
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EDGE-AWARE IMAGE SMOOTHING WITH RELATIVE
WAVELET DOMAIN REPRESENTATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Image smoothing is a fundamental technique in image processing, designed to
eliminate perturbations and textures while preserving dominant structures. It
plays a pivotal role in numerous high-level computer vision tasks. More re-
cently, both traditional and deep learning-based smoothing methods have been
developed. However, existing algorithms frequently encounter issues such as gra-
dient reversals and halo artifacts. Furthermore, the smoothing strength of deep
learning-based models, once trained, cannot be adjusted for adapting different
complexity levels of textures. These limitations stem from the inability of previ-
ous approaches to achieve an optimal balance between smoothing intensity and
edge preservation. Consequently, image smoothing while maintaining edge in-
tegrity remains a significant challenge. To address these challenges, we propose a
novel edge-aware smoothing model that leverages a relative wavelet domain rep-
resentation. Specifically, by employing wavelet transformation, we introduce a
new measure, termed Relative Wavelet Domain Representation (RWDR), which
effectively distinguishes between textures and structures. Additionally, we present
an innovative edge-aware scale map that is incorporated into the adaptive bilateral
filter, facilitating mutual guidance in the smoothing process. This paper provides
complete theoretical derivations for solving the proposed non-convex optimiza-
tion model. Extensive experiments substantiate that our method has a competitive
superiority with previous algorithms in edge-preserving and artifact removal. Vi-
sual and numerical comparisons further validate the effectiveness and efficiency
of our approach in several applications of image smoothing.

1 INTRODUCTION

Edge-preserving smoothing (EPS) represents a fundamental challenge in computer vision and com-
putational graphics. The objective of image smoothing is to eliminate minor perturbations and
non-essential textures while maintaining prominent edges and structural features. EPS has garnered
significant attention due to its wide range of applications, including image decomposition Song et al.
(2017); Liu et al. (2019), image texture removal Xu et al. (2012), high dynamic range (HDR) tone
mapping Anand Swamy & Shylashree (2023), detail enhancement Xu et al. (2022b), texture transfer
Gupta et al. (2022), and clip-art compression artifacts removal Liu et al. (2021). Over the past few
decades, numerous image smoothing algorithms have been developed, which can be broadly clas-
sified into local information-based methods, global information-based methods, and deep learning-
based approaches. However, existing methods often face limitations related to edge preservation
and the reduction of visual artifacts such as halos He et al. (2012) and gradient reversal Gastal &
Oliveira (2012), as illustrated in Figure 1. In an effort to address these challenges, Liu et al. (2018)
has explored embedding bilateral filters within least squares models. More recently, the incorpora-
tion of soft clustering into bilateral filtering has been introduced Yang et al. (2021). Additionally,
studies Li et al. (2023); He et al. (2022) have combined relative total variation with bilateral filters.

Drawing inspiration from multi-model embedding methods, we propose a novel mutual guidance
EPS model. Specifically, we first derive a guidance image by solving a non-convex function, which
leverages a newly introduced relative wavelet domain representation. We then integrate the proposed
edge-aware scale map of the guidance image into a bilateral filter. This edge-awareness technique
enhances the algorithm’s ability to preserve edges effectively. In a nutshell, the primary contri-
butions of this work are as follows: (1) We introduce a novel global information-based relative
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measure with wavelet transformation, termed Relative Wavelet Domain Representation (RWDR),
which more effectively distinguishes textures from primary structures and preserves weaker edges.
(2) We integrate the proposed edge-aware scale map into an adaptive bilateral filter for mutual guid-
ance in smoothing, which significantly reduces gradient reversal and halo artifacts. (3) Extensive
experimental results demonstrate that our model outperforms competing algorithms in both visual
and numerical evaluations across a range of smoothing applications. This indicates that our proposed
model achieves an improved balance between smoothing strength and edge preservation.

(a) Input (b) RTV (c) Ghosh

(d) Tight frame (e) Ours

Figure 1: Image detail enhancement. The left-bottom part of each plot presents the smoothed image,
and the right-top part shows the detail enhancement image that is boosted by four detail layers. The
detail layer is extracted by subtracting the smoothed image from the input image. Results of (b), (c),
and (d) suffer halos and grandient reversal artifacts.

All theoretical derivations and more EPS application experiments that have been omitted for space
appear in the supplementary material.

2 RELATED WORK

Local information-based models. Methods of this category take the weighted average of neighbor-
ing pixels’ values in a local window as an output. These approaches are known as filter-based meth-
ods, which include bilateral filter (BF) Tomasi & Manduchi (1998), joint bilateral filter Petschnigg
et al. (2004), and rolling guidance filter Zhang et al. (2014a). There are also other filter-based meth-
ods such as weighted median filter Ma et al. (2013); Zhang et al. (2014b), guided filterHe et al.
(2012), tree filter Bao et al. (2013), recursive filter Tu & Chien (2021), and mutually guided filtering
Guo et al. (2017). The fixed size of a local window at the central pixel limits the performance of lo-
cal information-based methods. Therefore, several scale-adaptive bilateral filters Xu et al. (2022a);
Ruhela et al. (2022); Ghosh et al. (2019); Song et al. (2019) and structure/scale-aware filtering meth-
ods Kaplan & Erer; Gupta et al. (2022) have been proposed to improve the performance. However,
they cause halo artifacts He et al. (2012) and gradient reversals Gastal & Oliveira (2012) in EPS
application tasks.

Global information-based models. Algorithm in this category solve the image smoothing problem
via finding a global solution to the specific objective function. The well-known approaches are the
total variation based methods, which include weighted least squares smoothing Min et al. (2014),
gradient L1 norm smoothing Pang et al. (2015), and gradient L0 norm smoothing Xu et al. (2011).
Many other global information-based approaches have recently been proposed, including the relative
total variation (RTV) smoothing Xu et al. (2012) and its variants Liu et al. (2016); Yu et al. (2022); Li
et al. (2023); He et al. (2022). Methods built on RTV are sensitive to edges aligned with horizontal
and vertical directions. Directional relative total variation (DRTV) smoothing Zhou et al. (2019)
has been proposed to overcome this drawback. Generally, global information-based approaches are
based on solving an extensive linear system to the global optimization objective function, which is
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high computational and time cost. Global information-based methods have a tradeoff between time
cost and smoothing performance.

