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Abstract

Temporal set prediction involves forecasting the elements that will appear in the
next set, given a sequence of prior sets, each containing a variable number of
elements. Existing methods often rely on complex architectures with substantial
computational overhead, limiting their scalability. In this work, we introduce a
novel and scalable framework that combines an efficient input representation with
permutation-equivariant and permutation-invariant transformations to model set
dynamics. Our approach significantly reduces training and inference time while
maintaining competitive performance. Extensive experiments on multiple public
datasets demonstrate that our method achieves state-of-the-art performance overall,
outperforming or matching existing models across several evaluation metrics.
These results highlight the effectiveness of our model in enabling efficient and
scalable temporal set prediction.

1 Introduction

Temporal Set Prediction addresses the problem of predicting which elements belong to the next
set, given a sequence of sets. The problem involves identifying patterns in how sets evolve over
time—tracking which elements enter, exit, or remain—and using these patterns to make accurate
membership predictions. This approach enables fine-grained, element-level forecasting in a wide
range of domains, including supply chain optimization, traffic congestion prediction, predictive
maintenance in industrial systems, personalized recommendation systems, clinical event forecasting
in healthcare, and modeling dynamic communities in social networks.

However, despite the importance of accurate element-level predictions, existing methods face signifi-
cant computational challenges with large temporal sets. Attention-based mechanisms typically scale
quadratically with sequence length, while many graph-based approaches have quadratic or worse
complexity relative to the number of elements. These computational constraints limit applicability to
real-world scenarios where both the universe of elements and the sequence length can be substantial.
For dynamic environments requiring frequent updates, such as real-time recommendation systems or
network monitoring, these performance limitations become particularly problematic.

In this paper, we propose an architecture called PIETSP for temporal set prediction that reduces
computational complexity to O(N(K D + D?) + |E|D), where N is the number of distinct elements
in a sequence of sets, K is the maximum sequence length, D is the embedding dimension, and | E| is
the domain of all possible elements (vocabulary size). This represents a significant improvement over
conventional attention or graph based approaches which typically incur quadratic complexities in [V
or K. The proposed architecture offers both scalability and accuracy in predicting set membership at
future time points. Our contributions include:
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* A mathematically principled formulation of temporal set prediction that integrates element
features and their temporal dynamics in a joint representation, allowing for more accurate
and efficient predictions.

* A novel algorithm that achieves linear scaling with respect to both sequence length and
number of distinct elements independently, thus enabling the processing of large-scale
datasets in a computationally efficient manner.

» Comprehensive empirical evaluation on publicly available datasets, demonstrating that our
approach offers comparable or superior performance to existing state-of-the-art methods
while significantly reducing computational requirements.

2 Related Work

Temporal Set Prediction. Temporal Set Prediction (TSP) is a generalization of sequence prediction
that models the evolution of sequences of unordered sets rather than sequences of individual elements.
Several baselines have been proposed for this task. Sets2Sets [1] formulates it as sequential set-
to-set learning using an RNN encoder-decoder with set attention and repeated element modules;
however, its recurrent structure limits parallelism and slows training. DNNTSP [2] extends this
by modeling dynamic co-occurrence graphs using GCNs [3]], incorporating temporal attention and
gated fusion to capture sequence dynamics, albeit with increased memory and compute costs due
to graph construction. SFCNTSP [4] mitigates these issues through a lightweight architecture with
permutation invariant and equivariant layers, achieving faster inference and fewer parameters, though
scalability remains a challenge on large datasets.

Next Basket and Set Prediction. TSP is closely aligned with next-basket recommendation, where
the goal is to predict the next set of items a user will interact with. Early models such as FPMC [3]
combine matrix factorization with Markov Chains to model user preferences and item transitions.
While efficient, FPMC lacks the ability to model inter-item dependencies within a basket and does
not generalize well to cold or rare items. Additionally, models such as SHAN [6] and SASRec [[7]
introduced self-attention mechanisms [I8] to this task, but their adaptation to set sequences is limited,
as attention is inherently order-sensitive and does not handle set permutation-invariance without
explicit modification.

