the proof of Theorem 2.2, and shown inside Propo-
sition A.22 in Appendix A.4. The proof of Theorem 2.3 has
an analogous lemma with slightly different parameters.

The full analysis of the outlier robustness of Estimator 1 is
given in Appendix A.

5. Neighborhood Optimality
Neighborhood optimality is a new notion of fine-grained
distribution-dependent optimality recently proposed by
Dang et al. (2023). While sub-Gaussian bounds are worst-
case optimal for the class of finite variance distributions,
neighborhood optimality captures the extent to which esti-
mators can beneficially adapt to the non-Gaussianity of the
underlying distribution and outperform the sub-Gaussian
bound.

Before we formally state the definition of neighborhood
optimality, let us give some preliminary definitions.

Let P1 be the entire set of all distributions with a finite first
moment over R. We say that N is a neighborhood function
(defined over P1) if N maps a distribution D ∈ P1 to a
set of distributions N(D) ⊆ P1. Intuitively, the neighbor-
hood N(D) of D is a set of distributions that we expect
an estimator to perform similarly well on (and we typically
consider neighborhoods where D ∈ N(D) ). Similarly, an
error function ϵ maps distributions to non-negative numbers,
like the function introduced in Definition 2.5. In the later
definitions, we use the notations Nn,δ and ϵn,δ to indicate
their dependence on the sample complexity n and failure
probability δ.

Given these two notions, we can now define the notion of a
neighborhood Pareto bound, as a property that an error func-
tion satisfies. Essentially, the definition imposes admissibil-
ity/Pareto efficiency structure within the local neighborhood
Nn,δ(D) of every distribution D ∈ P1.

Definition 5.1 (Neighborhood Pareto Bounds (Dang et al.,
2023)). Let n be the number of samples and δ be the failure
probability. Given a neighborhood function Nn,δ : P1 →
2P1 , we say that the error function ϵn,δ(D) : P1 → R+

0 is
a neighborhood Pareto bound for P1 with respect to Nn,δ

if for all distributions D ∈ P1, no estimator µ̂ taking n
i.i.d. samples can simultaneously achieve the following two

6



All-Purpose Mean Estimation over R

conditions:

• For all D′ ∈ Nn,δ(D), with probability 1− δ over the n
i.i.d. samples from D′, we have |µ̂− µD′ | ≤ ϵn,δ(D

′).

• With probability 1− δ over the n i.i.d. samples from D,
|µ̂− µD| < ϵn,δ(D).

Neighborhood Pareto ounds essentially play the role of
“lower bounds” in an optimality definition, and the strength
of the result depends crucially on the choice of the neigh-
borhood function N under consideration. As a basic ob-
servation, the strength of this definition is monotonic in
the size of the neighborhoods returned by N : if an error
function ϵ is a neighborhood Pareto bound for a neighbor-
hood function N , then for any neighborhood function N ′

such that N(D) ⊆ N ′(D) for every D ∈ P1, ϵ is also
a neighborhood Pareto bound for N ′. Thus, the smaller
each neighborhood is, the stronger the neighborhood Pareto
bound is.

Finally, we define neighborhood optimality.

Definition 5.2 ((κ, τ)-Neighborhood Optimal Estima-
tors (Dang et al., 2023)). Let κ > 1 be a multiplicative
loss factor in estimation error, and τ > 1 be a multiplicative
loss factor in sample complexity.
Given the parameters κ, τ > 1, sample complexity n, fail-
ure probability δ and neighborhood function Nn,δ, a mean
estimator µ̂ is (κ, τ)-neighborhood optimal with respect
to Nn,δ if there exists an error function ϵn,δ(D) such that
min(ϵn/τ,δ(D), ϵn,δ(D)) is a neighborhood Pareto bound1,
and µ̂ gives estimation error at most κ · ϵn,δ(D) with proba-
bility at least 1− δ when taking n i.i.d. samples from any
distribution D ∈ P1.

Dang et al. (2023) showed that the error function ϵn,δ
from Definition 2.5 yields a neighborhood Pareto bound
1
κ min(ϵn/τ,δ(D), ϵn,δ(D)) for an appropriate choice of
neighborhood function, for some constants κ, τ > 1. Their
choice of neighborhood function Nn,δ is technical; we state
it in Appendix C, and refer the reader to their paper for
the justification. Based on this result, they also showed
that median-of-means indeed achieves error O(ϵn,δ) from
Definition 2.5 and hence is neighborhood optimal by Defi-
nition 5.2. Dang et al. (2023) further raised the immediate
question of whether other more-modern estimators, such
as Lee and Valiant’s Estimator 1, can also achieve such
estimation error.

We show a general affirmative answer, that in fact, all estima-
tors that are (up to constants) simultaneously sub-Gaussian

1While it is intuitive to expect that an error function decreases
in n, it might not be true in general. Indeed, the function used
by Dang et al. (2023) (Definition 2.5) is not necessarily monotonic.
This is the reason for the “min” in the neighborhood Pareto bound
requirement.

and optimally robust to corruption must achieve the error
rate from Definition 2.5 (stated formally as Proposition 2.6),
and are thus neighborhood optimal as a corollary.

Proposition 2.6. Let µ̂ be an arbitrary estimator that, when
given δ > 0 and a set of n η-corrupted samples from any
distribution D with mean µ and variance σ2, outputs a
mean estimate satisfying

|µ̂− µ| ≤ O

σ
√ log 1

δ

n
+

√
η


with probability at least 1− δ

2 over the randomness of the
(uncorrupted) samples.

Then, the same estimator µ̂, on input n i.i.d. samples drawn
from a distribution D with finite mean, will output an esti-
mate with error upper bounded by O(ϵn,δ(D)) (as defined
in Definition 2.5) with probability at least 1− δ.

The precondition of Proposition 2.6 is satisfied by a variant
of Theorem 2.2—with slightly smaller failure probability—
which holds for Estimator 1. Thus the neighborhood op-
timality of Estimator 1 follows as a corollary of Proposi-
tion 2.6.

To see the intuition behind Proposition 2.6, recall the defini-
tion of the error rate function ϵn,δ(D) from Definition 2.5.
The definition constructs a distribution D∗n,δ from D, by
removing the tails of D with probability mass O(log 1

δ /n),

and the error function ϵn,δ(D) = σ∗n

√
log 1

δ

n + |µ− µ∗n| is
the sub-Gaussian error for distribution D∗n,δ plus the mean
difference between D and D∗n,δ . Thus, when given samples
from D, one could view them as corrupted samples from
D∗n,δ where roughly O(log 1

δ /n) fraction of the samples are
corrupted. A sub-Gaussian and robust estimator would thus
achieve good error with respect to the mean of D∗n,δ , and by
triangle inequality, also with respect to the mean of D.

We present proofs of the above statements in Appendix C.
For completeness, we also provide a summary of Dang
et al. (2023)’s results. We again refer the reader to their
paper for a more in-depth discussion on the intricacies of
the neighborhood optimality notion.

6. Infinite Variance Distributions
In this section, we extend Lee and Valiant’s analysis of
Estimator 1 to more heavy-tailed distributions. Instead of
Fact 1.1, where the performance of the estimator is charac-
terized in terms of the variance of the distribution D, we
instead ask if we can characterize the performance of the
estimator on distributions that may not have a finite variance
but instead only have finite zth moment for some 1 < z ≤ 2.

We restate our main theorem for this section, which matches

7
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the lower bound of Devroye et al. (2016) up to constants.

Theorem 2.4. Given any distribution D with mean µ and
zth moment Mz for some z ∈ (1, 2), let X be a set of n
i.i.d. samples from D. Then, with probability at least 1− δ
over the randomness of X , Estimator 1 on input δ and X
will output an estimate µ̂ with error at most

|µ̂− µ| ≤ (Mz)
1
z · (1 + o(1))

(
cz

log 1
δ

n

)1− 1
z

where cz = 2(5.6)
1

z−1−1. Here, the o(1) term tends to 0

as
(

log 1
δ

n , δ
)
→ (0, 0), in a manner independent of D and

independent of z.

At a high level, our analysis is a generalization of Lee
and Valiant’s analysis to the low-moment setting, which
allows us to prove a guarantee that gracefully reduces to
their main result (Fact 1.1, with the sharp constant of

√
2)

as z → 2. Furthermore, our value of cz is smaller than
the corresponding multiplicative constant in the analysis of
median-of-means by Bubeck et al. (2012), across all values
of z ∈ (1, 2].

Here we give an overview of our analysis.

Without loss of generality, from the shift-and-scale equivari-
ance of Estimator 1, we assume the underlying distribution
has mean 0 and zth moment Mz = 1. The goal is to prove
tailored Chernoff bounds for this estimator to show its con-
centration. Lee and Valiant’s analysis in the finite variance
setting provides two useful techniques to address obstacles
described in the following subsections.

6.1. Estimator 1 is a sum of dependent terms

Estimator 1 is a sum of dependent terms, due to the in-
fluence parameter α computed in Step 2 involving all the
samples. This makes proving Chernoff bounds tricky, given
that moment generating functions multiply only for sums of
independent terms. Lee and Valiant’s approach is to reduce
(via a Lipschitz argument) to analyzing the case where the
preliminary estimate κ from Step 1 is taken to be exactly
equal to the true mean µ = 0, and crucially reformulate
Estimator 1 as a “2-parameter ψ-estimator”.

Definition 6.1 (Lee & Valiant 2022). Consider Estimator 1
but with Step 1 replaced with “κ = 0”. The estimator can
be equivalently expressed as follows:

1. Input: Failure probability δ, independent samples X =
x1, . . . , xn

2. Solve for the (unique) pair (µ̂, α̂) satisfying ψµ = 0
and ψα = 0, where the functions ψµ, ψα are defined

as follows:

ψµ(X, µ̂, α̂) =

n∑
i=1

(µ̂− xi(1−min(α̂x2i , 1))) ;

ψα(X, µ̂, α̂) =

n∑
i=1

(
min(α̂x2i , 1)−

1

3n
log

1

δ

)
3. Output: µ̂ from the previous step.

This reformulation has the advantage that, for any fixed pair
(µ̂, α̂), any linear combination of the ψµ and ψα functions
is a sum of independent terms. The concentration of Estima-
tor 1 is then reduced to proving Chernoff bounds for these
linear combinations.

This reformulation and reduction is independent of the finite
variance assumption, and therefore also applicable to the
low moment setting that our work analyzes.

6.2. Proving Chernoff bounds over large distribution
classes

Even in the finite variance setting, proving a Chernoff bound
that applies for all distributions D with mean 0 and variance
1 is daunting, given how large the distribution class is com-
pared to standard concentration bounds. Lee and Valiant
showed that the worst-case Chernoff bound (for linear com-
binations of the ψ-equations from Definition 6.1) can in fact
be viewed as a max-min linear programming game.

For simplicity, let us illustrate this by sketching the analysis
of the Chernoff bound of a hypothetical linear estimator
that is a sum of independent terms: f({x1, . . . , xn}) =
1
n

∑
i f(xi), for some fixed function f : R → R. Proving

a Chernoff bound is equivalent to upper bounding the mo-
ment generating function of the estimator f , and choosing
the “Chernoff parameter” t accordingly. Thus, it suffices to
upper bound the objective of the following max-min game,
where the max player chooses any mean-0 variance-1 dis-
tribution D—represented by variables {px} denoting the
probability mass at x (ignoring probability formalism is-
sues with non-discrete distributions)—and the min player
chooses the Chernoff parameter t. Using the moment gener-
ating function as the objective function, we have

max{px} mint
∑

x pxe
t·f(x)

such that
∑

x px = 1∑
x px · x = 0∑
x px · x2 = 1

where px ≥ 0

(1)

By using minimax duality and linear programming duality,
the game can then be rewritten into a pure minimization
program with the same optimum, where the dual variables

8
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U,M, V correspond to the 3 respective constraints in the
program in (1).

mint minU,M,V U + V

such that for all x ∈ R, V x2 +Mx+ U ≥ et·f(x)

(2)
It thus suffices to choose dual variables U,M, V and an
appropriate Chernoff parameter t to certify an upper bound
on the optimum.

We modify this approach from Lee & Valiant (2022) by
relying on a zth moment bound instead of a variance bound.
The key observation is that the zth moment bound may
be expressed as a linear constraint in the above program,
replacing

∑
x pxx

2 = 1 with
∑

x px|x|z = 1. The technical
challenge from here is to provide a feasible dual solution
and choose Chernoff parameter t so as to satisfy the desired
bounds, including that the guarantees converge to Fact 1.1
as z → 2. We show our complete proof in Appendix D.

7. Asymptotic Normality
In this section, we show that under the standard finite vari-
ance assumption, the estimator of Lee and Valiant is asymp-
totically normal and efficient. Specifically, we prove that if
we fix the input parameter δ and take the number of samples
n → ∞, the estimator converges to the sample mean in
probability, which by the Central Limit Theorem implies
asymptotic normality and efficiency.

This result contrasts with median-of-means, which, under
the slightly stronger 2+ ιmoment assumption for any ι > 0,
is asymptotically normal yet inefficient (Minsker, 2023)—
the asymptotic distribution of

√
nµ̂MoM is N (µ, (π/2)σ2)

instead of the desired N (µ, σ2).

Theorem 2.8. Let D be a distribution with mean µ and
variance σ2.

Let µ̂ denote Estimator 1 on input parameter δ and n
i.i.d. samples from D. Also let X̄n denote the sample mean.
Then, fixing δ and D and taking n→ ∞, we have

√
nµ̂

p→
√
nX̄n

that is, |
√
nµ̂−

√
nX̄n|

p→ 0, that
√
nµ̂ converges to

√
nX̄n

in probability.

As a corollary, by the Central Limit Theorem, we have

√
n(µ̂− µ)

d→ N
(
0, σ2

)
That is, µ̂ is asymptotically normal and efficient.

The proof is relatively straightforward. The key idea is
that Estimator 1 differs from the sample mean by removing
Θ(log 1

δ ) weighted samples, so we might as well bound the
difference by Θ(log 1

δ ) times the maximum sample (and

symmetrically the minimum sample), multiplied by a factor
of

√
n since that is the scale that the Central Limit Theo-

rem holds at. Under the finite variance assumption, we can
use a (slightly refined) Chebyshev’s inequality and a stan-
dard Chernoff bound to upper bound the magnitude of the
maximum sample with high probability. See the complete
calculations in Appendix E.
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A. Remaining Proofs of Section 4
In Section 4, we discussed the intuition behind our main results, Theorem 2.2 and 2.3. At a high level, our proof strategy for
both main theorems uses the triangle inequality to bound estimation error introduced by adversarial corruption as the sum of
two parts, one from changing the influence parameter from α to α̃, and one from the adversary arbitrarily corrupting the
samples. We provide formal proofs for relevant lemmas and propositions in this section, and restate the main theorems for
completeness:

Theorem 2.2. Given any distribution D with mean µ and variance σ2, parameters n, δ, η > 0, let X̃ be a set of n
η-corrupted samples from D.

Suppose both log 1
δ

n and δ are bounded by some small universal constant, and suppose η ≤ 1
24n log

1
δ . Then, with probability

at least 1− δ over the sampling process, Estimator 1 on input δ and X̃ will output an estimate µ̂ with error at most

|µ̂− µ| ≤ σ ·

(
√
2 + o(1))

√
log 1

δ

n
+ 222

√
η


Theorem 2.3. Given any distribution D with mean µ and variance σ2, parameters n, δ, η > 0, let X̃ be a set of n
η-corrupted samples from D.

