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Abstract

Temporal set prediction involves forecasting the elements that will appear in the1

next set, given a sequence of prior sets, each containing a variable number of2

elements. Existing methods often rely on complex architectures with substantial3

computational overhead, limiting their scalability. In this work, we introduce a4

novel and scalable framework that combines an efficient input representation with5

permutation-equivariant and permutation-invariant transformations to model set6

dynamics. Our approach significantly reduces training and inference time while7

maintaining competitive performance. Extensive experiments on multiple public8

datasets demonstrate that our method achieves state-of-the-art performance overall,9

outperforming or matching existing models across several evaluation metrics.10

These results highlight the effectiveness of our model in enabling efficient and11

scalable temporal set prediction.12

1 Introduction13

Temporal Set Prediction addresses the problem of predicting which elements belong to the next14

set, given a sequence of sets. The problem involves identifying patterns in how sets evolve over15

time—tracking which elements enter, exit, or remain—and using these patterns to make accurate16

membership predictions. This approach enables fine-grained, element-level forecasting in a wide17

range of domains, including supply chain optimization, traffic congestion prediction, predictive18

maintenance in industrial systems, personalized recommendation systems, clinical event forecasting19

in healthcare, and modeling dynamic communities in social networks.20

However, despite the importance of accurate element-level predictions, existing methods face signifi-21

cant computational challenges with large temporal sets. Attention-based mechanisms typically scale22

quadratically with sequence length, while many graph-based approaches have quadratic or worse23

complexity relative to the number of elements. These computational constraints limit applicability to24

real-world scenarios where both the universe of elements and the sequence length can be substantial.25

For dynamic environments requiring frequent updates, such as real-time recommendation systems or26

network monitoring, these performance limitations become particularly problematic.27

In this paper, we propose an architecture called PIETSP for temporal set prediction that reduces28

computational complexity to O(N(KD+D2)+ |E|D), where N is the number of distinct elements29

in a sequence of sets, K is the maximum sequence length, D is the embedding dimension, and |E| is30

the domain of all possible elements (vocabulary size). This represents a significant improvement over31

conventional attention or graph based approaches which typically incur quadratic complexities in N32

or K. The proposed architecture offers both scalability and accuracy in predicting set membership at33

future time points. Our contributions include:34
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• A mathematically principled formulation of temporal set prediction that integrates element35

features and their temporal dynamics in a joint representation, allowing for more accurate36

and efficient predictions.37

• A novel algorithm that achieves linear scaling with respect to both sequence length and38

number of distinct elements independently, thus enabling the processing of large-scale39

datasets in a computationally efficient manner.40

• Comprehensive empirical evaluation on publicly available datasets, demonstrating that our41

approach offers comparable or superior performance to existing state-of-the-art methods42

while significantly reducing computational requirements.43

2 Related Work44

Temporal Set Prediction. Temporal Set Prediction (TSP) is a generalization of sequence prediction45

that models the evolution of sequences of unordered sets rather than sequences of individual elements.46

Several baselines have been proposed for this task. Sets2Sets [1] formulates it as sequential set-47

to-set learning using an RNN encoder-decoder with set attention and repeated element modules;48

however, its recurrent structure limits parallelism and slows training. DNNTSP [2] extends this49

by modeling dynamic co-occurrence graphs using GCNs [3], incorporating temporal attention and50

gated fusion to capture sequence dynamics, albeit with increased memory and compute costs due51

to graph construction. SFCNTSP [4] mitigates these issues through a lightweight architecture with52

permutation invariant and equivariant layers, achieving faster inference and fewer parameters, though53

scalability remains a challenge on large datasets.54

Next Basket and Set Prediction. TSP is closely aligned with next-basket recommendation, where55

the goal is to predict the next set of items a user will interact with. Early models such as FPMC [5]56

combine matrix factorization with Markov Chains to model user preferences and item transitions.57