Multiset Modeling and Repetition. A defining feature of TSP, and a gap in traditional sequential
models, is the ability to handle repeated elements—important in domains like healthcare (e.g.,
recurring diagnoses, lab tests) and e-commerce (e.g., repeated purchases). Sets2Sets and DNNTSP
directly model repetition via frequency-aware loss functions or modules that attend to past occurrences.
However, these often assume hard duplication counts rather than modeling repetition as a stochastic
process.

Sequence-to-Sequence and Set Modeling. TSP extends the classic sequence-to-sequence (seq2seq)
framework popularized in NLP [9} [10], but demands adaptations for sets due to their unordered and
variable-length nature. Key inspirations come from DeepSets [[11], which introduced permutation-
invariant functions for effective set representation. Building on this foundation, Set Transformers
[12] leverage attention mechanisms specifically designed for set inputs and outputs. SetVAE [[13]
further advances this line of research by enabling generative modeling of unordered outputs with
improved computational efficiency.

While standard Transformer-based approaches often suffer from quadratic complexity in set size,
SetVAE employs architectural innovations to mitigate this limitation. However, challenges remain in
capturing sequential dependencies when these models are applied to problems requiring both set-level
operations and order-sensitive processing.

3 Problem Formulation

Let S(t;) C FE represent the set of all elements present at time ¢;, where E is the domain of possible
elements. Let S = [S(t1), S(t2), ..., S(tr)] be the sequence of sets across 1" time steps, where
1 <T < K and K = max{|S;| : §; € D} is the maximum set sequence length across the dataset

D.LetU = U?:l S(t;) be the universe of all distinct elements that appear in any set in the sequence
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Figure 1: The process of My and C construction
S. We can enumerate the elements in this universe as U = {e1, es,...,en}, where N = |U| is the

total number of unique elements in S.

Let M € RIFI*P be the embedding matrix for the entire domain E, where each row represents the
D-dimensional embedding vector for an element in the domain. Let My € RY*P be the embedding
matrix for elements in U, where My; is the submatrix of M containing only the rows corresponding
to elements in U. We show the construction of M in Figure[T]

Given this formulation, our objective is to predict the future set membership S(¢7.1) by analyzing
patterns in the sequence history S. Specifically, we aim to develop models that can accurately
forecast element membership in the set at time T + 1, based on the structural patterns identified in
the evolution history of S.

4 Methodology
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Figure 2: Architecture of the proposed model. The input set elements and their sequence features
are combined using the Sequence Feature Integration (SFI) layer and passed through permutation-
equivariant (PE) and permutation-invariant (PI) blocks, followed by combining the element-wise
(EE) and global evaluators(GE) producing the final prediction.

We first give a brief overview of the sequence of operations below, as shown in Figure [2]and elaborate
each operation in the subsections. In order to predict the future set membership S(¢71), we start by
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integrating the embeddings My of the unique elements N with a sequence feature C' (illustrated in
Figure|l) by passing it through Sequence Feature Integration (SFI) layer. The resulting output Z
of N elements is passed to a permutation equivariant layer (PE). This enriches the representation
of the set elements with a global aggregated context. The updated representation Z captures the
integrated sequence-element relationship and serves as input to two separate computational branches
as shown in Figure[2] The branch on the right, called Element Evaluator (EE), generates scores for
each of the updated IV elements, collectively referred to as O..

Meanwhile, the branch extending downwards passes Z through a permutation invariant layer
(PI). PI transforms the updated set of [V elements Zintoa single representation Z. Note that Z is
the representation of an entire sequence of sets. Z is then passed through Global Evaluator (GE)
to get scores Os for the entire domain E. O., the scores for updated N elements Z and Os, the
global scores for the entire domain FE, are then fused to get the final logits Y. Since our method

applies a Permutation Invariant operation (PI) following a Permutation Equivariant operation (PE) for
Temporal Set Prediction (TSP), we name have named our proposed approach PIETSP.