Suppose both log 1
δ

n and δ are bounded by some small universal constant, and suppose η ≤ 1
9n log

1
δ . Let δ′ be so that

1
3 log

1
δ = 1

3 log
1
δ′ + 3ηn. Then, with probability at least 1− δ′ over the sampling process, Estimator 1 on input δ and X̃

will output an estimate µ̂ with error at most

|µ̂− µ| ≤ σ ·

(
√
2 + o(1))

√
log 1

δ′

n
+ (135 + o(1))

√
η


Throughout the proofs, we will compare and make use of different values of “α”, computed from either corrupted or
uncorrupted data, and computed from different choices of parameters in the equation defining α. Here, we give a more
general definition of notation (generalizing Definition 4.1) that we will be using.

Definition A.1. Let X = {xi} be a set of clean samples, and let X̃ = {x̃i} be the corresponding set of η-corrupted samples.
Denote by αδ,ρ the “influence parameter” solved from the corresponding condition involving the clean samples, so as to
satisfy a version of Step 2 of Estimator 1 but with a modified right hand side ( 13 log

1
δ + ρn instead of 1

3 log
1
δ ):

∑
i

min(αδ,ρx
2
i , 1) =

1

3
log

1

δ
+ ρn

and denote by α̃δ,ρ the “influence parameter” solved instead from the corresponding condition involving the corrupted
samples: ∑

i

min(α̃δ,ρx̃
2
i , 1) =

1

3
log

1

δ
+ ρn

Theorem 2.3 refers to failure probability δ′, so parts of the analysis will involve the notations αδ′,η and α̃δ′,η , for example.

We start with showing the crucial preliminary Lemma A.2, which bounds the value of α̃, allowing us to approximate it using
different influence parameters on the clean data, with no assumption of the corrupted data:

Lemma A.2 (Restatement of Lemma 4.2 under the notation of Definition A.1). Consider an arbitrary set of samples X and
a new sample set X̃ η-corrupted from X . Consider also an arbitrary input parameter δ. Using α̃ to denote the influence
parameter of Estimator 1 on inputs (δ, X̃), i.e. α̃δ,0 in Definition A.1, we have

αδ,−2η ≤ α̃ ≤ αδ,2η

Proof. Let the clean samples be X = {xi} and the corrupted samples be X̃ = {x̃i}.

11
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To prove the first inequality, suppose for the sake of contradiction that α̃ < αδ,−2η . Then,∑
i

min(α̃x̃2i , 1)

≤
∑
i

min(α̃x2i , 1) +
∑

i : xi corrupted

min(α̃x̃2i , 1)

≤ 1

3
log

1

δ
− 2ηn+

∑
i : xi corrupted

min(α̃x̃2i , 1) (since α̃ < αδ,−2η)

≤ 1

3
log

1

δ
− ηn (since the sum has ηn elements, each at most 1)

<
1

3
log

1

δ

which is a contradiction.

The second inequality follows similarly. Suppose for the sake of contradiction that α̃ > αδ,2η . Then,∑
i

min(α̃x̃2i , 1)

≥
∑
i

min(α̃x2i , 1)−
∑

i : xi corrupted

|min(α̃x̃2i , 1)−min(α̃x2i , 1)|

≥ 1

3
log

1

δ
+ 2ηn−

∑
i : xi corrupted

|min(α̃x̃2i , 1)−min(α̃x2i , 1)| (since α̃ > αδ,2η)

≥ 1

3
log

1

δ
+ ηn (since the sum has ηn elements, each at most 1)

>
1

3
log

1

δ

which is a contradiction.

We in fact generalize the above lemma slightly for use in the proof of Theorem 2.3, which can be proven from Lemma A.2
by reparameterizing δ.
Corollary A.3. For any set of clean samples X and the corresponding η-corrupted samples X̃ , and for any constant c > 2,
we have αδ,(c−2)η ≤ α̃δ,cη ≤ αδ,(c+2)η .

The proof structure of Theorem 2.2 and 2.3 are essentially identical. We present the proof of Theorem 2.3 first.

For the rest of the appendix, we will assume that the uncorrupted data distribution has mean 0 and variance 1 without loss of
generality, due to the shift-and-scale equivariance of Estimator 1.

A.1. Bounding the Error due to Changing the Influence Parameter

We present the following proposition upper bounding the error incurred on Estimator 1 by using influence parameter
α̃ := α̃δ′,3η instead of α := αδ′,0 on the clean samples. That is, we compute α̃ on the corrupted samples, but analyze its
effect on the clean samples.

For the following section, recall our assumption that the underlying distribution has mean 0 and variance 1.

Proposition A.4. Suppose both
log 1

δ′
n and δ′ are bounded by some small universal constant. Let α be the influence

parameter computed from the clean samples with robustness level 1
3 log

1
δ′ , namely α := αδ′,0. Let α̃ be the influence

parameter computed from the corrupted samples with robustness level 1
3 log

1
δ′ + 3ηn, namely, α̃ := α̃δ′,3η. Then with

probability at least 1− 6
8δ
′, the mean estimate using α on the clean samples differs from the mean estimate using α̃ on the

clean samples by at most 125.5
√
η, i.e.,∣∣∣∣∣∑
i

xi min(α̃x2i , 1)−
∑
i

xi min(αx2i , 1)

∣∣∣∣∣ ≤ 125.5n
√
η (3)
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To provide some intuition towards our proof strategy for Proposition A.4, first notice that we can bound the left hand side
via Cauchy-Schwarz as √√√√(∑

i

x2i

)(∑
i

(min(α̃x2i , 1)−min(αx2i , 1))
2

)

This turns out to be insufficient; we instead bound (3) by defining the set S of indices where min(α̃x2i , 1) ̸= min(αx2i , 1),
and restrict the range of both sums in (3) to the range i ∈ S, since doing so only discards zero terms and does not change the
sum. Thus we instead have the Cauchy-Schwarz bound

√√√√(∑
i∈S

x2i

)(∑
i∈S

(min(α̃x2i , 1)−min(αx2i , 1))
2

)

The bound on the second parenthetical makes crucial use of the comparison of α̃ and α provided by Corollary A.3. The first
parenthetical is an empirical variance, but the restriction i ∈ S means that |xi| cannot be too large; we thus use Bernstein’s
inequality to bound this S-truncated empirical second moment, in terms of a lower bound on α, which we prove next.

To show our lower bound on α, we first calculate the following straightforward relations between the empirical and
population quantiles.

Throughout this section, we denote by Qq(D) the q (true) quantile of D, i.e., P[D ≤ Qq(D)] = q.

Lemma A.5. Suppose both
log 1

δ′
n and δ′ are bounded by some small universal constant. Denote c1 = 0.277 < 1

3 , and
κ := c1(

1
n log 1

δ′ ). Let constant c2 := 102.907. Then the 1 − κ empirical quantile of xi is at most Q1−κ/c2(D) with
probability at least 1− 1

8δ
′.

Proof. For the 1− κ empirical quantile of xi to be greater than Q1−κ/c2(D), there has to be more than κn samples greater
than Q1−κ/c2(D). Thus, it suffices to prove that |{i ∈ [n] : xi ≥ Q1−κ/c2(D)}| ≥ κn with probability at most 1

8δ
′.

Denote Zi := 1xi≥Q1−κ/c2
(D). Then Z := |{i ∈ [n] : xi ≥ Q1−κ/c2(D)}| =

∑n
i=1 Zi. We denote by p = κ

c2
the

probability that an individual i is in this set; and thus E[Z] = pn. Since each Zi is a coin flip of probability p, we further
have that V ar[Zi] = p(1− p).

By multiplicative Chernoff,

P[Z ≥ c2pn] ≤
(
ec2−1

cc22

)pn

= exp ((c2 − 1− c2 log c2)pn)

= exp

(
c1(c2 − 1− c2 log c2)

c2
log

1

δ

)
≤ exp

(
(−1.01)log

1

δ′

)
by choice of c1 and c2

≤ exp

(
− log

8

δ′

)
=

1

8
δ′ since 1.01log

1

δ′
≥ log

8

δ′
for suff. small δ′

as desired.

By symmetry, we have the following corollary as well:

Corollary A.6. The κ empirical quantile of xi is at least Qκ/c2(D) with probability at least 1− 1
8δ
′.

Lemma A.7. LetDtrimmed denote a “trimmed” version ofD: namely,D conditioned on lying in [Qκ/c2(D), Q1−κ/c2(D)].

Then E[D2
trimmed] ≤

c22
(c2−2κ)2 .

13
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Proof. Denote by 1untrimmed(x) the indicator that returns 1 if x ∈ [Qκ/c2(D) , Q1−κ/c2(D)] and 0 otherwise. Then
observe that Dtrimmed = c2

c2−2κ (D · 1untrimmed). Thus

E[D2
trimmed] = E

[(
c2

c2 − 2κ
(D · 1untrimmed)

)2
]

=
c22

(c2 − 2κ)2
E[D2

1untrimmed]

≤ c22
(c2 − 2κ)2

E[D2]

=
c22

(c2 − 2κ)2

as desired.

Lemma A.8. Suppose both
log 1

δ′
n and δ′ are bounded by some small universal constant. Let (xtrimmed)i denote the sample

xi after trimming, namely: let (xtrimmed)i = xi if xi ∈ [Qκ/c2(D), Q1−κ/c2(D)], and (xtrimmed)i = 0 otherwise. Let

constant c3 := 251.099. Then
∑

i(xtrimmed)
2
i ≤ (c3+1)c22

(c2−2κ)2n with probability at least 1− 2
8δ
′.

Proof. First notice that if we replace any trimmed xi with a random sample according to Dtrimmed, then the sum∑
i(xtrimmed)

2
i can only increase. Thus, to prove the claim, it suffices to bound the sum of n i.i.d. samples from Dtrimmed.

With an abuse of notation, we let {(xtrimmed)i}i≤n denote a set of such samples.

Also notice that by our choice of c3, we have, crucially, 3c1c
2
3

(6+2c3)c2
≥ 1.01.

We start by bounding Qκ/c2(D) and Q1−κ/c2(D). Since we assume D has mean 0 and variance 1, by Chebyshev’s
inequality, P

[
|D| ≥

√
c2
κ

]
≤ κ

c2
, which implies that Qκ/c2 ≥ −

√
c2
κ and Q1−κ/c2 ≤

√
c2
κ . As a result, (xtrimmed)

2
i ≤ c2

κ
for all i.

Then,

Var[(xtrimmed)
2
i ] ≤ E

[
((xtrimmed)

2
i )

2
]

≤ c2
κ

E[(xtrimmed)
2
i ]

≤ c32
κ(c2 − 2κ)2

by Lemma A.7

Thus, by Bernstein’s inequality,

P

[∑
i

((xtrimmed)i)
2 ≥ (c3 + 1)c22n

(c2 − 2κ)2

]

= P

[
1

n

∑
i

((xtrimmed)i)
2 − c22

(c2 − 2κ)2
≥ c3c

2
2

(c2 − 2κ)2

]

≤ P

[
1

n

∑
i

((xtrimmed)i)
2 − E[((xtrimmed)i)

2] ≥ c3c
2
2

(c2 − 2κ)2

]

≤ 2 exp

−
c23n

c42
(c2−2κ)4

2Var[(xtrimmed)2i ] +
2c3c32

3κ(c2−2κ)2


≤ 2 exp

−
c23n

c42
(c2−2κ)4

2c32
κ(c2−2κ)2 +

2c3c32
3κ(c2−2κ)2


14
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= 2 exp

(
− 3c23c2nκ

(6 + 2c3)(c2 − 2κ)2

)
≤ exp

(
− 3c23nκ

(6 + 2c3)c2

)
= 2 exp(− 3c1c

2
3

(6 + 2c3)c2
log

1

δ′
) by definition of κ

≤ 2 exp(−1.01log
1

δ′
) by choice of c3

≤ 2 exp(− log
8

δ′
) since 1.01log

1

δ
≥ log

8

δ′
for suff. small δ′

=
2

8
δ′

as desired.

Combining Lemma A.5, Corollary A.6, and Lemma A.8, we have the following corollary:

Corollary A.9. Suppose there is a sufficiently small constant that upper bounds δ′. Let S<κ denote the set of indices i s.t.
x2i is not in the top κ (empirical) quantile. Then

∑
i∈S<κ

x2i ≤ (c3+1)c22
(c2−2κ)2n with probability at least 1− 4

8δ
′.

We are now ready to present a lower bound on α := αδ′,0, before proving Proposition A.4.

Lemma A.10. Suppose both
log 1

δ′
n and δ′ are bounded by some small universal constant. Then α := αδ′,0 ≥

0.000214 1
n log

1
δ′ with probability at least 1− 4

8δ
′.

Proof. Recall that by definition of α,

1

3
log

1

δ′
=
∑
i

min(αx2i , 1)

=
∑

i:x2
i not in the top κ quantile

min(αx2i , 1) +
∑

i:x2
i in the top κ quantile

min(αx2i , 1)

≤
∑

i:x2
i not in the top κ quantile

αx2i +
∑

i:x2
i in the top κ quantile

1

≤
∑

i:x2
i not in the top κ quantile

αx2i + κn

=
∑

i:x2
i not in the top κ quantile

αx2i + c1log
1

δ′

Rearranging, this is equivalent to (
1

3
− c1

)
log

1

δ′
≤

∑
i:x2

i not in the top κ quantile

αx2i

By Corollary A.9, with probability at least 1− 4
8δ
′,

∑
i:x2

i not in the top κ quantile

x2i ≤ (c3 + 1)c22
(c2 − 2κ)2

n ≤ (c3 + 1)c22
(c2 − 2)2

n

Which implies that α ≥
(
1
3 − c1

) (c2−2)2
(c3+1)c22

1
n log

1
δ′ ≥ 0.000214 1

n log
1
δ′ with probability at least 1− 4

8δ
′.

15
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Proof of Proposition A.4. First, notice that for all i such that |xi| ≥
√

1
α ≥

√
1
α̃ , the corresponding term in the sum in the

left hand side becomes 0. Thus, using the notation
∑
≤ to denote summing over elements |xi| ≤

√
1
α̃ , the left hand side in

the guarantee of Proposition A.4 is equal to∣∣∣∣∣∣
∑
≤

xi min(α̃x2i , 1)−
∑
≤

xi min(αx2i , 1)

∣∣∣∣∣∣
Then, rearranging the sums, we have∣∣∣∣∣∣

∑
≤

xi min(α̃x2i , 1)−
∑
≤

xi min(αx2i , 1)

∣∣∣∣∣∣
≤
∑
≤

∣∣xi (min(α̃x2i , 1)−min(αx2i , 1)
)∣∣

≤

√√√√√
∑
≤

x2i

∑
≤

(min(α̃x2i , 1)−min(αx2i , 1))
2

 by Cauchy-Schwarz

for which we can bound the two terms separately.

