T-BEN: A TEMPORAL LOGIC GUIDED APPROACH FOR TEMPORAL REASONING BENCHMARK GENERATION

Anonymous authorsPaper under double-blind review

ABSTRACT

In logic-based Artificial Intelligence, temporal reasoning typically involves formalizing problems as logical rule expressions and employing symbolic reasoners to infer and derive new conclusions from structured knowledge. However, symbolic reasoners cannot process natural language directly and require manually constructed symbolic knowledge bases, which can be both time-consuming and resource-intensive to create and maintain. Given the recent widespread adoption of Large Language Models (LLMs) and their remarkable successes across diverse domains, we are motivated to explore to what extent LLMs can handle temporal logic tasks, dispensing with traditional symbolic reasoners.

We introduce t-BEN, a benchmark suite that adheres to the semantics of temporal logic. It synthesizes temporal reasoning datasets in both symbolic and natural language forms, enabling the evaluation of LLMs on temporal logic reasoning. t-BEN is a highly scalable benchmark that supports the generation of datasets with varying sizes and rule structures of varying complexity. Furthermore, each question in t-BEN is guaranteed to be unseen by LLMs during pretraining, effectively minimizing the risk of data leakage. Our results, along with a detailed ablation study of seven frontier LLMs, offer valuable insights into the capabilities and limitations of current models in temporal logic reasoning tasks.

1 Introduction

Temporal logic reasoning problems, grounded on formal logical rules, have been studied for decades in the field of logic-based Artificial Intelligence Alur & Henzinger (1994); Venema (2017); Lamport (1980). Predominant approaches to solving these problems typically rely on reasoners that are specific to particular logical languages, such as MeTeoR Wang et al. (2022) and NuSMV Cimatti et al. (1999). A drawback of employing symbolic reasoners for temporal logic reasoning is that they often require specialized knowledge bases and rules tailored to a specific temporal logic language, which can be both time-consuming and resource-intensive to create and maintain. Additionally, the inability to support natural language expressions also limits their applicability to other domains.

Currently, a widely adopted approach to calibrating the diverse capabilities of LLMs is the construction of well-designed and representative benchmarks. For example, HumanEval Chen et al. (2021) was introduced to evaluate the coding abilities of LLMs, while GSM8K Cobbe et al. (2021) was developed to assess their performance in mathematical reasoning. However, in traditional logic-based Artificial Intelligence (AI) domains, many tasks are still addressed using formal logical rules and symbolic reasoners. Despite the advancements of LLMs, relatively little effort has been made to explore their capabilities in solving such tasks—particularly the more challenging aspects of rule-based temporal logic reasoning. While some studies have benchmarked or evaluated the temporal reasoning abilities of LLMs Wang & Zhao (2024); Xiong et al. (2024), they primarily focus on reasoning over temporal data expressed in natural language, without addressing the temporal logic, which is typically represented as logical rules with well-established syntax and semantics.

In this paper, we introduce t-BEN, a benchmark suite to evaluate the temporal reasoning capabilities of language models. Each question is constructed based on temporal logic and is guaranteed to be unseen during training, thereby requiring models to perform reasoning rather than rely on memorized knowledge. Specifically, we adopt DatalogMTL Brandt et al. (2018), a popular temporal logic language, as a proxy, and focus on the classic temporal logic reasoning task of *fact entailment* Cheng

(1996); Brandt et al. (2018). We consider temporal data of the symbolic form $P(a_1, \ldots, a_n)@\varrho$, where P denotes a predicate (relation), a_i is an entity, n denotes the arity and ϱ represents a punctual time point or time interval. Given a set of temporal rules and a target temporal fact, the task is to determine whether the fact is entailed by the temporal data and logical rules. To provide better intuition, we use Example 1 togeter with Figure 1 to describe the problem.

Example 1. There is growing evidence that individuals develop COVID-19 immunity if they were infected within the last 6 months (discounting the last ten days when they had no symptom) Feikin et al. (2022). The condition can be captured by a DatalogMTL program Π_{ex} with the following rule:

$$Immune(x) \leftarrow \Leftrightarrow_{(10,183]} Infect(x), \bowtie_{[0,10]} NoSym(x)$$

The above rule checks whether an individual infected at some point in the last six months excluding the last 10 days (operator $\diamondsuit_{(10,183]}$) remained continuously without symptoms in the last 10 days (using the 'box past' operator $\boxminus_{[0,10]}$).

Then, we assume a dataset contains some historical data about a person called Ben in the form of facts stamped with validity intervals, where the first day of the year is given by the interval (0,1], the second day by (1,2], and so on. Ben got vaccinated at July 19 (represented as 199). Moreover, Ben had no symptoms since July 1 (i.e., 181) until August 30 (i.e., 242). This is represented by a dataset \mathcal{D}_{ex} with the following facts:

If we want to know whether Ben is immune between September 8 and September 9, represented as a temporal fact Ben@(251,252], we can formulate this as a *fact entailment* problem: Is Ben@(251,252] entailed by \mathcal{D}_{ex} and Π_{ex} ?

Traditionally, a symbolic reasoner Bellomarini et al. (2018); Wang et al. (2022) is used to check entailment by applying temporal rules to temporal data, deriving new facts, and verifying if the given fact is among the derived ones. There are two key challenges in using symbolic reasoners for temporal reasoning tasks: 1) symbolic reasoners cannot directly process natural language descriptions and instead require inputs to be formalized as logical rules; 2) generating these logically consistent and error-free rule representations is a non-trivial task that demands significant domain expertise and manual effort.² In this paper, we explore whether LLMs can solve temporal reasoning tasks in both symbolic and natural language forms, potentially serving as an alternative to, or a complementary tool for, traditional symbolic reasoners. Our contributions are summarized as follows:

- t-BEN is the first temporal reasoning benchmark constructed based on the semantics of temporal logic, while supporting evaluation in both symbolic and natural language forms.
- t-BEN provides a scalable and verifiable testbed for the creation of datasets with varying sizes and rule structures of different complexities. Moreover, the questions in t-BEN are guaranteed to be unseen by LLMs during pretraining, thereby mitigating the risk of data leakage and enabling a more rigorous and trustworthy evaluation setting.
- We conduct extensive experiments to evaluate the performance of several frontier Large Language Models (LLMs), including both open-source and proprietary models, on t-BEN. Our results reveal an interesting observation: among all evaluated models, only DeepSeek-R1 delivers impressive results on t-BEN, while other LLMs—including GPT-40—perform poorly, often nearing random chance. Additionally, our analysis of other distilled variants of DeepSeek-R1 reveals consistent performance gains, which we attribute to DeepSeek's unique training strategy—specifically, the inclusion of instruction-following data during the final stages of supervised fine-tuning and reinforcement learning training.

¹If the arity is 0, then P is treated as a statement that is either true or false. This differs from temporal knowledge graphs, which consist solely of quadruples (arity=2).

²Although prior work has explored converting natural language expressions into logical rules Chen et al. (2023); Tammet et al. (2024), the accuracy of such conversions remains an open question. The two-stage pipeline may suffer from error propagation, which complicates the reasoning process.

2 RELATED WORKS

Temporal logic reasoning Knowledge representation languages, such as Linear Temporal Logic (LTL) Huth & Ryan (2004) and DatalogMTL Brandt et al. (2018), have become the de facto standard for specifying temporal properties in both formal verification and artificial intelligence. Many temporal reasoning problems have proven to be PSPACE-complete Wałęga et al. (2019); Fionda & Greco (2018); Bauland et al. (2009). *Satisfiability checking*, that is, the problem of deciding whether a given formula admits a satisfying model, is one of the most important computational tasks associated with the logic, and one of the first that have been carefully studied Sistla & Clarke (1985). Similarly, the reasoning tasks considered in DatalogMTL are *fact entailment* and *consistency checking*. These problems polynomially reduce to the complements of each other Brandt et al. (2018). Despite this theoretically high computational complexity, numerous techniques and tools are developed to solve different temporal reasoning problems, ranging from tableau systems Goré & Widmann (2009); Bertello et al. (2016) to reductions to model checking Cavada et al. (2014), to automata techniques Li et al. (2014); Wang et al. (2022).