4.1 Sequence Feature Integration

Our approach differs from related methods that typically process set elements for each time step in
isolation. Although conventional techniques distribute the /N distinct sequence elements across the
K time steps using weight-sharing mechanisms for separate processing, our method integrates com-
prehensive sequence information for each of the IV elements. We utilize a sequential representation
C € RV*? that encodes relationships between elements and sequences. The matrices My and C
are integrated via the Sequence Feature Integration (SFI) function, as outlined in (I), resulting in
matrix Z. This matrix Z combines element-specific features with sequential information which may
include membership patterns, temporal embeddings, or count-based representations.

Z = SFI(My,C) € RN*F )]

}NXK

For our implementation, we define C' as a multi-hot representation C' € {0, 1 , where:

. . J1 ifelemente; € S(t;)
Clindl = {0 if element e; ¢ S(¢;)

In our implementation, the matrix C' efficiently encodes the binary membership relationships between
elements and sequences, enabling us to mathematically model these relationships with each row
corresponding to an element and each column representing a sequence. The resulting structure
preserves the distributional patterns of elements across sequences, forming the basic for subsequent
operations in our method. We use simple concatenation for SFIL. This results in Z of shape N x (K +
D). While the original data consists of a sequence of sets, transforming it into the matrix Z enables
efficient neural processing using standard operations, while preserving the underlying set semantics
through permutation-aware design.

@

4.2 Integrated Element-Sequence Relationship Learning

To effectively capture the interplay between individual elements and the sequences they participate
in, we apply a permutation equivariant transformation to the matrix Z. A function f is permutation
equivariant if permuting its inputs results in an equivalent permutation of its outputs. Formally, for
any permutation 7 and input list X = [z1, 22, ..., 2], @ permutation equivariant function satisfies:

f([ITF(l)7x7T(2)7 75571'(71)}) = [f(X)]TI'

This property ensures that our model respects the structure of the input while allowing meaningful
transformations of individual elements based on the collective context. We pass Z € RV*(K+D)

through a permutation equivariant layer to obtain Z € RNV*4 a5 shown in Equation (@):

Z = PE(Z) e RV*? 3)
In our implementation, we use a mean permutation equivariant layer, defined as:
N
” 1 Nxd
7 = ELU (ng by~ 2(&-%)) €R )
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where W, € RE+TD)xd" and W, € RE+P)¥4" are learnable weight matrices, and b, € R? is a
learnable bias vector. The ELU activation is applied element-wise to the entire result to introduce
smooth, non-linear transformations.

To reduce computational complexity, we set the output dimension d’ = D, thereby projecting
Z € RN*(E+D) jnto RV*P. This avoids the quadratic cost of a full (K + D) x (K + D)
transformation and instead yields a more efficient O(N (K + D)D) complexity, which is linear in

the number of time steps K when D is fixed. The resulting output matrix Z € R™ > is then used in
subsequent stages of the model.

4.3 Element Evaluator

Following the permutation equivariant transformation, we apply an element-wise evaluator (EE) to the

enriched representations Z in order to compute scalar relevance scores for each element. Specifically,
the evaluator produces one score per element as defined in Equation (3)):

O. =EE(Z) e RN 5)

In our implementation, the EE is instantiated as a two-layer Multi-Layer Perceptron (MLP) with a
ReLU activation in between. This setup allows the model to assess each element’s importance based
on both its intrinsic characteristics and its contextual role within the sequence.

Since the evaluator processes elements independently, the permutation equivariant structure es-
tablished earlier is preserved. The resulting scores O, € RV quantify each element’s contextual
relevance and serve as intermediate signals, which will later be merged with complementary scores
to inform the final prediction.