To bound the first term, since we sum over only those terms where |xi| ≤
√

1
α for all i, and by Lemma A.10 α ≥

0.000214
n log 1

δ′ with probability 1− 4
8δ
′, we have that x2i ≤ 4672n

log 1
δ′

for all i. Since X has mean 0 and variance 1, we know

that E[x2i ] ≤ E[X2] = 1, and Var[x2i ] ≤ E[x4i ] ≤ 4672n
log 1

δ′
E[x2i ] ≤ 4672n

log 1
δ′

. Thus, by Bernstein’s inequality,

P

∑
≤

x2i ≥ 3150n

 = P

 1

n

∑
≤

x2i − 1 ≥ 3149


≤ P

 1

n

∑
≤

x2i − E[x2i ] ≥ 3149


≤ 2 exp

(
− 31492n

9344 n
log 1

δ′
+ 9344 · 3149 n

log 1
δ′
/3

)

≤ 2 exp

(
−1.01log

1

δ′

)
≤ 2 exp

(
− log

8

δ′

)
since 1.01log

1

δ′
≥ log

8

δ′
for suff. small δ′

=
2

8
δ′

In other words, conditioning on Lemma A.10 holding, with probability at least 1− 2
8δ
′,
∑
≤ x

2
i ≤ 3150n.

To bound the second term, note that∑
≤

(
min(α̃x2i , 1)−min(αx2i , 1)

)2 ≤
∑
i

(
min(α̃x2i , 1)−min(αx2i , 1)

)2 ≤
∑
i

(
min(α̃x2i , 1)−min(αx2i , 1)

)
since α̃ := α̃δ′,3η ≥ αδ′,η ≥ α := αδ′,0 by Corollary A.3, and “α” is monotonic in the η argument, and thus 0 ≤
min(α̃x2i , 1)−min(αx2i , 1) ≤ 1 for all i.

To further upper bound the last quantity, we have∑
i

(
min(α̃x2i , 1)−min(αx2i , 1)

)
=
∑
i

min(α̃x2i , 1)−
∑
i

min(αx2i , 1)

16
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≤
∑
i

min(αδ′,5ηx
2
i , 1)−

∑
i

min(αδ′,0x
2
i , 1) by Corollary A.3 and by definition of α

=
1

3
log

1

δ′
+ 5ηn− 1

3
log

1

δ′

= 5ηn

Finally, summarizing, we have that with probability at least 1− 6
8δ
′:√√√√√

∑
≤

x2i

∑
≤

(min(α̃x2i , 1)−min(αx2i , 1))
2


≤
√
3150n · 5ηn

= n
√
15750η

≤ 125.5n
√
η

as desired.

A.2. Bounding the Error due to Corrupting the Samples

We now present the following proposition upper bounding the error incurred on Estimator 1 by the arbitrary corruption of
the adversary on the clean samples, while fixing α̃ := α̃δ′,3η as the influence parameter.

We again assume that the uncorrupted distribution has mean 0 and variance 1.

Proposition A.11. Suppose both
log 1

δ′
n and δ′ are bounded by some small universal constant. Let α̃ be the influence

parameter computed from the corrupted samples with robustness level 1
3 log

1
δ′ + 3ηn, namely, α̃ := α̃δ′,3η. Then with

probability at least 1− 1
8δ
′, the mean estimate using α̃ on the clean samples differs from the mean estimate using α̃ on the

corrupted samples by at most 8.586
√
η, i.e.,∣∣∣∣∣∑

i

x̃i(1−min(α̃x̃2i , 1))−
∑
i

xi(1−min(α̃x2i , 1))

∣∣∣∣∣ ≤ 8.586n
√
η

To provide some intuition towards our proof strategy for Proposition A.11, consider the adversary’s arbitrary corruption,
which can be interpreted piece-wise as moving each clean sample that the adversary wishes to corrupt to a new location.
Since the influence parameter controls the contribution of each sample to the mean estimate, based on how far from the
mean it is, moving a sample too far from the mean or moving the sample too close to the mean will both incur very little
error. The question then, is, what is the maximum estimation error the adversary can incur by corrupting a single sample?

Fixing the value of α̃ as in the statement of Proposition A.11, we can upper bound the maximum magnitude of the expression
1
n

∑
i xi(1−min(α̃x2i , 1)) by calculus, which is O(1/

√
α̃). We will show a lower bound of α̃, specifically that α̃ ≥ Ω(η),

and then conclude that the maximum total error possible by corrupting ηn samples is at most 1
n · ηn ·Θ(1/

√
η) = Θ(

√
η),

as desired.

We use a similar strategy as in the proof of Proposition A.4, using quantile statistics as well as Corollary A.3 to obtain our
desired lower bound on α̃, before proving Proposition A.11 in Appendix A.

Lemma A.12. Suppose both
log 1

δ′
n and δ′ are bounded by some small universal constant. Denote c1 = 1

3 , and κ :=
c1(

1
n log 1

δ′ ). Let c2 := 55.252. Then the 1− κ empirical quantile of xi is at most Q1−κ/c2(D) with probability at least
1− 1

32δ
′.

Proof. For the 1− κ empirical quantile of xi to be greater than Q1−κ/c2(D), there has to be more than κn samples greater
than Q1−κ/c2(D). Thus, it suffices to prove that |{i ∈ [n] : xi ≥ Q1−κ/c2(D)}| ≥ κn with probability at most 1

32δ
′.

Denote Zi := 1xi≥Q1−κ/c2
(D). Then Z := |{i ∈ [n] : xi ≥ Q1−κ/c2(D)}| =

∑n
i=1 Zi. Obviously E[Z] = κn/c2. Denote

p := E[Zi] = κ/c2. Then V ar[Zi] = p(1− p).

17
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By multiplicative Chernoff,

P[Z ≥ c2pn] ≤
(
ec2−1

cc22

)pn

= exp ((c2 − 1− c2 log c2)pn)

= exp

(
c1(c2 − 1− c2 log c2)

c2
(log

1

δ′
)

)
≤ exp

(
(−1.01)(log

1

δ′
)

)
by choice of c1, c2

≤ exp

(
− log

32

δ′

)
=

1

32
δ′ since 1.01log

1

δ′
≥ log

32

δ′
for suff. small δ′

as desired.

By symmetry, we have the following corollary as well:

Corollary A.13. The κ empirical quantile of xi is at least Qκ/c2(D) with probability at least 1− 1
32δ
′.

Lemma A.14. Let Dtrimmed denote the trimmed version of D conditioned on lying in [Qκ/c2(D), Q1−κ/c2(D)]. Then

E[D2
trimmed] ≤

c22
(c2−2κ)2 .

Proof. Denote by 1untrimmed(x) the indicator measure that maps x to 1Qκ/c2
(D)≤x≤Q1−κ/c2

(D), the indicator of whether
x is untrimmed. Then observe that Dtrimmed = c2

c2−2κ (D · 1untrimmed). Thus

E[D2
trimmed] = E

[(
c2

c2 − 2κ
(D · 1untrimmed)

)2
]

=
c22

(c2 − 2κ)2
E[D2

1untrimmed]

≤ c22
(c2 − 2κ)2

E[D2]

=
c22

(c2 − 2κ)2

as desired.

Lemma A.15. Suppose both
log 1

δ′
n and δ′ are bounded by some small universal constant. Let (xtrimmed)i denote the

sample xi after trimming, such that (xtrimmed)i = xi if xi ∈ [Qκ/c2(D), Q1−κ/c2(D)], and (xtrimmed)i = 0 otherwise.

Denote c3 := 114.532. Then
∑

i(xtrimmed)
2
i ≤ (c3+1)c22

(c2−2κ)2n with probability at least 1− 2
32δ
′.

Proof. First notice that if we replace any trimmed xi with a random sample according to Dtrimmed, then the sum∑
i(xtrimmed)

2
i can only increase. Thus, to prove the claim, it suffices to bound the sum of n i.i.d. samples from Dtrimmed.

With an abuse of notation, we let {(xtrimmed)i}i≤n denote a set of such samples.

Also notice that by our choice of c3, we have, crucially, 3c23c1
(6+2c3)c2

≥ 1.01.

We start by bounding Qκ/c2(D) and Q1−κ/c2(D). Since we assume D has mean 0 and variance 1, by Chebyshev’s
inequality, P

[
|D| ≥

√
c2
κ

]
≤ κ

c2
, which implies Qκ/c2 ≥ −

√
c2
κ and Q1−κ/c2 ≤

√
c2
κ . As a result, (xtrimmed)

2
i ≤ c2

κ for
all i.

Then,

Var[(xtrimmed)
2
i ] ≤ E

[
((xtrimmed)

2
i )

2
]

≤ c2
κ

E[(xtrimmed)
2
i ]

18
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≤ c32
κ(c2 − 2κ)2

by Lemma A.14

Thus, by Bernstein’s inequality,

P

[∑
i

((xtrimmed)i)
2 ≥ (c3 + 1)c22n

(c2 − 2κ)2

]

= P

[
1

n

∑
i

((xtrimmed)i)
2 − c22

(c2 − 2κ)2
≥ c3c

2
2

(c2 − 2κ)2

]

≤ P

[
1

n

∑
i

((xtrimmed)i)
2 − E[((xtrimmed)i)

2] ≥ c3c
2
2

(c2 − 2κ)2

]

≤ 2 exp

−
c23n

c42
(c2−2κ)4

2Var[(xtrimmed)2i ] +
2c3c32

3κ(c2−2κ)2


≤ 2 exp

−
c23n

c42
(c2−2κ)4

2c32
κ(c2−2κ)2 +

2c3c32
3κ(c2−2κ)2


= 2 exp

(
− 3c23c2nκ

(6 + 2c3)(c2 − 2κ)2

)
≤ 2 exp

(
− 3c23nκ

(6 + 2c3)c2

)
= 2 exp(− 3c23c1

(6 + 2c3)c2
(log

1

δ′
)) by definition of κ

≤ 2 exp(−1.01(log
1

δ′
)) by choice of c3

≤ 2 exp(−(log
32

δ′
)) since 1.01log

1

δ′
≥ log

32

δ′
for suff. small δ′

=
2

32
δ′

as desired.

Combining Lemma A.12, Corollary A.13, and Lemma A.15, we have the following corollary:

Corollary A.16. Suppose both
log 1

δ′
n and δ′ are bounded by some small universal constant. Let S<κ denote the set of

indices i s.t. x2i is not in the top κ (empirical) quantile. Then
∑

i∈S<κ
x2i ≤ (c3+1)c22

(c2−2κ)2n with probability at least 1− 1
8δ
′.

Proof of Proposition A.11. We start by consider a single sample x̃i which is corrupted such that xi ̸= x̃i. Fixing all other
samples, we solve for the maximum (signed) error, or equivalently mean shift, that the adversary can incur by arbitrarily
corrupting this sample xi only.

Recall that the estimator (fixing influence parameter α̃ := α̃δ′,3η) is defined as µ̂ =
∑

i xi(1−min(α̃x2i , 1)). Taking the
derivative with respect to xi, restricted to the region in which min(α̃x2i , 1) = α̃x2i , we have

∂

∂xi
µ̂ = 1− 3α̃x2i = 0 ⇒ x = ± 1√

3α̃

Since α̃ ≥ 0, a local maximum occurs at x = 1√
3α̃

. The corresponding maximum contribution of this single term is 2
3
√
3α̃

.
It is easy to verify that this local maximum is in fact the global maximum based on taking the minimization between α̃x2i
and 1. Symmetrically, the minimal contribution of a single term is − 2

3
√
3α̃

.
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Thus, the maximum error the adversary can incur by corrupting a single term is 4
3
√
3α̃

. The maximum error the adversary

can incur by corrupting ηn terms is 4ηn

3
√
3α̃

.

To upper bound 4ηn

3
√
3α̃

, we need to lower bound α̃. Towards this, notice that α̃ ≥ αδ′,η by Corollary A.3, which by definition
satisfies:

ηn+
1

3
log

1

δ′
=
∑
i

min(αδ′,ηx
2
i , 1)

≤
∑
i

min(α̃x2i , 1) by Corollary A.3

≤
∑

i:x2
i not in the top κ quantile

min(α̃x2i , 1) +
∑

i:x2
i in the top κ quantile

min(α̃x2i , 1)

≤
∑

i:x2
i not in the top κ quantile

α̃x2i +
∑

i:x2
i in the top κ quantile

1

=
∑

i:x2
i not in the top κ quantile

α̃x2i + κn

=
∑

i:x2
i not in the top κ quantile

α̃x2i +
1

3
log

1

δ′

Rearranging, this is equivalent to
ηn ≤

∑
i:x2

i not in the top κ quantile

α̃x2i

By Corollary A.16, with probability at least 1− 1
8δ
′, ∑
i:x2

i not in the top κ quantile

x2i

≤ (c3 + 1)c22
(c2 − 2κ)2

n

≤ (c3 + 1)c22
(c2 − 2)2

n

Thus,

ηn ≤
∑

i:x2
i not in the top κ quantile

α̃x2i ≤ (c3 + 1)c22
(c2 − 2)2

nα̃

which is equivalent to

α̃ ≥ (c2 − 2)2

(c3 + 1)c22
η ≥ 0.00804η

Thus, we have∣∣∣∣∣∑
i

x̃i(1−min(α̃x̃2i , 1))−
∑
i

xi(1−min(α̃x2i , 1))

∣∣∣∣∣ ≤ 4ηn

3
√
3α̃

≤ 4ηn

3
√
0.02412η

≤ 8.586n
√
η

as desired.

A.3. Proof of Theorem 2.3

Equipped with Propositions A.4 and A.11, we are ready to formally prove Theorem 2.3.
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Proof of Theorem 2.3. We will start by assuming that the underlying distribution has mean 0 and variance 1 (by the shift-
and-scale equivariance of Estimator 1), and furthermore, that the initial estimate κ computed in Step 1 is exactly the true
mean of 0. At the end of this proof, we will show that the κ = 0 assumption introduces only a negligible amount of mean
estimation error.

Fixing the initial estimate κ = 0, then, Estimator 1 on input the clean samples X and confidence parameter δ′ computes the
influence parameter α := αδ′,0, and returns an estimate µ̂clean,α := 1

n

∑
i xi(1−min(αx2i , 1)). As a part of their analysis,

Lee & Valiant (2022) showed that

|µ̂clean,α| ≤ (
√
2 + o(1))

√
log 1

δ′

n

with probability at least 1− δ′. We note that the above guarantee can in fact be slightly strengthened, so that the failure
probability becomes δ′/16, at the expense of a slightly increased o(1) by no more than a constant multiplicative factor.

Now we consider changing the “α” value from α to α̃ computed from the corrupted samples, but applying these α influence
parameters on the same clean sample set, and bound the difference in the resulting mean estimates. Specifically, consider
α̃ := α̃δ′,3η, which is the influence parameter computed with robustness level 1

3 log
1
δ′ + 3ηn from the corrupted samples.