Benchmarking and Reasoning in Large Language Models Although the aforementioned temporal reasoning problems have been widely explored in the traditional logic-based AI domain, they remain underexplored in the regime of LLMs. In recent years, benchmarking reasoning capabilities in LLMs is a problem of pressing interest to the field Plaat et al. (2024); Chang et al. (2024); Huang & Chang (2023). There is a substantial body of research evaluating the reasoning abilities of LLMs, covering areas such as arithmetic reasoning, logical reasoning, and commonsense reasoning. Notably, simple math problem datasets like AQUA Ling et al. (2017), GSM8K (Cobbe et al., 2021), and SVAMP (Patel et al., 2021) are frequently used to assess arithmetic reasoning (Touvron et al., 2023; Shi et al., 2023). Welleck et al. (2021) developed NaturalProofs, a multi-domain dataset for studying mathematical reasoning in natural language, while Welleck et al. (2022) investigated LLMs' abilities to generate the next step in mathematical proofs and complete full proofs. Additionally, LLMs have been evaluated on logical reasoning tasks, including symbolic tasks like Coin Flip and Last Letter Concatenation (Wei et al., 2022), and Logic Grid Puzzles on the BIG-BENCH (Srivastava et al., 2023). Most relevant to our work are various approaches to evaluating and enhancing the algorithmic reasoning abilities of LLMs (Zhou et al., 2022; Fatemi et al., 2025).

3 DATALOGMTL

DatalogMTL Brandt et al. (2018); Wałęga et al. (2019) is a temporal logic language, which extends Datalog Abiteboul et al. (1995) with operators from metric temporal logic (MTL) Koymans (1990). Different Datalog designed to handle static facts and rules due to lack of built-in temporal constructs, DatalogMTL equipped with MTL operators is enabled to reasoning about properties of systems that evolve over time. These operators build upon the standard linear temporal logic (LTL) Huth & Ryan (2004) operators, such as \Leftrightarrow standing for "sometime in the past", \boxminus for "always in the past", and $\mathcal S$ for "since", as well as their future counterparts \Leftrightarrow for "sometime in the future", \boxplus for "always in the future", and $\mathcal U$ for "until". In MTL, however, these LTL operators are annotated with intervals; for instance, the expression $\Leftrightarrow_{[1,2]}LiveIn(x,y)$ is true at time t if entity x lived in location y sometime between times t-1 and t-2. Similarly, $\boxminus_{[1,2]}LiveIn(x,y)$ holds at time t if x continuously lived in y throughout the aforementioned time interval.

Syntax We consider a *signature* consisting of pairwise disjoint countable sets of constants, variables, and predicates with non-negative integer arities. A term is either a constant or a variable. A *relational atom* is an expression of the form $P(\mathbf{s})$, with P a predicate and \mathbf{s} a tuple of terms whose length matches the arity of P. In this paper, we restrict ourselves to a fragment in which metric atoms are generated by the following grammar, where $P(\mathbf{s})$ is a relational atom and ϱ an interval:

$$M ::= P(\mathbf{s}) \mid \Leftrightarrow_{\rho} M \mid \Leftrightarrow_{\rho} M \mid \boxminus_{\rho} M \mid \boxminus_{\rho} M$$

A rule in this fragment is an expression of the form

$$P(\mathbf{s}) \leftarrow M_1 \wedge \dots \wedge M_n, \quad \text{for } n \ge 1,$$

where the body atoms M_1, \ldots, M_n are metric atoms and the head atom $P(\mathbf{s})$ is relational. A program is a finite set of rules.

163

164

173

174

175

176177

178 179

180

181

182

183

185

187

188 189

190

191

192

193

196

199

200

201

202203

204

205

206207

208

210

212

213

214

215

Semantics An interpretation $\mathfrak I$ is a function assigning truth values to ground relational atoms $P(\mathbf c)$ and time points $t \in \mathbb Z$. It determines if $P(\mathbf c)$ is satisfied at t, denoted as $\mathfrak I, t \models P(\mathbf c)$, or not, denoted as $\mathfrak I, t \not\models P(\mathbf c)$. This notion of truth assignment extends to other ground metric atoms in the considered fragment as follows:

$\mathfrak{I},t\models \diamondsuit_{\varrho}M$	iff	$\mathfrak{I},t'\models M \text{ for some }t' \text{ with }t-t'\in\varrho,$
$\mathfrak{I},t\models \oplus_{\varrho}M$	iff	$\mathfrak{I},t'\models M \text{ for some }t' \text{ with }t'-t\in\varrho,$
$\mathfrak{I},t\models \boxminus_{\varrho}M$	iff	$\mathfrak{I},t'\models M \text{ for all }t' \text{ with }t-t'\in\varrho,$
$\mathfrak{I},t\models \boxplus_{\varrho}M$	iff	$\mathfrak{I},t'\models M \text{ for all }t' \text{ with }t'-t\in\varrho.$

For example, an interpretation making atom LiveIn(Ann, Paris) true everywhere within [10, 30] and false elsewhere makes $\boxminus_{[1,2]}LiveIn(Ann, Paris)$ true at the time point 31, but false at 32. An interpretation can be alternatively seen as the (possibly infinite) set of facts that it satisfies, which yields a natural meaning to containment and minimality of interpretations.

3.1 Major Temporal Reasoning Problems

Zero-shot Prompt Prefix

According to Brandt et al. (2018); Wałęga et al. (2019), temporal logic reasoning involves two major problems: consistency checking and fact entailment. Consistency checking is the task of determining whether a given program and dataset admit a common model Emerson (1990); Schnoebelen (2002). Fact entailment involves checking whether a program and dataset together entail a specific relational fact. Brandt et al. (2018) note that in DatalogMTL, consistency checking and fact entailment are complementary problems. Consequently, this paper focuses solely on the fact entailment problem to evaluate the temporal reasoning capabilities of large language models.

4 T-BEN: A SUITE FOR GENERATING TEMPORAL REASONING DATASETS

DatalogMTL is a temporal logic language that can characterize complex temporal conditions by defining various rules using combinations of different atoms and temporal operators $(\diamondsuit, \diamondsuit, \boxminus, \boxminus, \boxminus)$ whose semantics has been described in Section 3. To some extent, the complexity of a *fact entailment* problem is largely determined by the complexity of associated temporal rules.

```
Given a dataset, temporal rules and a temporal fact, you need to apply the rules to the dataset and then judge
 whether the given fact is entailed by the dataset and rules.
 The rules are expressed as DatalogMTL, a language of temporal logic that extends Datalog with operators from
 metric temporal logic (MTL). The semantics of four MTL operators are given as follows
 If \phi_{[a,b]}A is true at the time t, it requires that A needs to be true at some time between t-b and t-a
 If \boxminus_{[a,b]}A is true at the time t, it requires that A needs to be true continuously between t-b and t-a.
 If \oplus [a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b.
 If \boxplus [a, b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b.
 Now, we have a data, some DatalogMTL rules and a fact entailment question. You should only output true or false
 and please do not output other words
  SingleAtom
                                             MultiAtoms
                                                                                              Rational
\textbf{R} \colon A \leftarrow \diamondsuit_{[1,2]} B
                                            \textbf{R} \colon A \leftarrow \boxminus_{[3]} B \land \boxminus_{[2,\ 3]} C
                                                                                         \textbf{R} \colon \ A \leftarrow \boxminus_{[1.2,\ 2.1]} B \land \boxminus_{[4.2,\ 5.1]} B
                                                                                         D: {A@[1.1]}
D: {B@[4, 5]}
                                            D: {B@[1], C@[1, 3]}
Q: A@6 is entailed?
                                             Q: A@3 is entailed?
                                                                                         Q: A@[2.4, 2.8]) is entailed?
 MixedOperators
                                              MultiRules
                                                                                         Recursive
                                            R{:}\; \overline{D \leftarrow \boxminus_{[2]} B \land \boxminus_{[1,2]} C}
\mathbf{R}: \ A \leftarrow \Leftrightarrow_{[1, 2.4]} \mathbf{B} \wedge \boxplus_{[1, 2]} \mathbf{C}
                                                                                         \mathbf{R}: A \leftarrow \Leftrightarrow_{[1,2]} A \wedge \boxminus_{[1,10]} C
                                                A \leftarrow \diamondsuit_{[1.5,\ 2]}D \wedge \diamondsuit_{[2]}C
D: {B@[1], C@[2, 4]}
                                                                                         D: {A@[1], C@[1, 100]}
                                            D: \{B@[1], C@[2, 5]\}
Q: A@2.3 is entailed?
                                                                                         Q: A@99 is entailed?
                                             Q: A@[4.5, 5] is entailed ?
```

Figure 1: Six levels of temporal reasoning problems. We present an example representing each level, along with the corresponding rule, dataset, and fact entailment problem. A zero-shot-prompt prefix is provided. For better demonstration, we use the symbols \Leftrightarrow , \Leftrightarrow , \bowtie , and \bowtie , which are replaced by <->, <+>, [-], and [+], respectively, in the actual prompts due to typing constraints.