While efficient, FPMC lacks the ability to model inter-item dependencies within a basket and does58

not generalize well to cold or rare items. Additionally, models such as SHAN [6] and SASRec [7]59

introduced self-attention mechanisms [8] to this task, but their adaptation to set sequences is limited,60

as attention is inherently order-sensitive and does not handle set permutation-invariance without61

explicit modification.62

Multiset Modeling and Repetition. A defining feature of TSP, and a gap in traditional sequential63

models, is the ability to handle repeated elements—important in domains like healthcare (e.g.,64

recurring diagnoses, lab tests) and e-commerce (e.g., repeated purchases). Sets2Sets and DNNTSP65

directly model repetition via frequency-aware loss functions or modules that attend to past occurrences.66

However, these often assume hard duplication counts rather than modeling repetition as a stochastic67

process.68

Sequence-to-Sequence and Set Modeling. TSP extends the classic sequence-to-sequence (seq2seq)69

framework popularized in NLP [9, 10], but demands adaptations for sets due to their unordered and70

variable-length nature. Key inspirations come from DeepSets [11], which introduced permutation-71

invariant functions for effective set representation. Building on this foundation, Set Transformers72

[12] leverage attention mechanisms specifically designed for set inputs and outputs. SetVAE [13]73

further advances this line of research by enabling generative modeling of unordered outputs with74

improved computational efficiency.75

While standard Transformer-based approaches often suffer from quadratic complexity in set size,76

SetVAE employs architectural innovations to mitigate this limitation. However, challenges remain in77

capturing sequential dependencies when these models are applied to problems requiring both set-level78

operations and order-sensitive processing.79

3 Problem Formulation80

Let S(ti) ⊆ E represent the set of all elements present at time ti, where E is the domain of possible81

elements. Let S = [S(t1), S(t2), . . . , S(tT )] be the sequence of sets across T time steps, where82

1 ≤ T ≤ K and K = max{|Sj | : Sj ∈ D} is the maximum set sequence length across the dataset83

D. Let U =
⋃T

i=1 S(ti) be the universe of all distinct elements that appear in any set in the sequence84
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Figure 1: The process of MU and C construction

S. We can enumerate the elements in this universe as U = {e1, e2, . . . , eN}, where N = |U | is the85

total number of unique elements in S.86

Let M ∈ R|E|×D be the embedding matrix for the entire domain E, where each row represents the87

D-dimensional embedding vector for an element in the domain. Let MU ∈ RN×D be the embedding88

matrix for elements in U , where MU is the submatrix of M containing only the rows corresponding89

to elements in U . We show the construction of MU in Figure 1.90

Given this formulation, our objective is to predict the future set membership S(tT+1) by analyzing91

patterns in the sequence history S. Specifically, we aim to develop models that can accurately92

forecast element membership in the set at time T + 1, based on the structural patterns identified in93

the evolution history of S.94

4 Methodology95

EE

Oe
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GE

Ŷ

SFI Layer
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Figure 2: Architecture of the proposed model. The input set elements and their sequence features
are combined using the Sequence Feature Integration (SFI) layer and passed through permutation-
equivariant (PE) and permutation-invariant (PI) blocks, followed by combining the element-wise
(EE) and global evaluators(GE) producing the final prediction.

We first give a brief overview of the sequence of operations below, as shown in Figure 2 and elaborate96

each operation in the subsections. In order to predict the future set membership S(tT+1), we start by97
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integrating the embeddings MU of the unique elements N with a sequence feature C (illustrated in98

Figure 1) by passing it through Sequence Feature Integration (SFI) layer. The resulting output Z99

of N elements is passed to a permutation equivariant layer (PE). This enriches the representation100

of the set elements with a global aggregated context. The updated representation Z̃ captures the101

integrated sequence-element relationship and serves as input to two separate computational branches102

as shown in Figure 2. The branch on the right, called Element Evaluator (EE), generates scores for103

each of the updated N elements, collectively referred to as Oe.104

Meanwhile, the branch extending downwards passes Z̃ through a permutation invariant layer105