Let the mean estimate of using α̃ on the clean samples be µ̂clean,α̃ := 1
n

∑
i xi(1−min(α̃x2i , 1)). Then, by Proposition A.4,

with probability at least 1− 6
8δ
′ we have

|µ̂clean,α̃ − µ̂clean,α| =
1

n

∣∣∣∣∣∑
i

xi min(α̃x2i , 1)−
∑
i

xi min(αx2i , 1)

∣∣∣∣∣ ≤ 125.5
√
η

Next we consider the effect of replacing the effect of corruption, but after fixing the influence parameter to be α̃. Specifically,
define µ̂corrupt,α̃ to be the mean estimate of the corrupted samples using α̃, namely 1

n

∑
i x̃i(1−min(α̃x̃2i , 1)). Then, by

Proposition A.11, with probability at least 1− 1
8δ
′, we have

|µ̂corrupt,α̃ − µ̂clean,α̃| =
1

n

∣∣∣∣∣∑
i

x̃i(1−min(α̃x̃2i , 1))−
∑
i

xi(1−min(α̃x2i , 1))

∣∣∣∣∣ ≤ 8.586
√
η

By union bound and triangle inequality, summing over all three error terms, we have that with probability at least 1− 15
16δ
′,

µ̂corrupt,α̃ satisfies

|µ̂corrupt,α̃| ≤ (
√
2 + o(1))

√
log 1

δ′

n
+ 134.086

√
η ≤ (

√
2 + o(1))

√
log 1

δ′

n
+ 135

√
η

Finally, observe that on a mean-0-variance-1 distribution, and with η-corruption, the only difference between µ̂corrupt,α̃ and
the output µ̂ of Estimator 1 (on input as stated in the theorem statement) lies in µ̂corrupt,α̃ assuming that the initial mean
estimate κ was the true mean of 0. On the other hand, µ̂ (Estimator 1) uses an estimator (for example, median-of-means) to
compute κ.

We use the following fact shown in Lee & Valiant (2022) about the structural properties of Estimator 1, to analyze the effect
of the κ assumption:

Fact A.17 (Lee & Valiant 2022). Let X be a fixed set of samples of size n, and let δ > 0 be a confidence parameter. Let
µ̂ = µ̂(X, δ) denote the output of Estimator 1 of LV22. Then Estimator 1 is affine invariant, i.e.:

µ̂(aX + b, δ) = aµ̂(X, δ) + b

Additionally, let µ̂κ(X, δ) denote the output of Estimator 1 but where Step 1 is omitted, and the initial estimate κ is instead
considered as an input. Then: ∣∣∣∣∂µ̂κ(X, δ)

∂κ

∣∣∣∣ = O

√ log 1
δ

n


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We also use the following fact/assumption on the robustness of the initial estimate κ against adversarial corruption: it is a
folklore result that median-of-means satisfies this. A proof of Fact A.18 is given in Appendix F for completeness, since we
are unaware of literature explicitly writing down this proof. As discussed in Estimator 1, we are free to use other estimators
to compute κ as long as Fact A.18 holds analogously.

Fact A.18 (Folklore). For any distribution D with mean µ and standard deviation σ, let X̃ be a set of n η-corrupted samples
from D. The median-of-means estimate κ from grouping samples into O(log 1

δ′ + ηn) buckets, on input X̃ , satisfies

P

|κ− µ| ≥ O

σ
√

log 1
δ′

n
+ η

 ≤ 1

16
δ′

By Fact A.18, with probability at least 1− 1
16δ
′, |κ| ≤ O

(√
log 1

δ′
n + η

)
, and by the Lipschitz bound of Fact A.17, we can

bound the (absolute) difference between µ̂ and µ̂corrupt,α̃ by

|µ̂− µ̂corrupt,α̃| ≤ O

|κ|

√
log 1

δ′

n

 ≤ O

√( log 1
δ′

n

)2

+ η
log 1

δ′

n

 ≤ o

√ log 1
δ′

n

+ o(
√
η)

Thus, on a mean-0-variance 1 distribution, with probability at least 1 − δ′ over the clean samples (and with an arbitrary
η-corruption), Estimator 1 outputs

|µ̂| ≤ (
√
2 + o(1))

√
log 1

δ′

n
+ (135 + o(1))

√
η

Combined with the affine invariance of Estimator 1 as stated in Fact A.17, if the underlying distribution instead had mean µ
and variance σ2, we have the mean estimation guarantee

|µ̂− µ| ≤ σ ·

(
√
2 + o(1))

√
log 1

δ′

n
+ (135 + o(1))

√
η


as desired.

We note that the o(1)
√
η term in the estimation error is solely incurred by the estimation error from the initial estimate κ.

A.4. Proof of Theorem 2.2

In this section, we present the proof of Theorem 2.2. While the high level idea of our proof is similar to that of Theorem 2.3,
there are some important distinctions, most importantly in what we require the failure probability of our component lemmas
to be.

Recall that in Theorem 2.3, while we gave the parameter δ to Estimator 1, we relaxed the failure probability of the estimator
to δ′ ≥ δ. On the other hand, Theorem 2.2 actually analyzes Estimator 1 at failure probability δ, which in turn requires the
prerequisite lemmas to have failure probability ≤ δ.

Towards that end, notice that given the desired failure probability δ, if we let δ′ be such that 1
3 log

1
δ = 1

3 log
1
δ′ + 8ηn, then

δ = δ′e−24ηn. Thus, the goal of this section is to devise analogs of Proposition A.4 and A.11 with 1− δ = 1− δ′e−24ηn as
failure probability instead. We stress that this reparameterization is purely for analytical purposes; Neither the estimator nor
the user know anything about the corruption parameter η or the analytical assumption we use to define δ′. Our choice of the
constant 8 in front of the ηn term is different from the previous section, and stems from a somewhat arbitrary numerical
choice to prevent constants in the theorem from blowing up, while also implicitly posing constraints on η.

We present the counterpart of Proposition A.4 first, bounding the error coming from the change in α value on uncorrupted
samples, with a smaller failure probability.
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Proposition A.19. Suppose both log 1
δ

n and δ are bounded by some small universal constant. Let α be the influence
parameter computed from the clean samples with robustness level 1

3 log
1
δ′ + 8ηn, namely, α := αδ′,8η. Let α̃ be the

influence parameter computed from the corrupted samples with robustness level 1
3 log

1
δ′ + 8ηn, namely, α̃ := α̃δ′,8η . Then

with probability at least 1− 10
11δ
′e−24ηn, the mean estimate using α on the clean samples differs from the mean estimate

using α̃ on the clean samples by at most 195.065
√
η, i.e.,∣∣∣∣∣∑

i

xi min(α̃x2i , 1)−
∑
i

xi min(αx2i , 1)

∣∣∣∣∣ ≤ 195.065n
√
η

We begin proving Proposition A.19 by stating an alternative version of Lemma A.10:

Lemma A.20. Suppose both log 1
δ

n and δ are bounded by some small universal constant. Then α := αδ′,8η ≥
0.000214 1

n (log
1
δ′ + 24ηn) with probability at least 1− 4

11δ
′ · e−24ηn.

The proof is identical to that of Lemma A.10, with the appropriate log 1
δ and δ terms replaced with log 1

δ′ + 24ηn and
δ′ · e−24ηn instead.

Now that we have lower bounded α (with high probability), analogously to the proof of Proposition A.4, we now wish to
also lower bound α̃. The proof of this lower bound will deviate from that in Proposition A.4—in Proposition A.4 we were
analyzing and comparing α̃ := α̃δ′,3η and α := αδ′,0; here in Proposition A.19, we are comparing α̃ := α̃δ′,8η against
α := αδ′,8η .

For Proposition A.4, the “η-subscripts” between the two “α” values differ by 3η, so we could apply Corollary A.3 and the
monotonicity of αδ′,η in the “η-subscript” to yield α̃ := α̃δ′,3η ≥ αδ′,η ≥ α := αδ′,0. Here, we need a new argument to
lower bound α̃ := α̃δ′,8η , shown in the following lemma.

Lemma A.21. Suppose both log 1
δ

n and δ are bounded by some small universal constant. Then α̃ := α̃δ′,8η ≥
0.0000354 1

n (log
1
δ′ + 24ηn) with probability at least 1− 4

11δ
′ · e−24ηn.

Proof. Notice that α̃ := α̃δ′,8η ≥ αδ′,6η by Corollary A.3. Letting κ := c1
1
n (log

1
δ′ + 24ηn) for some constant c1 < 1

4 , we
have

1

4
(24ηn+ log

1

δ′
) = 6ηn+

1

4
log

1

δ′

≤ 6ηn+
1

3
log

1

δ′

=
∑
i

min(αδ′,6ηx
2
i , 1)

≤
∑
i

min(α̃x2i , 1) by Corollary A.3 as above

≤
∑

i:x2
i not in the top κ quantile

min(α̃x2i , 1) +
∑

i:x2
i in the top κ quantile

min(α̃x2i , 1)

≤
∑

i:x2
i not in the top κ quantile

α̃x2i +
∑

i:x2
i in the top κ quantile

1

=
∑

i:x2
i not in the top κ quantile

α̃x2i + κn

=
∑

i:x2
i not in the top κ quantile

α̃x2i + c1(24ηn+ log
1

δ′
)

This implies that ∑
i:x2

i not in the top κ quantile

α̃x2i ≥ (
1

4
− c1)(log

1

δ′
+ 24ηn)
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With a slightly modified version of Corollary A.16, bounding
∑

i:x2
i not in the top κ quantile x

2
i by (c3+1)c22

(c2−2)2 n with probability at
least 1− 4

11δ
′ ·e−24ηn, we can choose c1 = 0.202, c2 = 398.432, c3 = 1328.46, and obtain α̃ ≥ 0.0000354(log 1

δ′ +24ηn)
as desired.

Proof of Proposition A.19. First, notice that for all i such that |xi| ≥ max(
√

1
α ,
√

1
α̃ ) =

√
1

min(α,α̃) , the corresponding

term in the left hand side becomes 0. Thus, using the notation
∑
≤ to denote summing over elements |xi| ≤

√
1

min(α,α̃) , the
left hand side in the guarantee of Proposition A.19 is equal to∣∣∣∣∣∣

∑
≤

xi min(α̃x2i , 1)−
∑
≤

xi min(αx2i , 1)

∣∣∣∣∣∣
Then, rearranging the sums, we have∣∣∣∣∣∣

∑
≤

xi min(α̃x2i , 1)−
∑
≤

xi min(αx2i , 1)

∣∣∣∣∣∣
=
∑
≤

∣∣xi (min(α̃x2i , 1)−min(αx2i , 1)
)∣∣

≤

√√√√√
∑
≤

x2i

∑
≤

(min(α̃x2i , 1)−min(αx2i , 1))
2

 by Cauchy-Schwarz

for which we can bound the two terms separately.

To bound the first term, since we sum over only those terms where |xi| ≤
√

1
min(αδ′,8η,α̃)

for all i, and by Lemma A.20

and A.21, min(αδ′,8η, α̃) ≥ 0.0000354
n (log 1

δ′ +24ηn) with probability 1− 8
11δ
′ · e−24ηn, we have that x2i ≤ 28249n

log 1
δ′ +24ηn

for

all i. Since X has mean 0 and variance 1, we know that E[x2i ] ≤ E[X2] = 1, and Var[x2i ] ≤ E[x4i ] ≤ 28249n
log 1

δ′ +24ηn
E[x2i ] ≤

28249n
log 1

δ′ +24ηn
. Thus, by Bernstein’s inequality,

P

∑
≤

x2i ≥ 19025n

 ≤ P

 1

n

∑
≤

x2i − 1 ≥ 19024


≤ P

 1

n

∑
≤

x2i − E[x2i ] ≥ 19024


≤ 2 exp

(
− 190242n

56498 n
log 1

δ′ +24ηn
+ 56498 · 19024 n

log 1
δ′ +24ηn

/3

)

≤ 2 exp

(
−1.1(log

1

δ′
+ 24ηn)

)
≤ 2 exp

(
−(log

11

δ′
+ 24ηn)

)
for suff. small δ

=
2

11
δ′ · e−24ηn

In other words, conditioning on Lemma A.20 and A.21 both holding, with probability at least 1− 2
11δ
′ · e−24ηn,

∑
≤ x

2
i ≤

19025n.
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To bound the second term, note that depending on the order between α := αδ′,8η and α̃ := α̃δ′,8η, either min(αx2i , 1)−
min(α̃x2i , 1) ≥ 0 for all i, or min(α̃x2i , 1)−min(αx2i , 1) ≥ 0 for all i holds. Without loss of generality, we assume that
α̃ ≥ α, and that min(α̃x2i , 1)−min(αx2i , 1) ≥ 0 for all i.

Then, we have∑
≤

(
min(α̃x2i , 1)−min(αx2i , 1)

)2 ≤
∑
i

(
min(α̃x2i , 1)−min(αx2i , 1)

)2 ≤
∑
i

(
min(α̃x2i , 1)−min(αx2i , 1)

)
since α̃ ≥ α, and that min(α̃x2i , 1)−min(αx2i , 1) ≥ 0 for all i.

To further upper bound the last quantity, we have∑
i

(
min(α̃x2i , 1)−min(αx2i , 1)

)
=
∑
i

min(α̃x2i , 1)−
∑
i

min(αx2i , 1)

≤
∑
i

min(αδ′,10ηx
2
i , 1)−

∑
i

min(αδ′,8ηx
2
i , 1) by Corollary A.3 and by the definition of α

=
1

3
log

1

δ′
+ 10ηn− 1

3
log

1

δ′
− 8ηn

= 2ηn

Finally, summarizing, we have that with high probability at least 1− 10
11δ
′ · e−24ηn:√√√√(∑

i

x2i

)(∑
i

(min(α̃x2i , 1)−min(αx2i , 1))
2

)
≤
√
19025n · 2ηn

= n
√
38050η ≤ 195.065n

√
η

as desired.

We now present the counterpart of Proposition A.11, bounding the error due to the adversarial corruption with tighter failure
probability.

Proposition A.22. Suppose both log 1
δ

n and δ are bounded by some small universal constant. Let α̃ be the influence parameter
computed from the corrupted samples with robustness level 1

3 log
1
δ′ + 8ηn, namely, α̃ := α̃δ′,8η. Then with probability

at least 1 − 4
11δ
′e−24ηn, the mean estimate using α̃ on the clean samples differ from the mean estimate using α̃ on the

corrupted samples by at most 26.411
√
η, i.e.,∣∣∣∣∣∑

i

x̃i(1−min(α̃x̃2i , 1))−
∑
i

xi(1−min(α̃x2i , 1))

∣∣∣∣∣ ≤ 26.411n
√
η

Proof. With arguments identical to that in the proof of Proposition A.11, the maximum error the adversary can incur by
corrupting ηn terms is 4ηn

3
√
3α̃

. To arrive at a similar lower bound of α̃ in terms of η, notice that by Lemma A.21, we have
that with probability at least 1− 4

11δ
′ · e−24ηn,

α̃ ≥ 0.0000354
1

n

(
log

1

δ′
+ 24ηn

)
≥ 0.0000354

1

n
(24ηn) ≥ 0.0008496η

Thus, we have that∣∣∣∣∣∑
i

x̃i(1−min(α̃x̃2i , 1))−
∑
i

xi(1−min(α̃x2i , 1))

∣∣∣∣∣ ≤ 4ηn

3
√
3α̃

≤ 4ηn

3
√
3 · 0.0008496η

≤ 26.411n
√
η
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Equipped with Propositions A.19 and A.22, we are ready to formally prove Theorem 2.2.

Proof of Theorem 2.2. We will start by assuming that the underlying distribution has mean 0 and variance 1 (by the shift-
and-scale equivariance of Estimator 1), and furthermore, that the initial estimate κ computed in Step 1 is exactly the true
mean of 0. At the end of this proof, we will show that the κ = 0 assumption introduces only a negligible amount of mean
estimation error.