Deep learning-based models. These methods are built on different deep convolutional neural net-
works (DCNN) for smoothing Zhu et al. (2019). These methods are end-to-end smoothing frame-
works Lu et al. (2018); Pan et al. (2018). The main drawback of the end-to-end based methods is
that obtaining the paired training data is challenging. Therefore, unsupervised learning smoothing
Fan et al. (2018) has been proposed to overcome the lack of paired training data. Some other deep
learning methods for smoothing include filter operator approximation methods Chen et al. (2017); Li
et al. (2019) via deep neural networks. Generally, methods in this category also suffer from artifacts.

3 BACKGROUND

3.1 ADAPTIVE BILATERAL FILTER

The adaptive bilateral filter (ABF) proposed by Ghosh et al. (2019) builds upon the traditional bi-
lateral filter (BF) Tomasi & Manduchi (1998) for image smoothing. Unlike the BF, which utilizes a
fixed spatial kernel, the ABF employs a box function where the spatial kernel’s scale varies at each
pixel. Ghosh et al. (2019) emphasize that the local scale of the range kernel plays a crucial role in
preserving texture details. As a result, they introduced a scale map applied to each pixel in the filter.
Given an input image I , the output image S in ABF is expressed as:

Sp =

∑
q∈Rp(p)

Gσr
(||Ip − Iq||)Iq∑

q∈Rp(p)
Gσr

(||Ip − Iq||)
, (1)

where Gσr denotes a Gaussian range kernel with a standard deviation σr. Stated simply, the aggre-
gation at pixel p = (x, y) is perfored over a local window Rp(p) centered at p, and

Rp(p) = (x+ k1, y + k2),−ωp ≤ k1, k2 ≤ ωp, (2)
where ωp denotes the scale at pixel p, which is from the scale map.

The ABF has a fast approximation version that can achieve O(1) complexity in Ghosh et al. (2019).
However, it produces results with gradient reversals and halos in the image detail enhancement.
The gradient reversals are caused by the sharpened edges in the smoothed output, while halos are
typically caused by large σ1 and σ2 values, it can be observed in Figure 1(c).

3.2 WAVELET TRANSFORM TIGHT FRAME

The tight frame is an important concept in wavelet transformation, widely used in image processing.
For more details, refer to Shen (2010); Dong et al. (2010). Firstly, we present the definition of a
tight frame. H be a Hilbert space. A sequence xn ⊂ H can be considered a tight frame for H if

||x||2 =
∑
n

| < x, xn > |2, for any x ∈ H. (3)

There are two associated operators, which are the analysis operator and the synthesis operator. And
they are expressed as

W : x ∈ H → {⟨x, xn} ∈ ℓ2(N), WT : an ∈ ℓ2(N) →
∑
n

anxn ∈ H. (4)

Then, xn is a tight frame if and only if WTW = I , where I : H → H is the identical operator.
N denotes the natural number set. The discrete tight frame is widely used based on the theory of
tight frames. Cai et al. (2014) used an undecimal tight frame in the image restoration. Given a filter
a ∈ ℓ2(Z), the linear convolution operator Ca : ℓ2(Z) → ℓ2(Z) as

[Cav](n) := [a ∗ v](n) =
∑
k∈Z

a(n− k)v(k), ∀v ∈ ℓ2(Z). (5)

Given a set of filters {ai}mi=1 ⊂ ℓ2(Z), the corresponding analysis operator and synthesis operator
are written as follows

W = [CT
a1(−.), C

T
a2(−.), · · · , C

T
am(−.)]

T, WT = [Ca1 , Ca2 , · · · , Cam ]. (6)

The rows of W forms a tight frame for ℓ2(Z) if and only ifWTW = I . Z is the rational number set.
When constructing tight frames, the unitary extension principle proposed a full constraint condition
Ron & Shen (1997). One of typically used full unitary extension principle conditions Ron & Shen
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(1997) is expressed as
m∑
i=1

∑
n∈Z2

ai(k + n)ai(n) = δk, for any k ∈ Z2. (7)

With such full unitary extension principle condition, the well-known B-spline tight frame filters are
used in many image applications Chai & Shen (2007); Cai et al. (2008; 2009). These filters are
written as follows

a1 =
1

4
(1, 2, 1)T, a2 =

√
2

4
(1, 0,−1)T, a3 =

1

4
(−1, 2,−1)T. (8)

The listed filters satisfy the full condition Equation 7. For the image smoothing task, we only
need the 2D framelet filters {ai

⊗
aj}mi,j=1 that is generated via the tensor product

⊗
of filters in

Equation 8. The tight frame is sensitive to the weak edges that locate along diagonal directions.
However, the tight frame also causes halos in the output, as shown in Figure 1(d). In summary, the
tight frame is a specific class in wavelet transformation.

4 METHODOLOGY

4.1 RELATIVE WAVELET DOMAIN REPRESENTATION

Given an image I , the non-convex smoothing problem with relative wavelet representation is ex-
pressed as:

argmin
S

∑
p

(Sp − Ip)
2 + λ

D(p)

W (p) + ε
, (9)

where λ denotes a weight value that controls the smoothing strength. ε is a positive small constant,
which avoids division by zero. D(p)

W (p)+ε is the proposed relative wavelet domain representation.
D(p) and W (p) are written as:

D(p) =
∑

q∈R(p)

gp,q

K∑
k=1

|(wkS)q|, W (p) =

K∑
k=1

∣∣∣∣∣∣
∑

q∈R(p)

gp,q(wkS)q

∣∣∣∣∣∣ , (10)

gp,q ∝ exp

(
− (xp − xq)

2 + (yp − yq)
2

2σ2

)
, (11)

where q belongs to R(p) that is a rectangle region centred at pixel p. (x∗, y∗) denote the pixel index.
wk denotes tight frame filters of wavelet transformtation in Equation 8. K denotes the number of
tight frame filters. The smoothing performance of the proposed model is highly dependent on the
RWDR, which effectively distinguishes between main structures and textures. The RWDR serves as
a regularization term, assigning larger values to texture regions and smaller values to the structural
areas.

