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ABSTRACT

With the ever-increasing popularity of edge devices, it is necessary to implement
real-time segmentation on the edge for autonomous driving and many other ap-
plications. Vision Transformers (ViTs) have shown considerably stronger results
for many vision tasks. However, ViTs with the full-attention mechanism usually
consume a large number of computational resources, leading to difficulties for
real-time inference on edge devices. In this paper, we aim to derive ViTs with
fewer computations and fast inference speed to facilitate the dense prediction of
semantic segmentation on edge devices. To achieve this, we propose a pruning pa-
rameterization method to formulate the pruning problem of semantic segmentation.
Then we adopt a bi-level optimization method to solve this problem with the help
of implicit gradients. Our experimental results demonstrate that we can achieve
38.9 mIoU on ADE20K val with a speed of 56.5 FPS on Samsung S21, which is
the highest mIoU under the same computation constraint with real-time inference.

1 INTRODUCTION

Inspired by the extraordinary performance of Deep Neural Networks (DNNs), DNNs have been
applied to various tasks. In this work, we focus on semantic segmentation, which aims to assign
a class label to each pixel of an image to perform a dense prediction. It plays an important role in
many real-world applications, such as autonomous driving. However, as a dense prediction task,
segmentation models usually have complicated multi-scale feature fusion structures with large feature
sizes, leading to tremendous memory and computation overhead with slow inference speed.

To reduce the memory and computation cost, certain lightweight CNN architectures (Li et al., 2020b;
Yu et al., 2021; Fan et al., 2021) are designed for efficient segmentation. Besides CNNs, inspired
by the recent superior performance of vision transformers (ViTs) (Dosovitskiy et al., 2021), some
works (Zheng et al., 2021; Cheng et al., 2021b;a) adopt ViTs in segmentation tasks to explore self-
attention mechanism with the global receptive field. However, it is still difficult for ViTs to reduce
the computation cost of the dense prediction for segmentation with large feature sizes.

With the wide spread of edge devices such as mobile phones, it is essential to perform real-time
inference of segmentation on edge devices in practical applications. To facilitate mobile segmentation,
the state-of-the-art work TopFormer Zhang et al. (2022) adopts a token pyramid transformer to
produce scale-aware semantic features with tokens from various scales. It significantly outperforms
CNN- and ViT-based networks across different semantic segmentation datasets and achieves a good
trade-off between accuracy and latency. However, it only partially optimizes the token pyramid
module, which costs most of the computations and latency.

In this work, we propose a pruning parameterization method with bi-level optimization to further
enhance the performance of TopFormer. Our objective is to search for a suitable layer width for each
layer in the token pyramid module, which is the main cost of computations and latency (over 60%).
To achieve this, we first formulate the problem with pruning parameterization to build a pruning
framework with a soft mask as a representation of the pruning policy. With this soft mask, we further
adopt thresholding to convert the soft mask into a binary mask so that the model is trained with actual
pruned weights to obtain pruning results directly. This is significantly different from other methods
(Liu et al., 2017; Guan et al., 2022) to train with unpruned small non-zero weights and use fine-tuning
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to mitigate the performance degradation after applying pruning. Besides, to update the soft mask as
long as the pruning policy, we adopt to straight though estimator (STE) method to make the soft mask
differentiable. Thus, we can build the pruning parameterization framework with minimal overhead.

Based on this framework, we need to search the best-suited layer width for each layer in the token
pyramid module. It is non-trivial to perform the search. As the token pyramid module needs to
extract multi-scale information from multiple spatial resolutions, the large hierarchical search space
leads to difficulties of convergence. To resolve this problem, we adopt a bi-level optimization method.
In the outer optimization, we try to obtain the pruning policy based on the pruning parameters (the
soft mask). In the inner optimization, the optimized model weights with the best segmentation
performance under this soft mask can be obtained. Compared with a typical pruning method, our
work incorporates the implicit gradients with second-order derivatives to further guide the update
of the soft mask and achieve better performance. Our experimental results demonstrate that we can
achieve 38.9 mIoU (mean class-wise intersection-over-union) on the ADE20K dataset with a speed
of 56.5 FPS on Samsung S21, which is the highest mIoU under the same computation constraint with
real-time inference speed. We summarize our contributions below,

• We propose a pruning parameterization method to build a pruning framework with a soft
mask. We further use a threshold-based method to convert the soft mask into the binary mask
to perform actual pruning during model training and inference. Besides, STE is adopted to
update the soft mask efficiently through gradient descent optimizers.

• To solve the pruning problem formulated with the framework of pruning parameterization,
we propose a bi-level optimization method to utilize implicit gradients for better results. We
show that the second-order derivatives in the implicit gradients can be efficiently obtained
through first-order derivatives, saving computations and memory.

• Our experimental results demonstrate that we can achieve the highest mIoU under the same
computation constraint on various datasets. Specifically, we can achieve 38.9 mIoU on the
ADE20K dataset with a real-time inference speed of 56.5 FPS on the Samsung S21.

2 RELATED WORK

Real-Time Semantic Segmentation. Though semantic segmentation based on CNNs (Zhao et al.,
2017; Chen et al., 2018; Fu et al., 2019; Huang et al., 2019) can achieve great performance, it typically
costs large amounts of computations with slow inference speed. Furthermore, with the ever-increasing
popularity of edge devices such as mobile phones, it is necessary to achieve fast inference speed
for semantic segmentation on edge devices. Besides human designed lightweight models (Yu et al.,
2018; Li et al., 2020b; Fan et al., 2021), neural architecture search (NAS) methods (Liu et al., 2019;
Li et al., 2019c; Chen et al., 2019; Zhang et al., 2021) are also adopted to search lightweight models.