Fixing the initial estimate κ = 0, then, Estimator 1 on input the clean samples X and confidence parameter δ computes the
influence parameter α := αδ,0, and returns an estimate µ̂clean,α := 1

n

∑
i xi(1 −min(αx2i , 1)). Note that αδ,0 = αδ′,8η,

since 1
3 log

1
δ = 1

3 log
1
δ′ + 8ηn by definition of δ′.

As a part of their analysis, Lee & Valiant (2022) showed that

|µ̂clean,α| ≤ (
√
2 + o(1))

√
log 1

δ

n

with probability at least 1 − δ. We note that the above guarantee can in fact be slightly strengthened, so that the failure
probability becomes δ/22, at the expense of a slightly increased o(1) by no more than a constant multiplicative factor.

Now we consider changing the “α” value from α to α̃ computed from the corrupted samples, but applying these α influence
parameters on the same clean sample set, and bound the difference in the resulting mean estimates. Specifically, consider
α̃ := α̃δ′,8η , which is the influence parameter computed with robustness level 1

3 log
1
δ′ + 8ηn from the corrupted samples.

Let the mean estimate of using α̃ on the clean samples be µ̂clean,α̃ := 1
n

∑
i xi(1−min(α̃x2i , 1)). Then, by Proposition A.19,

with probability at least 1− 10
11δ
′ · e−24ηn = 1− 10

11δ we have

|µ̂clean,α̃ − µ̂clean,α| =
1

n

∣∣∣∣∣∑
i

xi min(α̃x2i , 1)−
∑
i

xi min(αx2i , 1)

∣∣∣∣∣ ≤ 195.065
√
η

Next we consider the effect of replacing the effect of corruption, but after fixing the influence parameter to be α̃. Specifically,
define µ̂corrupt,α̃ to be the mean estimate of the corrupted samples using α̃, namely 1

n

∑
i x̃i(1−min(α̃x̃2i , 1)). Then, by

Proposition A.22, with probability 1 conditioned on Proposition A.19 and thus Lemma A.21 holding, we have

|µ̂corrupt,α̃ − µ̂clean,α̃| =
1

n

∣∣∣∣∣∑
i

x̃i(1−min(α̃x̃2i , 1))−
∑
i

xi(1−min(α̃x2i , 1))

∣∣∣∣∣ ≤ 26.411
√
η

By union bound and triangle inequality, summing over all three error terms, we have that with probability at least 1− 21
22δ,

µ̂corrupt,α̃ satisfies

|µ̂corrupt,α̃| ≤ (
√
2 + o(1))

√
log 1

δ

n
+ 221.476

√
η ≤ (

√
2 + o(1))

√
log 1

δ

n
+ 222

√
η

Finally, observe that on a mean-0-variance-1 distribution, and with η-corruption, the only difference between µ̂corrupt,α̃ and
the output µ̂ of Estimator 1 (on input as stated in the theorem statement) lies in µ̂corrupt,α̃ assuming that the initial mean
estimate κ was the true mean of 0. On the other hand, µ̂ (Estimator 1) computes κ from data.

We use Fact A.17 as well as the following fact/assumption about the robustness of the initial estimate κ against adversarial
corruption to analyze the effect of the κ assumption. Fact A.23 is known to hold true for median-of-means as a folklore
result, which we show in Appendix F for completeness. As mentioned in Estimator 1, we can choose to use other estimators
to compute the initial estimate κ as long as the estimator satisfies Fact A.23.

Fact A.23 (Folklore). For any distribution D with mean µ and standard deviation σ, let X̃ be a set of n η-corrupted samples
from D. Assuming that η ≤ 1

24n log
1
δ , the median-of-means estimate κ from grouping samples into O(log 1

δ ) buckets, on
input X̃ , satisfies

P

|κ− µ| ≥ O

σ
√

log 1
δ

n

 ≤ 1

22
δ
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By Fact A.23, with probability at least 1− 1
22δ, |κ| ≤ O

(√
log 1

δ

n

)
, and by the Lipschitz bound of Fact A.17, we can bound

the (absolute) difference between µ̂ and µ̂corrupt,α̃ by

|µ̂− µ̂corrupt,α̃| ≤ O

|κ|

√
log 1

δ

n

 ≤ O

√( log 1
δ

n

)2
 ≤ o

√ log 1
δ

n


Thus, on a mean-0-variance 1 distribution, with probability at least 1 − δ over the clean samples (and with an arbitrary
η-corruption), Estimator 1 outputs

|µ̂| ≤ (
√
2 + o(1))

√
log 1

δ

n
+ 222

√
η

Combined with the affine invariance of Estimator 1 as stated in Fact A.17, if the underlying distribution instead had mean µ
and variance σ2, we have the mean estimation guarantee

|µ̂− µ| ≤ σ ·

(
√
2 + o(1))

√
log 1

δ

n
+ 222

√
η


as desired.

B. Robustness of Estimator 1 in Weaker Models
As corollaries to our main results, stating that Estimator 1 is robust against adversarially corrupted data, we also show
that Estimator 1 is robust against two (slightly weaker) contamination models, namely Huber contamination and TV
contamination. For simplicity, we present and prove direct corollaries of Theorem 2.2 only. Corollaries of Theorem 2.3
follow similarly.

Definition B.1 (Huber contamination (Huber, 1992)). Given a corruption parameter η and a distributionD on the uncorrupted
data, we say that a set of n samples is an η-Huber-contaminated sample from D if it is drawn i.i.d. from some distribution
(1− η)D + ηE for an arbitrary distribution E.

The Huber contamination model (Huber, 1992) can be regarded as being weaker than the strong contamination model,
because the corruption is always drawn randomly and obliviously from a fixed distribution E chosen by the adversary; on
the other hand, the adversary in the strong contamination model gets to choose the corruptions adaptively after inspecting
all the samples. We point out however that, due to the random nature of the number of corrupted samples in the Huber
model (and TV contamination model later in Definition B.5), these models are not strictly weaker than strong contamination,
despite being “weaker in expectation”. Nonetheless, by Chernoff bounds, the number of corrupted samples will concentrate
to O(ηn) except with exp(−Ω(ηn)) probability.

Later on, in Appendix C, we aim to show the neighborhood optimality of Estimator 1 as a corollary of its robustness against
Huber contamination. In those results, we aim for a failure probability at most δ when the algorithm is given δ as input, as
opposed to a failure probability that is (slightly) larger than δ. Consequently, we write our theorem below (Theorem B.4) for
Huber-contamination robustness with a failure probability δ/2 + exp(−Ω(ηn)), so that it is upper bounded by δ when η is
sufficiently large.2

We will show Theorem B.4 as a corollary of Corollary B.2, which is a variant of the strong-contamination robustness result
in Theorem 2.2, with failure probability δ/2 instead of δ. Then, recalling that the probability of having too many corruptions
is at most exp(−Ω(ηn)), a union bound gives the target failure probability in Theorem B.4.

Corollary B.2. Given any distribution D with mean µ and variance σ2, parameters n, δ, η > 0, let X̃ be a set of n
η-corrupted samples from D.

2We point out that, somewhat counter-intuitively, the larger η is, and the stronger the corruption is, the less likely that Huber
contamination produces many more corrupted samples than adversarial corruption.
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Suppose both log 1
δ

n and δ are bounded by some small universal constant, and suppose η ≤ 1
24n log

1
δ . Then, with probability

at least 1− 1
2δ over the sampling process, Estimator 1 on input δ and X̃ will output an estimate µ̂ with error at most

|µ̂− µ| ≤ σ ·

(1 + o(1))

√
2log 1

δ

n
+ 222

√
η


The proof of Corollary B.2 is almost identical to that of Theorem 2.2. The main difference is, instead of using Fact 1.1
to guarantee the performance of Estimator 1 on i.i.d. uncorrupted samples, we use a stronger variant which is Fact B.3
below. Specifically, Fact B.3 inputs the parameter δ to Estimator 1 but asks for a failure probability of δ/2 instead of δ, at
the expense of a slightly larger “o(1)” term. Given the above target parameters, Fact B.3 is not a black-box corollary of
Fact 1.1. Nonetheless, it follows directly from the analysis in Lee and Valiant’s original paper (2022), so we state it without
proof below.

Fact B.3 (Lee & Valiant 2022). Given any distribution D with mean µ and variance σ2, parameters n, δ > 0, let X be a
set of n independent samples from D. Then, with probability at least 1− δ/2 over the sampling process, Estimator 1 on
input δ and X will output an estimate µ̂ with error at most

|µ̂− µ| ≤ σ ·

(1 + o(1))

√
2log 1

δ

n


Here, the o(1) term tends to 0 as

(
log 1

δ

n , δ
)
→ (0, 0) and, crucially, is independent of D.

We can now state and prove the robustness of Estimator 1 against Huber contamination.

Theorem B.4. Suppose both log 1
δ

n and δ are bounded by some small universal constant. Given any distributionD with mean
µ and variance σ2, parameters n, δ, η > 0, and a setX of n η-Huber-contaminated samples fromD, for some η ≤ 1

24en log
1
δ .

Estimator 1 of LV22, when given access to n, δ, and X only, will, with probability at least 1− ( 12δ + exp(−80ηn)) over the
sampling process, yield an estimate µ̂ with error at most

|µ̂− µ| ≤ σ ·

(1 + o(1))

√
2 log 1

δ

n
+ 222

√
33η


Proof. Note that sampling from distribution (1− η)D + ηE is exactly identical to sampling from D with probability 1− η
and from E with η. We bound the probability that such a sampling process samples more than 33ηn samples from E.

Let zi denote the indicator variable for the event that sample xi is sampled from E. By multiplicative Chernoff:

P[
n∑

i=1

zi ≥ 33ηn] ≤
(
e33−1

3333

)ηn

≤ exp(−80ηn)

Thus with probability at least 1− exp(−80ηn), the Huber-contaminated sample set has at most 33ηn samples corrupted.

Conditioned on this happening, Corollary B.2 applies to the set of contaminated samples X with an adversary capable of
arbitrarily corrupting 33ηn samples, with probability at least 1− 1

2δ. Our theorem thus follows from a union bound.

Generalizing from Huber contamination slightly is the TV contamination model, which draws samples from a distribution
D′ that is within η TV distance from the genuine underlying distribution D.

Definition B.5 (TV contamination (Diakonikolas & Kane, 2023)). Given a corruption parameter η and a distribution D on
the uncorrupted data, we say that a set of n samples is an η-TV-contaminated sample from D if it is drawn i.i.d. from some
distribution D′ such that DTV(D,D

′) ≤ η.

And correspondingly, we have the following theorem showing that Estimator 1 is robust against TV contamination.
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Theorem B.6. Suppose both log 1
δ

n and δ are bounded by some small universal constant. Given any distributionD with mean
µ and variance σ2, parameters n, δ, η > 0, and a set X of n η-TV-contaminated samples from D, for some η ≤ 1

24en log
1
δ .

Estimator 1 of LV22, when given access to n, δ, and X only, will, with probability at least 1− ( 12δ + exp(−80ηn)) over the
sampling process, yield an estimate µ̂ with error at most

|µ̂− µ| ≤ σ ·

(1 + o(1))

√
2 log 1

δ

n
+ 222

√
33η


Proof. Let D′ be any distribution such that DTV (D,D

′) ≤ η. There exists a coupling between D and D′ such that for any
sample index i, the probability that the sample xi from D and the sample x′i from D′ differs is at most η.

Let zi denote the indicator variable for the event that xi differs from x′i. By multiplicative chernoff:

P[
n∑

i=1

zi ≥ 33ηn] ≤
(
e33−1

3333

)ηn

≤ exp(−80ηn)

Thus with probability at least 1− exp(−80ηn), the TV-contaminated sample set has at most 33ηn samples corrupted.

Conditioned on this happening, Corollary B.2 applies to the set of contaminated samples X with an adversary capable of
arbitrarily corrupting 33ηn samples, with probability at least 1− 1

2δ. Our theorem thus follows from a union bound.

C. Neighborhood Optimality of Estimator 1
Neighborhood optimality is a notion of instance-by-instance optimality beyond the worst-case defined in Dang et al. (2023).
In this section, we show that Estimator 1 is also asymptotically neighborhood optimal as a corollary to its robustness against
TV contamination. We point out that our result matches that of Dang et al. (2023), which states that the median-of-means
estimator is asymptotically neighborhood optimal, with the same choice of neighborhood structure and asymptotes.

For mean estimation in R, Estimator 1 achieves the optimal sub-Gaussian rate even up to the constants. Their optimality is
only in the worst-case regime, i.e., there exists an instance of mean estimation on which no estimator can perform better. A
natural question to this observation is: Can we beat the sub-Gaussian rate for some distributions?

Dang et al. (2023) presented the following new universal estimation lower bound function:

Definition 2.5 (Dang et al. 2023). Given a (continuous) distribution D with mean µ and a real number t ∈ [0, 1], define the
t-trimming operation on D as follows: select a radius r such that the probability mass in [µ− r, µ+ r] equals 1− t; then,
return the distribution D conditioned on lying in [µ− r, µ+ r].

Given n and δ, define the trimmed distribution D∗n,δ to be the 0.45
n log 1

δ -trimmed version of D. When δ is implicit, we may

denote this as D∗n. Now define the error function ϵn,δ(D) = |µ − µ∗n| + σ∗n

√
log 1

δ

n , where µ∗n and σ∗n are the mean and
standard deviation of D∗n respectively.

The ground truth error function ϵn,δ in Definition 2.5 applies simultaneously for all distributions with a finite mean, not just
for the worst-case distribution, in the sense that for any distribution p we can construct a neighboring distribution q that is
indistinguishable with probability at least 1− δ with n samples, but the mean of p and q are well-separated by O(ϵn,δ(p)) in
distance. Thus, no estimator can beat the error function on p and q simultaneously, since any estimator that can will be a
distinguisher between p and q.

To formalize this notion of lower bound and optimality, Dang et al. (2023) presented the following pair of definitions:

Definition 5.1 (Neighborhood Pareto Bounds (Dang et al., 2023)). Let n be the number of samples and δ be the failure
probability. Given a neighborhood function Nn,δ : P1 → 2P1 , we say that the error function ϵn,δ(D) : P1 → R+

0 is a
neighborhood Pareto bound for P1 with respect to Nn,δ if for all distributions D ∈ P1, no estimator µ̂ taking n i.i.d. samples
can simultaneously achieve the following two conditions:

29



All-Purpose Mean Estimation over R

• For all D′ ∈ Nn,δ(D), with probability 1− δ over the n i.i.d. samples from D′, we have |µ̂− µD′ | ≤ ϵn,δ(D
′).

• With probability 1− δ over the n i.i.d. samples from D, |µ̂− µD| < ϵn,δ(D).

Definition 5.2 ((κ, τ)-Neighborhood Optimal Estimators (Dang et al., 2023)). Let κ > 1 be a multiplicative loss factor in
estimation error, and τ > 1 be a multiplicative loss factor in sample complexity.
Given the parameters κ, τ > 1, sample complexity n, failure probability δ and neighborhood function Nn,δ, a mean
estimator µ̂ is (κ, τ)-neighborhood optimal with respect to Nn,δ if there exists an error function ϵn,δ(D) such that
min(ϵn/τ,δ(D), ϵn,δ(D)) is a neighborhood Pareto bound3, and µ̂ gives estimation error at most κ · ϵn,δ(D) with probability
at least 1− δ when taking n i.i.d. samples from any distribution D ∈ P1.