4.4 Sequence Set Representation

To derive a global representation of the input sequence, we aggregate information from the enriched
element representations in a way that is invariant to element order. This summary will later be used
to complement the element-level scores for final prediction.

A function f is permutation invariant if its output remains unchanged regardless of the ordering of its
input elements. Formally, for any permutation 7 and input list X = [z, zo, ..., z,], a permutation
invariant function satisfies:

f([Zr1), Zr(2), - - - Tam)]) = f([21, 22, ... 20])

This property ensures that the model produces consistent outputs for a given collection of elements,
independent of their order. In our method, we apply a permutation invariant operation to the enriched

element representations Z € RN*D (0 obtain a global sequence-level summary vector:

Z =PI(Z) e R™*P (6)

Specifically, we use a sum pooling operation followed by a Multi-Layer Perceptron (MLP) consisting
of two hidden layers with ELU activations and a final output layer:

N
7 = MLP (Z Z) @)
=1

The resulting summary Z encapsulates global sequence-level context that informs the final element
selection.

4.5 Global Evaluator

We perform global scoring using a global evaluator (GE), which computes relevance scores for all
elements in the domain E, as shown in Equation @D

O, = GE(Z) e R (8)
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This mechanism captures the relationship between the global sequence set representation Z (which
encodes the entire sequence) and each candidate element in the domain £. The global evaluator
could take various forms, such as dot product similarity, concatenation followed by an MLP, or other
scoring functions. In our implementation, we specifically use a dot product formulation to calculate
the scores, measuring the similarity between each element embedding in M and the global sequence
representation Z, as shown in Equation @])

O.=M-Z' ©9)

This approach produces a score for each element in F/, indicating its relevance according to the global
sequence context.

4.6 Score Fusion

To effectively combine global context information with element-specific sequential patterns, we
implement a score fusion mechanism. This approach integrates global scores for all domain elements
with element-level scores from the set sequence. We introduce learnable parameter vectors o, 3 €
RIZ! to weight each information source. The global scores O, € RIZ! for all elements in domain
FE from Equation and the element-level scores O, € RY from the set sequence as defined in
Equation (3] serve as inputs to our score fusion mechanism.

LetI:{l,...,N} —{1,...,|E|} be a one-to-one mapping function that maps each element index
i in the set sequence to its unique corresponding index j in the domain E. Let Dyq C {1,...,|E|}
be the set of domain indices that are mapped from the set sequence, i.e.,

Deq={j€{l,....|E|}: ie{1,... N} I(i) = j}

The final logit output ¥ € RIZ! is computed as:

{aj : (Os)j + Bj : (Oe)i ifj e Dseq where ](2) =7

v -
a; - (0s); otherwise

J

(10)

This formulation ensures that all elements receive a score based on global context (weighted by
«j), while only elements present in the set sequence receive an additional contribution from their
element-level scores (weighted by 3;). It allows the model to adaptively balance local sequential
patterns (captured by O, ) with global context information (captured by Oy) when determining the
likelihood of each element appearing in the next set.

4.7 Model Training Process

Our model is trained with a batch size of 64. Sequences are zero-padded at the beginning in the
multi-hot sequence feature representation C', as formalized in Equation (2), and K is set to 19. We
use an embedding dimension of 32 and optimize using Adam with a learning rate of 0.001 and weight
decay of 0.01. The learning rate follows a cosine decay schedule. We train for 100 epochs with early
stopping (patience=10). Given that the prediction of next-period item sets constitutes a multi-label
classification problem, we implement a binary cross-entropy loss function.

