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Identifying key amino acid types that distinguish paralogous proteins using
Shapley value based feature subset selection
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Abstract
Paralogous proteins have a common ancestor but
have diverged in functionality. Using known
machine learning algorithms, we present a data-
driven method to identify the key amino acid
types that play a role in distinguishing a given
pair of proteins that are paralogs. We use an ex-
isting Shapley value based feature subset selec-
tion algorithm, SVEA, to identify the key amino
acid types adequate to distinguish pairs of paral-
ogous proteins. We refer to these as the amino
acid feature subset (AFS). For a paralog pair,
say proteins P and Q, its AFS is partitioned
based on protein-wise importance as AFSpP q

and AFSpQq using a linear classifier, SVM. To
validate the significance of the AFS amino acids,
we use multiple domain knowledge based meth-
ods : (a) multiple sequence alignment, and/or (b)
3D structure analysis, and/or (c) supporting ev-
idence from biology literature. This method is
computationally cheap, requires less data and can
be used as an initial data-driven step for further
hypothesis-driven experimental study of proteins.
We demonstrate the results for 15 pairs of paralo-
gous proteins. Code at https://anonymous.
4open.science/r/AFS_AAC_SVM-F3D9.

1. Introduction
Proteins form the fundamental machinery in living sys-
tems, having several vital functions such as DNA repli-
cation, catalysis, transport, environmental interaction, etc.
Advancements in sequencing technologies have resulted
in exponential growth of protein sequence databases (The
UniProt Consortium, 2020). However, the number of ex-
perimentally verified annotations constitute a tiny fraction:
only 0.57 of 250 million sequences in UniProtKB (The
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Anonymous Country. Correspondence to: Anonymous Author
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UniProt Consortium, 2020) have manually reviewed anno-
tations. Experimental methods for determining biological
process level functions (transcription, DNA repair, etc.) are
high-throughput whereas methods for molecular function
(catalysis, ligand specificity, etc.) are low-throughput and
hence are not scalable. The relationship between sequence
and function is subtle and has not been fully decoded yet.

Paralogs are proteins that have a common ancestor but
have diverged functionally. The functional difference in
two paralogous proteins is considered to arise due to evo-
lutionary changes in the sequences (Yang et al., 2023).
A typical experiment to investigate the role of an (or a
group of) amino acid(s) in the function of a protein is to
perform a site-directed mutagenesis experiment: replace
one or more amino acids and test the effect of the se-
quence change (Kresge et al., 2006). In this work, we
provide an algorithmic ML pipeline, consisting both fea-
ture engineering and feature subset selection, as a quick
and resource-cheap test to assess the likely outcome from
a site-directed mutagenesis experiment. We use a diverse
dataset of 15 paralog pairs. Our datasets show a range of
sequence and function diversity (details in Appendix B).
Longest common subsequence score (lcss) is a metric to
quantify sequence diversity and median within-class lcss
is ď 0.5 in 12 of the 15 datasets, and the median inter-
class lcss for the corresponding classes is less than within-
class lcss. Functional diversity, as discerned from biol-
ogy literature, also shows large diversity from subtle func-
tional differences (e.g., trypsin/chymotrypsin) to drastic
(e.g., lysozyme c/α-lactalbumin). Function description is
fine-grained (e.g., trypsin/chymotrypsin) as well as coarse
grained (e.g, GPCRs).

Our findings are that small subsets of amino acids can dis-
cern differences between pairs of paralogs. The subset sizes
are between 5 to 10, the median being 8. We provide valida-
tions from literature, MSA (a popular computational tool to
assess evolutionary conservation) and logical consistencies;
for many pairs such validations are more than one.

Towards this, we view a protein as the composite of its con-
stituent standard 20 amino acids. We use amino acid com-
position (AAC) features, a Shapley value (Shapley, 1953)
based feature subset selection algorithm (Shapley Value
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Identifying key amino acid types that distinguish paralogous proteins

based Error Apportioning, SVEA) (Tripathi et al., 2020;
2021), and a linear support vector machine (SVM) clas-
sifier (Steinwart & Christmann, 2008) as tools to identify
key amino acid types that can distinguish a given a pair of
proteins that are paralogs. It yields quick results based on
which biologists can conduct detailed experiments which
are resource-intensive (time, cost, trained manpower, etc.).

The key results from our ML pipeline experiments are:

‚ Using known machine learning algorithms we demon-
strate a data-driven method to identify key amino acids that
distinguish two paralogous proteins.

• The SVEA algorithm identifies a subset of amino acid
types (referred to as AFS) adequate for distinguishing
two paralogous proteins. The size of AFS ranges from
5 to 10 amino acids out of 20. (Table 1)

• For a paralog pair, say protein families P and Q,
the computed AFS is partitioned into AFSpP q and
AFSpQq using a linear SVM, to determine the family-
wise importance of AFS. (Table 1)

‚ Domain knowledge based validation of AFS: The sig-
nificance of the amino acids in AFS was validated for
14 datasets using various methods like (a) multiple se-
quence alignment (MSA) and/or (b) structural analysis
and/or (c) supporting evidence from literature that report
structural/functional role of these amino acids.

‚ Logical consistencies in the pair-wise AFS of three par-
alogous proteins (globins, Section 3.1.7, and GPCRs, Sec-
tion 3.1.8). If families P vs Q and P vs R have AFS1 and
AFS2, then,

• we find common amino acids in AFS1pP q and
AFS2pP q, except for one pair.

• amino acids in AFS1 XAFS2 are either excluded from
AFS3, which is from Q vs R, or have much lower
Shapley value in AFS1, AFS2, or AFS3.

‚ Validation of AFS using test data (Section 3.2): The
composition of amino acids is sufficient to classify several
paralog pairs. A linear SVM classifies with high test scores
(70-99%) using only the composition of AFS amino acids
as features. (Appendix Table E5)

‚ AFS are top ranked features with an alternate feature
ranking measure, Marginal Contribution feature importance
(MCI) (Catav et al., 2021). (Appendix Table E6)

Shapley values based feature attribution methods are popu-
lar for explaining machine learning models (Rozemberczki
et al., 2022). One such method is SHAP (Lundberg & Lee,
2017), which assigns attribution scores to input features
based on a model’s output for a given instance input. An-
other method is SAGE (Covert et al., 2020), which assigns
feature attribution scores based on a model’s loss computed
at the dataset level. Unlike these methods, where feature

attributions are based on a trained model, the SVEA algo-
rithm that we use for our task assigns scores to the features
based on the distribution of the data points in the feature
space and their ground truth labels. The SVEA algorithm
uses a function vpSq, which acts as a measure of inter-class
linear separation between the data points in the space of the
feature subset S. The scores assigned to the features are
Shapley values computed using this function vp¨q. We also
use an alternate feature ranking method, i.e. the Marginal
Contribution Feature Importance (MCI) (Catav et al., 2021).
MCI is an axiomatic approach that was proposed as an alter-
native to Shapley values to score and rank features. We find
close agreement between the AFS computed using SVEA
and the top-ranked amino acids using MCI.

Use of deep learning methods trained on large datasets is
becoming commonplace in Biology; for example, predic-
tion of molecular function via EC number or GO annotation
(Bileschi et al., 2022; Sanderson et al., 2023), identifying
input sequence regions relevant to model output (Zhou et al.,
2016) and learning sequence-function mapping from deep
mutational scanning experiment data (Song et al., 2021).
The use of large datasets for training makes this approach
highly resource-intensive. The approach we present herein
needs much smaller datasets and, consequently, (i) is com-
putationally cheap and (ii) has far wider applicability since
labelled data validated by wet lab experiments is limited.