As a pioneer in handcrafted real-time segmentation, ENet (Paszke et al., 2016) designs a lightweight
model for fast inference. DeepLabV3+ (Chen et al., 2018) adopts atrous separable convolution
to reduce computation counts and uses the lightweight MobileNetV2 (Sandler et al., 2018) as the
backbone. BiSeNet (Yu et al., 2018; 2021) and STDC (Fan et al., 2021) utilizes a two-branch
architecture, where the deep branch extracts spatial information, and the shallow branch learns details.
SFNet (Li et al., 2020b) uses flow alignment module to fuse context and spatial information.

Inspired by the recent success of NAS, some works automatically search lightweight segmentation
models. Auto-DeepLab (Liu et al., 2019) searches a model with extremely high segmentation
performance regardless of the computation budgets or overhead. To reduce the computation cost,
FasterSeg (Chen et al., 2019) incorporates latency regularization during search. DCNAS (Zhang et al.,
2021) uses a densely connected search space and employs a gradient-based direct search method.
NASViT (Gong et al., 2021) proposes a gradient projection algorithm to deal with the gradient conflict
issues and improve the convergence performance. HR-NAS (Ding et al., 2021a) keeps high-resolution
representations in its encoder and the search process to maintain high accuracy in dense prediction.

Although many lightweight segmentation models are developed, it is still hard for them to run
real-time inference on resource- and power-limited GPUs of edge devices.

Vision Transformers. By utilizing the self-attention mechanism, ViTs (Dosovitskiy et al., 2021)
can achieve competitive results against CNN models in vision tasks. Inspired by the great success
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of ViTs, many research efforts are devoted to dense prediction tasks with ViTs on complex datasets.
SETR (Zheng et al., 2021) utilizes a ViT-based encoder to extract high-level semantic information.
Instead of per-pixel prediction, MaskFormer (Cheng et al., 2021b) performs mask-based prediction
with a customize backbone and a transformer-based decoder. With a transformer decoder to explore
masked attention, mask2Former (Cheng et al., 2021a) proposes a universal architecture and achieves
SOTA performance for various segmentation tasks. MobileViT (Mehta & Rastegari, 2021) and
MobileFormer (Chen et al., 2021) mix CNN and ViT in their architectures, but they are not fast
enough to achieve real-time inference on edge devices. TopFormer (Zhang et al., 2022) utilizes the
CNN-based token pyramid module to extract multi-level tokens and lightweight ViT blocks to extract
semantic information. It can achieve low latency and high accuracy on complex datasets.

Neural Architecture Search and Pruning. NAS and pruning are commonly used to find lightweight
models and reduce the computation overhead. Given a search space, NAS tries to identify a superior
model automatically. Reinforcement learning (RL) based NAS (Zoph & Le, 2017; Pham et al., 2018)
and evolution-based NAS (Elsken et al., 2018; Real et al., 2019) usually need to train and evaluate
each candidate model, leading to tremendous searching cost. To mitigate this, gradient-based NAS
(Liu et al., 2018; Cai et al., 2018; Chu et al., 2019; Guo et al., 2020b) is proposed to formulate a
supernet with all candidate architectures and search the outstanding architecture through gradient
descent methods. But it costs huge memory to incorporate all candidate architectures.

Network pruning is a compression technique to effectively reduce the DNN storage and computation
cost. In this work, we focus on structured pruning (Wen et al., 2016; Li et al., 2019a) to remove entire
filters or channels of CONV layers, which can be accelerated effectively for fast inference.

3 PROBLEM FORMULATION WITH PRUNING PARAMETERIZATION

In our method, we first formulate the pruning problem with pruning parameterization. Previous
pruning methods usually depend on the magnitudes of model weights and adopt the in-differentiable
sorting operations, leading to inconsistent performance after applying pruning with sorting and
additional overhead with fine-tuning. To mitigate this, we propose a pruning parameterization
method, which uses a soft mask (rather than magnitudes of weights) to indicate whether to prune and
get rid of sorting operations. With the STE method (Bengio et al., 2013), we are able to represent
the pruning with parameters and directly train the pruning like a typical model training. Then we
formulate our problem with pruning parameterization and introduce our solution.

3.1 SOFT MASK CONSTRUCTION

We first introduce how to construct the soft mask. To accelerate the inference, we adopt channel
pruning to search for a suitable width for each convolution (CONV) layer. Specifically, we insert a
depth-wise CONV layer following each CONV layer that is supposed to be pruned as below,

al = sl ⊙ (wl ⊙ al−1), (1)

where ⊙ denotes the convolution operation. wl ∈ Ro×i×k×k is the weight parameters in l-th CONV
layer, with o output channels, i input channels, and kernels of size k× k. al ∈ Rn×o×t×t′ represents
the output features of the l-th layer, with o channels and t × t′ feature size. n denotes batch size.
sl ∈ Ro×1×1×1 is the weights of the depth-wise CONV layer. Each output channel of wl ⊙ al−1

corresponds to one single element of sl. Thus sl can serve as a soft mask or pruning indicator for the
l-th CONV layer to indicate whether to prune the corresponding output channels.

3.2 FORWARD AND BACKWARD PROPAGATION

Since sl is only a soft mask with continuous values, it can not represent the binary operation of
pruning. To solve this, we adopt a threshold, and the forward pass with the mask is represented as

bl =

{
1, sl > τ

0, sl ≤ τ
(element-wise), al = bl ⊙ (wl ⊙ al−1), (2)

where bl ∈ {0, 1}o×1×1×1 is the binarized sl, and τ is a threshold which is simply set to 0.5 in our
case. Each element of bl corresponds to one output channel of wl ⊙ al−1. In the forward pass, we
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first convert the soft mask into a binary mask through a threshold and then perform the depth-wise
CONV to perform actual pruning. Thus the output channels corresponding to the zero elements in bl
are pruned, and the rest channels are preserved. We show the proof in Appendix A.

The binary operation in Equation (2) is non-differential, leading to difficulties for back-propagation.
To solve this, we propose to incorporate STE (Bengio et al., 2013) for back-propagation as below,

∂L
∂sl

=
∂L
∂bl

, (3)

where we directly pass the gradients of bl to sl so that we can update the soft mask.