(PI). PI transforms the updated set of N elements Z̃ into a single representation Z. Note that Z is106

the representation of an entire sequence of sets. Z is then passed through Global Evaluator (GE)107

to get scores Os for the entire domain E. Oe, the scores for updated N elements Z̃ and Os, the108

global scores for the entire domain E, are then fused to get the final logits Ŷ . Since our method109

applies a Permutation Invariant operation (PI) following a Permutation Equivariant operation (PE) for110

Temporal Set Prediction (TSP), we name have named our proposed approach PIETSP.111

4.1 Sequence Feature Integration112

Our approach differs from related methods that typically process set elements for each time step in113

isolation. Although conventional techniques distribute the N distinct sequence elements across the114

K time steps using weight-sharing mechanisms for separate processing, our method integrates com-115

prehensive sequence information for each of the N elements. We utilize a sequential representation116

C ∈ RN×Q that encodes relationships between elements and sequences. The matrices MU and C117

are integrated via the Sequence Feature Integration (SFI) function, as outlined in (1), resulting in118

matrix Z. This matrix Z combines element-specific features with sequential information which may119

include membership patterns, temporal embeddings, or count-based representations.120

Z = SFI(MU , C) ∈ RN×F (1)

For our implementation, we define C as a multi-hot representation C ∈ {0, 1}N×K , where:121

C[i, j] =

{
1 if element ei ∈ S(tj)

0 if element ei /∈ S(tj)
(2)

In our implementation, the matrix C efficiently encodes the binary membership relationships between122

elements and sequences, enabling us to mathematically model these relationships with each row123

corresponding to an element and each column representing a sequence. The resulting structure124

preserves the distributional patterns of elements across sequences, forming the basic for subsequent125

operations in our method. We use simple concatenation for SFI. This results in Z of shape N × (K +126

D). While the original data consists of a sequence of sets, transforming it into the matrix Z enables127

efficient neural processing using standard operations, while preserving the underlying set semantics128

through permutation-aware design.129

4.2 Integrated Element-Sequence Relationship Learning130

To effectively capture the interplay between individual elements and the sequences they participate131

in, we apply a permutation equivariant transformation to the matrix Z. A function f is permutation132

equivariant if permuting its inputs results in an equivalent permutation of its outputs. Formally, for133

any permutation π and input list X = [x1, x2, ..., xn], a permutation equivariant function satisfies:134

f([xπ(1), xπ(2), ..., xπ(n)]) = [f(X)]π

This property ensures that our model respects the structure of the input while allowing meaningful135

transformations of individual elements based on the collective context. We pass Z ∈ RN×(K+D)136

through a permutation equivariant layer to obtain Z̃ ∈ RN×d′
, as shown in Equation (4):137

Z̃ = PE(Z) ∈ RN×d′
(3)

In our implementation, we use a mean permutation equivariant layer, defined as:138

Z̃ = ELU

(
ZWg + bg −

1

N

N∑
i=1

(ZiWℓ)

)
∈ RN×d′

(4)
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where Wg ∈ R(K+D)×d′
and Wℓ ∈ R(K+D)×d′

are learnable weight matrices, and bg ∈ Rd′
is a139

learnable bias vector. The ELU activation is applied element-wise to the entire result to introduce140

smooth, non-linear transformations.141

To reduce computational complexity, we set the output dimension d′ = D, thereby projecting142

Z ∈ RN×(K+D) into RN×D. This avoids the quadratic cost of a full (K + D) × (K + D)143

transformation and instead yields a more efficient O(N(K +D)D) complexity, which is linear in144

the number of time steps K when D is fixed. The resulting output matrix Z̃ ∈ RN×D is then used in145

subsequent stages of the model.146

4.3 Element Evaluator147

Following the permutation equivariant transformation, we apply an element-wise evaluator (EE) to the148

enriched representations Z̃ in order to compute scalar relevance scores for each element. Specifically,149

the evaluator produces one score per element as defined in Equation (5):150

Oe = EE(Z̃) ∈ RN (5)

In our implementation, the EE is instantiated as a two-layer Multi-Layer Perceptron (MLP) with a151