2. Methodology
We discuss the main components of our methodology.

2.1. AAC features

Consider a paralogous pair of proteins, families P and
Q. We first curate a set of sequences, say DP and DQ,
from a standard protein sequence database, SwissProt (The
UniProt Consortium, 2020), with nP and nQ number of
sequences each from families P and Q respectively. For a
protein sequence ppjq “ pp

pjq

1 , p
pjq

2 , . . . , p
pjq

L q of length L

with p
pjq

k P t1, 2, ¨ ¨ ¨ , 20u corresponding to the standard 20
amino acids, the AAC feature xAAC

j P r0, 1s20 for ppjq is
computed as follows,

xAAC
j,i “

1

L

L
ÿ

k“1

1
tp

pjq

k “iu
, @i P r20s

So xAAC
j,i is the normalised count of the standard amino acid

i, i P t1, 2, ¨ ¨ ¨ , 20u, in a protein ppjq.

2.2. Feature subset selection using SVEA

Given a set, N , of features from the protein sequences of P
and Q, we try to find the features S Ď N that contribute the
most to the linear separation of P and Q sequences. With
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AAC features, we have N “ t1, 2, . . . , 20u corresponding
to each of the standard 20 amino acid types.

We utilise the Shapley value based feature ranking and sub-
set selection algorithm, SVEA (Tripathi et al., 2020; 2021),
to identify the most important feature subset S Ď N . Shap-
ley value is a well known solution concept from cooperative
game theory (Shapley, 1953; Narahari, 2014) for distribut-
ing the total worth of a coalition of players fairly among
each of them by quantifying each player’s effective marginal
contribution. The SVEA algorithm considers the binary clas-
sification task as a cooperative game among the features,
with a function vpSq as the worth of every feature subset
S. vpSq acts as a measure of linear separation between
the classes in the feature space of S. Accounting for class-
imbalance, we define vpSq using a class-balanced hinge loss
function tr erpSq, which is defined as,

tr erpSq “ min
w,ξj

1

2nP

nP
ÿ

j“1

ξj `
1

2nQ

nQ
ÿ

j“nP `1

ξj

s.t. yj

˜

ÿ

iPS

wix
AAC
j,i ` b

¸

ě 1 ´ ξj , @j P rnP ` nQs

ξj ě 0, @j P rnP ` nQs

and vpSq “ tr erpHq ´ tr erpSq. The minimizer in the
above finds a linear hyperplane with the least class-balanced
hinge loss in the feature space of S. H is the empty
set and tr erpHq “ 1, therefore, vpSq “ 1 ´ tr erpSq.
tr erpSq “ 0 implies vpSq “ 1, i.e., the two classes are
completely linearly separable in the feature space of S. The
maximum value of tr erpSq possible is 1.

The Shapley value ϕpiq for a feature i P N is computed as,

ϕpiq “
ÿ

SĎNztiu

|S|!p|N | ´ |S| ´ 1q!

|N |!
pvpS Y tiuq ´ vpSqq.

Thus, ϕpiq is a weighted sum of the marginal contribution of
feature i to all the possible feature subsets that do not contain
i. Shapley values are unique solution concepts satisfying
the axioms - efficiency, symmetry and marginality (Young,
1985). The higher the ϕpiq, the higher the contribution
of feature i to the linear separation between the classes
and, consequentially, the higher the importance of feature i
distinguishing the classes.

Exact Shapley value computations are known to be expo-
nential time. Hence, they are computed using a linear time
(in number of features) Monte Carlo approximation (Castro
et al., 2009) in the SVEA algorithm. As the number of
features is small (20), good approximations can be com-
puted fast via larger sampling. More details of the SVEA
algorithm are given in Appendix Section C.

Data-driven cutoff for selecting AFS: The efficiency ax-
iom of Shapley value implies,

ř20
i“1 ϕpiq “ vpNq. If all

features have equal contribution in achieving vpNq, then
ϕpiq “

vpNq

20 ,@i P N . Consequentially, if a feature i had
lesser contribution than others then ϕpiq ă

vpNq

20 . Therefore,
we set ϕcutoff “

vpNq

20 for selecting the key distinguishing
amino acid feature subset, AFS “ ti : ϕpiq ě ϕcutoffu.
Each of the features in AFS uniquely corresponds to
d ď 20 amino acids from the standard 20.

2.3. Protein family-wise partition of AFS using SVM

We train a linear SVM, to classify P vs Q, using the com-
position of the amino acids in AFS as the features, i.e.
using xAFS

j P r0, 1sd, with xAFS
j,i1 “ xAAC

j,i and each
i1 P t1, 2, ¨ ¨ ¨ , du uniquely maps to a i P AFS. We
use these linear SVM weights w P Rd to divide the set
AFS into disjoint sets AFSpP q and AFSpQq based on
the sign of the weights. Since xAFS

j,i1 ě 0 @i1 P rds, the
sign of the linear classifier weight wi1 indicates which class
is relatively prominent in the amino acid corresponding to
i1. So if the `1 class is P , then we divide AFS class-
wise as AFSpP q “ ti1 P rds : wi1 ą 0u and similarly
AFSpQq “ ti1 P rds : wi1 ă 0u. See Appendix Section D
for details on SVM training.

A flowchart summarizing the steps for computing AFSpP q

and AFSpQq is shown in Figure 1.

2.4. Validation of AFS

Literature evidence: For 14 different paralog protein pairs,
we provide supporting evidence from protein biology lit-
erature for the significance of amino acids in AFS in the
functional specificity of the protein pair.

MSA analysis: We also compute multiple sequence align-
ment (MSA) of randomly selected sequences from DP and
DQ and analyze the conservation of AFSpP q and AFSpQq

amino acids within and across the respective families (Fig-
ure 2). MSA algorithms (Edgar & Batzoglou, 2006) aim
to align multiple protein sequences by inserting gaps in the
sequences while optimizing an objective. The objective
is usually to minimize the number of gaps inserted while
maximizing an overall score that promotes the alignment of
similar (based on physicochemical properties) amino acids
at a given position. The alignments are often used as a tool
to determine homologous relationships between proteins
and identify conserved or mutated regions in them.

Structural analysis: For paralog pairs that together func-
tion as heteromers (protein complexes made up of different
types of proteins), we perform structural analysis to validate
the role of AFS in the heteromeric structure formed by the
paralog pair (Sections 3.1.7, 3.1.3 and 3.1.4).

Using test data: We test the classifier trained in Section 2.3
on a test data. (Details on test data in Appendix Section A.1).
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Identifying key amino acid types that distinguish paralogous proteins

Figure 1: Flowchart summarizing the steps in our ML pipeline to compute the key amino acid types, AFS, that distinguish
two paralogous proteins, using amino acid composition (AAC) features, Shapley value based SVEA algorithm for feature
subset selection and class-wise feature subsets using linear SVM. Lysozyme C and α-Lactalbumin are used here as
representative examples of paralog pairs. AFS identified for other paralog pairs are given in Table 1.

In general, we find an imbalance in the number of sequences
for the two paralogous proteins. It is known that accuracy is
not a well-suited performance measure of the classifier in
class imbalance settings. Therefore, we use the arithmetic
mean of sensitivity and specificity (AM) to measure the
performance of the classifier (Brodersen et al., 2010).

Using marginal contribution feature importance (MCI):
We check agreement of AFS with another feature ranking
method, MCI (Catav et al., 2021). See Appendix Section E.4
for details on MCI computation.

3. Results and Discussions
3.1. Role of the amino acids identified in AFS

For 15 paralog pairs, we discuss the significance of the
amino acids identified in the respective AFS (Table 1).

3.1.1. LYSOZYME C AND α-LACTALBUMIN

Literature evidence: Amino acids D and E of
AFSpα-Lactalbuminq are found in the Ca2` and Zn2`

binding sites respectively of α-lactalbumin (Permyakov &
Berliner, 2000; Permyakov, 2020). All α-lactalbumins stud-
ied so far are known to bind Ca2` and Zn2` whereas sev-
eral (but not all) lysozymes do not bind Ca2`.

MSA analysis: (Figure 2a) AFSpα-Lactalbuminq and
AFSpLysozyme Cq amino acids (Table 1) are significantly
conserved in respective families.