4.8 Model Complexity Analysis

Time Complexity: Our model demonstrates efficient computational scaling across its components.
The time complexity for element relationship learning using PE is O(N (K + D) - D), while creating
the set sequence embedding via PI requires O(N D?) operations. Scoring set elements via EE
contributes to an additional O(N D?) complexity, and global scoring of all elements in domain E
using GE adds O(|E|D) operations. Finally, the score fusion layer adds O(] E|) operations. The total
time complexity can be expressed as:

O(N(K + D)-D+ ND?+4+ ND? + |E|D + |E|)

This simplifies to:
O(N(KD + D*) + |E|D)
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Datasets #sets #users #elements #E/S #S/U
TaFeng 73,355 9,841 4,935 541  7.45

DC 42,905 9,010 217 1.52 4.76
TaoBao 628,618 113,347 689 1.10  5.55
TMS 243,394 15,726 1,565 2.19 1548

Table 1: Dataset statistics

This formulation confirms our model’s efficient scaling with respect to the number of elements /N,
maximum sequence length K, embedding dimensionality D, and vocabulary size |E|. Our model
offers computational advantages compared to existing approaches, achieving linear scaling with
respect to both the number of elements N and maximum sequence length K.

This efficiency, coupled with time complexity that remains independent of the number of layers,
represents a significant improvement over related methods that either scale quadratically with N or
K, or have complexity that grows linearly with the number of layers in the model.

Space Complexity: The primary memory cost arises from the element embeddings with
complexity O(|E|D), which is standard across similar methods. Beyond this, PIETSP introduces
the PE which is O((K + D)D), Plis O(D?), an element scorer with O(D?) complexity and score
fusion with O(|E/). This leads to a total space cost of:

O(|E|D + (K + D)D + D* + D? + |E|)

This simplifies to:
O(D(|E|+ K + D))

S Experiments

This section details the experimental setup used to evaluate our approach. We describe the datasets
employed in our study, followed by the baseline methods used for comparison. We use three standard
metrics for top-k recommendation: Recall@k, nDCG@Fk, and PHR@Fk. Recall@k measures the
proportion of relevant items retrieved, while nDCG@Fk captures both relevance and ranking quality.
PHR @£ indicates the fraction of users for whom at least one relevant item appears in the top-k
predictions. We report results at multiple cutoffs to provide a comprehensive evaluation.

5.1 Datasets

We evaluate our model on four publicly available datasets commonly used in temporal set prediction
and next basket recommendation tasks: TaFeng, Dunnhumby-Carbo (DC), TaoBao, and Tags-
Math-Sx (TMS). Each dataset records user behaviors over time as sequences of sets, where each
set contains the items associated with a user’s interaction at a particular timestamp. The last set in
the sequence is used as the label. We discuss some relevant statistics for the datasets used in Table|[T]
where #E/S denotes the average number of elements in each set, #S/U represents the average number
of sets for each user. Our datasets and the train,validation and test splits have been sourced from
https://github.com/yule-BUA A/DNNTSP/tree/master/data.

5.2 Baseline Methods

To evaluate the effectiveness of our proposed approach, we compare it against three state-of-the-
art models designed for temporal set prediction: Sets2Sets, DNNTSP, and SFCNTSP. These
methods represent diverse modeling strategies, including recurrent, graph-based, and fully connected
architectures.

Sets2Sets  [[1]. Sets2Sets formulates temporal set prediction as a sequential sets-to-sequential sets
learning problem. It employs an encoder-decoder architecture built on recurrent neural networks
(RNNs), where each input set is embedded via a set-level embedding mechanism, and the sequence is
modeled with a decoder using set-based attention. It also incorporates a repeated-elements module to
capture frequent historical patterns and a custom objective function to address label imbalance and
label correlation.
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Dataset
(p95 Set Size) Method Recall NDCG PHR

@] @2 @5 @10 @] @2 @5 @10 @] @2 @5 @10

Tafeng (15) Sets2Sets  0.0302  0.0477 0.0832 0.1264 0.0767 0.0754 0.0820 0.0965 0.0767 0.1254 0.2158 0.3296
DNNTSP  0.0448 0.0694 0.1140 0.1692 0.1422 0.1318 0.1293 0.1436  0.1422 0.2240 0.3509 0.4708
SFCNTSP  0.0471 0.0728 0.1126 0.1674 0.1503 0.1378 0.1303 0.1437 0.1503 0.2336 0.3545 0.4703
PIETSP 0.0515  0.0833 0.1300 0.1866 0.1778 0.1635 0.1531 0.1650 0.1778 0.2702 0.3885 0.4967