We compare D(p)/(W (p) + ε) with other regularization term maps in Figure 2. The left-up region
of each image denotes the corresponding regularization term map, while the right-bottom region
of each image presents the corresponding final texture removal result. Obviously, Figure 2 shows
RoG Cai et al. (2017), imRTV Yu et al. (2022), and RTV methods tend to divide some textures
into edges. The dRTV blurred these junction regions between textures and structures and also loses
some main structures. In contrast, the map of our RWDR clearly identifies the structures and the
textures. Meanwhile, comparing these final smoothed results in Figure 2, our approach provides a
better edge-preserving smoothed image than other methods.

Based on Equation 9 - Equation 11, we obtain the intermediate smoothed image via the following
optimization objective function, expressed as

min
S

∑
p

(Sp − Ip)
2 + λ

∑
q∈R(p) gp,q

∑K
k=1 |(wkS)q|∑K

k=1 |
∑

q∈R(p) gp,q(wkS)q|+ ε
. (12)

The soluion to Equation 12 can be obtained by solving a linear system with the preconditioned
conjugate gradient (PCG) via iteraive mode. More details are in Appednix A. The global solution
to Equation 12 is the inermediate smoothed result St, used in the following mutually guided adaptive
bilateral filter.
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(a) Input (b) RoG (c) dRTV

(d) imRTV (e) RTV (f) Ours

Figure 2: Relative wavelet domain representation comparison. Results of (b) RoG, (c) dRTV, (d)
imRTV, (e) RTV, (f) Ours. The left-up part of each image shows the relative feature map, and the
right-bottom part is the corresponding smoothed image.

4.2 MUTUALLY GUIDED ADAPTIVE BILATERAL FILTER

Drawing inspiration from muGIF Guo et al. (2017), we use the mechanism of mutual guidance
between the proposed RWDR and adaptive bilateral filter. It means that the outputs of RWDR and
adaptive bilateral filters act as cross inputs simultaneously. Therefore, the proposed mutually guided
adaptive bilateral filter is built on Equation 1, expressed as:

F t+1
p =

∑
q∈Np(p)

Gσr (||St
p − St

q||)St
q∑

q∈Np(p)
Gσr (||St

p − St
q|||)

, (13)

where t denotes the iterative number. Np(p) is a local window that centered at p = (i, j). We also
use Equation 2 to obtain the scale map, expressed as

Np(p) = {(i+ k1, j + k2) : −ωp ≤ k1, k2 ≤ ωp}. (14)
It is important to note the subtle distinction between Np(p) and Rp(p) in Equation 2. The term
Rp(p) is dynamic and evolves with each iteration. The subsequent scale map is dependent on the
previously smoothed image; thus, if the previous iteration produces a poorly smoothed image, the
subsequent iteration is likely to exacerbate the error, often resulting in the blurring of weak edges.
However, we propose a novel edge-aware approach to derive the scale map, effectively mitigat-
ing the issue of blurred weak edges and enhancing edge-preserving capabilities. Additionally, the
Fourier approximation of the mutually guided adaptive bilateral filter achieves O(1) computational
complexity, as demonstrated in Appendix B.

4.3 EDGE-AWARE SCALE MAP

The scale map plays a critical role in Equation 14. Ghosh et al. (2019) introduce a method for
deriving the scale map through the erosion of the gradient map. In contrast, we propose a novel
edge-aware method for computing the scale map. Given an input image I , the intermediate feature
map E is defined as:

E =
∑

i∈N8(p)

|Gσe
∇iI|. (15)

Gσe
denotes a Gaussian range kernel. N8(p) is a 8-neighborhood set that centered at pixle p. ∇i

is the gradient operator. The E map facilitates the extraction of key structural information, as illus-
trated in Figure 3(c). Subsequently, we define the general gradient magnitude as follows:

gh =
√
(∇iI)2 + (∇jI)2, i = {1, 2, 3, 4}, j = 9− i. (16)
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(a) Input (b) Edge (c) E (d) π (e) Smoothed output

Figure 3: Illustration of an edge-aware map. (b) Edges, (c) E map. Notice that π map (d) covers all
edges in (b). π acts as an edge-aware map that can improve edge-preserving ability, as shown in (e).

gh can capture the local edge feature information. Then, a coefficient based on gh can be obtained
by

m =
1

4

4∑
h=1

1

gh exp(gh/γ2) + ε
. (17)

γ is a constant. ε is a positive value, which avoids division by zero. m provides a small value in the
structure regions while providing a large value in the texture ones. m acts as a weight map to obtain
the edge-aware feature map π, which is expressed as

π = E(1−m). (18)
We show π map in Figure 3(d). As can be observed in Figure 3(b), it is ground truth edges. Obivi-
ously, π provides small values in texture regions while large values are in structure regions. We use
such a π map to obtain the scale map, which can help to improve the edge-preserving ability in the
smoothed output. The scale ωp map should be designed to satisfy that it is small along sharp edges
and large in smooth regions. Then, ωp is expressed as

ωp = rmin + (rmax − rmin) exp(−λeπ2
p). (19)

λe is a positive value to control the transition rate from rmin to rmax. We constrain ωp in an interval
[rmin, rmax]. ωp is rounded off to be the final edge-aware scale map. The effects of scale maps
obtained by using Equation 19 and Ghosh model are shown in Figure 4.

(a) Input (b) ω in Ghosh (c) S in Ghosh (d) Ours ω (e) Ours S

Figure 4: Adaptive scale maps (rmax = 15). (a) The input image, (b) ω in Ghosh model, (c)
smoothed image corresponding (b), (d) scale map ω, (e) smoothed image of our model. Note that ω
is able to maintain more edge information than that of ω in (b). The more edge information in ω, the
more edges and details can be preserved. Refer to the enlarged areas of (c) and (e).