3.1.2. TRYPSIN AND CHYMOTRYPSIN

Literature evidence: Y and W get the highest Shapley
value ϕp¨q in AFSpTrypsinq and AFSpChymotrypsinq re-

spectively (Table 1 and Figure E6b). In experiments to
convert trypsin to chymotrypsin (Hedstrom et al., 1994;
Hedstrom, 2002) it has been shown that Y to W conver-
sion in loop-3 of trypsin leads to significant increase in
chymotrypsin activity. We do not find S,H and D in AFS,
which are important for the function of both families and are
known as the catalytic triad (Dodson & Wlodawer, 1998).

3.1.3. TUBULIN-α AND TUBULIN-β

MSA analysis: (Appendix Figure E10) AFSpTubulin-αq

and AFSpTubulin-βq amino acids are significantly con-
served in respective families.

Structural analysis of AFS: Tubulins typically exist as
heterodimers, consisting of two subunits: tubulin-α and
tubulin-β (Mühlethaler et al., 2021). We looked at the con-
tact residues of a tubulin-α chain and tubulin-β chain in the
3D structure of tubulin-α/β heterodimer (PDB IDs: 3JAR,
5N5N). We see that the contact points of the tubulin-α chain
in the heterodimer have more AFSpTubulin-αq amino acids
than AFSpTubulin-βq. Similarly, AFSpTubulin-βq amino
acids are more than AFSpTubulin-αq at the contact point
of the tubulin-β chain in the heterodimer. Thus, the amino
acids identified in AFS can be considered to be significant
towards the quaternary structure of tubulin-α/β heterodimer.
Appendix Section E.2 has more details.

3.1.4. HISTONE H2A AND HISTONE H2B

MSA analysis: (Appendix Figure E11),
AFSpHistone H2Aq and AFSpHistone H2Bq amino
acids are significantly conserved in respective families.

Structural analysis of AFS: Histones have a heterooc-
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Table 1: AFS and its class-wise partition computed for 15 paralog pairs. The number of unique sequences from the
SwissProt (The UniProt Consortium, 2020) database used for computing AFS is given inside parenthesis p¨q for each
protein family. Data collection details are in Appendix Section A.1. AFS amino acids are written in decreasing Shapley
values from left to right for each paralog pair. Figures 3 and E6 show the Shapley value of the amino acids for each paralog
pair. For globins and GPCRs, common acids across different AFS within a paralog triplet are colour-coded.

Paralog pair Amino acid feature subset, AFS Class-wise AFS parition
Lysozyme C (74) and
α-Lactalbumin (22) tI, A,D,N,G,R,E, F, L,W u

AFSpα-Lactalbuminq “ tI,D,E, F, Lu

AFSpLysozyme Cq “ tA,N,G,R,W u

Trypsin (66) and
Chymotrypsin (17) tY,W, T,A, V,K, P u

AFSpTrypsinq “ tY,Au

AFSpChymotrypsinq “ tW,T, V,K, P u

Tubulin-α (117) and
Tubulin-β (191) tM,Q,K,N, F, I,H,A,C, Y u

AFSpTubulin-αq “ tK, I,H,C, Y u

AFSpTubulin-βq “ tM,Q,N, F,Au

Histone H2A (180) and
Histone H2B (177) tL,G, S,M,K,N, T, Y, F u

AFSpHistone H2Aq “ tL,G,Nu

AFSpHistone H2Bq “ tS,M,K, T, Y, F u

Interleukin-1 α (16) and
Interleukin-1 β (25) tC,G, T, S, V,Q,A,N, P u

AFSpInterleukin-1 αq “ tT, S,A,Nu

AFSpInterleukin-1 βq “ tC,G, V,Q, P u

Cytochrome P450 CYP3
(32) and CYP51 (32) tH,F,G,K,A, P,Nu

AFSpCYP3q “ tF,K, P,Nu

AFSpCYP51q “ tH,G,Au

Globins
Myoglobin (107) and
Hemoglobin-α (303) AFS1 “ tE,S, Y, V,K, P, I,G,C,W u

AFS1pMyoglobinq “ tE,K, I,G,W u

AFS1pHemoglobin-αq “ tS, Y , V , P , Cu

Myoglobin (107) and
Hemoglobin-β (285) AFS2 “ tK,V,C,E,W,N, F,M, Y, Iu

AFS2pMyoglobinq “ tK,E,M, Iu

AFS2pHemoglobin-βq “ tV ,C,W,N, F, Y u

Hemoglobin-α (303) and
Hemoglobin-β (285) AFS3 “ tW,P,N, S,Gu

AFS3pHemoglobin-αq “ tP , Su

AFS3pHemoglobin-βq “ tW,N,Gu

GPCRs
Rhodopsin-like (181) and

Glutamate-like (89) AFS1 “ tD,Q,E,G,M,Lu
AFS1pRhodopsinq “ tM,Lu

AFS1pGlutamateq “ tD,Q,E,Gu

Secretin-like (90) and
Glutamate-like (89) AFS2 “ tW,H, Y, V,Du

AFS2pSecretinq “ tW,H, Y u

AFS2pGlutamateq “ tV ,Du

Rhodopsin-like (181) and
Secretin-like (90) AFS3 “ tW,E,M,S, V,H,Q,Au

AFS3pRhodopsinq “ tM,S, V ,Au

AFS3pSecretinq “ tW,E,H,Qu

Rhodopsin-like GPCRs
Aminergic receptors (186)
and Lipid receptors (113) AFS1 “ tL,P,E,W,F,M,Du

AFS1pAminergic receptorsq “ tP ,E,W,Du

AFS1pLipid receptorsq “ tL,F ,Mu

Aminergic receptors (186)
and Peptide receptors (367) AFS2 “ tL,F,E,M,K,D, V,Ru

AFS2pAminergic receptorsq “ tE,K,D,Ru

AFS2pPeptide receptorsq “ tL,F ,M, V u

Lipid receptors (113) and
Peptide receptors (367) AFS3 “ tP,R,G, I,W, S, V u

AFS3pLipid receptorsq “ tR,G, Su

AFS3pPeptide receptorsq “ tP , I,W, V u

tameric structure comprising of two H2A/H2B dimers and
one H3/H4 tetramer (Dutta et al., 2001). We looked at
the contact residues of an H2A chain and H2B chain
in the heteroocatmer structure of histone (PDB IDs:
3KWQ, 1AOI). We find that the contact points of H2A
chain in the heterooctamer have more AFSpHistone H2Aq

amino acids than AFSpHistone H2Bq. This is interest-
ing since AFSpHistone H2Aq has only three amino acids,
while AFSpHistone H2Bq has six amino acids. Simi-
larly, the contact points of H2B chain in the heterooc-
tamer have more AFSpHistone H2Bq amino acids than
AFSpHistone H2Aq. Thus, the amino acids identified in
AFS can be considered to be significant towards the quater-
nary structure of the histone heterooctamer. See Appendix
Section E.3 for more details.

3.1.5. INTERLEUKIN-1 α AND INTERLEUKIN-1 β

Literature Evidence: C has the highest Shapley value and
is in AFSpInterleukin-1 βq. Deleting C results in loss of
activity in Interleukin-1 β (Veerapandian et al., 1992). We
do not find such studies for Interleukin-1 α.

MSA analysis: (Appendix Figure E12)
AFSpInterleukin-1 αq and AFSpInterleukin-1 βq amino
acids show significant conservation in respective families.