4.1 LEVELING DATALOGMTL RULES

To address the aforementioned challenge and provide a more comprehensive evaluation of the temporal reasoning abilities of large language models, we aim to create a new synthetic benchmark with flexible configurations for customizing rule structures and task complexity. We classify DatalogMTL rules into six classes (S-Atom, ..., Recursive) based on their structural representations, considering factors such as the number of body atoms, the number of temporal operators used, the number of rules involved, and whether the rules are recursive. While we are unable to quantify the degree of complexity of each level, we assume that higher levels correspond to greater complexity. This assumption is based on the observation that more complex rule structures require additional temporal reasoning steps when using a symbolic reasoner like MeTeoR Wang et al. (2022).

S-Atom The most simplest form of a rule is $A \leftarrow \oslash_{[\rho]} B$, where \oslash could be one of the four metric temporal operators (\boxminus , \boxminus , \Leftrightarrow and \Leftrightarrow). We ensure that A and B are two different atoms, so only one calculation operation. A **S-Atom** example is given in Figure 1, where we can derive A@[5,7] based on the given dataset and the rule, entailing that A@6 is true. In particular, we consider the integer timeline, a fragment of DatalogMTL Wałęga et al. (2020) and use one type of MTL operator.

M-Atoms In the **S-Atom**, the body contains only one atom, so a single rule application is sufficient to complete the derivation. In **M-Atoms**, we increase the number of atoms in the rule body, requiring not only the validation of each atom but also an intersection operation to obtain the final valid interval. As the example shown in Figure 1, the rule contains two atoms. First, we calculate the valid intervals for each atom. Based on the provided facts, $\Box_{[3]}B$ holds only at the punctual time point [4,4], and $\Box_{[2,3]}A$ holds at the interval [4,5]. The intersection of these intervals, [4,4] and [4,5], is [4,4]. We derive that A is true at the time point 4, so A@4 is entailed. As with **S-Atom**, we consider DatalogMTL over the integer timeline Wałęga et al. (2020) and use only one type of MTL operator.

Rational Both **S-Atom** and **M-Atoms** focus solely on the integer timeline, which represents a relatively limited time space and simplifies reasoning due to the integer semantics Wałęga et al. (2020). In **Rational**, we build on top of **M-Atoms** by expanding the timeline to include the rational numbers, incorporating decimal time points. Intuitively, rational-based numerical operations are more complex than their integer-based counterparts, and we aim to determine if large language models exhibit similar behavior. We continue to use only one type of MTL operator at this level.

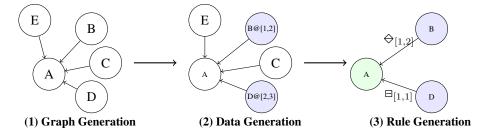


Figure 2: An example of generating temporal data and rules. First, we randomly generate a graph. Next, our program selects specific nodes to assign time points. In our example, nodes B and D are chosen, resulting in two temporal facts: $\left\{B@[1,2], D@[2,3]\right\}$; Finally, we select a node as the head atom, with body atoms derived from the previous step. We then randomly assign temporal operators to these body atoms, resulting in the rule: $A \leftarrow \Leftrightarrow_{[1,2]} B \land \boxminus_{[1,1]} D$. The number of body atoms, the time range, and the temporal operators are specified as input parameters.

M-Operators Using only one operator limits the expressiveness of DatalogMTL, preventing the definition of complex temporal conditions. Thus, a natural expansion is to allow the use of MTL operators. The four types of MTL operators can be used to define temporal conditions associated with both the past and the future. A **M-Operators** example is shown in Figure 1, which involves two MTL operators (\Leftrightarrow and \boxplus). To complete the derivation, we first calculate the valid interval where $\Leftrightarrow_{[1,2,4]}B$ with the past operator (\Leftrightarrow) holds, which is [2,3.4]. Then, we calculate $\boxplus_{[1,2]C}$, whose valid

interval is [1, 2]. After performing the interval intersection, we obtain that A holds at the time interval [2, 2]. Thus, the temporal A@2.3 is not entailed.

M-Rules In the previous four levels, fact entailment is associated with only one temporal rule. However, in more practical scenarios, multiple temporal rules may be required to express complex temporal conditions. In this level, we consider a multi-rule temporal reasoning case, where fact entailment involves multiple temporal rules and rule applications must be executed across these rules to complete the derivation. As the example in Figure 1, to derive the target atom A, we need to know both D and C. However,the dataset only provides the information about C. We can derive the D holds at 3 according to the first temporal rule $D \leftarrow \boxminus_{[2]} \land \boxminus_{[1,2]} C$; then, we can derive that A holds at the interval [4.5, 5] according to the second rule. Hence, A@[4.5, 5] is entailed.

Recursive The fact entailment problem at this level is considered the hardest because it involves recursion. Unlike static knowledge representation languages (e.g., Datalog), where all facts can be derived after a certain number of rule applications, some recursive rules in DatalogMTL may require an infinite number of applications. Even for symbolic-based approaches, this presents a significant challenge, and researchers have devoted considerable effort to addressing it Wałęga et al. (2021; 2023). According to Wałęga et al. (2023), in the recursive scenarios, periodic structures will ultimately occur repeatedly, but calculating these periodic structures is challenging. From a human perspective, however, identifying such periodic structures can be straightforward. For instance, consider a recursive rule \mathbb{H}_{1year} Bday $(x) \leftarrow \text{Bday}(x)$, which states that anyone having their birthday at a time point t will also be having their birthday at the same time the following year. If we know that Ben has his birthday on Jun 8, 1991, it is easy to know that he will have his birthday on Jun 8, 1992, Jun 8, 1993 and so on. However, this is difficult for traditional symbolic-based approaches to handle. Therefore, we design fact entailment problems associated with recursive rules to test whether large language models can perform well in this setting.

Specifically, we use facts from both propositional logic Klement (2004) and first-order logic Barwise (1977). The former contains declarative statements that are either 'true' or 'false', while the latter includes expressions with one or more variables. For example, we allow both forms of temporal facts: Raining and Immune(x). The former states that an event (raining) is occurring, while the latter denotes that a property (immune) is associated with an entity, where x acts as a placeholder that can be instantiated to any entity, such as Immune(Ben), indicating that Ben is immune.

4.2 GENERATING TEMPORAL DATA AND RULES

The benchmark generation process³ can be mainly divided into the following three steps: 1) Graph construction, 2) Data generation, and 3) Rule generation.

Graph construction We employ a general-purpose random graph generator to generate a connected directed random graph. The nodes in the random graph represent predicates, such as A, B, and C. Each edge in this graph represents a body atom of a rule pointing to the corresponding head in the rule. In particular, a predicate can appear in bodies of multiple different rules.

Data generation After the construction of the graph, the program will traverse each nodes in the graph and randomly assign time points or time intervals to the chosen nodes. The time points or intervals are generated based on a given range.

Rule Generation Once the temporal data is generated, the rule generator traverses the edges of the graph, assigning random operators and intervals to the edges. To ensure the generated graph is non-trivial, a reasoning process is performed across the entire graph after completing this step to ensure new facts can be inferred. If multiple rules are required, the program repeats previous steps until a sufficient number of rules are generated.