With the binarization and STE method, the pruning process can be represented with the soft mask
s = {sl}. We can update the soft mask and its corresponding binary mask to update the pruning
policy based on its gradients. Thus s is the pruning parameters to denote and control pruning.

Difference with other pruning works. Based on pruning parameterization, we decouple the pruning
policy from model parameter magnitudes so that pruning does not further depend on the weight
magnitudes. Unlike previous works on pruning to force pruned weights to be or as close as to zeros
(Liu et al., 2017; He et al., 2017; Guan et al., 2022), our method does not have such a constraint
that pruned weights should be zero. Instead, once the corresponding binary mask is turned from 1
to 0, the information in pruned channels is preserved rather than zeroed out since zeros in bl can
block gradient flow to the corresponding weights. As a result, pruned channels are free to recover
and contribute to accuracy if their corresponding elements in bl switch from 0 to 1.

Difference with other mask methods. Although some other works also adopt indicator/mask-based
pruning such as (Guan et al., 2022; Kim et al., 2020; Guo et al., 2020a; Kang & Han, 2020), our
method is more straightforward and effective. For example, unlike our method to train the soft
mask with STE directly, DAIS (Guan et al., 2022) relaxes the binarized channel indicators to be
continuous. To bridge the non-negligible discrepancy between the continuous model and the target
binarized model, it further uses an annealing-based procedure to steer the indicator convergence
toward binarized states. Some works (Kang & Han, 2020; You et al., 2019) adopts batchnorm (BN)
layers and uses the cumulative density function (CDF) of a Gaussian distribution as the mask variable,
with a CDF-based loss function and the Gumbel-Softmax trick to update the mask at the cost of
additional random sampling and complex gradient revision. Besides, the works (Gao et al., 2020;
You et al., 2019) create a mask to multiple the channels weights. This is different from our design
with the depth-wise CONV operation for easy mask creation and direct mask training.

3.3 TRAINING LOSS WITH PRUNING PARAMETERIZATION

Based on the soft mask, we can train and prune the model with the following loss function,
Lm(w, s) = L(w, s) + β · Lreg(s), (4)

where L(w, s) is the cross-entropy loss, and Lreg is the regularization term related to the sparsity or
pruning ratio. For simplicity, we take Multiply-Accumulate operations (MACs) as the regularization
rather than parameter number to estimate the on-device execution cost more precisely. β can weight
the loss and stabilize training. Lreg can be defined as the squared ℓ2 norm of the difference between
current MACs and target MACs C,

Lreg =

∣∣∣∣∣∑
l

o′l × il × tl × t′l × k2 − C

∣∣∣∣∣
2

, (5)

where o′l is the number of remaining channels after pruning, and tl × t′l is the output feature size.

3.4 PROBLEM FORMULATION

With pruning parameterization, the per-layer width search problem can be formulated as follows
min
s

Lm(w∗, s), (6)

s.t. w∗ = argmin
w

L(w, s) +
1

2λ
∥w∥22. (7)

It is a bi-level optimization problem (Gould et al., 2016). In the inner optimization of Equation (7),
we optimize the model parameters under a given soft mask with a commonly used squared ℓ2 norm
as a regularization to mitigate the overfitting problem. In the outer optimization of Equation (6), we
optimize the soft mask to minimize the loss. Each time before updating s, we first need to obtain w∗.
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4 PROPOSED METHOD WITH BI-LEVEL OPTIMIZATION

The objective is to find the soft mask (search a suitable width) for each layer to minimize the loss
with optimized model weights. We adopt a bi-level pruning method to solve this problem. Compared
with a typical gradient descent method to update the parameters with first-order derivatives, the
bi-level optimization method incorporates implicit gradients with second-order derivatives to adjust
the first-order term, leading to higher training efficiency with better convergence results. For easy of
expression, since each channel has a corresponding mask, in this section, we broadcast the masks s
and b so that the masks have the same dimension as the model weights w.

4.1 BI-LEVEL OPTIMIZATION METHOD WITH IMPLICIT GRADIENTS

From the inner optimization, w∗ is a function of s and different s can lead to different w∗. Thus, to
minimize Lm(w∗, s) in Problem (6), we need to compute the gradients with reference to s as below,

dLm(w∗, s)

ds
=

dw∗

ds
∇wLm(w∗, s) +∇sLm(w∗, s), (8)

where ∇w and ∇s denote the partial derivatives of the loss function with reference to w and s,
respectively. dw∗

ds represents the vector-wise full derivative, and we omit the transpose expression.
Since w∗ is implicitly defined as an optimization problem in Equation (7), dw∗

ds is also known as
implicit gradients (Rudin et al., 1976; Samuel & Tappen, 2009; Rajeswaran et al., 2019). With
g(w, s) = L(w, s) + 1

2λw
Tw, dw∗

ds can be obtained through the following,

dw∗

ds
= −∇2

swg(w∗, s)∇2
wg(w∗, s)−1, (9)

where ∇2
sw and ∇2

w are the second-order partial derivatives. We show the proof in Appendix B.

The Hessian matrix ∇2
wg(w∗, s) can be given by

∇2
wg(w∗, s) = ∇2

wL(w∗, s) +
1

λ
I = 1

λ
I, (10)

where we adopt a Hessian-free approximation that ∇2
wL(w∗, s) = 0 as DNNs usually have piece-

wise linear decision boundary with ReLU functions. Thus, Equation (8) can be transformed to

dLm(w∗, s)

ds
=∇sLm(w∗, s)− λ∇2

swL(w∗, s)∇wLm(w∗, s). (11)

Compared with a typical gradient descent method, the bi-level optimization incorporates the second-
order derivatives ∇2

swL(w∗, s)∇wLm(w∗, s) to adjust the first-order term ∇sLm(w∗, s).