4.4 ALGORITHM

For the sake of completeness, we briefly present our final model, which is built upon the RWDR
and the mutually guided edge-aware adaptive bilateral filter. The proposed method is formulated as
follows: 

St = argminSt

∑
p(S

t
p − F t−1

p )2 + λ
∑

q∈R(p) gp,q
∑K

k=1 |(wkS
t)q|∑K

k=1 |
∑

q∈R(p) gp,q(wkSt)q|+ε
,

F t+1
p =

∑
q∈Np(p) Gσr (||S

t
p−St

q||)S
t
q∑

q∈Np(p) Gσr (||St
p−St

q|||)
.

(20)

When t is assigned at 1, F 0 is initialized to the input image I . F t and St update each other via
mutually guided. We draft the scheme of the mutually guided edge-aware RWDR smoothing model
in Algorithm 1.
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Algorithm 1 Mutually Guided Edge-aware RWDR

Input: Image I , σe, γ, λe, rmin, rmax, σ, ε, λ, K, ai, σr.
Initialization: F 0 = I .

1: Calculate E via Equation 15;
2: Calculate m via Equation 17;
3: Calculate π with m and E via Equation 18;
4: Calculate ωp with π in Equation 19;
5: for t = 1 to T do
6: Update St with F t−1 via Equation 12;
7: Update F t+1 with St and ωp via Equation 13;
8: end for

Output: Smoothed image S.

(a) Input (b) BF (c) L0 (d) WLS (e) RGF

(f) ILS (g) EP/SP (h) dRTV (i) DRTV (j) imRTV

(k) RoG (l) muGIF (m) RTV (n) Ghosh (o) Ours

Figure 5: (a) The input image. Its textures are removed by (b) BF, (c) L0, (d) WLS, (e) RGF, (f) ILS,
(g) EP/SP, (h) dRTV, (i) DRTV, (j) imRTV, (k) RoG, (l) muGIF, (m) RTV, (n) Ghosh, (o) Ours. Refer
to these highlighted boxes, our method can get a better tradeoff between the smoothing strength and
the edge-preserving than other algorithms.

5 EXPERIMENTS

To assess the performance and effectiveness of our approach, we conduct a comparative analysis
against several existing methods, including BF Tomasi & Manduchi (1998), L0 Xu et al. (2011),
WLS Min et al. (2014), RGF Zhang et al. (2014a), ILS Liu et al. (2020), EP/SP Liu et al. (2021),
dRTV Jeon et al. (2016), DRTV Zhou et al. (2019), imRTV Yu et al. (2022), RoG Cai et al. (2017),
muGIF Guo et al. (2017), RTV Xu et al. (2012), Ghosh Ghosh et al. (2019), Resnet Lim et al. (2017),
and VDCNN Kim et al. (2016). We utilize five no-reference image quality objective evaluation
metrics: BRISQUE Mittal et al. (2012), PIQE Venkatanath et al. (2015), SSEQ Liu et al. (2014),
ILNIQUE Zhang et al. (2015), and CEIQ Yan et al. (2019) to compare performance on image detail
enhancement and HDR tone mapping tasks. The smaller values of BRISQUE and PIQE denote
higher-quality images. While the larger values of SEQ, ILNIQUE, and CEIQ indicate higher-quality

7
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(a) Input (b) L0 (c) ILS (d) DRTV

(e) RoG (f) muGIF (g) dRTV (h) Ours

Figure 6: Image detail enhancement. (a) The input image. It is enhanced with the detail layer
4× boosted by (b) L0, (c) ILS, (d) DRTV, (e) RoG, (f) muGIF, (g) dRTV, (h) Ours. The cyan
highlighted box denotes the details of the smoothed image, magenta and green boxes are the details
of the enhanced image. In these highlighted rectangles, our method can reduce halo artifacts. In
addition, it performs better in edge-preserving than other state-of-the-art algorithms.

images. Meanwhile, CEIQ is specifically designed to measure the effects of the HDR tone mapping
task. We utilized the original code and recommended parameters provided by the respective authors
for comparison. For all the evaluated approaches, the parameters were fine-tuned to achieve an
optimal balance between smoothing performance and edge preservation. Our code will be available
on my github.

Texture removal. We evaluate the texture removal performance of our model in comparison to other
methods, as illustrated in Figure 5. Notably, the enlarged regions in (b), (c), (d), (f), (l) of Figures
5 reveal instances of incomplete texture removal. Additionally, the enlarged yellow rectangles in
Figures 5(e) and (h) indicate that the detailed edges are blurred. Furthermore, Figures 5(g), (j),
(k), and (m) demonstrate suboptimal performance in edge preservation. Although Figures 5(i) and
(n) exhibit competitive edge-preserving capabilities, Figure 5(n) introduces halo artifacts along the
edges, as indicated by the enlarged magenta region. In contrast, our proposed method achieves a
superior balance between texture smoothing and edge preservation compared to other approaches.

Image detail enhancement. It aims to enhance high-frequency regions by incorporating a detail
layer into the input image. The core of this technology involves extracting the high-frequency detail
layer by subtracting the smoothed image from the original input. Consequently, the effectiveness of
detail enhancement is closely linked to the quality of the smoothed image, particularly with respect
to prominent edges. Two extreme scenarios can arise: one where blurred edges introduce halo
artifacts in the detail-enhanced image, and another where sharp edges result in gradient reversals
in the enhanced output. In this study, we enhance the details by adding four detail layers to the
original image. We present the smoothed images alongside their corresponding detail-enhanced
versions in Figure 6. In the enlarged magenta and green regions of each image, Figures 6(b) - (f)
exhibit halo artifacts along the edges. Figure 6(g) displays a slight halo effect within the green
enlarged rectangle. Notably, our model demonstrates a significant reduction in the occurrence of
halo artifacts. Additionally, as indicated by the enlarged rectangle in the lower-left corner of each
image, our model effectively preserves weak edges. We present corresponding numerical results in
Table 1. One can see that our mode obtains the best index values.

Compression artifact removal. The technology for removing compression artifacts is employed to
mitigate blocking artifacts in compressed clip-art images. When an image is compressed at a low

8
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Table 1: No-reference image quality evaluation metrics of Figure 6.