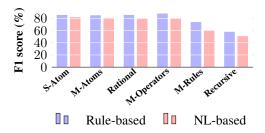
An example Figure 2 shows an example of generating temporal data and rules. In particular, our program will have a post-processing operation to scan all the data and rules to ensure they have

³The pseudocode for this benchmark generation algorithm can be found in Appendix F.

been utilized and removes any data and rules that are not participated in the the temporal reasoning process. We define the following flags for the samples to be generated based on their characteristics: rational number, multiple body atoms, recursive and mixed operators. These flags control the rule structures during the generation process.

	Prompt type	S-Atom	M-Atoms	Rational	M-Operators	M-Rules	Recursive
о3	Zero-shot	100.0	100.0	99.5	100.0	99.5	98.5
gemini-2.5-pro	Zero-shot	96.0	92.0	98.5	94.0	94.0	99.0
gemini-2.5-flash	Zero-shot	96.5	91.0	98.0	92.0	94.5	94.5
gemini-2.5-flash-lite	Zero-shot	46.0	50.0	49.5	50.5	50.5	39.5
gemini-2.5-nash-lite	Zero-shot-CoT	97.5	88.5	91.5	96.0	91.5	61.0
Claude 3.5v2	Zero-shot	61.0	58.0	58.0	66.5	51.0	49.5
Claude 3.3V2	Zero-shot-CoT	86.0	75.0	84.5	89.0	75.0	56.0
	Zero-shot	45.8	43.2	37.1	57.3	53.3	37.7
GPT-4o	Few-shot	40.4	38.0	27.2	51.6	36.7	32.2
	Zero-shot-CoT	85.6	85.1	85.7	90.3	74.0	58.0
	Zero-shot	40.7	44.0	43.9	60.5	39.1	8.7
Llama-3-8B	Few-shot	38.4	44.3	44.4	47.1	36.1	30.2
	Zero-shot-CoT	59.9	58.4	68.2	64.1	59.0	48.5
	Zero-shot	47.0	46.0	33.0	49.5	38.5	16.0
Qwen2.5-32B	Few-shot	41.5	48.0	31.0	56.0	42.5	21.5
	Zero-shot-CoT	80.0	80.0	78.4	89.0	61.6	51.5
Qwen3-32B	Zero-shot	99.5	99.5	98.5	98.5	96.5	77.5
DeepSeek-R1	Zero-shot	100.0	96.0	99.5	99.5	97.5	88.9
Distill-Qwen-7B	Zero-shot	80.7	75.9	70.0	79.9	65.6	45.5
Distill-Qwen-14B	Zero-shot	95.0	92.0	97.0	95.5	88.4	57.6
Distill-Qwen-32B	Zero-shot	96.9	87.9	97.5	90.4	86.2	64.0

Table 1: Accuracy of 13 models on our synthetic benchmarks across six rule structures.


5 EXPERIMENTS AND RESULTS

Baselines We evaluate the performance of seven LLMs on t-BEN. These models include proprietary models like GPT-40 Achiam et al. (2023), OpenAI-03 OpenAI (2025), Gemini 2.5 series Comanici et al. (2025) and Claude 3.5Anthropic (2024). Open source models that we evaluate include Llama-3 Dubey et al. (2024) and Qwen2.5-32B-Instruct Yang et al. (2024), Qwen3-32B Yang et al. (2025), DeepSeek-R1 Liu et al. (2024) and three DeepSeek-R1 distilled models (DS-R1-Distill-Qwen-7B, DS-R1-Distill-Qwen-14B and DS-R1-Distill-Qwen-32B). We conduct experiments on all non-reasoning models using three different prompting strategies: zero-shot prompting, few-shot in-context learning (Brown et al., 2020), and chain-of-thought prompting (Wei et al., 2022). We consider only the zero-shot prompting setting for reasoning models due to the unique nature.

Benchmark statistics and experimental settings Unless otherwise specified, each benchmark level contains 200 samples selected from the facts derived using the chosen data and rule(s). For negative samples, a random interval is chosen, ensuring that these intervals do not overlap with those of the derived facts. For all baselines, the temperature value is set to 0. For few-shot prompting techniques, the input prompt includes two manually constructed exemplars. In this paper, we use both the F1 score and the accuracy as the evaluation metric. Single-run results are reported.

5.1 Main Results

From Table 1, we observe a striking phenomenon: compared to DeepSeek-R1 and its distilled models, GPT-40, Llama-3, and Qwen-32B-Instruct perform poorly on the temporal logic reasoning problems of t-BEN, even with chain-of-thought prompting (CoT). This suggests that these models lack the advanced reasoning capabilities necessary for truly understanding symbolic representations involving time. We also find that frontier reasoning models—including o3, Gemini 2.5 Pro, and Gem-

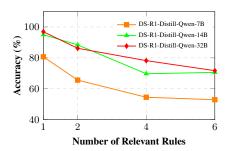


Figure 3: Comparison of symbolic and natural language (NL) based temporal logic reasoning using GPT-40 with Zero-shot-CoT.

Figure 4: Performance of DeepSeek-R1 distilled models across different numbers of relevant rules.

ini 2.5 Flash—deliver strong results, with o3 approaching 100% accuracy across the six rule structures. Notably, in the **M-Rules** and **Recursive** benchmarks, we observe a significant performance drop for most of evaluated models. These results indicate that recursive rules pose a particular challenge, as they require not only an understanding of language semantics and step-by-step reasoning but also strong *inductive abilities*. However, a surprising finding is that, apart from the task involving recursive structures, DeepSeek-R1 achieves an accuracy of 88.9%, and for all five other levels, it surpasses 96% accuracy—demonstrating exceptionally strong symbolic reasoning abilities. One possible explanation for DeepSeek's strong performance lies in its distinctive training strategy—namely, the incorporation of instruction-following data during the final stages of supervised fine-tuning and reinforcement learning. This approach may improve the model's ability to adhere to prompts, such as our system-provided instructions, thereby enhancing its temporal reasoning capabilities. Besides, we evaluated several smaller DeepSeek-R1 distilled models, which also exhibited remarkable performance. These findings suggest that integrating instruction-following data into the training process may be an effective strategy for strengthening a model's temporal reasoning abilities.

5.2 Symbolic v.s. Natural Language

In addition to evaluating the temporal reasoning capabilities of LLMs in symbolic forms—where traditional symbolic reasoners excel—it is also valuable to assess their performance in natural language scenarios, which symbolic reasoners cannot handle. To this end, we adopt a common strategy of verbalizing logical rules before presenting them to the LLMs, following the approach explored in prior works Saxena et al. (2021); Ismayilzada et al. (2023). Given that manually converting each rule into its corresponding natural language expression is a labor-intensive process, we adopt a template-based approach to automate this verbalization. Although this method may result in unnatural expressions, it provides a practical alternative to manual translation.

From Figure 3, we observe that both the rule-based and natural language-based settings achieve similar results, with the rule-based approach performing slightly better. The comparison indicates that *LLMs are also capable of understanding the semantics of input expressed in rules*, provided that each notation is clearly explained in the instructions. Notably, both settings struggle with the **M-Rules** and **Recursive** cases. One possible reason for this is that, while LLMs can understand the semantics of temporal logic language, they still face significant challenges in executing multiple deductions, retaining intermediate results, and recognizing repeated patterns.

5.3 ABLATION STUDY

To explore which component of the rule structure most significantly impact the reasoning complexity for LLMs, we designed four sets of ablation study experiments using GPT-4o. These experiments explored the effects of the number of relevant rules , the number of operators considered, the percentage of irrelevant data, and the percentage of irrelevant rules. From Figure 5 (a), we observe that as the lengths of dependent rules increase, the model's performance noticeably degrades. One possible reason is that when multiple rules are mutually dependent, the model needs to store intermediate results during the derivation process to complete subsequent steps that rely on previously derived outcomes. Unlike symbolic reasoners, which can explicitly store intermediate results, it may

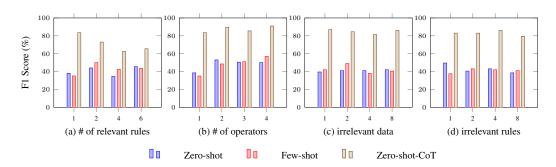


Figure 5: Results of ablation study for GPT-40 with three different prompting strategies.

be challenging for large language models (LLMs) to retain such information in an auto-regressive manner. Figure 5 (b) demonstrates that using more types of operators does not affect reasoning complexity, indicating that understanding the semantics of the temporal logic language is not a major issue for the model. Results in Figure 5 (c) and (d) show that the model's performance is minimally affected by irrelevant information, demonstrating its ability to correctly select relevant rules and remain resistant to distracting information.