ReLU activation in between. This setup allows the model to assess each element’s importance based152

on both its intrinsic characteristics and its contextual role within the sequence.153

Since the evaluator processes elements independently, the permutation equivariant structure es-154

tablished earlier is preserved. The resulting scores Oe ∈ RN quantify each element’s contextual155

relevance and serve as intermediate signals, which will later be merged with complementary scores156

to inform the final prediction.157

4.4 Sequence Set Representation158

To derive a global representation of the input sequence, we aggregate information from the enriched159

element representations in a way that is invariant to element order. This summary will later be used160

to complement the element-level scores for final prediction.161

A function f is permutation invariant if its output remains unchanged regardless of the ordering of its162

input elements. Formally, for any permutation π and input list X = [x1, x2, . . . , xn], a permutation163

invariant function satisfies:164

f([xπ(1), xπ(2), . . . , xπ(n)]) = f([x1, x2, . . . , xn])

This property ensures that the model produces consistent outputs for a given collection of elements,165

independent of their order. In our method, we apply a permutation invariant operation to the enriched166

element representations Z̃ ∈ RN×D to obtain a global sequence-level summary vector:167

Z = PI(Z̃) ∈ R1×D (6)

Specifically, we use a sum pooling operation followed by a Multi-Layer Perceptron (MLP) consisting168

of two hidden layers with ELU activations and a final output layer:169

Z = MLP

(
N∑
i=1

Z̃i

)
(7)

The resulting summary Z encapsulates global sequence-level context that informs the final element170

selection.171

4.5 Global Evaluator172

We perform global scoring using a global evaluator (GE), which computes relevance scores for all173

elements in the domain E, as shown in Equation (8).174

Os = GE(Z) ∈ R|E| (8)
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This mechanism captures the relationship between the global sequence set representation Z (which175

encodes the entire sequence) and each candidate element in the domain E. The global evaluator176

could take various forms, such as dot product similarity, concatenation followed by an MLP, or other177

scoring functions. In our implementation, we specifically use a dot product formulation to calculate178

the scores, measuring the similarity between each element embedding in M and the global sequence179

representation Z, as shown in Equation (9).180

Os = M · Z⊤
(9)

This approach produces a score for each element in E, indicating its relevance according to the global181

sequence context.182

4.6 Score Fusion183

To effectively combine global context information with element-specific sequential patterns, we184

implement a score fusion mechanism. This approach integrates global scores for all domain elements185

with element-level scores from the set sequence. We introduce learnable parameter vectors α,β ∈186

R|E| to weight each information source. The global scores Os ∈ R|E| for all elements in domain187

E from Equation (8) and the element-level scores Oe ∈ RN from the set sequence as defined in188

Equation (5) serve as inputs to our score fusion mechanism.189

Let I : {1, . . . , N} → {1, . . . , |E|} be a one-to-one mapping function that maps each element index190

i in the set sequence to its unique corresponding index j in the domain E. Let Dseq ⊂ {1, . . . , |E|}191

be the set of domain indices that are mapped from the set sequence, i.e.,192

Dseq = {j ∈ {1, . . . , |E|} : ∃i ∈ {1, . . . , N}, I(i) = j}

The final logit output Ŷ ∈ R|E| is computed as:193

Ŷj =

{
αj · (Os)j + βj · (Oe)i if j ∈ Dseq where I(i) = j

αj · (Os)j otherwise
(10)

This formulation ensures that all elements receive a score based on global context (weighted by194

αj), while only elements present in the set sequence receive an additional contribution from their195

element-level scores (weighted by βj). It allows the model to adaptively balance local sequential196

patterns (captured by Oe) with global context information (captured by Os) when determining the197

likelihood of each element appearing in the next set.198

4.7 Model Training Process199

Our model is trained with a batch size of 64. Sequences are zero-padded at the beginning in the200

multi-hot sequence feature representation C, as formalized in Equation (2), and K is set to 19. We201

use an embedding dimension of 32 and optimize using Adam with a learning rate of 0.001 and weight202

decay of 0.01. The learning rate follows a cosine decay schedule. We train for 100 epochs with early203

stopping (patience=10). Given that the prediction of next-period item sets constitutes a multi-label204

classification problem, we implement a binary cross-entropy loss function.205

4.8 Model Complexity Analysis206

Time Complexity: Our model demonstrates efficient computational scaling across its components.207