It is difficult to obtain the second-order derivatives ∇2
swL(w∗, s). Usually certain approximation

methods such as finite difference (Chen et al., 2020; Fallah et al., 2020) may be adopted to save
computation cost. But here we show that in this specific problem, we can directly obtain the analytical
solution with first-order derivatives, which greatly saves computation efforts without approximation.
Note that each channel has its corresponding mask, and we denote the masked channels as wb = w∗ ·b
where · means the element-wise multiplication and b is defined in Equation (2). We can obtain that

∇2
swL(w∗, s) = diag(∇wbL(wb)) (12)

where diag(·) represents formulating a diagonal matrix with the diagonal vector. We show the proof
in Appendix C. Then we can transform Equation (11) into the following,

dLm(w∗, s)

ds
=∇sLm(w∗, s)− λ∇wbL(wb) · ∇wLm(w∗, s). (13)

Thus although the implicit gradients incorporate second-order derivatives, it can be analytically
expressed with first-order derivatives, greatly saving computation cost without any approximations.

In Equation (13), we need to create two copies wb and w to obtain their derivatives, which are still
not memory efficient. To further reduce the complexity, we can obtain ∇wb

L(wb) in the following,

∇wbL(wb) =

{
∇wLm(w), b = 1

0, b = 0
(element-wise) (14)
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The pruned weights (b = 0) do not contribute to the loss, so their gradients are zero. The difference
between L(·) and Lm(·) is just the regularization term Lreg(·), which only relates to the sparsity and
does not care the weight values. So ∇wb

L(wb) and ∇wLm(w) are equal if their weights are not
pruned (b = 1). Combining Equation (13) and (14), we can obtain the following,

dLm(w∗, s)

ds
=∇sLm(w∗, s)− λb · [∇wLm(w∗, s)]

2
. (15)

We can see that there is no need to keep a copy and compute the gradients of wb, thus saving memory.
During practical implementation, since s and b are the channel-wise masks, we accumulate the
gradients of all weights in each channel to update the channel mask following Equation (15).

4.2 BI-LEVEL OPTIMIZATION FRAMEWORK

In each iteration, our framework has two steps, including the model weights training step and the
mask updating step. In the first step, we update the weights w with a few training steps for a fixed
mask s. Next in the second step, we update s with implicit gradients following Equation (15). Then
we move on to the next iteration. In each step, we only update w or s without changing the other
parameter. We discuss the advantages of the proposed method in the following.

No Need for Finetuning. After training with the proposed method, we can obtain the final layer-wise
pruning policy following s and the sparse model. Since the model is already trained with the binary
masks, it can achieve good segmentation performance without further fine-tuning.

First-Order Optimization. During the computation, we only adopt first-order optimization. Though
we incorporate second-order derivatives in implicit gradients, we show that it can be analytically
expressed with first-order derivatives in Equation (12), which greatly saves computation cost. We
further optimize the computation process in Equation (15) to save memory cost.

Recoverable Contribution. During pruning, though some channels are pruned, their weights are not
set to 0 due to the protection of the mask. When their mask is updated from 0 to 1, they can recover
and contribute the accuracy.

5 EXPERIMENTS

5.1 DATASETS AND EVALUATION METRICS

ADE20K. ADE20K (Zhou et al., 2017; 2019) is a scene parsing dataset containing 25k images in the
training set and 2k images in the validation set with 150 label classes.

Cityscapes. Cityscapes (Cordts et al., 2016) is a dataset of urban street scenes from cars collected in
50 cities. It includes 5,000 finely annotated images, in which 2,975 images are used for training, 500
for validation, and 1,525 for testing. We exclude the extra training data with coarse labels throughout
this paper. This dataset has 30 label classes, and 19 of them are used for segmentation. The resolution
of images is 2048 × 1024. Cityscapes dataset is an intensively studied benchmark for semantic
segmentation, but it is challenging to perform real-time inference on such a high resolution.

Pascal VOC. PASCAL Visual Object Classes (VOC) 2012 (Everingham et al., 2010) is a widely used
dataset for semantic segmentation, classification, and object detection tasks. There are 1,464 images
for training and 1,449 images for validation. We show the results on Pascal VOC in Appendix D.

Evaluation Metrics. For semantic segmentation evaluation, we use the mean of class-wise
intersection-over-union (mIoU) to measure the accuracy performance. We introduce the details
of mIoU in Appendix E. For our results, we run our algorithm three times and report the mean and
variance of the mIoU performance. For the baseline methods, some methods cost too many resources
and we can hardly rerun their experiments. Some methods provide their well-trained models, and we
can test with the trained model.

5.2 EXPERIMENTAL SETTINGS

Train Settings. We perform the pruning to search for a suitable width for each CONV layer in the
TopFormer model. To enable a larger search space, we adopt the TopFormer architecture and use
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Table 1: Comparison of our searched model and prior arts on the ADE20K val dataset. We compare
with popular handcraft baselines in the first segment, NAS-based models in the second segment,
pruning-based methods in the third segment and lightweight ViT-based models in the fourth segment.
We measure the FPS on the Qualcomm Adreno 660 GPU of the Samsung Galaxy S21 mobile phone.
Some FPS results are not available due to unsupported operations on the mobile device.