In Figure 5, we observe that the number of relevant rules has the most significant impact. We experiment with the three DeepSeek-R1 distilled models, which have demonstrated strong performance in the single-rule setting (Table 1). In Figure 4, it shows that as the number of relevant rules increases, performance declines, suggesting that reasoning over multiple rules remains a significant challenge.

Robustness to the input formats We investigate the impact of the input formats to the LLM-based approach via three evaluation settings: ① *error-free symbolic input*,② *symbolic input with errors*, and ③ *natural language input*. We construct a subset of 100 questions, each represented in all three formats. For ③, we introduce syntactic errors by randomly removing notation elements that cause parsing issues—for example, altering $\Box_{[1,2]}$ to $\Box_{1,2]}$ by removing the opening bracket. Symbolic reasoners can only handle the error-free symbolic input. In contrast, the LLM demonstrates strong accuracy across all three settings (95.0%, 94.5% and 94.4%). This suggests that the LLM not only exhibits effective temporal reasoning capabilities but also shows robustness to imperfect input.

Analysis of errors We do a manual analysis of the reasoning processes of two models of the same size—Qwen2.5-32B-Instruct and DeepSeek-R1-Distill-Qwen-32B—in the most challenging recursive setting, we observe a key difference. Qwen2.5-32B-Instruct performs only shallow inference step, failing to recognize the recursive nature of the problem and its potential for infinite expansion. In contrast, DeepSeek-R1-Distill-Qwen-32B correctly identifies the recursive structure, explicitly acknowledging it with statements such as "... applying the rule again, A at 8 would imply A at 10, and so on." This deeper understanding enables the model to arrive at the correct result.

In addition, manually inspecting the CoT reasoning for each failure case to identify the precise source of error is challenging. Hence, to establish a systematic taxonomy of failure types and gain insights into the diverse reasoning behaviors of LLMs, we devised an automated method that leverages the Gemini-2.5-Pro model as a proxy to analyze CoT traces from failure cases generated by Qwen-2.5. We identified six recurring categories of errors: 1) failure to apply rules recursively; 2) incorrect interval overlap or boundary checks; 3) misinterpretation of query semantics; 4) incorrect interval calculation; 5) misinterpretation of operator semantics, and 6) other logical or factual errors.

6 CONCLUSION

We introduce t-BEN, a benchmark suite designed to systematically evaluate the temporal reasoning capabilities of large language models (LLMs) in a controlled setting. Preliminary results suggest that certain LLMs, such as DeepSeek-R1, may serve as viable alternatives or complementary tools to traditional symbolic reasoners, though further investigation is needed. By open-sourcing our codes and datasets, we hope to stimulate further research and development in this field, thereby better facilitating the potential application of LLMs in traditional logic-based AI domains.

7 REPRODUCIBILITY STATEMENT

This paper can be reproduced through the released dataset and scripts in the supplemental material. Proprietary models are available through their respective vendors, and open source models can be retrieved through HuggingFace.

REFERENCES

- Serge Abiteboul, Richard Hull, and Victor Vianu. *Foundations of Databases*. Addison-Wesley, 1995.
- Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.
- Rajeev Alur and Thomas A Henzinger. A really temporal logic. *Journal of the ACM (JACM)*, 41(1): 181–203, 1994.
- AI Anthropic. Claude 3.5 sonnet model card addendum. Claude-3.5 Model Card, 3(6), 2024.
- Jon Barwise. An introduction to first-order logic. In *Studies in Logic and the Foundations of Mathematics*, volume 90, pp. 5–46. Elsevier, 1977.
- Michael Bauland, Martin Mundhenk, Thomas Schneider, Henning Schnoor, Ilka Schnoor, and Heribert Vollmer. The tractability of model-checking for ltl: The good, the bad, and the ugly fragments. *Electronic Notes in Theoretical Computer Science*, 231:277–292, 2009.
- Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. The vadalog system: datalog-based reasoning for knowledge graphs. *Proceedings of the VLDB Endowment*, 11(9):975–987, 2018.
- Matteo Bertello, Nicola Gigante, Angelo Montanari, Mark Reynolds, et al. Leviathan: A new ltl satisfiability checking tool based on a one-pass tree-shaped tableau. In *IJCAI-International Joint Conference onArtificial Intelligence*, pp. 950–956. AAAI Press, 2016.
- Sebastian Brandt, Elem Guzel Kalaycı, Vladislav Ryzhikov, Guohui Xiao, and Michael Zakharyaschev. Querying log data with metric temporal logic. *Journal of Artificial Intelligence Research*, 62:829–877, 2018.
- Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.
- Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover, Marco Roveri, and Stefano Tonetta. The nuxmv symbolic model checker. In *Computer Aided Verification: 26th International Conference, CAV 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings 26*, pp. 334–342. Springer, 2014.
- Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. *ACM transactions on intelligent systems and technology*, 15(3):1–45, 2024.
- Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- Yongchao Chen, Rujul Gandhi, Yang Zhang, and Chuchu Fan. Nl2tl: Transforming natural languages to temporal logics using large language models. In *Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, pp. 15880–15903, 2023.
- Jingde Cheng. The fundamental role of entailment in knowledge representation and reasoning. *Journal of Computing and Information*, 2(1):853–873, 1996.

- Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco Roveri. Nusmv: A new symbolic model verifier. In *Computer Aided Verification: 11th International Conference, CAV'99 Trento, Italy, July 6–10, 1999 Proceedings 11*, pp. 495–499. Springer, 1999.
 - Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word problems. *arXiv preprint arXiv:2110.14168*, 2021.
 - Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the frontier with advanced reasoning, multimodality, long context, and next generation agentic capabilities. *arXiv* preprint arXiv:2507.06261, 2025.
 - Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. *arXiv preprint arXiv:2407.21783*, 2024.
 - E Allen Emerson. Temporal and modal logic. In *Formal Models and Semantics*, pp. 995–1072. Elsevier, 1990.
 - Bahare Fatemi, Mehran Kazemi, Anton Tsitsulin, Karishma Malkan, Jinyeong Yim, John Palowitch, Sungyong Seo, Jonathan Halcrow, and Bryan Perozzi. Test of time: A benchmark for evaluating LLMs on temporal reasoning. In *The Thirteenth International Conference on Learning Representations*, 2025. URL https://openreview.net/forum?id=44CoQe6VCq.
 - Daniel R. Feikin, Melissa M. Higdon, Laith J. Abu-Raddad, Nick Andrews, Rafael Araos, Yair Goldberg, Michelle J. Groome, Amit Huppert, Katherine L. O'Brien, Peter G. Smith, Annelies Wilder-Smith, Scott Zeger, Maria Deloria Knoll, and Minal K. Patel. Duration of effectiveness of vaccines against sars-cov-2 infection and covid-19 disease: Results of a systematic review and meta-regression. *The Lancet*, 399(10328):924–944, 2022. doi: 10.1016/S0140-6736(22)00152-0.
 - Valeria Fionda and Gianluigi Greco. Ltl on finite and process traces: Complexity results and a practical reasoner. *Journal of Artificial Intelligence Research*, 63:557–623, 2018.
 - Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach, Hal Daumé Iii, and Kate Crawford. Datasheets for datasets. *Communications of the ACM*, 64 (12):86–92, 2021.
 - Rajeev Goré and Florian Widmann. An optimal on-the-fly tableau-based decision procedure for pdl-satisfiability. In *International Conference on Automated Deduction*, pp. 437–452. Springer, 2009.
 - Jie Huang and Kevin Chen-Chuan Chang. Towards reasoning in large language models: A survey. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 1049–1065, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.67. URL https://aclanthology.org/2023.findings-acl.67/.
 - Michael Huth and Mark Ryan. *Logic in Computer Science: Modelling and reasoning about systems*. Cambridge university press, 2004.
 - Mete Ismayilzada, Debjit Paul, Syrielle Montariol, Mor Geva, and Antoine Bosselut. Crow: Benchmarking commonsense reasoning in real-world tasks. *arXiv preprint arXiv:2310.15239*, 2023.
 - Kevin C Klement. Propositional logic. 2004.
 - Ron Koymans. Specifying real-time properties with metric temporal logic. *Real-time Systems*, pp. 255–299, 1990.
 - Leslie Lamport. "sometime" is sometimes" not never" on the temporal logic of programs. In *Proceedings of the 7th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages*, pp. 174–185, 1980.