3.1.6. CYTOCHROME P450 CYP3 AND CYP51

Literature evidence: H,F and G, in the respective order,
have the highest Shapley value ϕp¨q for this paralogous pair
(Table 1 and Figure E6f). H and G with the highest ϕp¨q

in AFSpCYP51q have been reported (Nitahara et al., 2001;
Lepesheva & Waterman, 2004; 2007; Strushkevich et al.,
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? ?
(a) Lysozyme C vs α-Lactalbumin

? ?
(b) Hemoglobin-α vs Myoglobin

? ?
(c) Hemoglobin-β vs Hemoglobin-α

Figure 2: Multiple sequence alignment of sequences from the respective families in (a), (b) and (c). Within each
alignment, 15 sequences on the left are from one family, and those on the right are from the other family in each of
(a), (b) and (c). The sequences are randomly selected from the train set of the families. For each aligned sequence
in (a) AFSpα-Lactalbuminq amino acids are in green and AFSpLysozyme Cq are in red, in (b) the amino acids in
AFS1pMyoglobinq are in green and AFS1pHemoglobin-αq are in red, and in (c) the amino acids in AFS2pHemoglobin-αq

are in green and AFS2pHemoglobin-βq are in red. The intensity of the color is proportional to the Shapley value ϕpiq of
the amino acid i (Figures 3 and E6).
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2010) to be important in the enzymatic activity of CYP51.
Mutation of these amino acids at specific positions has been
shown to result in a decrease in the activity of the enzyme
(Lepesheva & Waterman, 2007; 2004). Similarly, F with the
highest ϕp¨q in AFSpCYP3q is also known to be important
in the enzymatic activity of CYP3 (Qiu et al., 2008; Denisov
et al., 2019; Zhang et al., 2024). A cluster of F residues in
CYP3 is known to form a substrate-binding pocket with an
active site (Zhang et al., 2024).

3.1.7. GLOBINS

MSA analysis: (Figures 2b,2c and Appendix Figure E8)
For the three globin paralog pairs (Table 1), we observe in
the MSA, conservation of the class-wise partition of AFS
in the respective families.

Structural analysis of AFS: Myoglobin is a monomer,
while α and β chains together constitute hemoglobin, a
tetramer of composition α2β2 (Dill et al., 2017). We su-
perimposed the 3D structures of myoglobin, hemoglobin-
α and hemoglobin-β (PDB IDs: 3RGK, 1HHO) and
mapped the α, β contact residues (based on (Shionyu et al.,
2001)) of hemoglobin tetramer to that of myoglobin. We
find that the amino acids K,E, I , which are common
in AFS1pMyoglobinq and AFS2pMyoglobinq, are less in
number at the contact residues of hemoglobin tetramer and
more in number at the corresponding locations in myoglobin,
which is a monomer (see Appendix Figure E7).

Literature evidence: W with a significantly high
Shapley value ϕpW q (Figure 3b), is present in
AFS3pHemoglobin-βq. It is highly conserved at po-
sition 40 in the MSA (Figure 2c) in hemoglobin-β
sequences as compared to hemoglobin-α sequences. This
W at position 40 has been determined to be present
in hemoglobin-β at one of its contact positions to
hemoglobin-α in the tetrameric structure (Shionyu et al.,
2001) and is, therefore, a structurally and functionally
significant residue. C, present in AFS1pHemoglobin-αq

and AFS2pHemoglobin-βq, has been shown to play an
important role in the tetrameric structure of hemoglobin
formed by α and β hemoglobins (Kan et al., 2013).

Logical consistencies in AFS (refer to Table 1 (Globins)
for AFS1, AFS2, AFS3):

‚ AFS1 X AFS2 “ tE, Y, V,K, I, C,W u. Except for
W with the least Shapley value in AFS1 (Figure 3a), the
remaining are excluded from AFS3.

• Explanation:V, Y, C in AFS1pHemoglobin-αq X

AFS2pHemoglobin-βq can be expected not to be key in
AFS3 for distinguishing α vs β hemoglobin.

‚ AFS2 X AFS3 “ tW,Nu. N is excluded from AFS1,
while W gets the least Shapley value in AFS1 (Figure 3a).

‚ AFS3 X AFS1 “ tW,P, S,Gu. tP, S,Gu are excluded
from AFS2, while W gets the least Shapley value in AFS1.

The Shapley value for W is very close to the cut-off in
AFS1 (Figure 3a). If it is dropped from AFS1, then the ex-
clusion principle illustrated above would be more prominent
as in GPCRs (Section 3.1.8).

3.1.8. G-PROTEIN COUPLED RECEPTORS (GPCRS)

Literature evidence: W (with highest Shapley value ϕp¨q)
and H common in AFS2pSecretinq and AFS3pSecretinq

(Table 1 and Figure 3), are well conserved at multiple posi-
tions with structural importance and functional importance
in secretin-like GPCR sequences (Cary et al., 2022; Harmar,
2001). Mutating certain conserved W leads to a loss in ex-
pression of this GPCR at the cell surface, where it functions
(Cary et al., 2022). H present in the intracellular loop region
is also known to be important in the activation of certain
secretin-like GPCRs (Harmar, 2001).

M common in AFS1pRhodopsinq and AFS3pRhodopsinq

has been found to be present at important binding pock-
ets and a position important for activation of the GPCR
(Okada et al., 2001; Sakmar et al., 2002). S from
AFS3pRhodopsinq is found at multiple major phosphoryla-
tion sites (see Okada et al. 2001 for details) in Rhodopsin.

Mutating D at two positions has been shown to affect
glutamate binding of glutamate receptor GPCRs (Jingami
et al., 2003). D is common in AFS1pGlutamateq and
AFS2pGlutamateq and has highest Shapley value in AFS1.

E and D common in AFS1pAminergicq and
AFS2pAminergicq are present at binding sites of im-
portant ligands (like histamine/serotonin) of aminergic
receptors (Vass et al., 2019).

Logical consistencies in AFS of GPCRs (refer to Table 1
(GPCRs) for AFS1, AFS2, AFS3):

‚ AFS1 X AFS2 “ tDu, is excluded from AFS3.

‚ AFS2 X AFS3 “ tW,H, V u, is excluded from AFS1.

‚ AFS3 X AFS1 “ tQ,E,Mu, is excluded from AFS2.

Logical consistencies in AFS of Rhodopsin-like GPCR
subfamilies (refer to Table 1 (Rhodopsin-like GPCRs) for
AFS1, AFS2, AFS3):

‚ AFS1 X AFS2 “ tL,E, F,M,Du, is excluded from
AFS3.

‚ AFS2 X AFS3 “ tR, V u, is excluded from AFS1.

‚ AFS3 X AFS1 “ tP,W u is excluded from AFS2.

The explanations for these consistencies are similar to that
in globins (Section 3.1.7).
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(a) Myoglobin vs Hemoglobin-α (b) Hemoglobin-α vs Hemoglobin-β (c) Myoglobin vs Hemoglobin-β

(d) Secretin-like vs Glutamate-like (e) Rhodopsin-like vs Glutamate-like (f) Rhodopsin-like vs Secretin-like

Figure 3: Shapley value (ϕpiq) for AAC features computed using SVEA. See Appendix Figure E6 for remaining paralogs.

3.2. Validation of AFS using test data

The classification scores on test data for the classifiers
trained using AAC and AFS features, respectively, are
reported in Appendix Table E5. Using AFS features, the
test AM scores are at least 70%. For 13 of 15 paralog pairs,
the scores are greater than 83%, and for 8 of 15 paralog
pairs, it is greater than 90%. Details of the test data are
provided in Appendix Section A.1.

3.3. Marginal contribution feature importance (MCI) of
AFS

For an AFS of size d, the top-d amino acids ranked by MCI
differ with AFS only in at the most two amino acids. For 8
of 15 datasets, AFS and top-d MCI sets are the same, while
only for two datasets do they differ in two amino acids. For
all 15 datasets, at least the top-3 MCI amino acids are in
AFS. For 11 of these datasets, at least the top-5 MCI amino
acids are in AFS. (Appendix Table E6)

4. Conclusion
We demonstrated an ML pipeline to identify the key amino
acid types, AFS, that distinguish a pair of paralogous pro-
teins. The role of AFS in functionally distinguishing the
paralog pairs was validated using various sources of domain
knowledge. The robustness of this approach, as demon-
strated by considering a diverse set of paralogous protein

pairs, illustrates its wider applicability. Identification of
AFS can be used as an initial data-driven step before doing
more detailed experimental investigations, like site-directed
mutagenesis (Bachman, 2013) resolving sequence-function
relationship. As the size of AFS is small (5-10 amino acids
of 20), significantly less number of mutations can be tried.