DC (3) Sets2Sets  0.1276  0.2311 0.3825 0.4259 0.1776 02185 0.2883 0.3041 0.1775 03123 0.4786 0.5219
DNNTSP  0.1480 0.2424 0.3924 0.4609 0.2047 02346 0.3035 0.3282 0.2047 0.3256 0.4870 0.5528
SFCNTSP  0.1581 0.2457 0.3879 0.4585 0.2174 02421 0.3063 0.3330 0.2174 0.3295 0.4836 0.5552
PIETSP 0.1811 0.2632 0.3983 0.4615 0.2514 0.2641 0.3235 0.3463 0.2514 0.3489 0.4958 0.5613

TaoBao (2) Sets2Sets  0.0019  0.0398 0.0985 0.1743 0.0019 0.0260 0.0521 0.0767 0.0019 0.0409 0.1015 0.1787
DNNTSP  0.0786 0.1394 0.2289 0.3032 0.0812 0.1183 0.1590 0.1831 0.0812 0.1434 0.2337 0.3093
SECNTSP  0.1003  0.1577 0.2355 0.3103 0.1037 0.1383 0.1766 0.1952 0.1037 0.1619 0.2402 0.3165
PIETSP 0.1116 0.1613 0.2364 0.3059 0.1155 0.1448 0.1781 0.2012 0.1155 0.1656 0.2410 0.3108

TMS (4) Sets2Sets  0.2055 0.2782  0.3589 0.4423 0.3846 0.3408 0.3455 0.3743 0.3846 0.4637 0.5645 0.6557
DNNTSP  0.1248 0.2131 0.3566 0.4691 0.2616 0.2561 0.3000 0.3453 0.2616 0.3789 0.5633 0.6844
SECNTSP  0.1681  0.2655 0.3940 0.4960 0.3210 0.3133 0.3490 0.3924 0.3210 0.4469 0.5995 0.7044
PIETSP 0.1930 0.2852 0.4074 0.4982 03620 0.3412 0.3713 0.4075 0.3620 0.4638 0.6068 0.7092

Table 2: Performance comparison on four datasets. The best results per metric are in bold.

DNNTSP [2]. DNNTSP is a deep neural network architecture that captures both intra-set and
inter-set dependencies through graph-based modeling. It constructs dynamic co-occurrence graphs
over elements within each set and applies weighted graph convolutional layers to model relationships.
Additionally, it uses an attention-based temporal module to capture sequence dynamics and a gated
fusion mechanism to integrate static and dynamic element representations for improved predictive
accuracy.

SFCNTSP  [4]]. SFECNTSP proposes a lightweight and efficient architecture based entirely on sim-
plified fully connected networks (SFCNs), eliminating non-linear activations and complex modules
such as RNNs or attention. It captures inter-set temporal dependencies, intra-set element relationships,
and channel-wise correlations through permutation-invariant and permutation-equivariant operations.
Despite its simplicity, it achieves competitive performance while significantly reducing computational
and memory costs.

6 Results

In this section, we present a comprehensive evaluation of our proposed method. We begin with a
performance comparison against state-of-the-art baselines to demonstrate the effectiveness of our
approach. Next, we assess the efficiency of the model in terms of model training and inference.
Finally, we conduct an ablation study to analyze the contribution of different components in our
architecture, which is described in the Appendix section [A.T]

6.1 Performance Comparison

We evaluate the performance of our proposed method against several strong baselines across four
benchmark datasets. We select cut-off k& € {1,2,5,10} to span single-item through longer-list
predictions relative to each dataset’s 95™-percentile set size (p95 ranges from 2 to 15 across our
benchmarks). As shown in Table[2] our model consistently outperforms all baselines on Tafeng and
DC and leads on TaoBao for & < 5, with only a slight drop at £ = 10. On TMS, Sets2Sets attains the
highest performance at £ = 1 by memorizing the most frequent next element, but PIETSP surpasses
every method for £ > 2. These results underscore the robustness of our approach across varying set
sizes and—to our knowledge—PIETSP establishes a new state-of-the-art performance on all four
benchmarks under this evaluation.