The time complexity for element relationship learning using PE is O(N(K +D) ·D), while creating208

the set sequence embedding via PI requires O(ND2) operations. Scoring set elements via EE209

contributes to an additional O(ND2) complexity, and global scoring of all elements in domain E210

using GE adds O(|E|D) operations. Finally, the score fusion layer adds O(|E|) operations. The total211

time complexity can be expressed as:212

O(N(K +D) ·D +ND2 +ND2 + |E|D + |E|)

This simplifies to:213

O(N(KD +D2) + |E|D)
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Datasets #sets #users #elements #E/S #S/U
TaFeng 73,355 9,841 4,935 5.41 7.45
DC 42,905 9,010 217 1.52 4.76
TaoBao 628,618 113,347 689 1.10 5.55
TMS 243,394 15,726 1,565 2.19 15.48

Table 1: Dataset statistics

This formulation confirms our model’s efficient scaling with respect to the number of elements N ,214

maximum sequence length K, embedding dimensionality D, and vocabulary size |E|. Our model215

offers computational advantages compared to existing approaches, achieving linear scaling with216

respect to both the number of elements N and maximum sequence length K.217

This efficiency, coupled with time complexity that remains independent of the number of layers,218

represents a significant improvement over related methods that either scale quadratically with N or219

K, or have complexity that grows linearly with the number of layers in the model.220

221

Space Complexity: The primary memory cost arises from the element embeddings with222

complexity O(|E|D), which is standard across similar methods. Beyond this, PIETSP introduces223

the PE which is O((K +D)D), PI is O(D2), an element scorer with O(D2) complexity and score224

fusion with O(|E|). This leads to a total space cost of:225

O(|E|D + (K +D)D +D2 +D2 + |E|)
This simplifies to:226

O(D(|E|+K +D))

5 Experiments227

This section details the experimental setup used to evaluate our approach. We describe the datasets228

employed in our study, followed by the baseline methods used for comparison. We use three standard229

metrics for top-k recommendation: Recall@k, nDCG@k, and PHR@k. Recall@k measures the230

proportion of relevant items retrieved, while nDCG@k captures both relevance and ranking quality.231

PHR@k indicates the fraction of users for whom at least one relevant item appears in the top-k232

predictions. We report results at multiple cutoffs to provide a comprehensive evaluation.233

5.1 Datasets234

We evaluate our model on four publicly available datasets commonly used in temporal set prediction235

and next basket recommendation tasks: TaFeng, Dunnhumby-Carbo (DC), TaoBao, and Tags-236

Math-Sx (TMS). Each dataset records user behaviors over time as sequences of sets, where each237

set contains the items associated with a user’s interaction at a particular timestamp. The last set in238

the sequence is used as the label. We discuss some relevant statistics for the datasets used in Table 1239

where #E/S denotes the average number of elements in each set, #S/U represents the average number240

of sets for each user. Our datasets and the train,validation and test splits have been sourced from241

https://github.com/yule-BUAA/DNNTSP/tree/master/data.242

5.2 Baseline Methods243

To evaluate the effectiveness of our proposed approach, we compare it against three state-of-the-244

art models designed for temporal set prediction: Sets2Sets, DNNTSP, and SFCNTSP. These245

methods represent diverse modeling strategies, including recurrent, graph-based, and fully connected246

architectures.247

Sets2Sets [1]. Sets2Sets formulates temporal set prediction as a sequential sets-to-sequential sets248

learning problem. It employs an encoder-decoder architecture built on recurrent neural networks249