As our pipeline works without using the sequence order
information of the amino acids in the protein, it posits an
interesting question to biologists : how amino acid com-
position by itself is able to distinguish paralogs given am-
ple evidence that 3D structure and function are conserved
despite sequence divergence (Lau et al., 2015)! Notably,
amino acids in the AFS typically occur more than once in
the sequence, but our method is silent on the specific posi-
tions where the amino acid has a functionally distinguishing
role. This may be addressed by engineering features that
incorporate sequence order information from the protein.
However, these features can be very high-dimensional, for
example, 20k-dimensional for k-mer features. The Monte
Carlo based approximation algorithm for Shapley values
would require exponentially more sampling (in number of
features) for good approximations.
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Impact Statement
This paper presents a computationally efficient data lean
ML pipeline. It can be used by biologists to decide whether
they should invest valuable resources (skilled manpower,
time, funds, etc.) for performing wet-lab experiments to
determine amino acid(s) that are critical for functional dif-
ferentiation of paralogous proteins.
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A. Data collection and code
We discuss the details of the data collection procedure for the datasets used in our computational experiments.

A.1. Datasets of 15 paralog pairs

We apply our method for identifying amino acid types that distinguish paralogous proteins using the datasets described in
Table A2. Only the train set is used for computing AFS, while the test set is used for computing classification scores for the
linear SVM trained using the train set.

Table A2: The number of sequences in the train and test sets of the protein families considered in computational experiments.

Family Train (Swiss-Prot) Test (TrEMBL)

Lysozyme-like
α-Lactalbumin 22 53
Lysozyme C 74 14

Trypsin-like
Trypsin 66 3813
Chymotrypsin 17 281

Tubulin
α 117 190
β 191 347

Histone
H2A 180 16599
H2B 177 7599

Interleukin-1
α 16 12
β 25 194

Cytochrome P450
CYP3 32 818
CYP51 32 601

Globins
Myoglobin 107 479
Hemoglobin-α 303 525
Hemoglobin-β 285 261

(GPCR-PEnDB)
Train (80%) Test (20%)

GPCR families
Rhodopsin-like 181 45
ë Lipid receptors 113 28

Peptide receptors 367 92
Aminergic receptors 186 47

Glutamate-like 89 23
Secretin-like 90 23

All datasets are taken from publicly available databases (UniProt (The UniProt Consortium, 2020) and GPCR-PEnDB
(Begum et al., 2020)). Well-known pairs of paralogous proteins were curated from millions of sequences from UniProt
considering the number of sequences and manually reviewed labels available for them.

For all datasets except GPCR, we use manually curated Swiss-Prot sequences for training and electronically annotated
TrEMBL sequences for testing. These proteins have very specific functions. In contrast, GPCRs are a large and diverse
group of transmembrane proteins that mediate cellular responses to extracellular signals. We chose to use an already
curated dataset in this case. For each of the GPCR families considered (Table A2), the sequences are randomly split as
80%-train/20%-test. The use of GPCR-PEnDB data is to illustrate the effectiveness of our method with random slicing,
which is inevitable when additional curated data are not available. If one or many UniProt entries in a dataset had identical
sequences, then only one of them was retained, and the remaining were deleted.
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The following queries were used for collecting data from UniProt (The UniProt Consortium, 2020),

• lysozyme C: (protein_name:"lysozyme C") AND (fragment:false) NOT (existence:4) NOT
(existence:5) AND (length:[* TO 200]) AND (ec:3.2.1.17) AND (xref:cazy-GH22) AND
(reviewed:true)

• α-lactalbumin: (protein_name:"alpha lactalbumin") AND (fragment:false) NOT
(existence:4) NOT (existence:5) AND (length:[* TO 200]) AND (reviewed:true)

• myoglobin: (protein_name:"myoglobin") AND (xref:interpro-IPR002335) AND
(fragment:false) NOT (existence:5) NOT (existence:4)

• hemoglobin-α: (protein_name:"hemoglobin alpha") AND (xref:interpro-IPR002338) AND
(fragment:false) NOT (existence:5) NOT (existence:4)

• hemoglobin-β: (protein_name:"hemoglobin beta") AND (xref:interpro-IPR002337) AND
(fragment:false) NOT (existence:5) NOT (existence:4)

• trypsin: (protein_name:trypsin) AND (fragment:false) AND (ec:3.4.21.4) NOT
(existence:5)

• chymotrypsin: (protein_name:chymotrypsin) AND (fragment:false) AND (ec:3.4.21.1) NOT
(existence:5)

• tubulin-α: (protein_name:"tubulin alpha") AND (family:"tubulin family") AND
(length:[300 TO 600]) AND (fragment:false) NOT (annotation_score:1) NOT
(annotation_score:2)

• tubulin-β: (protein_name:"tubulin beta") AND (family:"tubulin family") AND
(length:[300 TO 600]) AND (fragment:false) NOT (annotation_score:1) NOT
(annotation_score:2)

• interleukin-1 α (protein_name:"interleukin-1 alpha") AND (family:il-1) AND
(fragment:false) NOT (existence:4) NOT (existence:5) AND (length:[200 TO 400]) NOT
(annotation_score:1)

• interleukin-1 β: (protein_name:"interleukin-1 beta") AND (family:il-1) AND
(fragment:false) NOT (existence:4) NOT (existence:5) AND (length:[200 TO 400]) NOT
(annotation_score:1)

• Histone H2A: (protein_name:"histone h2a") AND (family:histone) AND (fragment:false)
NOT (existence:4) NOT (existence:5) AND (length:[* TO 200])

• Histone H2B: (protein_name:"histone h2b") AND (family:histone) AND (fragment:false)
NOT (existence:4) NOT (existence:5) AND (length:[* TO 200])

• Cytochrome P450 CYP3: (family:"Cytochrome P450") AND ((gene:cyp3) OR
(gene:cyp3A*)) AND (fragment:false) NOT (existence:4) NOT (existence:5) NOT
(annotation_score:1)

• Cytochrome P450 CYP51: (family:"Cytochrome P450") AND ((gene:cyp51) OR
(gene:cyp51A*) OR (gene:cyp51B*) OR (gene:cyp51C*)) AND (fragment:false) NOT
(existence:4) NOT (existence:5) NOT (annotation_score:1)

The GPCR sequences were collected from the GPCR-PEn database (URL: https://gpcr.utep.edu/) (Begum et al.,
2020). Sequence redundancy of the rhodopsin-like family was reduced using CD-hit (Fu et al., 2012) with 30% sequence
similarity cutoff.

A.2. Code

The code to reproduce the computational experiments is available at https://anonymous.4open.science/r/
AFS_AAC_SVM-F3D9. Protein sequences used in the computational experiments along with their UniProt IDs, are
provided in the datasets folder as .csv files for each family.
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B. Sequence and function diversity of protein classes within a dataset
Paralogous proteins have a common ancestor but have diverged in functionality. Protein functions are an aggregate of
descriptors describing protein’s activity and influence at various levels. They can be at the molecular level, like binding with
specific molecules and catalysing reactions, to the biological process level, like energy metabolism. In B.1, we discuss the
diversity of the functions of the proteins considered in our datasets.

As paralogs have a common ancestor, high sequence similarity would suggest high evolutionary conservation in the proteins.
In B.2, we discuss the extent of sequence diversity in protein classes considered in our datasets.

We see that the dataset of proteins considered in our computational experiments are diverse in their function and sequences.