Category Method Backbone Parameters GMACs FPS val mIoU (%)

Human
Design

PSPNet (Zhao et al., 2017) ResNet50-D8 49.1M 178.8 0.2 41.1
DeepLabV3+ (Chen et al., 2018) MobileNetV2 15.4M 25.8 5.7 36.2
DeepLabV3+ (Chen et al., 2018) EfficientNet 17.1M 26.9 5.9 37.6

BiSeNetV2 (Yu et al., 2021) N.A. 3.34M 12.4 9.1 25.7
SFNet (Li et al., 2020b) ResNet-50 − 75.7 − 42.8

HRNet-W18-S (Wang et al., 2020) HRNet-W18-S 4.0M 10.2 5.5 31.4

NAS

HR-NAS-A (Ding et al., 2021a) Searched 2.5M 1.4 − 33.2
HR-NAS-B (Ding et al., 2021a) Searched 3.9M 2.2 − 34.9

NASViT (Gong et al., 2021) Searched − 2.5 − 37.9
HRViT-b1 (Gu et al., 2021) Searched 8.2M 14.6 − 45.9

Prune

EagleEye (Li et al., 2020a) N.A. 3.4M 1.2 59.2 34.3
DMCP (Guo et al., 2020a) N.A. 3.3M 1.2 63.8 33.9
ResPep (Ding et al., 2021b) N.A. 3.3M 1.2 64.9 35.0

CHEX (Hou et al., 2022) N.A. 3.3M 1.2 64.2 35.2

ViT

Segmenter (Strudel et al., 2021) Searched 6.7M 4.6 4.1 39.9
MobileViT (Mehta & Rastegari, 2021) Searched 3.9M 2.2 41.8 34.9

SegFormer-B0 (Xie et al., 2021) MiT-B0 3.8M 8.4 2.6 37.4
TopFormer-Base (Zhang et al., 2022) N.A. 5.1M 1.8 36.3 37.8
TopFormer-Small (Zhang et al., 2022) N.A. 3.1M 1.2 54.7 36.1
TopFormer-Tiny (Zhang et al., 2022) N.A. 1.4M 0.6 82.7 31.8

Ours
Ours-Base Searched 3.72M 1.8 56.5 38.9
Ours-Small Searched 3.25M 1.2 75.2 37.5
Ours-Tiny Searched 1.30M 0.7 98.0 33.5

a larger per-layer width compared with the TopFormer-Base model. So our unpruned model has
4.1GMACs (with 39.9 mIoU), larger than the 1.8GMACs of the TopFormer-Base model.

We use stochastic gradient descent (SGD) optimizer, and momentum is set to 0.9, and set the batch
size to 8 on each GPU. For ADE20K, the initial learning rate is set to 1.2 × 10−4, and the “poly”
learning rate policy is applied. For the Cityscapes dataset, the initial learning rate is set to 3× 10−4,
and we apply the “poly” learning rate policy. For PASCAL VOC 2012, we set the initial learning

rate as 0.01. Learning rate value is determined as
(
1− iter

total_iter

)0.9

where iter refers to the current
iteration number. For the ADE20K dataset, we incorporate data augmentation by resizing with the
random ratio between 0.5 and 2.0 as well as random flipping. On the Cityscapes dataset, multiple
random scaling {0.5, 0.75, 1.0, 2.0} and fixed size cropping of 512 × 1024 are adopted for data
augmentation. We choose the crop size for a better trade-off between mobile capacity and accuracy.
We set hyperparameters β = 0.01 and λ = 0.1 in the experiments.

Test Settings. Instead of muti-scale testing, we employ single scale testing for a fair comparison. For
the ADE20K dataset, we use 512×512 as the input resolution. For the Cityscapes dataset, 512×1024
(rather than 1024× 2048) is used as the inference resolution during testing for the following reasons.
(i) In practice, we cannot use the resolution 1024× 2048 since it causes memory overflow problems
on our selected mobile phone. (ii) Besides, since the screens on edge devices such as mobile phones
are not very large, the resolution of 512× 1024 is good enough to serve on the small screens. (iii)
Moreover, we find that this 512× 1024 resolution can greatly speedup the inference on the mobile
phones without significant accuracy degradation.

Experiment Environments. We train and prune the model using PyTorch 1.9 and CUDA 11.1 on 8
NVIDIA RTX TITAN GPUs. We measure the mobile latency on the GPU of an Samsung Galaxy
S21 smartphone, with Qualcomm Snapdragon 888 mobile platform integrated with Qualcomm Kryo
680 Octa-core CPU and a Qualcomm Adreno 660 GPU. Note that for most baseline works, even the
reduced resolution (512× 1024) can cause an out-of-memory problem on the selected mobile device.

Compiler Framework on Mobile Devices. We need to compile the models before they can be
executed on mobile devices. For TopFormer, we adopt the compiler TNN (Contributors, 2019) to
report the speed performance, which is also used in the original TopFormer paper. To further improve
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Table 2: Our search results on the Cityscapes val dataset. We compare with popular handcraft
baselines, NAS-based models, pruning based methods and lightweight ViT-based models.

Category Method Backbone Resolution #params GMACs mIoU%

Human
Design

ENet (Paszke et al., 2016) N.A. 512× 1024 354.9K 5.9 58.3
PSPNet (Zhao et al., 2017) ResNet101 1024× 2048 68.07M 525.0 78.4

BiSeNetV2 (Yu et al., 2021) N.A. 512× 1024 3.34M 24.6 72.6
DeepLabV3+ (Chen et al., 2018) MBv2 512× 1024 2.26M 9.5 69.0
STDC1-Seg50 (Fan et al., 2021) STDC1 512× 1024 12.05M 31.1 71.9
STDC2-Seg50 (Fan et al., 2021) STDC2 512× 1024 16.08M 44.3 73.4

NAS
Auto-DeepLab-S (Liu et al., 2019) N.A. 1024× 2048 10.15M 333.3 79.9

FasterSeg (Chen et al., 2019) N.A. 1024× 2048 − 28.2 71.5
DCNAS (Zhang et al., 2021) N.A. 1024× 2048 − 294.6 84.3

Prune

EagleEye(Li et al., 2020a) N.A. 512× 1024 3.6M 2.4 69.6
DMCP (Guo et al., 2020a) N.A. 512× 1024 3.5M 2.4 70.3
ResPep (Ding et al., 2021b) N.A. 512× 1024 3.5M 2.4 71.3

CHEX (Hou et al., 2022) N.A. 512× 1024 3.4M 2.4 71.7

ViT

HRViT-b1 (Gu et al., 2021) N.A. 512× 1024 8.1M 28.2 81.6
SegFormer-B0 (Xie et al., 2021) MiT-B0 512× 1024 3.8M 17.7 71.9

TopFormer-Base (Zhang et al., 2022) N.A. 512× 1024 5.1M 2.7 70.6
TopFormer-Tiny (Zhang et al., 2022) N.A. 512× 1024 1.4M 1.2 66.1

Ours
Ours-Base Searched 512× 1024 3.7M 3.6 74.7
Ours-Small Searched 512× 1024 3.3M 2.4 73.6
Ours-Tiny Searched 512× 1024 1.3M 1.4 71.5

the inference speed, we adopt several compiler optimization methods and develop an advanced
compiler framework to compile our derived models and test their speed on mobile devices. We show
the details about our compiler optimization in Appendix F.