Methods BRISQUE↓ PIQE ↓ SSEQ ↑ ILNIQUE↑
L0 10.6974 35.6176 24.7566 117.81
ILS 23.5255 37.0118 17.7950 122.43

DRTV 8.5623 33.5745 25.1130 124.46
RoG 14.9437 34.6882 24.5738 124.32

muGIF 20.6328 36.6683 25.1297 121.44
dRTV 15.4301 25.1630 9.9543 124.49
Ours 7.6912 24.9118 26.7940 128.84

(a) Input (b) imRTV (c) WLS (d) DRTV

(e) EP/SP (f) muGIF (g) Ghosh (h) Ours

Figure 7: Compresion artifact removal results. The left-bottom part of (a) is the compressed JEPG
image, and the right-top part is the original image. Results are obtained by (b) imRTV, (c) WLS, (d)
DRTV, (e) EP/SP, (f) muGIF, (g) Ghosh, (h) Ours. Referring to the marked boxes, results of (b), (c),
and (d) suffer from blurred edges. Results of (e), (f), and (g) have staircase artifacts.

bit rate using standard JPEG encoding, it may result in compression artifacts along sharp edges and
staircase artifacts in homogeneous regions.In this study, we employ a 10% compression rate for the
clip-art images. Figure 7 illustrates the smoothed results obtained from various methods. Notably,
the upper right part of Figure 7(a) displays the original clip-art image, while the lower left part shows
the compressed version. Observations indicate that Figures 7(b), (c), and (d) exhibit blurred edges
in the smoothed images, as highlighted in the right box of each image. Additionally, Figures 7(e)
and 7(f) present staircase artifacts near the edges. Furthermore, Figure 7(g) displays colorful halos
along the edges, as indicated by the left red-highlighted box. In contrast, our approach effectively
eliminates staircase artifacts and halos while demonstrating strong edge-preserving capabilities. We
also employ two widely recognized quality metrics, PSNR and SSIM, to assess the images result-
ing from compression artifact removal, as presented in Table 2. Higher values of PSNR and SSIM
indicate superior quality in the smoothed images. Our proposed model demonstrates the best per-
formance, achieving the highest PSNR value of 27.10 and an SSIM value of 0.991. In summary,
both numerical and visual comparisons indicate that the proposed algorithm outperforms others in
the removal of compression artifacts.

Table 2: PSNR(dB) and SSIM comparison.

Metric WLS RoG RGF muGIF EP/SP imRTV BF Ghosh L0 ILS DRTV Ours
PSNR 20.55 26.43 26.21 25.97 26.68 26.80 21.44 20.51 25.91 21.67 25.80 27.10
SSIM 0.937 0.978 0.974 0.977 0.980 0.979 0.924 0.894 0.976 0.909 0.975 0.991
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(a) Input (b) GT (c) w/o (d) w/ (Ours)

Figure 8: Visual effects of the ablation experiment on the RWDR.

(a) Input (b) GT (c) w/o (d) w/ (Ours)

Figure 9: Visual comparison of the ablation experiment on the edge-aware scale map.

Ablation Study. To assess the capability of RWDR in distinguishing between textures and struc-
tures, we conduct an ablation study on RWDR in Figure 8. The model deployed without RWDR
has mistreated texture as structure, leading to removing texture uncleanly. In contrast, To assess
the capability of the edge-aware scale map in edge preservation, we conduct an ablation study on
the edge-aware scale map in Figure 9. The model deployed without the edge-aware scale map has
smoothed textures cleanly while making main structures and edges lost and blurred. As observed in
the enlarged red- and blue-highlight areas, our model achieves the best visual effects.

6 CONCLUSIONS AND LIMITATIONS

This study introduces a mutually guided edge-aware smoothing model based on relative wavelet do-
main representation. The RWDR serves as a novel measure for effectively differentiating between
textures and structures. The proposed edge-aware scale map is integrated into an adaptive bilateral
filter, providing mutual guidance to the RWDR during the smoothing process. The solution of the
proposed model is supported by a complete theoretical guarantee. Extensive comparisons demon-
strate that the proposed method outperforms existing algorithms in mitigating gradient reversals,
staircase artifacts, and halos. Whether compared to traditional image smoothing techniques or deep
learning-based approaches, our method consistently achieves a superior balance between smoothing
strength and edge preservation.

Limitations. Traditional smoothing methods, including our model, are limited in their ability to
address long-range texture dependencies. This implies that our model has constraints when dealing
with irregular multiscale textures. A promising direction for future work would be to integrate the
proposed algorithm into a neural network, such as Vision Mamba Zhu et al. (2024), for enhanced
image smoothing. Exploring the potential of combining traditional models with neural networks
could provide valuable insights into achieving more effective texture smoothing while maintaining
superior edge preservation.
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This supplementary document paper provides an in-depth account of our mathematical analysis and
presents additional numerical results. The structure of this supplement is organized as follows.
Section A.1 presents a mathematical analysis of the solution to the proposed non-convex problem
utilizing a relative wavelet domain representation. In Section A.2, we discuss the computational
complexity and convergence properties of the Fourier approximation applied to the mutually guided
edge-aware adaptive bilateral filter. Section B provides detailed descriptions of the parameter set-
tings, runtime analysis, and presents five additional experimental results.

A THEORETICAL ANALYSIS OF RWDR
A.1 NUMERICAL SOLUTION TO RWDR
This subsection primarily presents the numerical solution for the proposed RWDR non-convex prob-
lem. To begin, we revisit the formulation of the RWDR , which is expressed as:

argmin
S

∑
p

(Sp − Ip)
2 + λRWDR(p). (21)

And we have

RWDR(p) =
D(p)

W (p) + ε
=

∑
q∈R(p) gp,q

∑K
k=1 |(wkS)q|∑K

k=1 |
∑

q∈R(p) gp,q(wkS)q|+ ε
. (22)

Then, we note that when the two sum operators exchange the order, there is no differencen from the
original formal. Therefore, we can get∑

p

D(p)

W (p) + ε
=

∑
p

∑K
k=1

∑
q∈R(p) gp,q|(wkS)q|∑K

k=1 |
∑

q∈R(p) gp,q(wkS)q|+ ε

=

K∑
k=1

∑
p

∑
q∈R(p) gp,q|(wkS)q|∑K

k=1 |
∑

q∈R(p) gp,q(wkS)q|+ ε
.