Definition 5.1 enforces that it is impossible to “beat” the neighborhood Pareto bound locally, performing as good over
the local neighborhood, while strictly better on the center p. It essentially enforces admissibility over every such local
neighborhood, forming a smooth interpolation between instance optimality and admissibility, which are both classical
definitions of optimality beyond the worst-case that fails in context of mean estimation in R.

Dang et al. (2023) showed that there exists a neighborhood function Nn,δ for which ϵn,δ as defined in Definition 2.5 is a
neighborhood Pareto bound, and for which median-of-means is (κ, 3)-neighborhood optimal for some sufficiently large
constant κ. We capture the necessary components of their analysis and state them without proof in the following fact:
Fact C.1. There exists a neighborhood function Nn,δ : P1 → 2P1 for which ϵn,δ as defined in Definition 2.5 is a
neighborhood Pareto bound. Any estimator that obtains estimation error O(ϵn,δ(p)) for all distributions p ∈ P1 is
(κ, 3)-neighborhood optimal with respect to Nn,δ for some sufficiently large constant κ.

Thus, to show that Estimator 1 is neighborhood optimal, it suffices to show that it asymptotically matches the performance
of the ground truth error bound ϵn,δ . We present a reanalysis of Estimator 1 using its robustness against TV contamination
that proves its neighborhood optimality in such a way.

Theorem C.2. Suppose both log 1
δ

n and δ are bounded by some small universal constant. Denote by Nn,δ the neighborhood
function whose existence is implied by Fact C.1. Estimator 1 is (κ, 3)-neighborhood optimal with respect to Nn,δ for some
sufficiently large constant κ.

Proof. Let ϵn,δ be the ground truth error function as defined in Definition 2.5. By Fact C.1, it suffices to show that Estimator
1 achieves an error rate of O(ϵn,δ(p)) for all distributions p.

Let p be any distribution with mean µp. Let c be the constant such that c
n log 2

δ = 1
80n log

1
δ ≤ 1

24en log
1
δ . Let p∗n be the

c
n log 2

δ -trimmed version of p as defined in Definition 2.5, and let µp∗
n

and σp∗
n

be the mean and standard deviation of p∗n
respectively. Let ϵn,δ be the error function as defined in Definition 2.5.

Observe that p∗n satisfies that DTV (p
∗
n, p) =

c
n log 2

δ . Thus, by Theorem B.6 with D = p∗n and η = c
n log 2

δ , we have that
with probability at least 1− ( 12δ + exp(−80ηn)) = 1− δ,

|µ̂− µp∗
n
| ≤ σp∗

n
·

(1 + o(1))

√
2log 1

δ

n
+ 222

√
33c log 2

δ

n


= O

σp∗
n

√
log 1

δ

n


Thus by the triangle inequality, we have that with probability at least 1− δ,

|µ̂− µp| ≤ |µp − µp∗
n
|+ |µ̂− µp∗

n
| ≤ |µp − µp∗

n
|+O

σp∗
n

√
log 1

δ

n

 = O(ϵn,δ)

Combined with Fact C.1, this implies that Estimator 1 is indeed (κ, 3)-neighborhood optimal with respect to Nn,δ for some
sufficiently large constant κ, as desired.

3While it is intuitive to expect that an error function decreases in n, it might not be true in general. Indeed, the function used by Dang
et al. (2023) (Definition 2.5) is not necessarily monotonic. This is the reason for the “min” in the neighborhood Pareto bound requirement.
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We point out that the proof of Theorem B.6 and Theorem C.2 does not depend on the specific characteristics of Estimator 1,
and instead only relies on Theorem 2.2 holding. Thus, we can obtain a similar neighborhood optimality result for any mean
estimator that is sub-Gaussian and robust against adversarial corruption, and enjoys asymptotically matching bounds as in
Theorem 2.2:

Corollary C.3. Any estimator that, when given δ > 0 and a set of n η-corrupted sample from distribution D with mean µ
and variance σ2, yields a mean estimate µ̂ satisfying

|µ̂− µ| ≤ O

σ
√ log 1

δ

n
+

√
η


is (κ, 3)-neighborhood optimal with respect to Nn,δ for some sufficiently large constant κ.

D. Remaining Proofs of Section 6
In Section 6, we outlined the proof strategy of our main theorem for low moment performances of Estimator 1, which
follows that of Lee & Valiant (2022), and provided the statement of the reformulation of Estimator 1 as a 2-parameter
ψ-estimator. In this section, we present the full proof of Theorem 2.4, following the structure and organization of Lee &
Valiant (2022). We present each component lemma along with the intuition behind it, and refer the reader to Lee & Valiant
(2022) for more detailed motivations and discussions. For completeness, we restate our main theorem:

Theorem 2.4. Given any distribution D with mean µ and zth moment Mz for some z ∈ (1, 2), let X be a set of n
i.i.d. samples from D. Then, with probability at least 1− δ over the randomness of X , Estimator 1 on input δ and X will
output an estimate µ̂ with error at most

|µ̂− µ| ≤ (Mz)
1
z · (1 + o(1))

(
cz

log 1
δ

n

)1− 1
z

where cz = 2(5.6)
1

z−1−1. Here, the o(1) term tends to 0 as
(

log 1
δ

n , δ
)

→ (0, 0), in a manner independent of D and
independent of z.

From the structural properties of Estimator 1 stated explicitly in Fact A.17, we make the simplifying assumption that the
underlying distribution D has mean 0 and zth moment Mz = 1, and that the initial estimate κ in Step 1 of Estimator 1 is
replaced by 0. For the rest of the appendix, we will refer to the error bound (czlog

1
δ /n)

1−1/z as ϵ (omitting the 1 + o(1)
factor).

Definition 6.1 reduced proving Chernoff bounds for Estimator 1, which is a sum of dependent terms, to proving Chernoff
bounds for the sums of independent terms of the 2-parameter ψ-estimator. Thus, it suffices to show that with high probability,
the ψ-estimator in Definition 6.1 returns an estimate µ̂ that is close to 0—or equivalently, every pair (µ̂′, α̂′) with µ̂′ far
away from 0 must satisfy ψ(X, µ̂′, α̂′) ̸= 0. We turn to analyze the following proposition, capturing this reduction:

Proposition D.1. There exists a universal constant c > 0 such that, for all 1 < z ≤ 2, fixing ϵ′ =
(
1 +

c log log 1
δ

log 1
δ

)
ϵ

where ϵ =
(
cz

log 1
δ

n

)1− 1
z

and cz = 2(5.6)
1

z−1−1, we have that for all distributions D with mean 0 and zth moment 1, with

probability at least 1− δ
2 over the set of samples X , for all µ̂, α̂ where |µ̂| > ϵ′ and α̂ > 0, the vector ψ(X, µ̂, α̂) ̸= 0.

We stress that the universal constant c in fact does not depend on z.

Towards proving Proposition D.1, we extend Lee & Valiant (2022)’s strategy, analyzing the function ψ(X, µ̂, α̂) on a finite
bounded mesh of values of µ̂, α̂ covering the most delicate range for our analysis, and show via standard ϵ-net arguments
that the proposition holds for any choice of |µ̂| > ϵ′, α̂. Specifically, we show that ψ(X, µ̂, α̂), on the finite mesh, is far
from the origin in some direction, and is Lipschitz within the mesh. We then show how to reduce the analysis outside of the
mesh to that inside the mesh.

To find a mesh to cover the relevant range of α̂ in the right “scale-invariant” way, we reparameterize α̂ by ŵ := log2(1/δ)
3α̂n2ϵ2 ,

where ϵ in the denominator (as defined in Proposition D.1) encodes the desired dependence on z. We choose an evenly-spaced
mesh over ŵ ∈ [0.05, 555]. This is analogous to the mesh on “v̂” in Lee & Valiant (2022)’s analysis.
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The main technical component of our (and Lee & Valiant (2022)’s) proof strategy is the proof that for each µ̂, ŵ = log2(1/δ)
3α̂n2ϵ2

from the finite mesh we analyze, ψ(X, µ̂, α̂) is far away from 0 in some direction. We linearize this claim and prove a
stronger result, that there exists a specific direction d(ŵ) such that with high probability, ψ(X, µ̂, α̂) is more than 1

log(1/δ)

distance away from the origin in direction d. More formally, we prove the following lemma:

Lemma D.2. Let D be an arbitrary distribution with mean 0 and zth moment 1 for some 1 < z ≤ 2. There exists a

universal constant c independent of z where the following is true. Fixing µ̂ =
(
1 +

c log log 1
δ

log 1
δ

)
ϵ where ϵ =

(
cz

log 1
δ

n

)1− 1
z

and cz = 2(5.6)
1

z−1−1, then for all δ smaller than some universal constant, and for all ŵ ∈ [0.05, 555], there exists a vector
d(ŵ) := (dµ, dα) where dµ ≥ 0, and both nϵ

log 1
δ

|dµ| and |dα| are bounded by a universal constant, such that

P
X←Dn

(
d(ŵ) · ψ

(
X, µ̂ = ϵ′, α̂ =

log2(1/δ)

3ŵn2ϵ2

)
>

1

log 1
δ

)
≥ 1− δ

log4 1
δ

Furthermore, for ŵ = 0.05 we have dµ =
√
3.75

log 1
δ

nϵ , dα =
√
3; and for ŵ = 555 we have dµ = 0, dα < 0.

From here, Proposition D.1 follows from a union bound over pairs of (µ̂, α̂) on the finite mesh, the monotonicity of
ψ(X, µ̂, α̂) beyond the mesh granted by the boundary conditions specified in Lemma D.2, and the Lipschitzness of
ψ(X, µ̂, α̂) within the region covered by the mesh, formalized in the following lemma:

Lemma D.3. Consider an arbitrary set of n samples X . Consider the expressions ψµ(X, µ̂, α̂), ψα(X, α̂), reparameterized

in terms of ŵ =
log2 1

δ

3α̂n2ϵ2 in place of α̂. Suppose the equation ψα(X, α̂) = 0 has a solution in the range ŵ ∈ [0.05, 555].

Then the functions log 1
δ

nϵ ψµ(X, µ̂, α̂) and ψα(X, α̂) are Lipschitz with respect to ŵ on the entire interval ŵ ∈ [0.05, 555],
with Lipschitz constant clog 1

δ for some universal constant c.

With these components, we now prove Proposition D.1, and subsequently formally prove our main theorem, Theorem 2.4,
before returning to prove Lemma D.2 and D.3 in Appendix D.1.

Proof of Proposition D.1. By symmetry, instead of considering positive and negative µ̂, it suffices to consider the case
µ̂ > ϵ′ and show that this case succeeds with probability at least 1− δ

4 .

To prove the claim, we first prove a stronger statement on a restricted domain, that with probability at least 1− δ
4 over the

randomness of the sample set X , for each ŵ ∈ [0.05, 555] there exists a vector d = (dµ, dα) such that d · ψ(X, ϵ′, α̂) > 0,

with dµ > 0 throughout, and , for ŵ = 0.05 we have dµ =
√
3.75

log 1
δ

nϵ , dα =
√
3; and for ŵ = 555 we have dµ = 0, dα < 0.

We will first apply Lemma D.2 to each ŵ in a discrete mesh: let M consist of evenly spaced points between 0.05 and 555
with spacing 1/ log3 1

δ (thus with Θ(log3 1
δ ) many points).

By Lemma D.2 and a union bound over these Θ(log3 1
δ ) points, we have that with probability at least 1− δ

Θ(log 1
δ )

(which is

at least 1− δ
4 for δ smaller than some universal constant) over the set of n samples X , for all ŵ ∈M , there exists a vector

d(ŵ) such that d(ŵ) · ψ(X, µ̂ = ϵ′, α̂) > 1/log 1
δ , where d further satisfies the desired positivity and boundary conditions,

and where both nϵ
log 1

δ

|dµ| and |dα| are bounded by a universal constant. For the rest of the proof, we will only consider sets
of samples X satisfying the above condition.

Now consider an arbitrary ŵ′ ∈ [0.05, 555] \M and consider the vector ψ evaluated at α̂′ = log2 1
δ

3n2ϵ2ŵ′ . We wish to extend
the dot product inequality to hold also for ŵ′. If ψα ̸= 0 then there is nothing to prove: set dµ = 0 and dα = sign(ψα);

otherwise, ψα = 0 means we may apply Lemma D.3 to conclude that both log 1
δ

nϵ ψµ(X, µ̂, α̂
′) and ψα(X, µ̂, α̂

′) are Lipschitz
with respect to ŵ′ on the interval ŵ′ ∈ [0.05, 555] with Lipschitz constant clog 1

δ for some universal constant c.

Consider the closest ŵ ∈M to ŵ′, which by definition of M is at most 1/ log3 1
δ away. By assumption on X , there exists

a vector d such that d · ψ(X, µ̂ = ϵ′, α̂) > 1/log 1
δ , with dµ > 0 and both nϵ

log 1
δ

|dµ| and |dα| are bounded by a universal
constant. Because of the Lipschitz bounds on ψ, combined with the bounds on the size of dµ and dα, we conclude that the
Lipschitz constant of the dot product (treating the vector d as fixed) is O(log 1

δ ). Thus, the large positive dot product at ŵ
implies at least a positive dot product nearby at ŵ′: d · ψ(X, µ̂ = ϵ′, ŵ′) > 1

log 1
δ

− O(log 1
δ )

1
log3 1

δ

> 0, for sufficiently
small δ as given in the proposition statement.
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Having shown the stronger version of the claim for the restriction µ̂ = ϵ′ and ŵ ∈ [0.05, 555] we now extend to the entire
domain via three monotonicity arguments. Explicitly, assume the set of samples X satisfies the dot product inequality above
with the vector function d(ŵ), where d(ŵ) satisfies the boundary conditions at ŵ = 0.05 and 555 specified in Lemma D.2.

From this assumption, we will show that ψ ̸= 0 for any positive ŵ =
log2 1

δ

3n2ϵ2α̂ , and for any µ̂ ≥ ϵ′.

First consider ŵ > 555, still fixing µ̂ = ϵ′. The function ψα =
∑n

i=1(min(α̂x2i , 1)− 1
3n log

1
δ ) is an increasing function of

α̂, and thus a decreasing function of ŵ =
log2 1

δ

3n2ϵ2α̂ . Since for ŵ = 555, the dot product d · ψ > 0 with dµ = 0, dα < 0, the
dot product will thus remain positive for this same choice of d as we increase ŵ from 555.