B.1. Function diversity

We have considered paralogous proteins with varying functional differences. We find very subtle differences in the functions
of trypsin and chymotrypsin. On the other hand, the function difference is drastic in the case of alpha-lactalbumin and
lysozyme c.

Trypsin and chymotrypsin are a family of enzymes that break peptide bonds in proteins. The difference in the function
of these proteins is fine-grained; trypsins cleave only the peptide bond following a basic amino acid (K and R), while
chymotrypsins cleave the peptide bond following a hydrophobic amino acid (F , W , and Y ) (Dodson & Wlodawer, 1998).

GPCRs constitute a large and diverse class of cell surface receptor proteins. They trigger intra-cellular pathways in response
to external signals. These signals are in the form of small molecules, called ligands. Depending upon the nature of
ligands and other 3D structural similarities, GPCRs are grouped into distinct classes. We consider three such classes viz.,
rhodopsin-like, secretin-like, and glutamate-like. Further, we consider pairwise three subfamilies of rhodopsin-like GPCRs
viz., aminergic receptors, lipid receptors, and peptide receptors.

Lysozyme C and α-lactalbumin are sequence and structure homologs with mutually exclusive functions and high fold
conservation. Based on phylogenetic analysis, they are considered to have diverged from a common ancestor millions of
years ago (Qasba et al., 1997).

Globins are a superfamily of functionally divergent homologous protein families with a high level of fold conservation. We
consider three well-known globin families viz., myoglobin, hemoglobin-α and hemoglobin-β. Myoglobin is a monomer
that binds and releases oxygen as per physiological requirements. On the other hand, α and β chains together constitute
hemoglobin, a tetramer of composition α2β2 (Dill et al., 2017), that transports oxygen in red blood cells.

Tubulin-α and tubulin-β are similar to the hemoglobin-α and hemoglobin-β pair in that they both share sequence and 3D
structural similarities but have subtle functional differences. One copy each of tubulin-α and tubulin-β form a functional
dimer. Notably, neither two copies of tubulin-α nor two copies of tubulin-β can form a functional dimer. Tubulin-β has
a catalytic activity (GTP hydrolysis) that is absent in tubulin-α. This is one of the several subtle functional differences
between tubulin-α and tubulin-β.

Interleukin-1 alpha and interleukin-1 beta are both proteins involved in the immune system. They differ from each other in
their occurrence within the body (on cell surface or in blood circulation), activation mechanisms, and associated signalling
pathways (Galozzi et al., 2021).

Cytochrome P450 (abbreviated as CYP) is a family of proteins whose function is clearance of ’foreign’ molecules (drugs;
also called as xenobiotics) as well as in certain biosynthesis pathways e.g., of steroid hormones. CYP3 and CYP51 are two
of the several classes of CYPs; CYP3 metabolizes lipophilic molecules (McArthur et al., 2003) whereas CYP51 is involved
in steroid biosynthesis (Hargrove et al., 2012).

Hemoglobin-α/hemoglobin-β, histone H2A / histone H2B and tubulin-α/tubulin-β are paralog pairs that together function
as heteromers (protein complexes made up of different protein subunits).

B.2. Sequence Diversity

The dataset of the 15 paralog pairs in our experiments comprises 21 protein families (Table A2). For these families, we
compute the within-class sequence similarities (for sequences within a protein family). We also compute the inter-class
sequence similarities (between sequences from two different protein families) for each paralog pair. These are shown in
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Appendix Figure B4. We use a longest subsequence based similarity score, lcss, that is defined in B.2.1. In B.2.2, we see
that lcss significantly varies across the 21 protein families we are considering as compared to its variation between the two
protein sequences of any paralog pair.

B.2.1. LONGEST COMMON SUBSEQUENCE BASED SIMILARITY SCORE (lcss)

We compute the longest common subsequence (lcs) based similarity score (lcss) between a pair of protein sequences.
We define lcss between two sequences as the length of their longest common subsequence, lcs, divided by the length
of the longest sequence from the two. For a pair of protein sequences, ppiq “ pp

piq
1 , p

piq
2 , . . . , p

piq
L1

q of length L1 and

ppjq “ pp
pjq

1 , p
pjq

2 , . . . , p
pjq

L2
q of length L2, their lcss is,

lcspppiq,ppjqq “ max
q

k

s.t. q “ pq1, q2, . . . , qkq

pq1 “ ppiq
x1

“ ppjq
y1

, q2 “ ppiq
x2

“ ppjq
y2

, . . . , qk “ ppiq
xk

“ ppjq
yk

q

x1 ă x2 ă . . . ă xk

y1 ă y2 ă . . . ă yk

lcs based similarity score, lcss, is defined as,

lcsspppiq,ppjqq “
lcspppiq,ppjqq

maxpL1, L2q
P r0, 1s

lcsspppiq,ppjqq “ 1 if and only if ppiq “ ppjq, i.e., sequences are identical. Whereas lcsspppiq,ppjqq “ 0 if and only if
p

piq
x ‰ p

pjq
y ,@x, y, i.e., there are no amino acids common to both the sequences.

B.2.2. WITHIN-CLASS AND INTER-CLASS lcss FOR THE 15 PARALOG PAIRS

Within-class lcss: lcsspppiq,ppjqq are computed with ppiq,ppjq from the same protein family. These are shown in blue and
magenta in Figure B4 (with box-plots) for each of 21 protein families in the 15 paralog pairs.

• 12 of 21 protein families have median within-class lcss greater than 0.5. This implies less sequence diversity in this set
of families from the remaining families. These are,

Family α-lactalbumin lysozyme C myoglobin hemoglobin-α hemoglobin-β tubulin-α
Median lcss 0.6 0.59 0.81 0.63 0.67 0.83

Family tubulin-β interleukin-1 α interleukin-1 β histone H2A histone H2B cytochrome P450 CYP3
Median lcss 0.82 0.72 0.66 0.65 0.68 0.7

Table B3: The median within-class lcss between sequences from the respective families. See boxplot in Figure B4.

– Median lcss ě 0.6 for 11 of these 12 families and ě 0.8 for 3 families (high level of sequence conservation).
– For 7 out of the 15 paralog pairs, the median within-class lcss ą 0.5 for both families of a paralogous pair.

• For the remaining 9 protein families, the median within-class lcss is less than 0.5. This implies high sequence diversity
in this set of families from the remaining families. These are,

Family trypsin chymotrypsin rhodopsin-like receptor glutamate-like receptor secretin-like receptor
Median lcss 0.47 0.45 0.34 0.35 0.36

Family aminergic receptor lipid receptor peptide receptor cytochrome P450 CYP51
Median lcss 0.39 0.37 0.37 0.47

Table B4: The median within-class lcss between sequences from the respective families. See boxplot in Figure B4.

– For 7 out of the 15 paralog pairs, the median within-class lcss ă 0.5 for both families of a paralogous pair.
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• For the paralog pair Cytochrome P450 CYP3 vs CYP51, the median sequence similarity for CYP3 is greater than 0.5,
while for CYP51, it is less than 0.5.

Inter-class lcss: lcsspppiq,ppjqq are computed with ppiq,ppjq respectively from two protein families that are paralog pairs.
These are shown in cyan in Figure B4 (with box-plots) for each of the 15 paralog pairs.

• The median inter-class lcss is less than 0.5 for all paralog pairs. This implies sequences of the proteins across the classes
are not very similar.

Distinguishing paralog pairs based on within-class and inter-class lcss: If we analyse the box plots in Figure B4 - two
paralog pair proteins can be considered to be distinguishable based on sequence similarity if the upper-whisker of inter-class
lcss is lower than the lower-whiskers of the respective within-class lcss scores.

• Apart from paralog pairs, tubulin-α vs tubulin-β (Figure B4c) and interleukin-1 α vs interleukin-1 β (Figure B4d), no
other paralog pair is distinguishable based on sequence similarity.