(23)

To simplify, we let

Rk =
∑
p

∑
q∈R(p) gp,q|(wkS)q|∑K

k=1 |
∑

q∈R(p) gp,q(wkS)q|+ ε

≃
∑
q

∑
p∈R(q)

gp,q|(wkS)q|2∑K
k=1 |

∑
q∈R(p) gp,q(wkS)q|+ ε

1

|(wkS)q|+ εs

=
∑
q

ukqzkq(wkS)
2
q,

(24)

where εs denotes constant value avoid division by zero. The ukq, zkq can be written as follows:{
ukq =

∑
p∈R(q)

gp,q
W (p)+ε = (Gσ ∗ 1∑K

k=1 |Gσ∗(wkS)|+ε
)q,

zkq = 1
|(wkS)q|+εs

.
(25)

Gσ is a Gaussian filter with a standard deviation σ. Therefore, we can obtain the matrix form of
Equation 21, expressed as:

(VS − VI)
T(VS − VI) + λ

K∑
k=1

(V T
S C

T
k UkZkCkVS). (26)

Vs, VI are the vector form of output image S and input image I , respectively. Ck is the Toeplitz
matrices from the discrete gradient operators with a forward difference. Uk and Zk are diagonal
matrices with values of Uk[i, i] = uki and Zk[i, i] = zki, respectively.

The form of Equation 26 can be solved via a special iterative optimization procedure. It boils down
to solving a linear system via iterative mode, which is expressed as

(1 + λRt)V t+1
S = VI , (27)

where 1 is the identity matrix. Rt =
∑K

k=1(C
T
k U

t
kZ

t
kCk) and 1 + λRt is the symmetric positive

definite Laplacian matrix. In this case, many efficient solvers are available for it. We adopt the
preconditioned conjugate gradient (PCG) to solve it.
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A.2 FOURIER APPROXIMATION OF MUTUALLY GUIDED ABF
In this section, we present the Fourier approximation of mutually guided adaptive bilateral filter with
our edge-aware scale map. For completeness, we review Equation 13, expressed as

F t+1
p =

∑
q∈Np(p)

Gσr
(||St

p − St
q||)St

q∑
q∈Np(p)

Gσr
(||St

p − St
q|||)

, (28)

where Gσr is Gaussian range kernel with a standard deviation σr. To simplify, let

ψ(t) = Gσr (t) = exp(− t2

2σ2
r

). (29)

In this study, we adopt the Fourier expansion of Equation 29 to approximate the adaptive bilateral
filter, which deployed with an edge-aware scale map. Specifically, Equation 29 can be approximated
in the following format:

ψ̂(t) =

N∑
n=−N

cnexp(τnvt), (30)

where τ2 = −1, v = π/T . N is the order of Fourier expansion, and cn is the coefficient.
t denotes the difference of pixel values in the local window Ωp. We can get the range of
t ∈ {−T, . . . , 0, . . . , T}, obtained via:

T = max
p∈St

max
q∈Ωp

|St(q)− St(p)|. (31)

Therefore, we take the approximation used in Equation 28, which results in the approximation of
F̂ t+1(p). It is written as:

F̂ t+1(p) =
H(p)

Q(p)
, (32)

where
H(p) =

∑
q∈Ωp

ψ̂(St(q)− St(p))St(q), (33)

and
Q(p) =

∑
q∈Ωp

ψ̂(St(q)− St(p)). (34)

Then, we further have {
H(p) =

∑N
n=−N cnexp(τnvSt(p))hn(p),

Q(p) =
∑N

n=−N cnexp(τnvSt(p))qn(p),
(35)

where hn(p) and qn(p) are expressed as follows:{
hn(p) =

∑
q∈Ωp

St(q)exp(τnvSt(q)),

qn(p) =
∑

q∈Ωp
exp(τnvSt(q)).

(36)

In this study, hn(p) and qn(p) can be calculated by adding each pixel value of Ωp. However, the
computation cost is expensive. To simplify, we get hn(p) and qn(p) via recursive. Firstly, we let
m(q) be the integrated element of pixel p. Then, we have

m(q) = St(q)exp(τnvSt(q)). (37)
And also can obtain the integral image M(p) at the center pixel p.

M(p) =M(x, y) =

x∑
k1=1

y∑
k2=1

m(k1, k2), (38)

where (x, y) is the coorddinate of the center pixel p, k1,k2 are the coordinates from the edge-aware
scale map ωp.

we compute Equation 38 by using recursion at pixel (x+ 1, y + 1) as follows:
M(x+ 1, y + 1) = m(x+ 1, y + 1) +M(x+ 1, y) +M(x, y + 1)−M(x, y). (39)

By adopting this way, given an edge-aware scale map ωp, we can get hn(p) as follows:
hn(p) =M(x+ ωp, y + ωp)−M(x− ωp − 1, y + ωp)

−M(x+ ωp, y − ωp − 1) +M(x− ωp − 1, y − ωp − 1).
(40)
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Similarly, qn(p) can be calculated. In summary, we can implement Equation 28 at O(1) computa-
tional complexity in a recursive manner. We consider the approximation error that is defined as

||F t+1 − F̂ t+1||∞ = max{|F t+1(p)− F̂ t+1(p)| : t ∈ {0, . . . , T}}. (41)
It shows the largest difference in the pixxel values between the original and approximating outputs.
Since H(p) and Q(p) are calculated exactly, the error mainly comes from the approximation of the
Gaussian range kernel. Therefore, we have

||ψ − ψ̂||∞ = max{|ψ(t)− ψ̂(t)| : t ∈ {0, . . . , T}}. (42)
According to previous work Ghosh et al. (2019), it gives the guarantee condition of convergence for
Equation 41 bounded by Equation 42. The condition is expressed as

||F t+1 − F̂ t+1||∞ ≤ 2θε

η − ε
, (43)

where η = 1
(2rmax+1)2 and θ is the dynamic range and rmax is the maximum value in ωp. In con-

clusion, we have the complete theoretical guarantee for the convergence of Fourier approximation
in our mutually guided edge-aware ABF.