(RNNs), where each input set is embedded via a set-level embedding mechanism, and the sequence is250

modeled with a decoder using set-based attention. It also incorporates a repeated-elements module to251

capture frequent historical patterns and a custom objective function to address label imbalance and252

label correlation.253
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Dataset
(p95 Set Size) Method Recall NDCG PHR

@1 @2 @5 @10 @1 @2 @5 @10 @1 @2 @5 @10

Tafeng (15) Sets2Sets 0.0302 0.0477 0.0832 0.1264 0.0767 0.0754 0.0820 0.0965 0.0767 0.1254 0.2158 0.3296
DNNTSP 0.0448 0.0694 0.1140 0.1692 0.1422 0.1318 0.1293 0.1436 0.1422 0.2240 0.3509 0.4708
SFCNTSP 0.0471 0.0728 0.1126 0.1674 0.1503 0.1378 0.1303 0.1437 0.1503 0.2336 0.3545 0.4703
PIETSP 0.0515 0.0833 0.1300 0.1866 0.1778 0.1635 0.1531 0.1650 0.1778 0.2702 0.3885 0.4967

DC (3) Sets2Sets 0.1276 0.2311 0.3825 0.4259 0.1776 0.2185 0.2883 0.3041 0.1775 0.3123 0.4786 0.5219
DNNTSP 0.1480 0.2424 0.3924 0.4609 0.2047 0.2346 0.3035 0.3282 0.2047 0.3256 0.4870 0.5528
SFCNTSP 0.1581 0.2457 0.3879 0.4585 0.2174 0.2421 0.3063 0.3330 0.2174 0.3295 0.4836 0.5552
PIETSP 0.1811 0.2632 0.3983 0.4615 0.2514 0.2641 0.3235 0.3463 0.2514 0.3489 0.4958 0.5613

TaoBao (2) Sets2Sets 0.0019 0.0398 0.0985 0.1743 0.0019 0.0260 0.0521 0.0767 0.0019 0.0409 0.1015 0.1787
DNNTSP 0.0786 0.1394 0.2289 0.3032 0.0812 0.1183 0.1590 0.1831 0.0812 0.1434 0.2337 0.3093
SFCNTSP 0.1003 0.1577 0.2355 0.3103 0.1037 0.1383 0.1766 0.1952 0.1037 0.1619 0.2402 0.3165
PIETSP 0.1116 0.1613 0.2364 0.3059 0.1155 0.1448 0.1781 0.2012 0.1155 0.1656 0.2410 0.3108

TMS (4) Sets2Sets 0.2055 0.2782 0.3589 0.4423 0.3846 0.3408 0.3455 0.3743 0.3846 0.4637 0.5645 0.6557
DNNTSP 0.1248 0.2131 0.3566 0.4691 0.2616 0.2561 0.3000 0.3453 0.2616 0.3789 0.5633 0.6844
SFCNTSP 0.1681 0.2655 0.3940 0.4960 0.3210 0.3133 0.3490 0.3924 0.3210 0.4469 0.5995 0.7044
PIETSP 0.1930 0.2852 0.4074 0.4982 0.3620 0.3412 0.3713 0.4075 0.3620 0.4638 0.6068 0.7092

Table 2: Performance comparison on four datasets. The best results per metric are in bold.

DNNTSP [2]. DNNTSP is a deep neural network architecture that captures both intra-set and254

inter-set dependencies through graph-based modeling. It constructs dynamic co-occurrence graphs255

over elements within each set and applies weighted graph convolutional layers to model relationships.256

Additionally, it uses an attention-based temporal module to capture sequence dynamics and a gated257

fusion mechanism to integrate static and dynamic element representations for improved predictive258

accuracy.259

SFCNTSP [4]. SFCNTSP proposes a lightweight and efficient architecture based entirely on sim-260

plified fully connected networks (SFCNs), eliminating non-linear activations and complex modules261

such as RNNs or attention. It captures inter-set temporal dependencies, intra-set element relationships,262

and channel-wise correlations through permutation-invariant and permutation-equivariant operations.263