- Jianwen Li, Yinbo Yao, Geguang Pu, Lijun Zhang, and Jifeng He. Aalta: an ltl satisfiability checker over infinite/finite traces. In *Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering*, pp. 731–734, 2014.
- Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale generation: Learning to solve and explain algebraic word problems. In *Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 158–167, Vancouver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1015. URL https://aclanthology.org/P17-1015.
- Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint* arXiv:2412.19437, 2024.
- OpenAI. Openai o3 and o4-mini system card. https://openai.com/index/o3-o4-mini-system-card/, 2025. Published April 16, 2025.
- Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple math word problems? In *Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies*, pp. 2080–2094, Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021. naacl-main.168. URL https://aclanthology.org/2021.naacl-main.168.
- Aske Plaat, Annie Wong, Suzan Verberne, Joost Broekens, Niki van Stein, and Thomas Back. Reasoning with large language models, a survey. *arXiv preprint arXiv:2407.11511*, 2024.
- Apoorv Saxena, Soumen Chakrabarti, and Partha Talukdar. Question answering over temporal knowledge graphs. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 6663–6676, Online, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.520. URL https://aclanthology.org/2021.acl-long.520/.
- Philippe Schnoebelen. The complexity of temporal logic model checking. *Advances in modal logic*, 4(393-436):35, 2002.
- Freda Shi, Xinyun Chen, Kanishka Misra, Nathan Scales, David Dohan, Ed H Chi, Nathanael Schärli, and Denny Zhou. Large language models can be easily distracted by irrelevant context. In *International Conference on Machine Learning*, pp. 31210–31227. PMLR, 2023.
- A Prasad Sistla and Edmund M Clarke. The complexity of propositional linear temporal logics. *Journal of the ACM (JACM)*, 32(3):733–749, 1985.
- Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adrià Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions on Machine Learning Research*, 2023.
- Tanel Tammet, Priit Järv, Martin Verrev, and Dirk Draheim. Experiments with llms for converting language to logic. In *International Conference on Neural-Symbolic Learning and Reasoning*, pp. 305–314. Springer, 2024.
- Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.
- Yde Venema. Temporal logic. The Blackwell guide to philosophical logic, pp. 203–223, 2017.
- Przemysław A Wałęga, Bernardo Cuenca Grau, Mark Kaminski, and Egor V Kostylev. Datalogmtl over the integer timeline. In *Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning*, volume 17, pp. 768–777, 2020.

- Przemysław A Wałęga, Michał Zawidzki, and Bernardo Cuenca Grau. Finitely materialisable datalog programs with metric temporal operators. In *Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning*, volume 18, pp. 619–628, 2021.
- Przemysław A Wałęga, Michał Zawidzki, Dingmin Wang, and Bernardo Cuenca Grau. Materialisation-based reasoning in datalogmtl with bounded intervals. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 37, pp. 6566–6574, 2023.
- Dingmin Wang, Pan Hu, Przemysław Andrzej Wałęga, and Bernardo Cuenca Grau. Meteor: Practical reasoning in datalog with metric temporal operators. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 36, pp. 5906–5913, 2022.
- Yuqing Wang and Yun Zhao. TRAM: Benchmarking temporal reasoning for large language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Findings of the Association for Computational Linguistics:* ACL 2024, pp. 6389–6415, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.382. URL https://aclanthology.org/2024.findings-acl.382/.
- Przemysław Andrzej Wałęga, B Cuenca Grau, Mark Kaminski, and Egor V Kostylev. DatalogMTL: Computational complexity and expressive power. In *Proceedings of the International Joint Conferences on Artificial Intelligence*, 2019.
- Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in Neural Information Processing Systems, 2022. URL https://openreview.net/forum?id=_VjQlMeSB_J.
- Sean Welleck, Jiacheng Liu, Ronan Le Bras, Hannaneh Hajishirzi, Yejin Choi, and Kyunghyun Cho. Naturalproofs: Mathematical theorem proving in natural language. In *Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 1)*, 2021. URL https://openreview.net/forum?id=Jvxa8adr3iY.
- Sean Welleck, Jiacheng Liu, Ximing Lu, Hannaneh Hajishirzi, and Yejin Choi. Naturalprover: Grounded mathematical proof generation with language models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), *Advances in Neural Information Processing Systems*, 2022. URL https://openreview.net/forum?id=rhdfTOiXBng.
- Siheng Xiong, Ali Payani, Ramana Kompella, and Faramarz Fekri. Large language models can learn temporal reasoning. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 10452–10470, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.563. URL https://aclanthology.org/2024.acl-long.563/.
- An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoran Wei, et al. Qwen2. 5 technical report. *arXiv preprint arXiv:2412.15115*, 2024.
- An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint arXiv:2505.09388*, 2025.
- Hattie Zhou, Azade Nova, Hugo Larochelle, Aaron Courville, Behnam Neyshabur, and Hanie Sedghi. Teaching algorithmic reasoning via in-context learning. *arXiv preprint arXiv:2211.09066*, 2022.

Appendix

A DATASHEETS FOR DATASETS

To help the community better understand the dataset, we present the datasheets of the t-BEN dataset, according to Gebru et al. (2021).

A.1 MOTIVATION

Purpose The dataset is used as a benchmark to test the LLM's reasoning ability on temporal logic. Temporal logic reasoning involves both logic reasoning and numerical reasoning, and the ability is useful in many downstream tasks. The benchmark specifically addressed the bias issue caused by data leakage by generating data randomly and automatically. Since it can be scaled up easily, it might also be used to fine tune a model to enhance its reasoning abilities.

Creators / Funding Those information will be disclosed once the paper is accepted.

A.2 COMPOSITION

Instance All instances in the dataset are a temporal reasoning question written in DatalogMTL.

Type of Sample	# of Positive Samples	# of Negative Samples
SingleAtom	500	500
MultiAtoms	300	300
Rational	500	500
MixedOperators (with 2 operators)	1739	1739
MixedOperators (with 3 operators)	145	145
MixedOperators (with 3 operators)	126	126
MultiRules (with 2 rules)	250	250
MultiRules (with 4 rules)	250	250
MultiRules (with 6 rules)	150	150
Recursive	500	500

Table 2: The number of samples of different categories in our dataset

Size Depending on the complexity of the reasoning problems, we divided the dataset into six sub dataset, the number of instances are listed in Table 2.

For MultiAtoms, we don't specify the number of operators it has in the rule nor evaluate them separately, while in general it follows the following distribution presented in Table 3.

Note that the dataset doesn't contain all possible instances. There are infinite number of possible instances.

Instance Details Each instance contains a data field, which is a set of the known variables, a set of rules, a single query and a boolean value indicating that if the query is true. They are represented in JSON format.

Type of Sample	# of Positive Samples	# of Negative Samples
MultiAtoms (with 2 atoms in the rule)	109	115
MultiAtoms (with 3 atoms in the rule)	79	79
MultiAtoms (with 4 atoms in the rule)	61	64
MultiAtoms (with 5 atoms in the rule)	51	42
Total	300	300

Table 3: The distribution of the number of atoms in our MultiAtoms subset of our dataset

Label Yes, the label is presented for each instace in the dataset.

Missing Information No, all information is completed.