• For Trypsin vs Chymotrypsin and the 6 GPCR pairs (Figures B4b and B4j to B4o), the median inter-class lcss scores
are close to the within-class lcss scores making them indistinguishable based on sequence similarity.
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(a) Lysozyme C vs α-Lactalbumin (b) Trypsin vs Chymotrypsin (c) Tubulin-α vs Tubulin-β

(d) Interleukin-1 α vs Interleukin-1 β (e) Histone H2A vs Histone H2B (f) Cytochrome P450 CYP3 vs CYP51

(g) Myoglobin vs Hemoglobin-α (h) Hemoglobin-α vs Hemoglobin-β (i) Myoglobin vs Hemoglobin-β

(j) Secretin-like vs Glutamate-like (k) Rhodopsin-like vs Glutamate-like (l) Rhodopsin-like vs Secretin-like

(m) Aminergic vs Lipid receptors (n) Aminergic vs Peptide receptors (o) Lipid vs Peptide receptors

Figure B4: lcss sequence similarity scores for the 15 paralog pair datasets. In the boxplots, the lower and upper whiskers
are at 1.5 IQR (inter-quantile range) values away from the first and third quartiles respectively.

18



990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Identifying key amino acid types that distinguish paralogous proteins

C. The SVEA algorithm for AFS

Algorithm 1 ϕi Monte-carlo approximation algorithm as suggested in (Tripathi et al., 2020; 2021)

Input: Feature set N “ t1, 2, . . . , 20u, Number of sample permutations samPerm, Datasets pDP , DQq, Set of coalitions
Sam co set “ rpqs

Initialise: vppqq “ 0, ϕ̂i :“ 0@i P N
Append N to Sam co set.
for s “ 1, 2, . . . , samPerm do

Take π P PermSetpNq with probability 1
20! .

for i “ 1, 2, . . . , 20 do
Compute Predipπq “ tπp1q, πp2q, . . . πpk ´ 1q|i “ πpkqu

if Predipπq not in Sam co set then
Compute vpPredipπqq “ 1 ´ tr erpPredipπqq.
Append Predipπq to Sam co set.

end if
if Predipπq Y i not in Sam co set then

Compute vpPredipπq Y tiuq “ 1 ´ tr erpPredipπq Y tiuq.
Append Predipπq Y tiu to Sam co set.

end if
ϕ̂i “ ϕ̂i ` vpPredipπq Y tiuq ´ vpPredipπqqq

end for
end for
ϕ̂i “

ϕ̂i

samPerm ,@i P N

D. SVM training for AFS partition
We provide details for the linear SVM classifier discussed in Section 2.3. We use 5-fold cross-validation to tune the SVM
regularisation hyperparameter C from t0.1, 1, 10, 100, 1000u that gives the best average classification score for the 5 folds.
C is inversely proportional to the strength of regularisation. In general, we find that there is an imbalance in the number of
sequences that we find for the two paralogous proteins, i.e. say nP ąą nQ. It is known that accuracy is not a well-suited
performance measure of the classifier in class imbalance settings. Therefore, we use the arithmetic mean of sensitivity and
specificity (AM) to measure the performance of the classifier (Brodersen et al., 2010). Further, we use a class-balanced
version of hinge loss for training the SVM as suggested in (Menon et al., 2013) for statistical consistency with the AM score.
Appendix Table E5 reports the train and test scores of the trained linear SVM with AAC and AFS features, respectively, on
the protein family datasets (See Appendix Table A2) considered in our computational experiments.
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E. More details for computational experiments
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Figure E5: The sizes of the AFS for the 15 datasets.

(a) Lysozyme C vs α-Lactalbumin (b) Trypsin vs Chymotrypsin (c) Tubulin-α vs Tubulin-β

(d) Interleukin-1 α vs Interleukin-1 β (e) Histone H2A vs Histone H2B (f) Cytochrome P450 CYP3 vs CYP51

(g) Aminergic vs Lipid receptors (h) Aminergic vs Peptide receptors (i) Lipid vs Peptide receptors

Figure E6: Shapley value (ϕpiq) for AAC features computed using SVEA.
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Table E5: Classification scores for different pairs of paralogous proteins using the train/test datasets described in Table A2,
using AAC and AFS features. The AFS amino acids computed for each pair are given in Table 1. The train score is the
mean (˘1 standard deviation) 5-fold cross-validation score. AM is the arithmetic mean of specificity and sensitivity. Acc is
the accuracy.

(a) Lysozyme C vs α-Lactalbumin
AAC AFS

Train AM 1.0 0.993 (˘0.013)
Test AM 0.896 0.898

Train Acc 1.0 0.99 (˘0.02)
Test Acc 0.836 0.881

(b) Trypsin vs chymotrypsin
AAC AFS

Train AM 0.992 (˘0.015) 0.977 (˘0.031)
Test AM 0.873 0.835

Train Acc 0.988 (˘0.024) 0.965 (˘0.047)
Test Acc 0.844 0.756

(c) Tubulin-α vs Tubulin-β
AAC AFS

Train AM 0.996 (˘0.009) 0.997 (˘0.006)
Test AM 0.992 0.992

Train Acc 0.997 (˘0.006) 0.994 (˘0.008)
Test Acc 0.991 0.994

(d) Histone H2A vs Histone H2B
AAC AFS

Train AM 0.983 (˘0.016) 0.983 (˘0.01)
Test AM 0.91 0.934

Train Acc 0.983 (˘0.016) 0.983 (˘0.01)
Test Acc 0.889 0.922

(e) Globins
Dataset AAC AFS

Myoglobin vs
Hemoglobin-α

Train AM 0.998 0.994
(˘0.003) (˘0.009)

Test AM 0.968 0.97
Train Acc 0.998 0.995

(˘0.005) (˘0.006)
Test Acc 0.969 0.971

Myoglobin vs
Hemoglobin-β

Train AM 1.0 1.0
(˘0.0) (˘0.0)

Test AM 0.957 0.936
Train Acc 1.0 1.0

(˘0.0) (˘0.0)
Test Acc 0.949 0.919

Hemoglobin-α
vs
Hemoglobin-β

Train AM 0.983 0.976
(˘0.008) (˘0.007)

Test AM 0.961 0.935
Train Acc 0.983 0.976

(˘0.008) (˘0.006)
Test Acc 0.966 0.947

(f) GPCRs
Dataset AAC AFS

Secretin-like
vs Glutamate-
like

Train AM 0.933 0.95
(˘0.042) (˘0.032)

Test AM 0.888 0.845
Train Acc 0.933 0.95

(˘0.042) (˘0.032)
Test Acc 0.889 0.844

Rhodopsin-
like vs
Glutamate-
like

Train AM 0.884 0.85
(˘0.042) (˘0.045)

Test AM 0.967 0.934
Train Acc 0.867 0.837

(˘0.038) (˘0.032)
Test Acc 0.956 0.926

Rhodopsin-
like vs
Secretin-like

Train AM 0.917 0.878
(˘0.051) (˘0.065)

Test AM 0.934 0.846
Train Acc 0.908 0.863

(˘0.06) (˘0.073)
Test Acc 0.941 0.853

Aminergic vs
Lipid
receptors

Train AM 0.949 0.943
(˘0.014) (˘0.005)

Test AM 0.922 0.843
Train Acc 0.943 0.94

(˘0.017) (˘0.008)
Test Acc 0.92 0.84

Aminergic vs
Peptide
receptors

Train AM 0.835 0.818
(˘0.06) (˘0.053)

Test AM 0.844 0.79
Train Acc 0.83 0.819

(˘0.06) (˘0.051)
Test Acc 0.827 0.784

Lipid vs
Peptide
receptors

Train AM 0.829 0.76
(˘0.022) (˘0.035)

Test AM 0.845 0.709
Train Acc 0.838 0.75

(˘0.018) (˘0.032)
Test Acc 0.858 0.725

(g) Interleukin-1 α vs Interleukin-1 β
AAC AFS

Train AM 0.98 (˘0.04) 0.98 (˘0.04)
Test AM 0.979 0.985

Train Acc 0.975 (˘0.05) 0.975 (˘0.05)
Test Acc 0.961 0.971

(h) Cytochrome P450 CYP3 vs Cytochrome P450 CYP51
AAC AFS

Train AM 0.967 (˘0.041) 0.933 (˘0.062)
Test AM 0.902 0.92

Train Acc 0.969 (˘0.038) 0.936 (˘0.062)
Test Acc 0.894 0.908
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E.1. Globin Family

The 3D structures of hemoglobin-α/β (PDB ID:1HHO) were aligned with myoglobin (PDB ID:3RGK) using the on-
line pairwise structure alignment tool available at https://www.rcsb.org/alignment, with the default param-
eter settings ( algorithm: jFATCAT(rigid) — RMSD Cutoff: 3 — AFP Distance Cutoff: 1600 —
Fragment Length: 8).