Despite its simplicity, it achieves competitive performance while significantly reducing computational264

and memory costs.265

6 Results266

In this section, we present a comprehensive evaluation of our proposed method. We begin with a267

performance comparison against state-of-the-art baselines to demonstrate the effectiveness of our268

approach. Next, we assess the efficiency of the model in terms of model training and inference.269

Finally, we conduct an ablation study to analyze the contribution of different components in our270

architecture, which is described in the Appendix section A.1.271

6.1 Performance Comparison272

We evaluate the performance of our proposed method against several strong baselines across four273

benchmark datasets. We select cut-off k ∈ {1, 2, 5, 10} to span single-item through longer-list274

predictions relative to each dataset’s 95th-percentile set size (p95 ranges from 2 to 15 across our275

benchmarks). As shown in Table 2, our model consistently outperforms all baselines on Tafeng and276

DC and leads on TaoBao for k ≤ 5, with only a slight drop at k = 10. On TMS, Sets2Sets attains the277

highest performance at k = 1 by memorizing the most frequent next element, but PIETSP surpasses278

every method for k ≥ 2. These results underscore the robustness of our approach across varying set279

sizes and—to our knowledge—PIETSP establishes a new state-of-the-art performance on all four280

benchmarks under this evaluation.281

6.2 Model Efficiency Comparison282

To evaluate the efficiency of our proposed method, we compare it with the baseline SFCNTSP model283

[4]. While SFCNTSP achieves competitive performance by eliminating complex modules like RNNs284

and attention, it still faces higher time complexity compared to our approach. This higher complexity285

arises from the dependence on the term O(|E|ND) in their adaptive fusing of user representations286

8



Dataset Model Mean Time (s) P99 Time (s) Samples/sec Epochs

TaFeng SFCNTSP 0.00214 0.00250 467.69 327
PIETSP 0.00011 0.00017 9081.62 14

DC SFCNTSP 0.00083 0.00096 1204.03 305
PIETSP 0.00012 0.00061 8010.45 8

TaoBao SFCNTSP 0.00091 0.00109 1097.26 446
PIETSP 0.00010 0.00013 9799.39 8

TMS SFCNTSP 0.00238 0.00258 419.97 313
PIETSP 0.00012 0.00064 8628.95 11

Table 3: Inference speed and training efficiency comparison of SFCNTSP and PIETSP.

layer. Given that |E| ≫ N , this dependence on the element domain size |E| can lead to significant287

computational costs, particularly as the number of elements grows. In contrast, our method achieves288

a lower complexity of O(|E|D).289

We focus on SFCNTSP for this comparison because it shares a similar goal of reducing computational290

cost while achieving efficient performance. However, PIETSP reduces time complexity further,291

providing both lower latency and higher throughput in large-scale settings.292

Table 3 presents a detailed comparison of inference performance using mean sample time, 99th per-293

centile latency (P99), and throughput (samples per second). We tested the models on Nvidia T4 GPU,294

across 100 runs with batch size 64 and embedding dimension D of 32. Across all datasets, PIETSP295

consistently outperforms SFCNTSP, exhibiting lower latency and significantly higher throughput.296

These results highlight the practical advantages of our model in time-sensitive and large-scale297

deployments.298

Table 3 also shows the number of epochs required for each model to converge. Our proposed model,299

PIETSP, achieves convergence significantly faster, requiring substantially fewer training epochs300

than SFCNTSP across all datasets. This demonstrates its training efficiency and potential for rapid301

iteration in real-world systems.302

7 Conclusion303

We propose PIETSP, a scalable and permutation-aware model for temporal set prediction that achieves304

linear time complexity with respect to both sequence length and element count. By integrating305

permutation-equivariant and permutation-invariant operations, PIETSP enables efficient modeling of306

evolving sets and offers significant improvements in inference speed and training efficiency.307

Empirical results across four public benchmarks show that PIETSP achieves comparable or superior308

performance to existing state-of-the-art models while requiring significantly fewer computational309

resources.310

8 Limitations and Future Work311

While efficient, the current architecture may under-capture fine-grained inter-element dependencies.312