5.3 EXPERIMENTAL RESULTS AND ANALYSIS

Segmentation Performance. Based on the TopFormer model, we obtain three models (Ours-Base,
Ours-Small, and Ours-Tiny) with different computations. We show the comparison results on
ADE20K in Table 1 and Cityscapes in Table 2. (i) For ADE20K, we can observe that the human-
designed segmentation models and NAS-based models usually consume many computations (such
as DeepLabV3+ with 25.8GMACs) in terms of MACs (multiply–accumulate operations). They
can hardly achieve real-time inference on edge devices. Some NAS-based models with a small
number of computations are not able to achieve high mIoU (such as HR-NAS-A with 33.2 mIoU).
(ii) For the comparison with other pruning methods, we start from the same dense model and set the
target GMACs to the same number (1.2GMACs) to make a fair comparison. We can see that our
small model can achieve higher mIoU given the same GMACs. (iii) Compared with the ViT-based
TopFormer, our models can achieve higher mIoUs with non-trivial improvements under the same
computation budget (such as Ours-Small 37.5 mIoU v.s. 36.1 of TopFormer-Small under the same
1.2GMACs). Our models can achieve a faster inference speed (FPS higher than 50) on mobile phones
compared with TopFormer models. We show the comparison with the baselines in terms of mIoU
and FPS in Figure 1. We can achieve a better trade-off between mIoU and FPS.

(i) On the Cityscapes dataset, compared with handcrafted CNN-based segmentation models, including
BiSeNetV2 and STDC, our searched base model greatly reduces the GMACs (such as Ours-Base
3.6GMACs v.s. 24.6GMACs of BiSeNetV2) and achieves non-trivial better accuracy (Ours-Base 74.7
mIoU v.s. 72.6 mIoU of BiSeNetV2), as shown in Table 2. (ii) Compared with NAS-based methods
such as FasterSeg, our models can achieve higher mIoU with much smaller computation costs. Other
NAS methods consume too many computations (e.g., DCNAS with 300GMACs) to be deployed
on edge devices. (iii) Compared with other pruning baselines, under the same computation budgets
(2.4GMACs), our small model can achieve higher mIoU. (iv) Compared with transformer-based
methods such as SegFormer-B0, similarly, our models achieve higher mIoU with less computations.
Our small and tiny models have similar computations compared with TopFormer-Base and TopFormer-
Tiny. But we can achieve higher mIoU.

Speed Performance on Mobile Devices. Our base model can achieve 56.5 FPS on the mobile
device (Samsung Galaxy S21), which implements real-time execution with competitive segmentation
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performance, as shown in Table 1. Other baseline methods except TopFormer can hardly achieve
real-time segmentation on edge devices, usually with FPS lower than 10. Our faster inference speed
than TopFormer is achieved with the compiler optimization techniques, detailed in Appendix F.

Search Overhead. We show the search cost in Table 3. We only show the cost of our small model
since our base, small and tiny models have similar search costs. It takes approximately 1.3 GPU
days, which is smaller than the search cost of most other NAS-based segmentation methods. Our
method can efficiently search out a compact model with fewer computations and better segmentation
performance. The low search cost is achieved by our pruning parameterization framework. Based
on the soft mask and the low-cost thresholding and STE method, we are able to directly train the
model weights and the pruning parameters. During the training, the pruned channels are zeroed out
by the binary mask, and we do not need additional overhead for fine-tuning. Besides, our bi-level
optimization can efficiently address the second-order derivatives with low computation complexity.

Visualization Comparison. We show the visualization comparison of our base model and other
baseline methods in Appendix G. Our method can achieve better segmentation performance.

Results on Other Datasets and Model Architectures. We show the results of our method on the
Pascal VOC dataset in Appendix D. Besides, our method is general and can be applied to other model
structures. We show the results for DeepLabV3+ (Chen et al., 2018) on Cityscapes in Appendix H.

Method GPU Days GMACs mIoU

Auto-DeepLab (Liu et al., 2019) 3 695.0 82.1
GAS (Lin et al., 2020) 6.7 - 73.5

FasterSeg (Chen et al., 2019) 2 28.2 71.5
Fast-NAS (Nekrasov et al., 2019) 8 435.7 78.9

SparseMask (Wu et al., 2019) 4.2 36.4 68.6
DCNAS (Zhang et al., 2021) 5.6 94.6 84.3

LDP (Huynh et al., 2022) 4.3 − 75.8
Without implicit gradients 1.1 2.4 71.9

Ours-Small 1.3 2.4 73.6

Table 3: Comparison of search cost on the Cityscapes
validation dataset. Figure 1: Comparison of accuracy versus

FPS on ADE20K val dataset.

5.4 ABLATION STUDY

In our bi-level optimization, we incorporate implicit gradients in Equation (11). To demonstrate the
advantages with implicit gradients, we consider the case without implicit gradients which omits the
second term in Equation (11) with just dLm(w∗,s)

ds = ∇sLm(w∗, s). We compare the performance of
the solution without implicit gradients and our bi-level solution with implicit gradients on Cityscapes
in Table 3. We can observe that our solution with implicit gradients has a search cost slightly
higher than the solution without implicit gradients, demonstrating that our first-order solution for
the second-order derivatives in Equation (12) can effectively save computation cost. For mIoU, our
method can achieve higher mIoU with non-trivial improvements, demonstrating that incorporating
implicit gradients can effectively boost the performance. We show the results with various β and λ
in Appendix I. To compare with baselines under certain computations, we mainly show the results
of our three sparse models (Ours-Base, Ours-Small, and Ours-Tiny). We show the results of more
models under other computations in Appendix J.