760	Relationships All instances are independent in our dataset.
761	
762 763	Splits There isn't a recommended data split for our dataset.
764	Ferror N. day, ''. 24 and a latest All'estate and 'C. 14, 1
765	Errors No, there isn't any error in our dataset. All instances are verified to be correct.
766	Self-contained Yes, the dataset is self-contained, no external resource is required.
767 768	Confidentiality. No all data is associated as sublice
769	Confidentiality No, all data is considered as public.
770 771	A.3 COLLECTION PROCESS
772	The dataset is generated automatically without input from the real world. The generation algorithm
773	is presented in Section 4
774	
775	A.4 Processing
776	We need The Metric Transcoll Decrees (McTap) to write all proceeds instance
777	We used The Metric Temporal Reasoner (MeTeoR) to verify all generated instances.
778	A.S. IVon
779	A.5 USE
780	The dataset is intended to be used as a metric to evaluate the general LLM's temporal reasoning
781	ability.
782	·
783	A.6 DISTRIBUTION
784 785	
786	The dataset will be publicly available on HuggingFace with no restrictions on re-distribution upon
787	acceptance.
788	A.7. Managarana
789	A.7 Maintenance
790	The dataset will be hosted on HuggingFace platform and the contact information of the dataset
791	creator will be released upon acceptance.
792	
793	
794	
795	
796	
797	
798	
799	
800	
801	
802	
803	
804	
805	
806	

B PROMPTS USED IN THE BASIC EVALUATION

For all evaluations, we prepend a system message to introduce the syntax of DatalogMTL language as below:

You are given a dataset and a temporal rule, and your task is to judge whether the given fact is entailed by the dataset and the rule.

The rules are expressed as DatalogMTL, a knowledge representation language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows:

If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a.

If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a.

If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b.

If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b.

Zero-shot For zero-shot evaluations, as well as all DeepSeek evaluations, the system prompt we uses is the above general introduction plus the statement: *You should not give any explanation and you should only output "true" or "false"*. We are using the statement *Now we have some temporal data and some rules, data: {data} rule: {rule}, Is {inquiry} true or not?* as the user prompt to evaluate LLM's reasoning ability.

Here is an example of the complete prompt we constructed to do zero-shot evaluation.

System Prompt You are given a dataset and a temporal rule, and your task is to judge whet the given fact is entailed by the dataset and the rule. The rules are expressed as DatalogMTL, a knowledge representation 1	
The rules are expressed as DatalogMTL, a knowledge representation 1	an-
	an-
guage that extends Datalog with operators from metric temporal lo	gic
(MTL). The semantics of four MTL operators are given as follows:	_
If Diamondminus[a,b]A is true at the time t, it requires that A needs to	be
true at some time between t-b and t-a.	
If Boxminus[a,b]A is true at the time t, it requires that A needs to be t	rue
continuously between t-b and t-a.	
If Diamondplus[a,b]A is true at the time t, it requires that A needs to be t	rue
at some point between t+a and t+b.	
If Boxplus[a,b]A is true at the time t, it requires that A needs to be t	rue
continuously between t+a and t+b.	
You should not give any explanation and you should only output "true"	or
"false"	
User Prompt Now we have some temporal data and some rules, data: B@[3,10]	
rule: A:-Diamondplus[6,10]B	
Is A@[1,4] true or not?	
LLM's output false	
Expected Answer true	

Few-shot For few-shot evaluations, just like the zero-shot case, the system prompt we uses is the above general introduction plus the statement: *You should not give any explanation and you should only output "true" or "false"*. However, in the user prompt, we are integrating some examples using the following syntax:

To help you better understand the task, I will provide two examples.

Example 1: data: {pos data} rule: {pos rule} in this case you should output "true" for {pos inquiry}.

Example 2: data: {neg data} rule: {neg rule} in this case you should output "false" for {neg inquiry}.

Now we have some temporal data and some rules, data: {data} rule: {rule}

Is {inquiry} true or not?"

{pos data}, {pos rule} and {pos inquiry} are from a positive sample, {neg data}, {neg rule} and {neg inquiry} are from a negative sample. They are samples not in the testing set, but has the same type as the testing samples.

Here is an example of the complete prompt we constructed to do few-shot evaluation.

System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether the given fact is entailed by the dataset and the rule. The rules are expressed as DatalogMTL, a knowledge representation language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. You should not give any explanation and you should only output "true" or "false"
User Prompt	To help you better understand the task, I will provide two examples. Example 1: data: B@[5,7] rule: A:-Boxminus[10,12]B in this case you should output "true" for A@[17,17] Example 2: data: B@[1,9] rule: A:-Diamondplus[3,3]B in this case you should output "false" for A@[-25,-6] Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not?"
LLM's output	false
Expected Answer	true

Zero-shot-CoT For zero-shot-cot evaluations, the system prompt we uses is the above general introduction without the additional the statement that we used in zero-shot or few-shot to ask LLM's to answer directly. We are going to put some directions to let LLM think step by step in the user prompt below:

```
Now we have some temporal data and some rules, data: {data} rule: {rule}
Is {inquiry} true or not? Do not answer directly, think step by step.
```

After that, we will put the LLM's response in the context and then asks LLM again about the final answer by Based on your previous response, without any explanation state your answers to the question. You should only output "true" or "false".

Here is an example of the complete prompt we constructed to do zero-shot evaluation.

System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether
System 1 Tompt	the given fact is entailed by the dataset and the rule.
	The rules are expressed as DatalogMTL, a knowledge representation lan-
	guage that extends Datalog with operators from metric temporal logic
	(MTL). The semantics of four MTL operators are given as follows:
	If Diamondminus[a,b]A is true at the time t, it requires that A needs to be
	true at some time between t-b and t-a.
	If Boxminus[a,b]A is true at the time t, it requires that A needs to be true
	continuously between t-b and t-a.
	If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true
	at some point between t+a and t+b.
	If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
	continuously between t+a and t+b.
User Prompt	Now we have some temporal data and some rules, data: B@[3,10]
	rule: A:-Diamondplus[6,10]B
	Is A@[1,4] true or not? Do not answer directly, think step by step.
LLM's output	First, let's understand the rule: A:-Diamondplus[6,10]B. This rule means
	that if B is true at some point between t+6 and t+10, then A is true at time t.
	Now, let's look at the data: B@[3,10]. This means that B is true at some
	point between time 3 and time 10.
	We are asked to determine if A@[1,4] is true or not. This means we are
	looking to see if A is true at some point between time 1 and time 4.
	Given the rule, for A to be true at time 1, B would need to be true at some
	point between time 7 (1+6) and 11 (1+10). For A to be true at time 4, B
	would need to be true at some point between time 10 (4+6) and 14 (4+10).
	However, B is only true between time 3 and time 10. Therefore, B is not true
	at any point between time 7 and 11 or between time 10 and 14.
II D	So, A@[1,4] is not true.
User Prompt	Based on your previous response, without any explanation state your answers to the question. You should only output "true" or "false"
LLM's output	false
Expected Answer	true
1	

C PROMPTS USED IN THE NATURAL LANGUAGE EVALUATION

For the evaluations using natural language, we no longer need to introduce the syntax of DatalogMTL language. Therefore there is no general system prompt.

Zero-shot For zero-shot setting, we change the system prompt to a simple sentence to ensure that LLMs output in a desired format *You should not give any explanation and you should only output "true" or "false"*. We are using the statement *Now we have some temporal data and some rules, data: {data} rule: {rule}, Is {inquiry} true or not?* as the user prompt to evaluate LLM's reasoning ability. {data}, {rule} and {inquiry} are all replaced by their verbalized representation.

Here is an example of the complete prompt we constructed to do zero-shot evaluation.

System Prompt	You should not give any explanation and you should only output "true" or
	"false"
User Prompt	Now we have some temporal data and some rules, data:
	A holds From 10.000 to 10.000
	rule: B holds in each time such that A will hold sometime between 4.000
	and 15.000 hours in the future
	Is B holds From -5.000 to 1.000 true or not?
LLM's output	false
Expected Answer	true

Few-shot For few-shot evaluations, just like the zero-shot case, the system prompt we uses is the same: *You should not give any explanation and you should only output "true" or "false"*. However, in the user prompt, we are integrating some examples using the following syntax:

To help you better understand the task, I will provide two examples.

Example 1: data: {pos data} rule: {pos rule} in this case you should output "true" for {pos inquiry}.

Example 2: data: {neg data} rule: {neg rule} in this case you should output "false" for {neg inquiry}.

Now we have some temporal data and some rules, data: {data} rule: {rule}

{pos data}, {pos rule} and {pos inquiry} are verbalized representations from a positive sample, {neg data}, {neg rule} and {neg inquiry} are verbalized representations from a negative sample. They are samples not in the testing set, but has the same type as the testing samples.