Enhancing expressiveness via more advanced attention mechanisms (e.g., Set Transformers) is a313

promising direction. Additionally, the model operates on a fixed-length temporal window, which314

may limit its effectiveness on long-range dependencies. Lastly, our work does not explore fairness or315

uncertainty estimation, both of which are important considerations for high-stakes applications and316

future work.317
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A Technical Appendices and Supplementary Material354

A.1 Ablation Study355

To better understand the contribution of each component in our architecture, we conduct an ablation356

study. We compare the full PIETSP model with two variants: PIETSP-EE and PIETSP-GE, where we357

remove the element evaluator EE and global evaluator GE modules respectively. We test the variants358

on the Tafeng dataset. As shown in Table 4, removing either component leads to a noticeable drop359

in performance, confirming the importance of both elements in capturing temporal and contextual360

patterns effectively. The full model consistently outperforms both ablated variants, demonstrating361

that the synergy between EE and GE is crucial to the overall effectiveness of the proposed approach.362

A.2 Statistical Variability in Experimental Results363

We present the variability in the experimental results of PIETSP across various metrics, reporting the364

mean along with two standard deviations as shown in Table 5365
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Dataset Method Recall NDCG PHR
@1 @2 @5 @10 @1 @2 @5 @10 @1 @2 @5 @10

Tafeng
PIETSP-GE 0.0043 0.0050 0.0058 0.0060 0.0218 0.0156 0.0107 0.0090 0.0218 0.0239 0.0274 0.0284
PIETSP-EE 0.0452 0.0669 0.1004 0.1333 0.1427 0.1178 0.1098 0.1163 0.1427 0.1910 0.2712 0.3393
PIETSP 0.0515 0.0833 0.1300 0.1866 0.1778 0.1635 0.1531 0.1650 0.1778 0.2702 0.3885 0.4967

Table 4: Ablation study on the Tafeng dataset. PIETSP-GE: global evaluator removed; PIETSP-EE:
element evaluator removed. Best results per metric are in bold.

Dataset Metric @1 @2 @5 @10

TaFeng
PHR 0.1756 ± 0.0068 0.2661 ± 0.0142 0.3926 ± 0.0089 0.5009 ± 0.0148
nDCG 0.1756 ± 0.0068 0.1612 ± 0.0074 0.1530 ± 0.0041 0.1655 ± 0.0042
Recall 0.0516 ± 0.0022 0.0830 ± 0.0042 0.1316 ± 0.0070 0.1891 ± 0.0108

DC
PHR 0.2466 ± 0.0048 0.3485 ± 0.0038 0.4958 ± 0.0021 0.5617 ± 0.0028
nDCG 0.2466 ± 0.0048 0.2633 ± 0.0033 0.3227 ± 0.0018 0.3457 ± 0.0016
Recall 0.1779 ± 0.0034 0.2645 ± 0.0030 0.3984 ± 0.0015 0.4624 ± 0.0020

TaoBao
PHR 0.1156 ± 0.0017 0.1672 ± 0.0021 0.2410 ± 0.0016 0.3111 ± 0.0014
nDCG 0.1156 ± 0.0017 0.1459 ± 0.0016 0.1787 ± 0.0010 0.2010 ± 0.0010
Recall 0.1118 ± 0.0015 0.1630 ± 0.0021 0.2364 ± 0.0017 0.3052 ± 0.0013

TMS
PHR 0.3616 ± 0.0036 0.4672 ± 0.0049 0.6073 ± 0.0017 0.7048 ± 0.0047
nDCG 0.3616 ± 0.0036 0.3418 ± 0.0026 0.3714 ± 0.0014 0.4073 ± 0.0015
Recall 0.1927 ± 0.0020 0.2861 ± 0.0026 0.4080 ± 0.0020 0.4956 ± 0.0030

Table 5: Performance of our proposed model on the datasets. Each value is reported as mean ± 2xstd.
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