6 CONCLUSION

We propose pruning parameterization with the thresholding and STE methods to build a pruning
framework. Based on the framework, we formulate the problem and propose a bi-level optimization
method with the implicit gradients. Our experimental results demonstrate that we can achieve the
highest mIoU under the same computation constraint on various datasets. Specifically, we can achieve
38.9 mIoU on the ADE20K with a real-time inference speed of 56.5 FPS on the Samsung S21.

9
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ETHICS STATEMENT

As we try to prune the model to achieve better segmentation performance and faster inference speed,
currently we do not think of any potential ethics concern. We use open datasets with images of street
scenes. There might be human faces shown in these images. But it is hard to clearly recognize the
human faces as it is only a very small region in the street scene images.

REPRODUCIBILITY STATEMENT

For the experiments, in Section 5.1, we discuss the details about datasets and evaluation metrics. In
Section 5.2, we show the details about the training and testing including the hyper-parameter setting,
image resolutions, experiment devices, mobile phones and so on.

For the theory part, we show the detailed step-by-step derivation in Section 4.1. For the key equations
such as Equation (2), (9) and (12), we show their proof in Appendix A, B, and C.
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Appendix

A BINARY MASK

Here we show that by using the binary mask bl to perform depth-wise CONV, the corresponding
output channels are pruned.

Let bl = {0}o0×1×1×1 ⊕ {1}o1×1×1×1, where o0 and o1 denote the number of zeros and ones in bl,
respectively, with o0 + o1 = o, and ⊕ refers to channel-wise concatenation. Thus we have

al = bo×1×1×1
l ⊙ (wo×i×k×k

l ⊙ al−1)

= ({0}o0×1×1×1 ·wo0×i×k×k
l ⊙ al−1)⊕ ({1}o1×1×1×1 ·wo1×i×k×k

l ⊙ al−1)

= wo1×i×k×k
l ⊙ al−1.

(16)

We can see that after using the binary mask bl to perform depth-wise CONV with wl ⊙ al−1, the
output channels corresponding to the zero elements in bl are pruned, and only channels corresponding
to the non-zero elements in bl are left.

B STEPS TO OBTAIN IMPLICIT GRADIENTS

We show how to obtain dw∗

ds . Since w∗ is optimal, we have

∇wg(w∗, s) = 0, (17)

where g(w, s) = L(w, s) + 1
2λw

Tw. By implicit function theorem (Rudin et al., 1976), we have

d∇wg(w∗, s)

ds
= 0, (18)

Applying the chain rule, we can obtain

∇2
swg(w∗, s) +

dw∗

ds
∇2

wg(w∗, s) = 0. (19)

dw∗

ds can be obtained through

dw∗

ds
= −∇2

swg(w∗, s)∇2
wg(w∗, s)−1. (20)

C COMPUTATION OF SECOND-ORDER INFORMATION

We show how to obtain the second-order derivatives. Using the chain rule, we can obtain that
∇wL(w∗, s) = diag(s)∇wbL(wb) = s · ∇wbL(wb), (21)

∇sL(w∗, s) = diag(w∗)∇wbL(wb) = w∗ · ∇wbL(wb) (22)

Thus
∇swL(w∗, s) = ∇s[s · ∇wbL(wb)] (23)

= diag(∇wbL(wb)) + diag(s)[∇s(∇wbL(wb))] (24)

= diag(∇wbL(wb)) + diag(s)[∇w∗(∇2
wb

L(wb))] (25)
= diag(∇wbL(wb)) (26)

where the last equality holds due to the Hessian-free assumption.

D RESULTS ON PASCAL VOC

For the PASCAL VOC 2012 test dataset, the input images are randomly cropped to 512× 512. We
show the results on PASCAL VOC 2012 test in Table A1. We can observe that handcrafted CNN-
based methods usually require more computational cost (such as DeepLabV3+ with 5.7 GMACs
for MobileNetV2 backbone and 37.8 GMACs for ResNet50 backbone). Compared with ViT-based
TopFormer, our method could achieve better mIoU under the same computational cost (such as
Ours-Small 73.4% mIoU v.s. 69.8% mIoU of TopFormer-S for 1.2 GMACs).
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Table A1: Results on the PASCAL VOC 2012 test dataset. We compare our results with popular
CNN-based models and lightweight ViT-based models.

Method #params GMACs mIoU% FPS

EfficientNet-B7 (Tan & Le, 2019) 66.0M 194.0 85.2 0.1
EMANet (Li et al., 2019b) 10.0M 43.1 80.1 2.5

PSANet (Balagopal et al., 2021) 18.5M 56.3 78.5 1.4
DeepLabV3+ R101 (Chen et al., 2018) 43.9M 58.5 77.4 2.2
DeepLabV3+ R50 (Chen et al., 2018) 24.9M 37.8 76.3 3.1

DeepLabV3+ MBv2 (Chen et al., 2018) 2.3M 5.7 70.5 5.1
TopFormer-B (Zhang et al., 2022) 5.1M 1.8 71.0 36.8
TopFormer-S (Zhang et al., 2022) 3.1M 1.2 69.8 55.2
TopFormer-T (Zhang et al., 2022) 1.4M 0.6 65.7 81.5

MobileViT-XXS (Mehta & Rastegari, 2021) 1.9M 1.7 73.6 43.8
Ours-Base 3.7M 1.8 74.3± 0.29 56.8
Ours-Small 3.3M 1.2 73.4± 0.34 75.0
Ours-Tiny 1.3M 0.7 70.5± 0.38 97.6

E DETAILS OF MIOU

The computation of mIoU is shown below,

mIoU =
1

n

n∑
i

∑
P i
overlap∑
P i
union

, (27)

where n is the class number (e.g., 19 for Cityscapes), and Pi refers to pixels that are assigned to a
specific class label i.