Figure E7: The highlighted AMINO ACIDS in myoglobin chain correspond to (after structure alignment) the positions
which are hemologlobin-α/β tetramer contact points (as identified in Table 3 and Table 4 of (Shionyu et al., 2001)). We
find that the amino acids K,E, I , which are common in AFS1pMyoglobinq and AFS2pMyoglobinq, are less in number at
the contact residues of hemoglobin tetramer and more in number at the corresponding locations in myoglobin, which is a
monomer.
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Figure E8: Multiple sequence alignment of hemoglobin-β and myoglobin sequences. 15 sequences on the left are
from hemoglobin-β and on the right are from myoglobin. The sequences are randomly selected from the train set of the
protein families. AFSpMyoglobinq amino acids are in green and AFSpHemoglobin-βq in red. The intensity of the color is
proportional to the Shapley value ϕpiq of the amino acid i (See Figure 3c)
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E.2. Tubulin

The inter-chain contact residues from the tubulin-α/β heterodimer were identified using ChimeraX 1.4 (Pettersen et al.,
2021). The Contacts tool available in Tools Ñ Structure Analysis was used with settings as shown in Figure E9. For PDB
ID:3JAR we count the residues of chain-A (tubulin-α) and chain-B (tubulin-β) which are in contact with the residues of other
tubulin chains. Similarly, for PDB ID:5N5N we count the residues of chain-G (tubulin-α) and chain-B (tubulin-β) which are
in contact with the residues of other tubulin chains. The code for counting the AFS residues at the identified contact points
of the respective chains is available at https://anonymous.4open.science/r/AFS_AAC_SVM-F3D9.

Figure E9: ChimeraX 1.4 settings for identifying inter-chain contact points from the tubulin-α/β heterodimer and from the
histone heterooctamer

E.3. Histone

The inter-chain contact residues of histone H2A and H2B were identified from its heterooctameric structure comprising
of two H2A/H2B dimers and one H3/H4 tetramer, using ChimeraX 1.4. The Contacts tool available in Tools Ñ Structure
Analysis was used with settings as shown in Figure E9. For PDB ID: 1AOI and 3KWQ, we count the residues of an H2A
and an H2B chain, which are in contact with other histone chains in the heterooctameric structure. The code for counting
the AFS residues at the identified contact points of the respective chains is available at https://anonymous.4open.
science/r/AFS_AAC_SVM-F3D9.
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Figure E10: Multiple sequence alignment of tubulin-α and tubulin-β sequences. 15 sequences on the left are from
tubulin-β and on the right are from tubulin-α. The sequences are randomly selected from the train set of the protein families.
AFSpTubulin-αq amino acids are in green and AFSpTubulin-βq in red. The intensity of the color is proportional to the
Shapley value ϕpiq of the amino acid i (See Figure E6c)
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Figure E11: Multiple sequence alignment of histone H2A and histone H2B sequences. 15 sequences on the left are
from histone H2B and on the right are from histone H2B. The sequences are randomly selected from the train set of the
protein families. AFSpHistone H2Aq amino acids are in green and AFSpHistone H2Bq in red. The intensity of the color is
proportional to the Shapley value ϕpiq of the amino acid i (See Figure E6e)
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Figure E12: Multiple sequence alignment of interleukin-1 α and interleukin-1 β sequences. 15 sequences on the left are
from interleukin-1 β and on the right are from interleukin-1 α. The sequences are randomly selected from the train set of
the protein families. AFSpInterleukin-1 αq amino acids are in green and AFSpInterleukin-1 βq in red. The intensity of the
color is proportional to the Shapley value ϕpiq of the amino acid i (See Figure E6d)
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E.4. Marginal contribution feature importance (MCI) (Catav et al., 2021) for AFS

For a feature i, its MCI score is defined as,

MCIpiq “ max
SĎNztiu

vpS Y tiuq ´ vpSq,

Here, vp¨q is the same as that defined in Section 2.2. We compare the amino acids with the top-d (d “ size of AFS)
MCI scores to the AFS in Table E6. MCI is computed using the same approximation scheme as in Appendix Section C
Algorithm 1 with appropriate modifications.

Table E6: AFS comparison with the amino acids having the top-d MCI (Catav et al., 2021) scores. Here, d is the size of
AFS for the respective dataset. The amino acids that differ in the two sets are in bold and underlined, with their counts
mentioned in the rightmost column. For 8 of 15 datasets, AFS and top-d MCI sets are the same, while only for two datasets
do they differ in two amino acids. For all 15 datasets, at least the top-3 MCI amino acids are in AFS. For 11 of these
datasets, at least the top-5 MCI amino acids are in AFS.

Paralog pair top-d MCI amino acids
(rank-1 Ñ rank-d) AFS

Difference
count

Lysozyme C (74) and
α-Lactalbumin (22) tI, A,D,G,R, F,N,E,W,Lu tI, A,D,N,G,R,E, F, L,W u 0

Trypsin (66) and
Chymotrypsin (17) tY,W, T,A,K, V, Iu tY,W, T,A, V,K,P u 1

Tubulin-α (117) and
Tubulin-β (191) tQ,M,K,H, F, I,N,A, Y, Cu tM,Q,K,N, F, I,H,A,C, Y u 0

Histone H2A (180) and
Histone H2B (177) tL,G,K, S,M, T,N, F, Y u tL,G, S,M,K,N, T, Y, F u 0

Interleukin-1 α (16) and
Interleukin-1 β (25) tG,C, T, V,Q, S,A, I, P u tC,G, T, S, V,Q,A,N , P u 1

Cytochrome P450 CYP3
(32) and CYP51 (32) tH,F,G,K,A, P,Nu tH,F,G,K,A, P,Nu 0

Globins
Myoglobin (107) and
Hemoglobin-α (303) tV, Y,E,K, S,G,W, I, C, P u tE,S, Y, V,K, P, I,G,C,W u 0

Myoglobin (107) and
Hemoglobin-β (285) tV,K,E,C,W,N, F, Y,M, Iu tK,V,C,E,W,N, F,M, Y, Iu 0

Hemoglobin-α (303) and
Hemoglobin-β (285) tW,S,N, P,V u tW,P,N, S,Gu 1

GPCRs
Rhodopsin-like (181) and

Glutamate-like (89) tD,E,Q,G,L, Iu tD,Q,E,G,M , Lu 1

Secretin-like (90) and
Glutamate-like (89) tW,H, Y, V,Du tW,H, Y, V,Du 0

Rhodopsin-like (181) and
Secretin-like (90) tW,E,H,Q, S,M, V,Au tW,E,M,S, V,H,Q,Au 0

Rhodopsin-like GPCRs
Aminergic receptors (186)
and Lipid receptors (113) tL,E, P,K, F,D, Iu tL,P,E,W , F,M , Du 2

Aminergic receptors (186)
and Peptide receptors (367) tL,E,K, F,M,H, R,Du tL,F,E,M,K,D,V , Ru 1

Lipid receptors (113) and
Peptide receptors (367) tR,G, P,K, I, V,T u tP,R,G, I,W ,S, V u 2
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