Next, for ŵ < 0.05, again fixing µ̂ = ϵ′, we analogously show that the dot product of ψ(X, ϵ′, α̂) with the fixed vector
d(0.05) will increase as we decrease ŵ. The i-th term in the sums defining ψµ or ψα depends on α̂ (and thus ŵ) only
in the factor min(α̂xi, 1). Further, there is no dependence unless the first term attains the min, namely |xi| ≤

√
1/α̂,

which in turn is upper bounded by
√
0.15 nϵ

log 1
δ

because of our assumption that ŵ < 0.05. Thus, the only i-th terms in

the dot product which have α̂ dependency are simply equal to dµα̂x3i + dαα̂x
2
i = α̂x2i (dα + xidµ). By our choice of

dµ(0.05) =
√
3.75

log 1
δ

nϵ and dα =
√
3 from Lemma D.2, the expression (dα + xidµ) ≥

√
3−

√
0.15

√
3.75 is thus always

non-negative, and thus the overall dot product cannot decrease as we send ŵ to 0 as desired.

We have thus shown that, for all non-negative α̂ =
log2 1

δ

3n2ϵ2ŵ , there is a vector d with dµ ≥ 0 whose dot product with
ψ(X, ϵ′, α̂) is greater than 0. We complete the proof by noting that the only dependence on µ̂ in ψ is that ψµ is (trivially)
increasing in µ̂. Since dµ ≥ 0, increasing µ̂ from ϵ′ will only increase the dot product, and thus the dot product remains
strictly greater than 0, implying that ψ(X, µ̂, α̂) ̸= 0, as desired.

To close out this section, we formally show that Proposition D.1 implies our desired main theorem, Theorem 2.4 for
completeness, using the following fact about the performance of the median-of-means estimator for the initial estimate κ:

Fact D.4 (Bubeck et al. 2012). For any distribution D with mean µ and zth moment σz , the median-of-means estimate κ
from grouping samples into O(log 1

δ ) buckets, on input n samples, satisfies

P

|κ− µ| > O

(σz)
1
z

(
log 1

δ

n

)1− 1
z

 ≤ 1

2
δ

Here, the big-O notation hides a universal constant that is crucially also independent of z.

Again, we are free to choose to use other estimators for κ in Step 1 of Estimator 1 as long as the above fact holds true for the
estimator being used.

Proof of Theorem 2.4. We start by making the simplifying assumption that µ = 0 and Mz = 1, and reformulate Estimator 1
with Step 1 replaced with κ = 0 as a 2-parameter ψ-estimator, that takes in n independent samples X = x1, · · · , xn from
D, and solves for the (unique) pair µ̂, α̂ satisfying ψµ = 0 and ψα = 0, where the functions are defined as follows:

ψµ(X, µ̂, α̂) =

n∑
i=1

(µ̂− xi(1−min(α̂x2i , 1)))

ψα(X, µ̂, α̂) =

n∑
i=1

(
min(α̂x2i , 1)−

1

3n
log

1

δ

)
and outputs µ̂ in the solution. We denote by ψ the 2-element vector (ψµ, ψα).

By Proposition D.1, with probability at least 1− δ
2 , any µ̂′, α̂′ with |µ̂′| > (1+ o(1))

(
cz

log 1
δ

n

)1− 1
z

and α̂′ > 0 satisfies that

ψ(X, µ̂′, α̂′) ̸= 0, and thus the solution µ̂ found by Estimator 1 by solving ψ = 0 satisfies |µ̂| ≤ (1 + o(1))
(
cz

log 1
δ

n

)1− 1
z

.
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We now remove the simplifying assumptions using the structural properties of Estimator 1. Let κ be the initial estimate in
Step 1 of Estimator 1, say, computed by median-of-means. By Fact D.4, with probability at least 1− 1

2δ,

|κ| ≤ O

( log 1
δ

n

)1− 1
z


and by the Lipschitz bound of Fact A.17 with Lipschitz constant O

(√
log 1

δ

n

)
, this incurs an error on Estimator 1 of at most

O

( log 1
δ

n

)1− 1
z

·

√
log 1

δ

n

 ≤ o

( log 1
δ

n

)1− 1
z



Since c1−
1
z

z is lower bounded by a universal constant, the above expression is also o
((

cz
log 1

δ

n

)1− 1
z

)
.

Now consider any distribution with mean µ and zth moment Mz . By the affine invariance of Estimator 1 of Fact A.17,
Estimator 1 suffers a multiplicative factor of (Mz)

1
z in the estimation error.

Thus with probability at least 1− δ, we have

|µ̂(X)− µ| ≤ (Mz)
1
z · (1 + o(1))

(
cz

log 1
δ

n

)1− 1
z

as desired.

D.1. Proof of Lemma D.2 and D.3

In this section, we present the proof of Lemma D.2, motivated by the discussion in Section 6.2 and consequently Lee &
Valiant (2022), modeling the worst-case Chernoff bound as a max-min linear programming game. We later present the short
proof of Lemma D.3.

Lemma D.2. Let D be an arbitrary distribution with mean 0 and zth moment 1 for some 1 < z ≤ 2. There exists a

universal constant c independent of z where the following is true. Fixing µ̂ =
(
1 +

c log log 1
δ

log 1
δ

)
ϵ where ϵ =

(
cz

log 1
δ

n

)1− 1
z

and cz = 2(5.6)
1

z−1−1, then for all δ smaller than some universal constant, and for all ŵ ∈ [0.05, 555], there exists a vector
d(ŵ) := (dµ, dα) where dµ ≥ 0, and both nϵ

log 1
δ

|dµ| and |dα| are bounded by a universal constant, such that

P
X←Dn

(
d(ŵ) · ψ

(
X, µ̂ = ϵ′, α̂ =

log2(1/δ)

3ŵn2ϵ2

)
>

1

log 1
δ

)
≥ 1− δ

log4 1
δ

Furthermore, for ŵ = 0.05 we have dµ =
√
3.75

log 1
δ

nϵ , dα =
√
3; and for ŵ = 555 we have dµ = 0, dα < 0.

Proof. We instead bound the contrapositive statement, namely,

P
X←Dn

(
d(ŵ) · ψ

(
X, µ̂ = ϵ′, α̂ =

log2(1/δ)

3ŵn2ϵ2

)
≤ 1

log 1
δ

)
≤ δ

log4 1
δ

We start by applying a standard Chernoff bound analysis

P
X←Dn

(
d(ŵ) · ψ (X, µ̂, α̂) ≤ 1

log 1
δ

)
= P

X←Dn

(
exp (−d(ŵ) · ψ (X, µ̂, α̂)) ≥ exp

(
− 1

log 1
δ

))
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≤ 2 E
X←Dn

(exp (−d(ŵ) · ψ (X, µ̂, α̂))) by Markov’s and exp

(
− 1

log 1
δ

)
≤ 2 for suff. small δ

= 2 E
x←D

(exp (−d(ŵ) · ψ (x, µ̂, α̂)))
n by independence

= 2

(
exp

(
−dµµ̂+ dα

1

3n
log

1

δ

)
E

x←D

(
exp

(
dµx(1−min(α̂x2, 1))− dα min(α̂x2, 1)

)))n

Motivated by our discussion in Section 6.2, we state the following technical claim, Lemma D.5, reminiscent of the constraint
in (2). We formally prove Lemma D.5 in Appendix D.2.

Lemma D.5. For all ŵ ∈ [0.05, 555], there exists a > 0, b such that for all 1 < z ≤ 2 and y ∈ R, letting cz = 2(5.6)
1

z−1−1,
the following holds true:

ay(1−min(y2, 1))− bmin(y2, 1) ≤ log

(
1 + ay + |y|z(3ŵ) z

2 cz−1z

(
−1 +

a√
3ŵ

− b

3

))
(4)

where a and b are bounded by constants. Further, for ŵ = 0.05, the pair a = 0.75, b =
√
3 works.

For ŵ ∈ [0.05, 555), we use Lemma D.5, substituting y =
√
α̂x, to choose dµ =

√
α̂x =

log 1
δ

nϵ
√
3ŵ
a, dα = b. In particular,

for ŵ = 0.05, we have dµ =
√
3.75

log 1
δ

nϵ and dα =
√
3. Then, the failure probability is bounded by

2

exp

(
−dµµ̂+ dα

1

3n
log

1

δ

)
E

x←D
y=x
√
α̂

(
1 + ay + |y|z(3ŵ) z

2 cz−1z

(
−1 +

a√
3ŵ

− b

3

))n

= 2

(
exp

(
−dµµ̂+ dα

1

3n
log

1

δ

)(
1 +

(
log 1

δ

nϵ
√
3ŵ

)z

(3ŵ)
z
2 cz−1z

(
−1 +

dµϵn

log 1
δ

− dα
3

)))n

since D has mean 0, zth moment 1

= 2

(
exp

(
−dµµ̂+ dα

1

3n
log

1

δ

)(
1 +

log 1
δ

n

(
−1 +

dµϵn

log 1
δ

− dv
3

)))n

≤ 2

(
exp

(
−dµµ̂+ dα

1

3n
log

1

δ
+

log 1
δ

n

(
−1 +

dµϵn

log 1
δ

− dα
3

)))n

since 1 + x ≤ ex for any x

= 2

(
exp

(
−dµµ̂+ dα

1

3n
log

1

δ
− 1

n
log

1

δ
+ dµϵ− dα

1

3n
log

1

δ

))n

= 2 exp

(
−dµn(µ̂− ϵ)− log

1

δ

)
= 2 exp

(
− a√

3ŵ
c log log

1

δ
− log

1

δ

)
by choice of dµ and µ̂

≤ δ

log4 1
δ

as desired for large enough c, since a√
3ŵ

is greater than some positive constant.

For ŵ = 555, we use the following technical claim:

Claim D.6. For all 1 < z ≤ 2, for all values of y, the following holds true:

4min(y2, 1) ≤ log(1 + 54|y|z)
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which is easily verifiable by two subclaims in the form of 4y2 ≤ log(1 + 54y2) for −1 ≤ y ≤ 1 and 4 ≤ log(1 + 54|y|) for
|y| > 1.

We choose dµ = 0 and dα = −4. Substituting yields

2

(
exp

(
− 4

3n
log

1

δ

)
E

x←D

(
exp

(
4min(α̂x2, 1)

)))n

≤ 2δ4/3 E
x←D

(1 + 54
(√

α̂
)z

|x|z)n by Claim D.6

= 2δ4/3(1 + 54

(
log 1

δ

nϵ
√
3ŵ

)z

)n since D has zth moment 1

≤ 2δ4/3 exp

(
n · 54

(
log 1

δ

nϵ
√
3 · 555

)z
)

since 1 + x ≤ ex

= 2δ4/3 exp

n · 54

 1

21−
1
z 5.6

2
z−1

√
1665

(
log 1

δ

n

) 1
z

z by definition of ϵ

= 2δ4/3 exp

(
54

2z−15.62−z
√
1665z

log
1

δ

)
≤ 2δ4/3δ−0.237 for all values of 1 < z ≤ 2

≤ 2δ1.096 ≤ δ

log4 1
δ

for suff. small δ

as desired.

We have thus proven one of two components necessary to prove Proposition D.1. We restate and prove the remaining
component, which is a Lipschitz bound over the region covered by our finite mesh over ŵ ∈ [0.05, 555]:
Lemma D.3. Consider an arbitrary set of n samples X . Consider the expressions ψµ(X, µ̂, α̂), ψα(X, α̂), reparameterized

in terms of ŵ =
log2 1

δ

3α̂n2ϵ2 in place of α̂. Suppose the equation ψα(X, α̂) = 0 has a solution in the range ŵ ∈ [0.05, 555].

Then the functions log 1
δ

nϵ ψµ(X, µ̂, α̂) and ψα(X, α̂) are Lipschitz with respect to ŵ on the entire interval ŵ ∈ [0.05, 555],
with Lipschitz constant clog 1

δ for some universal constant c.

Proof. Consider the derivative with respect to ŵ of ψα(X, µ̂, α̂) =
∑n

i=1

(
min

(
log2 1

δ

3n2ϵ2ŵx
2
i , 1
)
− 1

3n log
1
δ

)
. The ŵ

derivative of min
(

log2 1
δ

3n2ϵ2ŵx
2
i , 1
)

is either − log2 1
δ

3n2ϵ2ŵ2x
2
i = − 1

ŵ α̂x
2
i or 0, depending on which term in the min is the smallest,

and in either case has magnitude at most 1
ŵ min(α̂x2i , 1). Thus, the overall ŵ derivative of ψα(X, µ̂, α̂) has magnitude at

most 1
ŵ

∑
i min(α̂x2i , 1). Since by assumption

∑
i min(α̂x2i , 1) =

1
3 log

1
δ for some ŵ ∈ [0.05, 555], the derivative with

respect to ŵ must be within a constant factor of log 1
δ across the entire range, as desired.

Similarly, consider the derivative with respect to ŵ of ψµ(X, µ̂, α̂) =
∑n

i=1(µ̂−xi(1−min(α̂x2i , 1))). The ŵ derivative of
(µ̂− xi(1−min(α̂x2i , 1))) is either − 1

ŵ α̂x
3
i or 0, depending on whether xi ≤

√
1/α̂, and thus the magnitude of the entire

derivative is bounded by 1
ŵ
√
α̂

∑
i min(α̂x2i , 1). Since

∑
i min(α̂x2i , 1) is bounded by a constant times log 1

δ , and 1
ŵ
√
α̂

is

bounded by a constant times 1√
ŵα̂

=
√
3nϵ

log 1
δ

since ŵ ∈ [0.05, 555], the magnitude of the derivative of log 1
δ

nϵ ψµ(X, µ̂, α̂) is

bounded by a constant times log 1
δ , as desired.

D.2. Proof of Lemma D.5

In this section, we prove the technical Lemma D.5.

Lemma D.5. For all ŵ ∈ [0.05, 555], there exists a > 0, b such that for all 1 < z ≤ 2 and y ∈ R, letting cz = 2(5.6)
1

z−1−1,
the following holds true:

ay(1−min(y2, 1))− bmin(y2, 1) ≤ log

(
1 + ay + |y|z(3ŵ) z

2 cz−1z

(
−1 +

a√
3ŵ

− b

3

))
(4)
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where a and b are bounded by constants. Further, for ŵ = 0.05, the pair a = 0.75, b =
√
3 works.

Proof. We remark that Lemma D.5 is more nuanced than its counterpart in Lee & Valiant (2022), in part due to the
introduction of a new variable z in the exponent. However, notice that taking the derivative with respect to z of the right
hand side of (4), omitting the outer logarithm—which is a monotone function—and omitting terms independent of z, yields

∂

∂z
|y|z(3ŵ) z

2 cz−1z = (|y|
√
3ŵ)z · 2z−1 · 5.62−z · log

(
2|y|

√
3ŵ

5.6

)

whose sign is determined solely by the sign of log
(

2|y|
√
3ŵ

5.6

)
, and thus is independent of z. This implies that the right hand

side of (4) is monotone in z, and thus it suffices to show that (4) holds for the boundary cases z → 1 and z = 2. Since

lim
z→1

cz−1z = lim
z→1

(2(5.6)
1

z−1−1)z−1 = 5.6,

we evaluate the limit z → 1 of (4) by simply substituting z = 1 into the equation and replacing the term cz−1z with 5.6.

We now choose the values of the parameters a, b. We follow the choices of Lee & Valiant (2022) for w < 5.5: for w = 0.05

we set a = 0.75, b =
√
3 as promised in the lemma statement; and for w ∈ (0.05, 5.5] we choose a = −

√
6+
√
6+96ŵ

2
√
2ŵ

, i.e.,

the positive root of the equation
√
2ŵ(a2 − 12)+

√
6a = 0, and b = 3− a2

2 . Note that these choices set a > 0, as promised
in the lemma. For w ≥ 5.5 we differ from Lee & Valiant (2022) and instead choose the constants a = 4.2 and b = −3
(independent of ŵ).