F DETAILS OF COMPILER OPTIMIZATION

Compiler optimization can support various pruning ratios. The compiler optimization consists of the
following components in detail.

Sparse Model Storage. To further improve data locality, compared with the well-known CSR, a
more compact format is adopted to store the sparse model weights. We avoid storing zero weights
of the model to achieve a high compression rate. We remove redundant indices from the structured
pruning. The sparse model storage can save the scarce memory bandwidth of mobile devices.

Layer Fusion. Layer fusion is commonly adopted in compiler optimization to fuse the computation
operators in the computation graph. With the help of layer fusion, we can avoid saving the parameters
of fused operators and their intermediate computation results. The operator number is also reduced.
For layer fusion, based on the computation laws such as associative property and distributive property,
we identify some operator combinations which are available for fusion. The basic rule is to check
whether the fusion can enlarge the overall computation for CPU/GPU utilization improvement and
reduce the memory access for memory efficiency. For example, a combination of the Convolution
layer (or Depthwise Convolution layer) and its following BatchNorm layer can be fused into one
layer to reduce the data movement and access with higher instruction level parallelism.

Matrix Reorder. There are some well-known challenges for sparse matrix multiplications, such
as the heavy load imbalance among each thread and irregular memory accesses. To deal with
these challenges, a matrix reorder method is adopted to leverage the structure information from the
structured pruning. For example, for the column pruning to remove the whole columns, there is a
certain degree of regularity as the rest weights are stored in unpruned columns. Thus, matrix reorder
rearranges the rows with the same or similar patterns together, i.e., reorders the rows. Then, matrix
reorder makes the weights in the column direction (e.g., kernels in CNN) more compact.

Parameter Auto-Tuning. During compiler optimization, there are many parameters, such as data
placement on GPU memory, loop unrolling factors, matrix tiling sizes, etc. The compiler adopts an
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(a) Input (b) Ours-Base (c) TopFormer-Base

Figure A1: Visualization results on samples of ADE20K validation dataset.

auto-tuning method to find the best configuration of the parameters. Specifically, a genetic algorithm
is used to search the parameter space. Besides, we can use a larger population number in each
generation to improve the exploration parallelism.

G VISUALIZATION COMPARISON

We visualized the inference results of TopFormer-Base and Ours-Base on the ADE20K validation
dataset in Figure A1 and the Cityscapes validation dataset in Figure A2. Ours-Base model can achieve
better visualization performance than the TopFormer-Base model.

H RESULTS WITH DEEPLABV3+ ON CITYSCAPES

We show our experiment results for the DeepLabV3+ model (Chen et al., 2018) on the Cityscapes
validation dataset in Table A2. The backbone we used is MobileNetV2. After our search, we get two
models. Both models have fewer parameters and lower computational costs while achieving better
mIoU. The latency on the mobile phone is also less than the original DeepLabV3+ model.
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(a) Input (b) Ours-Base (c) TopFormer-Base

Figure A2: Visualization results on samples of Cityscapes validation dataset.

Table A2: Our searched results on DeepLabV3+ with MobileNetV2 backbone. Dataset is Cityscapes
val. FPS is measured on the Qualcomm Adreno 660 GPU of the Samsung S21 mobile phone.

Method Backbone Resolution #params GMACs mIoU% FPS

DeepLabV3+ (Chen et al., 2018) MBv2 512× 1024 2.26M 9.5 69.0 16.4
Ours-Base MBv2-Searched 512× 1024 1.56M 8.1 70.6 19.2
Ours-Small MBv2-Searched 512× 1024 686.4K 5.2 70.1 24.6

I RESULTS WITH DIFFERENT HYPERPARAMETERS

We experiment with different values of β and show the results in Table A3. The target MACs is 2.4G.
We choose β = 0.01 as it can achieve the best performance. If β is too small, it can hardly obtain the
target MACs requirement. We show the results of different λ in Table A4.

J MORE PRUNED MODELS

We conduct additional experiments to obtain models with other compression rates based on our
unpruned model. As shown in Table A5 and A6, we can see that usually, the mIoU drops as we prune
more parameters, and when the parameter counts are above 60%, the mIoU can be kept above 76.1
and 39.6 for Cityscapes and ADE20K dataset, respectively, which are close to the original mIoU of
the unpruned model with 76.5 and 39.9 mIoU. In the extreme case where the parameter counts are
only 9% of the unpruned model, our mIoU is still higher than the SOTA TopFormer baseline with
fewer parameters and computations.

Table A3: Results on Cityscapes with different β.

β 0.001 0.01 0.1 1.0

mIoU 73.1 73.6 72.8 71.2
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Table A4: Results on Cityscapes with different λ.

λ 0.01 0.1 1.0

mIoU 73.1 73.6 70.8

Table A5: Comparison of our searched models and TopFormer-B on the Cityscapes dataset.

Supernet Ours TopFormer-B

# Params 10.34M 6.2M 3.7M 3.3M 1.3M 0.9M 5.1M
% Params 100% 60% 36% 32% 13% 9% −
GMACs 8.2 6.2 3.6 2.4 1.4 1.0 2.7

mIoU 76.5 76.1 74.7 73.6 71.5 70.7 70.6

Table A6: Comparison of our searched models and TopFormer-T on ADE20K dataset.

Supernet Ours TopFormer-B

# Params 10.34M 6.2M 3.7M 3.3M 1.3M 0.9M 1.4M
% Params 100% 60% 36% 32% 13% 9% −
GMACs 4.1 3.1 1.8 1.2 0.7 0.5 0.6

mIoU 39.9 39.6 38.9 37.5 33.5 32.0 31.8
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