6.2 Model Efficiency Comparison

To evaluate the efficiency of our proposed method, we compare it with the baseline SFCNTSP model
[4]. While SFCNTSP achieves competitive performance by eliminating complex modules like RNNs
and attention, it still faces higher time complexity compared to our approach. This higher complexity
arises from the dependence on the term O(|E|N D) in their adaptive fusing of user representations
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Dataset Model Mean Time (s) P99 Time (s) Samples/sec Epochs

TaF SFCNTSP 0.00214 0.00250 467.69 327
areng  pIETSP 0.00011 0.00017 9081.62 14
DC SFCNTSP 0.00083 0.00096 1204.03 305
PIETSP 0.00012 0.00061 8010.45 8

TaoBao  SFCNTSP 0.00091 0.00109 1097.26 446
PIETSP 0.00010 0.00013 9799.39 8

TMS SFCNTSP 0.00238 0.00258 419.97 313
PIETSP 0.00012 0.00064 8628.95 11

Table 3: Inference speed and training efficiency comparison of SFCNTSP and PIETSP.

layer. Given that |E| > N, this dependence on the element domain size |E| can lead to significant
computational costs, particularly as the number of elements grows. In contrast, our method achieves
a lower complexity of O(|E|D).

We focus on SEFCNTSP for this comparison because it shares a similar goal of reducing computational
cost while achieving efficient performance. However, PIETSP reduces time complexity further,
providing both lower latency and higher throughput in large-scale settings.

Table 3] presents a detailed comparison of inference performance using mean sample time, 99th per-
centile latency (P99), and throughput (samples per second). We tested the models on Nvidia T4 GPU,
across 100 runs with batch size 64 and embedding dimension D of 32. Across all datasets, PIETSP
consistently outperforms SFCNTSP, exhibiting lower latency and significantly higher throughput.
These results highlight the practical advantages of our model in time-sensitive and large-scale
deployments.

Table [3]also shows the number of epochs required for each model to converge. Our proposed model,
PIETSP, achieves convergence significantly faster, requiring substantially fewer training epochs
than SFCNTSP across all datasets. This demonstrates its training efficiency and potential for rapid
iteration in real-world systems.

7 Conclusion

We propose PIETSP, a scalable and permutation-aware model for temporal set prediction that achieves
linear time complexity with respect to both sequence length and element count. By integrating
permutation-equivariant and permutation-invariant operations, PIETSP enables efficient modeling of
evolving sets and offers significant improvements in inference speed and training efficiency.

Empirical results across four public benchmarks show that PIETSP achieves comparable or superior
performance to existing state-of-the-art models while requiring significantly fewer computational
resources.

8 Limitations and Future Work

While efficient, the current architecture may under-capture fine-grained inter-element dependencies.
Enhancing expressiveness via more advanced attention mechanisms (e.g., Set Transformers) is a
promising direction. Additionally, the model operates on a fixed-length temporal window, which
may limit its effectiveness on long-range dependencies. Lastly, our work does not explore fairness or
uncertainty estimation, both of which are important considerations for high-stakes applications and
future work.
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A Technical Appendices and Supplementary Material

A.1 Ablation Study

To better understand the contribution of each component in our architecture, we conduct an ablation
study. We compare the full PIETSP model with two variants: PIETSP-EE and PIETSP-GE, where we
remove the element evaluator EE and global evaluator GE modules respectively. We test the variants
on the Tafeng dataset. As shown in Table ] removing either component leads to a noticeable drop
in performance, confirming the importance of both elements in capturing temporal and contextual
patterns effectively. The full model consistently outperforms both ablated variants, demonstrating
that the synergy between EE and GE is crucial to the overall effectiveness of the proposed approach.