B ADDITIONAL NUMERICAL RESULTS

B.1 PARAMETER SETTINGS

For the scheme presented in Algorithm 1, the input parameters are σe, T , γ, λe, rmin, rmax, σ, ε,
λ, K, ai, and σr that need to be initialized in advance. σe, γ, λe, ε, and K are fixed parameters. We
empirically found that smoothed results are not sensitive to these parameters. The default reasonable
fixed settings are σe = 3, γ = 10/255, λe = 4, ε = 5e − 4, and K = 4, which are suitable for
each test image. We have set rmin = 0 to guarantee that the minimized value in the edge-aware
scale map is close to 1. However, rmax is changed as the width of textures for different images. The
recommended value of rmax lies in the range [5, 15]. We empirically find that different strengths of
weak edges can be preserved with different values of σr. The recommened range of σr is [10, 30].
For our experiments, we have used σ = 3, and λ is in the range [0, 0.008]. We utilized a1 and a3
of Equation 8 in our all experiments. It is worth noting that it is hard to automatically determine
parameters in the image smoothing problem. Therefore, we recommend that users tune parameters
in real-world applications via our proposed approach.

(a) Input (b) MSE (c) Iteration 1. (d) Iteration 4. (e) Iteration 8.

Figure 10: Iteration number exploration. (a) The input image, (b) the mean square difference of
gradients between adjacent outputs, (c) the smoothed image after 1 iteration, (d) the smoothed image
after 4 iterations, (e) the smoothed image after 8 iterations. We note that there has a minimum of 4
iterations in (b), which denotes the best output. We also get the same conclusion by (d).

The parameter T is crucial for the quality of smoothed images. A larger value of T can cause
over-smoothing, while a small value can not remove all textures. We can obtain a satisfactory result
with a suitable stop in the smoothing process. The effects of T on the final output in our model are
presented in Figure 10. We have conducted our method with 8 iterations. Figure 10(b) shows the
mean square difference of gradient magnitudes between adjacent smoothed results. It is evident that
the mean square difference is minimum when T = 4. Figure 10(c)-(e) present the smoothed results
of our model at T = 1, 4, 8. Figure 10(c) shows it cannot ensure sufficient smoothing strength with
a small iteration number. However, a large iteration value causes artifacts and outliers, as shown in
Figure 10(e). The best-smoothed result with T = 4 is shown in Figure 10(d). Considering the effect
of over-smoothing, we set the max iteration number T = 4 in all our experiments.
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B.2 RUNNING TIME

We compare the running time of different methods under parameters recommended by correspond-
ing authors. We slightly tune the parameters of those methods to achieve satisfactory performance.
This paper uses a uniform metric Luo et al. (2021) for smoothing strength to compare running time
fairly. Given an input image I and final adjacent smoothed outputs St−1, St, the metric is defined
as

Re = (||St − St−1||2F )/||I||2F , (44)

where F denotes Frobenius norm. We conduct the speed comparison on the image with a size of
768 × 1024 × 3 under Re = 0.00001. The average running time is shown in Table 3. Our method
is faster than muGIF, RoG, Ghosh. and EP/SP while slower than ILS, RGF, and RTV. Our model
needs to solve a large linear system, not achieving the same speed as ILS, RGF, and RTV.

Table 3: Running Time (in Seconds) of Different Methods.

Methods ILS RGF RTV muGIF
Time (s) 0.59 0.75 4.65 10.31
Methods RoG EP/SP Ghosh Ours
Time (s) 11.15 14.42 7.60 6.08

(a) Input (b) WLS (c) RGF (d) DRTV (e) RoG

(f) muGIF (g) RTV (h) Ghosh (i) Tight frame (j) Ours
Figure 11: Image texture removal results of different methods. Parameters of all compared methods
are tuned to achieve a similar smoothing effect in the highlighted green boxes. Results of (c), (f),
(g), (h), and (i) suffer from texture removal not thoroughly, referring to marked yellow boxes. For
highlighted magenta rectangles, except for the tight frame and our method, the rest models have
blurred edges.

B.3 TEXTURE REMOVAL

The objective of texture removal is to distinguish and eliminate complex textures while preserving
the primary structures. Figure 11 presents the smoothed outcomes produced by various methods.
Each plot in Figure 11 contains three enlarged regions, where it is evident that models such as WLS,
RGF, DRTV, RoG, muGIF, RV, and Ghosh blur edges or structural details. Although the tight frame
model better preserves edges, it fails to completely remove textures. In contrast, the proposed model
effectively preserves sharp edges while thoroughly eliminating textures. Further comparisons be-
tween our model and a deep learning-based method are shown in Figure 12. VDCNN Kim et al.
(2016), a deep-learning-based texture removal method, produces the result shown in Figure 12(c).
While VDCNN reduces textures, it does not entirely remove them, as observed in the two enlarged
regions. Figure 12(b) displays the result from the RTV model, which successfully removes textures
but at the cost of blurring edges, as shown in the two enlarged rectangles. In contrast, our model
clearly removes textures while preserving the primary structures. The key advantage of our ap-
proach is its ability to achieve a superior balance between smoothing strength and edge preservation
compared to other algorithms.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

(a) Input (b) RTV (c) VDCNN (d) Ours

Figure 12: (a) The input image. Texture removal results of (b) RTV, (c) VDCNN, (d) Ours. As
observed in the highlighted boxes, our model can effectively preserve edges, which substantiates
that the proposed method can get a better tradeoff between smoothing strength and edge-preserving
than the compared methods.

(a) Input (b) RGF (c) Resnet (d) VDCNN

(e) EP/SP (f) Ghosh (g) RTV (h) Ours

Figure 13: Image smoothed results of (b) RGF, (c) Resnet, (d) VDCNN, (e)EP/SP, (f) Ghosh, (g)
RTV, (h) Ours. The right-bottom part of each image is the 1D signal smoothed result corresponding
to the yellow line in the green marked box. The blue line is the input 1D signal, while the red is
the smoothed result. We note that our method has a better-smoothed output than other algorithms.
Meanwhile, the proposed model eliminates staircase artifacts.