Case z = 2 and w ∈ [0.05, 5.5): In this case our lemma is identical to its counterpart in Lee & Valiant (2022) and thus
needs no proof.

Case z = 2 and w ≥ 5.5: In this case we choose a = 4.2 and b = −3, and thus Equation 4 simplifies to

4.2y(1−min(y2, 1)) + 3min(y2, 1) ≤ log
(
1 + 4.2y + y2

√
3ŵ · 2 · 4.2

)
For y outside the range [−1, 1], the first two terms become the constant 3; and since the polynomial inside the logarithm
expression on the right hand side is monotonically increasing in y outside of y ∈ [−1, 1], when ŵ ≥ 5.5, it is sufficient to
prove the inequality for y ∈ [−1, 1].

Further, the logarithm term is the only term that depends on ŵ, and the logarithm monotonically increases with ŵ, so thus it
is sufficient to prove the inequality for the smallest value of ŵ, namely ŵ = 5.5. We thus show:

4.2y(1− y2) + 3y2 ≤ log
(
1 + 4.2y + y2

√
3 · 5.5 · 2 · 4.2

)
To prove this, we note that both sides are smooth for y ∈ [−1, 1]; thus we take derivatives of both sides and set them equal
to each other. The derivative of the left hand side is a quadratic polynomial; and the derivative of the right hand side is the
multiplicative inverse of a quadratic polynomial. So thus the solutions to this equation are the solutions to a quartic. And it
is straightforward to find these four solutions for y with a computer algebra package, and confirm that, at all of these four
possible extrema and the points y = −1, y = 1, the desired inequality is true.

Case z = 1 and w ≥ 5.5 Next, we turn to the case of z = 1 and w ≥ 5.5, where we set a = 4.2 and b = −3. Equation 4
now simplifies to a condition independent of ŵ:

4.2y(1−min(y2, 1)) + 3min(y2, 1) ≤ log (1 + 4.2y + |y| · 5.6 · 4.2)

As above, the expression inside the logarithm on the right hand side is increasing outside the range y ∈ [−1, 1] and the left
hand side is constant outside this range, so it is sufficient to show this inequality for y ∈ [−1, 1] in which case it simplifies to

4.2y(1− y2) + 3y2 ≤ log (1 + 4.2y + |y| · 5.6 · 4.2)
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For negative y, the left hand side is convex and the right hand side is concave, so the left hand side minus the right hand side
is convex, and its maximum must be attained at one of its two endpoints, y = −1 or y = 0. Numerically checking both
cases confirms the inequality for y ≤ 0. For positive y, as in the previous case, we take derivatives of the left and right hand
side and set them equal to each other, leaving us with a cubic equation, which thus has closed form solutions. We thus check
that the desired inequality is true at all the positive roots of the cubic, along with the extreme points y = 0, y = 1.

Case z = 1 and w ∈ (0.05, 5.5): In this case we have chosen a = −
√
6+
√
6+96ŵ

2
√
2ŵ

—the positive root of the equation
√
2ŵ(a2 − 12) +

√
6a = 0—and b = 3− a2

2 . Since a is an increasing function of ŵ it is easy to check that, for ŵ in our
range (0.05, 5.5) we have a ∈ (0, 3.12]. Because of these relations between a, b, ŵ, we can simplify part of the expression
in (4) inside the logarithm as

√
3ŵ

(
−1 +

a√
3ŵ

− b

3

)
=

1

2
a

Using this relation, and substituting b = 3− a2

2 into the left hand side of (4) simplifies (4) to:

ay(1−min(y2, 1))− (3− a2

2
)min(y2, 1) ≤ log (1 + ay + 2.8a|y|)

As above, we point out that the left hand side is constant for y outside the range [−1, 1] and the right hand side is monotonic
away from this interval, so it suffices to prove the inequality for y ∈ [−1, 1] in which case it simplifies to

ay(1− y2)− (3− a2

2
)y2 ≤ log (1 + ay + 2.8a|y|) (5)

We first show the y ≥ 0 case. Since a > 0 we have ay ≥ 0. Substituting ay → x above yields the following inequality,
which we show for x ≥ 0 and a ∈ (0, 3.12]:

x+
x2

2
− 1

a2
(x3 + 3x2) ≤ log (1 + 3.8x)

The term x3 + 3x2 is nonnegative for x ≥ 0, and thus the left hand side is increasing in a. Thus it suffices to prove the
inequality for the maximum value of a = 3.12, and all x ≥ 0.

As above, we prove this by pointing out that both sides are smooth functions for x ≥ 0, so we take their derivatives and set
them equal to each other, which yields a cubic equation in x. Our inequality takes its extreme values at either a positive root
of the cubic, or at the boundary value x = 0; we thus confirm the inequality in these cases to prove it in general.

We now show the y ≤ 0 case.

We point out that the left hand side of Equation 5, ay(1−y2)−(3− a2

2 )y2, is increasing in y at y = 0, convex for sufficiently
negative y, and can only transition from convex to concave once. Meanwhile, the right hand side, log (1− 1.8ay), is
decreasing everywhere for y ≤ 0, and concave everywhere.

Let c be the location where the cubic function ay(1− y2)− (3− a2

2 )y2 transitions from convex to concave. For those y in
the (possibly empty) interval [c, 0], the cubic is concave—since it is also increasing at y = 0, it must be increasing on this
entire interval. Recalling that the right hand side of Equation 5 is decreasing for y ≤ 0, the difference between the left and
right hand sides attains its maximum in the interval y ∈ [c, 0] at y = 0, which is just 0, satisfying the inequality.

And for those y < c, where the left hand side is convex, then the difference between the left and right hand sides is convex,
and thus its maximum must occur either at the left extreme, y = −1, or the right extreme, y = c; however the difference at
y = c we already showed was at most the difference at y = 0, so overall, the maximum difference between the left and right
hand sides must occur at either y = −1 or y = 0. As above, the y = 0 case is trivial, and it remains to prove the y = −1
case. For the y = −1 case Equation 5 becomes:

a2

2
− 3 ≤ log (1 + 1.8a)

The left hand side is convex and the right hand side is concave; so we prove the inequality by numerically checking both
endpoints: a = 0 and a = 3.12.
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Case z = 1 and ŵ = 0.05: In this case we choose a = 0.75 and b =
√
3 and Equation 4 becomes

0.75y(1−min(y2, 1))−
√
3min(y2, 1) ≤ log (1 + 0.75y + 2.086|y|)

where 2.086 is a lower bound on 15
√
3ŵ
(
−1 + a√

3ŵ
− b

3

)
As usual, for y outside [−1, 1] we point out that the left hand side is constant while the right hand side monotonically
increases, so it suffices to show the inequality for y ∈ [−1, 1].

For y ∈ [−1, 1], we trivially lower bound the right hand side by log(1 + 0.75y) (dropping the 2.086|y| term), and lower
bound this logarithm expression with the quadratic 0.75y − 0.75y2. The difference between the left hand side and this
polynomial lower bound on the right hand side is thus −.75y3 + (.75−

√
3)y2, which is negative for y > 1− 4√

3
, which is

below −1, and hence our inequality holds on the entire interval y ∈ [−1, 1].

Thus we have shown all cases of the desired inequality.

E. Proof of Theorem 2.8
In this section, we present the proof of Theorem 2.8. We restate the theorem for completeness:

Theorem 2.8. Let D be a distribution with mean µ and variance σ2.

Let µ̂ denote Estimator 1 on input parameter δ and n i.i.d. samples from D. Also let X̄n denote the sample mean. Then,
fixing δ and D and taking n→ ∞, we have √

nµ̂
p→
√
nX̄n

that is, |
√
nµ̂−

√
nX̄n|

p→ 0, that
√
nµ̂ converges to

√
nX̄n in probability.

As a corollary, by the Central Limit Theorem, we have

√
n(µ̂− µ)

d→ N
(
0, σ2

)
That is, µ̂ is asymptotically normal and efficient.

Proof. Without loss of generality, by the shift-and-scale equivariance of both Lee and Valiant’s estimator and the sample
mean, we assume µ = 0 for notational simplicity, and that the variance of D is 1.

The second part of the theorem follows from the straightforward reasoning that, since Estimator 1 converges to the sample
mean (as claimed in the first part of the theorem statement), and since the sample mean converges to a Gaussian (from the
Central Limit Theorem), then Estimator 1 also converges to the same Gaussian. Formally, this uses Slutsky’s theorem and
the fact that convergence in probability implies convergence in distribution. Hence it only remains to show the first part of
the theorem, that Lee and Valiant’s estimator converges to the sample mean in probability, for fixed δ and as n→ ∞.

The claim that
√
nµ̂

p→
√
nX̄n is equivalent by definition to the statement that, for any fixed ϵ > 0,

lim
n→∞

P(
√
n|µ̂− X̄n| > ϵ) = 0

First, recall that µ̂ differs from the sample mean by removing a total of 1
3 log

1
δ weighted samples before taking the average.

Thus,
√
n|µ̂− X̄n| is upper bounded by Θ

(
log 1

δ

)
|xmax|/

√
n where xmax is the largest sample in magnitude (recalling

that we assumed µ = 0):

√
n

∣∣∣∣∣κ+
1

n

∑
i

(xi − κ)(1−min(α(xi − κ)2, 1))− 1

n

∑
i

xi

∣∣∣∣∣
=

1√
n

∣∣∣∣∣∑
i

(xi − κ)min(α(xi − κ)2, 1)

∣∣∣∣∣
≤ 2|xmax|√

n

∑
i

min(α(xi − κ)2, 1)

39



All-Purpose Mean Estimation over R

=
2

3
log

1

δ

|xmax|√
n

Thus, the event
√
n|µ̂ − X̄n| > ϵ implies |xmax| > ϵ

√
n
/
Θ(log 1

δ ) , which we now show is an event that occurs with
probability → 0 as n→ ∞.

We show the following claim, that the probability a single sample from D is larger than ϵ
√
n
/
Θ(log 1

δ ) is at most o(1/n).

Claim E.1. Fix any ϵ > 0 and δ ∈ (0, 1). Suppose we draw a single sample X from a distribution D with mean 0 and
variance 1. Then,

P
(
|X| > ϵ

√
n

/
Θ

(
log

1

δ

))
= o

(
1

n

)
Here, the o(·) is in the limit where ϵ, δ and D are fixed, and n→ ∞.

We prove Claim E.1 at the end. Claim E.1 implies that the expected number of samples (among the n drawn) with magnitude
exceeding ϵ

√
n
/
Θ(log 1

δ ) is o(1). Thus, by Markov’s inequality, the probability that at least one sample exceeds that
threshold is also o(1), showing Theorem 2.8.

We finish with the short proof of Claim E.1. Here, for a generic non-negative random variable Y , we use a refined version of
Markov’s inequality that

P(Y > a) ≤ E[Y 1[Y ≥ a]]

a

Applying this to X2 in Claim E.1, we have

P
(
X2 > ϵ2n

/
Θ

(
log2

1

δ

))
≤ E

[
X2

1

[
X2 ≥ ϵ2n

/
Θ

(
log2

1

δ

)]]
·
Θ
(
log2 1

δ

)
ϵ2n

Since E[X2] = 1 and ϵ, δ and D are fixed, we have E
[
X2

1
[
X2 ≥ ϵ2n

/
Θ
(
log2 1

δ

)]]
= o(1) as n→ ∞. Thus, the right

hand side in the above inequality is o(1/n), showing Claim E.1.

This completes the proof that µ̂ converges to X̄n in probability, showing the theorem.

F. Proofs of the Folklore Robustness of Median-of-Means
For completeness, we provide formal proofs of Facts A.18 and A.23, two folklore facts about the robustness of the
median-of-means estimator against adversarial corruption, which we use in our proofs of Theorems 2.2 and 2.3.

Fact A.18 (Folklore). For any distribution D with mean µ and standard deviation σ, let X̃ be a set of n η-corrupted samples
from D. The median-of-means estimate κ from grouping samples into O(log 1

δ′ + ηn) buckets, on input X̃ , satisfies

P

|κ− µ| ≥ O

σ
√

log 1
δ′

n
+ η

 ≤ 1

16
δ′

Proof. Let k denote the chosen amount of buckets. Choose k = 16(log 1
δ′ + ηn). Let µi denote the mean of the i-th bucket

before any adversarial corruption. Then each µi is independent with variance σ
√

16(log 1
δ′ +ηn)

n . By Chebyshev’s inequality,

P[|µi − µ| ≥ 4σ

√
16(log 1

δ′ +ηn)

n ] ≤ 1
16 . Let di denote the indicator variable for the event |µi − µ| ≤ 4σ

√
16(log 1

δ′ +ηn)

n ,

then E(di) ≥ 15
16 . By Hoeffding’s inequality, P[

∑
i di ≤ 9(log 1

δ′ + ηn)] ≤ e−4.5(log
1
δ′ +ηn) ≤ e−(log

1
δ′ +ηn), which is at

most e− log 16
δ′ = 1

16δ
′ for large enough n. Note that for |κ−µ| ≥ 4σ

√
16(log 1

δ′ +ηn)

n , at most k/2 = 8(log 1
δ′ +ηn) buckets

can have |µi − µ| ≤ 4σ

√
16(log 1

δ′ +ηn)

n . Accounting for the adversarial corruption, which can affect at most ηn buckets, at

most 9(log 1
δ′ + ηn) buckets can have |µi − µ| ≤ 4σ

√
16(log 1

δ′ +ηn)

n before adversarial corruption, which happens with
probability at most 1

16δ
′ as desired.
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Fact A.23 (Folklore). For any distribution D with mean µ and standard deviation σ, let X̃ be a set of n η-corrupted samples
from D. Assuming that η ≤ 1

24n log
1
δ , the median-of-means estimate κ from grouping samples into O(log 1

δ ) buckets, on
input X̃ , satisfies

P

|κ− µ| ≥ O

σ
√

log 1
δ

n

 ≤ 1

22
δ

Proof. Let k denote the chosen amount of buckets. Choose k = 16log 1
δ . Let µi denote the mean of the i-th bucket

before any adversarial corruption. Then each µi is independent with variance σ
√

16log 1
δ

n . By Chebyshev’s inequality,

P[|µi−µ| ≥ 4σ

√
16log 1

δ

n ] ≤ 1
16 . Let di denote the indicator variable for the event |µi−µ| ≤ 4σ

√
16log 1

δ

n , then E(di) ≥ 15
16 .

By Hoeffding’s inequality, P[
∑

i di ≤ 9log 1
δ ] ≤ e−4.5log

1
δ , which is at most e− log 22

δ = 1
22δ for sufficiently small δ. Note

that for |κ− µ| ≥ 4σ

√
16log 1

δ

n , at most k/2 = 8log 1
δ buckets can have |µi − µ| ≤ 4σ

√
16(log 1

δ′ +ηn)

n . Accounting for the

adversarial corruption, which can affect at most ηn ≤ log 1
δ buckets, at most 9log 1

δ buckets can have |µi−µ| ≤ 4σ

√
16log 1

δ

n

before adversarial corruption, which happens with probability at most 1
22δ as desired.
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