A.2 Statistical Variability in Experimental Results

We present the variability in the experimental results of PIETSP across various metrics, reporting the
mean along with two standard deviations as shown in Table 3]
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Dataset Method

Recall

NDCG

PHR

@2 @5

@10 @] @2

@5 @10 @l

@2 @5 @10

PIETSP-GE  0.0043

Tafeng
PIETSP

0.0050 0.0058

0.0060 0.0218 0.0156 0.0107 0.0090 0.0218 0.0239
PIETSP-EE  0.0452 0.0669 0.1004 0.1333 0.1427 0.1178 0.1098 0.1163 0.1427 0.1910
0.0515  0.0833 0.1300 0.1866 0.1778 0.1635 0.1531

0.1650 0.1778 0.2702

0.0274 0.0284
0.2712  0.3393
0.3885  0.4967

Table 4: Ablation study on the Tafeng dataset. PIETSP-GE: global evaluator removed; PIETSP-EE:
element evaluator removed. Best results per metric are in bold.

Dataset Metric @1 @2 @5 @10
PHR 0.1756 £ 0.0068 0.2661 +0.0142 0.3926 + 0.0089 0.5009 + 0.0148
TaFeng nDCG  0.1756 £0.0068 0.1612 +0.0074 0.1530 £ 0.0041  0.1655 + 0.0042
Recall 0.0516 £0.0022 0.0830 +£0.0042 0.1316 £0.0070 0.1891 +0.0108
PHR 0.2466 + 0.0048 0.3485 +0.0038 0.4958 + 0.0021 0.5617 +0.0028
DC nDCG  0.2466 +£0.0048 0.2633 £0.0033 0.3227 £0.0018 0.3457 £ 0.0016
Recall 0.1779 £0.0034 0.2645 +£0.0030 0.3984 +£0.0015 0.4624 + 0.0020
PHR 0.1156 £0.0017 0.1672 +£0.0021 0.2410+0.0016 0.3111 +0.0014
TaoBao nDCG 0.1156+0.0017 0.1459 £0.0016 0.1787 £0.0010 0.2010 + 0.0010
Recall 0.1118 £0.0015 0.1630+0.0021 0.2364 +£0.0017 0.3052 + 0.0013
PHR 0.3616 £ 0.0036  0.4672 +£0.0049 0.6073 +0.0017 0.7048 + 0.0047
TMS nDCG 0.3616 £0.0036 0.3418 £0.0026 0.3714 +£0.0014 0.4073 + 0.0015
Recall  0.1927 £0.0020 0.2861 +£0.0026 0.4080 + 0.0020 0.4956 + 0.0030

Table 5: Performance of our proposed model on the datasets. Each value is reported as mean + 2xstd.
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The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: We detail the complete proof with the assumptions in section [3]and section []
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

» Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The proposed algorithm and the architecture have been described in detail for
reproducibility in section [3|and section []

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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* Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: We use a public dataset cited in section[5.1] Code is not released at this time
due to proprietary dependencies. However, the methodology is described in sufficient detail
in the paper to allow motivated readers to implement the approach independently.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We detail all the training and test details in section [4.7]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars as the mean + 2 standard deviations across multiple
random seeds for all key evaluation metrics (Recall@k, nDCG @k, PHR @k) in appendix
section

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We indicate the compute resources required in section [6.2]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: We followed the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This work uses publicly available datasets. There is no explicit negative social
impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

15


https://neurips.cc/public/EthicsGuidelines

602
603
604
605

606
607

608
609
610

611

612
613
614

615

616

617

618
619

620
621

622

623
624

625
626
627
628

629
630

631

633

634
635

636

637

638

639
640
641
642
643
644

12.

13.

14.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[Yes]
Justification: Yes, we credited them in appropriate ways.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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