B.4 NATURAL IMAGE SMOOTHING

The task of natural image smoothing serves as an effective benchmark for evaluating a model’s
ability to balance smoothing intensity with edge preservation. Figure 13 displays the results of
natural image smoothing along with corresponding 1D signal comparisons. The lower-left rectangle
in each image is an enlarged view of the region within the green-marked box, while the lower-right
rectangle shows the 1D signal comparison along the yellow line within each enlarged region. In
Figure 13(b), the RGF method produces a smoothed output that suffers from excessive blurring.
Figures 13(c) to 13(g) exhibit staircase artifacts in homogeneous regions, which are also evident as
abrupt changes along the middle of the red lines in the 1D plots. In contrast, our proposed method
effectively eliminates staircase artifacts, delivering the most refined smoothing result among all the
methods compared.

B.5 DETAIL ENHACNCEMENT

Figure 14 illustrates additional results of detail enhancement. Figure 14(a) shows the original input
image. Notably, Figures 14(b) and 14(d) exhibit gradient reversals in the output images, as high-
lighted within the enlarged green rectangles. Figures 14(c), 14(e), and 14(f) show similar gradient
reversal effects. Additionally, halo artifacts along the edges are present in all the methods shown
in Figures 14(b) through 14(f). It is also worth noting that the two deep learning-based methods
(ResNet and VDCNN) fail to achieve an optimal balance between edge preservation and smoothing.
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In contrast, the proposed method produces results that are comparable to, and in some cases better
than, the other approaches in this scenario. We present corresponding numerical results in Table 4.
One can see that our mode obtains the best index values.

(a) Input (b) RGF (c) Resnet

(d) muGIF (e) VDCNN (f) Ours

Figure 14: (a) The input image. Image detail enhancement results of (b) RGF, (c) Resnet, (d) muGIF,
(e) VDCNN, (f) Ours. We use four detail layers to boost the input image in this case. Note that our
model can reduce halo artifacts and weaken the gradient reversals (referring to the marked boxes).

Table 4: No-reference image quality evaluation metrics of Figure 14.

Methods BRISQUE↓ PIQE ↓ SSEQ ↑ ILNIQUE↑
RGF 28.8617 30.1807 23.7323 117.56

ResNet 22.3801 36.4881 26.4587 120.12
muGIF 16.0524 30.2385 19.8289 123.25

VDCNN 28.9499 35.4522 26.1938 123.85
Ours 9.6503 26.8804 31.5996 126.78

B.6 HDR TONE MAPPING

HDR tone mapping is a key application of image smoothing, requiring the extraction of a detail layer
Liu et al. (2018) from the HDR input image. The smoothed result is then used to generate a low
dynamic range (LDR) image through nonlinear mapping. The final tone-mapped output is produced
by combining the nonlinearly transformed smoothed image with the detail layer. However, since
HDR tone mapping relies on the high-frequency detail layer, it is also prone to gradient reversals
and halo effects. Figure 15 presents the HDR tone mapping results from different methods. In
Figure 15(a), gradient reversals and artifacts along the edges are evident, as highlighted by the green
and yellow boxes. Figure 15(d) suffers from pronounced halos, especially in the two highlighted
regions, where strong white halos are visible along the edges. The other methods avoid gradient
reversal artifacts and halo effects in their outputs. We present corresponding numerical results of
this HDR tone mapping task in Table 4. One can see that our mode obtains the best index values.
Overall, our proposed method demonstrates competitive performance compared to other approaches
in this task.

B.7 TEXTURE TRANSFERRING

The goal of texture transfer is to generate target images with new texture patterns, which can include
regular, near-regular, and irregular textures. One of the main challenges in deep learning methods
for texture removal is the difficulty of acquiring paired training datasets. Texture transfer offers a
solution to this problem. Training datasets can be created by transferring the texture pattern from a
source image (as shown in Figure 16(a)) to a target image (as shown in Figure 16(b)). In essence,
the texture transfer process, as described in Ghosh et al. (2019), involves three steps. First, both
the source and target images are smoothed. Second, the texture layer is extracted by subtracting the
smoothed source image from the original source image, followed by extracting the texture pattern
from a local window (illustrated in Figure 16(a)). Finally, the texture patch is resized to fit the
target image. The transferred output is obtained by adding the smoothed target image to the resized
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(a) L0 (b) dRTV (c) RGF (d) Ghosh

(e) RoG (f) muGIF (g) RTV (h) Ours

Figure 15: HDR tone mapping. Results of (a) L0, (b) dRTV, (c) RGF, (d) Ghosh, (e) RoG, (f)
muGIF, (g) RTV, (h) Ours. We note that the L0 model produces staircase artifacts near edges. The
result of (d) shows heavy halo artifacts. On the contrary, our model has comparable results in HDR
tone mapping over the other methods.

Table 5: No-reference image quality evaluation metrics of Figure 15.

Methods BRISQUE↓ PIQE ↓ SSEQ ↑ ILNIQUE↑ CEIQ↑
L0 24.8086 28.6853 12.3523 129.59 2.6947

dRTV 23.7972 26.9161 16.8464 129.16 2.6867
RGF 24.3680 27.2629 15.6265 126.34 2.7728

Ghosh 23.7344 38.8357 15.3685 125.49 2.0085
RoG 28.1463 28.8937 12.1442 135.53 2.8496

muGIF 22.8831 32.4163 13.2606 132.94 2.6515
RTV 20.7134 30.0749 16.1376 133.17 2.6804
Ours 14.8449 24.8736 17.9714 135.69 2.8867

texture layer, as shown in Figure 16(c). More recently, Qi et al. (2024) have created a paired dataset
for edge-preserving smoothing tasks via leveraging texture transfer technology.

(a) Source (b) Target (c) Transferred

Figure 16: Texture transfer. (a) Source images, (b) Target images, (c) Texture transferred images.
We copy textures of the marked boxes in (a) to fusion with target images (b), and the final results
are shown in (c).
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