Here is an example of the complete prompt we constructed to do few-shot evaluation.

System Prompt	You should not give any explanation and you should only output "true" or "false"
User Prompt	To help you better understand the task, I will provide two examples.
	Example 1: data:
	B holds From 5.000 to 7.000
	rule: A holds in each time such that B did hold continuously for 10.000 and
	12.000 hours before
	in this case you should output "true" for A holds From 17.000 to 17.000
	Example 2: data:
	B holds From 1.000 to 9.000
	rule: A holds in each time such that B will hold sometime between 3.000
	and 3.000 hours in the future
	in this case you should output "false" for A holds From -25.000 to -6.000
	Now we have some temporal data and some rules, data:
	B holds From 3.000 to 10.000
	rule: A holds in each time such that B will hold sometime between 6.000
	and 10.000 hours in the future
	Is A holds From 1.000 to 4.000 true or not?
LLM's output	true
Expected Answer	true

Zero-shot-CoT For verbalized zero-shot-cot evaluations, we no longer use system message since we don't need to introduce the synatx nor ask it to answer in a specific format. We organize our user prompts in the following format:

```
Now we have some temporal data and some rules, data: {data} rule: {rule}
Is {inquiry} true or not? Do not answer directly, think step by step.
```

where {data}, {rule} and {inquiry} refers to the verbalized rules.

After that, we will put the LLM's response in the context and then asks LLM again about the final answer by Based on your previous response, without any explanation state your answers to the question. You should only output "true" or "false".

Here is an example of the complete verbalized prompt we constructed to do zero-shot evaluation.

1026	System Prompt	
1027	User Prompt	Now we have some temporal data and some rules, data:
1028	User Frompt	B holds From 3.000 to 10.000
1029		rule: A holds in each time such that B will hold sometime between 6.000
1030		and 10.000 hours in the future
1031		Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think
1032		step by step.
1033	LLM's output	To determine if A holds from 1.000 to 4.000 based on the given rule and
1034	_	data, let's break it down step by step:
1035		1. **Understand the Data:**
1036		- B holds from 3.000 to 10.000.
1037		2. **Understand the Rule:**
		- A holds at each time such that B will hold sometime between 6.000 and
1038		10.000 hours in the future.
1039		3. **Analyze the Time Intervals: **
1040		- We need to check if B holds in the interval [6.000, 10.000] hours in the
1041		future from any time within [1.000, 4.000].
1042		4. **Check Each Time Point in [1.000, 4.000]:**
1043		- For time 1.000: - 6.000 to 10.000 hours in the future from 1.000 is [7.000, 11.000].
1044		- B holds from 3.000 to 10.000, which overlaps with [7.000, 10.000].
1045		- Therefore, B holds sometime in [7.000, 11.000].
1046		- For time 2.000:
1047		- 6.000 to 10.000 hours in the future from 2.000 is [8.000, 12.000].
1048		- B holds from 3.000 to 10.000, which overlaps with [8.000, 10.000].
1049		- Therefore, B holds sometime in [8.000, 12.000].
1050		- For time 3.000:
1051		- 6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000].
1052		- B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000].
1053		- Therefore, B holds sometime in [9.000, 13.000].
1054		- For time 4.000:
1055		- 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000].
1056		- B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000].
1057		- Therefore, B holds sometime in [10.000, 14.000].
1058		5. **Conclusion:**
1059		- For each time point in the interval [1.000, 4.000], B holds sometime in the
1060		future interval [6.000, 10.000] hours from that time point.
1061		- Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.
1062	User Prompt	Based on your previous response, without any explanation state your an-
1063	Osci Hompi	swers to the question. You should only output "true" or "false"
1064	LLM's output	true
1065	Expected Answer	true
	r	

D BAD CASE ANALYSIS

D.1 CASES THAT ARE INCORRECT IN SYMBOLIZED REPRESENTATION BUT ARE CORRECT IN VERBALIZED REPRESENTATION

Symbolic Verbalized	
---------------------	--

System Prompt You are given a dataset and a temporal rule, and your task is to judge whether the given fact is entailed by the dataset and the rule. The rules are expressed as DatalogMTL, a knowledge representation language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t-b and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A	1080			
whether the given fact is entailed by the dataset and the rule. The rules are expressed as Datalog With operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t-b and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t-b and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true and t-b. Now we have some temporal data and some rules, data: B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true ont? Do not answer directly, think step by step.	1081	System Prompt	You are given a dataset and a tem-	(No introduction to the syntax is
the dataset and the rule. The rules are expressed as Datalog With operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t-a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-a and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-a and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-a and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t-a and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true and t-b. If Boxplus[a	1082			
The rules are expressed as DatalogMTL, a knowledge representation language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t-h and t-b. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t-h and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true acontinuously between t-h and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-h and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-h and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-h and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-h and t-b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-h and t-b. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1083			tions)
logMTL, a knowledge representation language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true to the time t, it requires that A needs to be true time t, it requires that A needs to be true time t, it requires that A needs to be true time t, it requires that A needs to be true time t, it requires that A needs to be true time t, it requires that A needs to be true time t, it requires that A needs to be true time t, it requires that A needs to be true time t, it requires that A needs to be true time t, it requires that A needs to be true t	1084			
tion language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1085			
with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1086			
logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1087			
MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. If Boxplus[a,b]A is true at the time the time t, it requires that A needs to be true continuously between	1088			
If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1089			
the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1090			
to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t- a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not an- swer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1091			
If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1092			
time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1093		and t-a.	
true continuously between t-b and t- a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1094			
a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1095			
If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1096		•	
time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1097			
true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. 1104 User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B 1106 1107 1108 1109 1110 1110 1111 The prompt is true at some point between t+a and t+b. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1098			
t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. 1104 User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. 1108 1109 1110 1111 t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1099			
If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. By will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1100			
t, it requires that A needs to be true continuously between t+a and t+b. 1104 User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B 1107 1108 1109 1110 1111 t, it requires that A needs to be true continuously between t+a and t+b. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1101		1	
1103 Continuously between t+a and t+b. 1104 User Prompt Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. 1108 Swer directly, think step by step. Sw	1102			
Now we have some temporal data and some rules, data: B@[3,10] rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. Now we have some temporal data and some rules, data: B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1103			
rule: A:-Diamondplus[6,10]B Is A@[1,4] true or not? Do not answer directly, think step by step. B holds From 3.000 to 10.000 rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1104	User Prompt	Now we have some temporal data	Now we have some temporal data
Is A@[1,4] true or not? Do not answer directly, think step by step. Is A@[1,4] true or not? Do not answer directly, think step by step. rule: A holds in each time such that B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1105			,
swer directly, think step by step. B will hold sometime between 6.000 and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1106			
and 10.000 hours in the future Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1107			
Is A holds From 1.000 to 4.000 true or not? Do not answer directly, think step by step.	1108		swer directly, think step by step.	
or not? Do not answer directly, think step by step.	1109			
step by step.	1110			
	1111			
	1112			step of step.

LLM's output	1134			
ADiamondplus[6,10]B. This rule means that if is it use at some point between the A and t+10, then A is true at time t. Now, let's look at the data: Baβ[3,10]. This means that B is true at some point between time 3 and time 10. We are asked to determine if Aβ[1,4] is true or not. This means we are looking to see if A is true at some point between time 1 and time 4. Given the rule, for A to be true at time 1, B would need to be true at some point between time 7 (1+6) and 11 (1+10). For A to be true at some point between time 7 (1+6) and 11 (1+10). For A to be true at some point between time 10 (4+6) and 11 (1+10). For A to be true at some point between time 7 (1+6) and 11 (1+10). For A to be true at some point between time 10 (4+6) and 11 (1+10). For A to be true at some point between time 10 (4+6) and 11 (1+10). For A to be true at some point between time 7 and 11 or between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. So, A@[1,4] is not true.		LLM's output	First, let's understand the rule:	To determine if A holds from 1.000
means that if B is true at some point between the And t+10, then A is true at time t.	1136	1		
at time t. Now, let's look at the data: B@[3,10]. This means that B is true at some point between time 3 and time 10. We are asked to determine if A@[1,4] is true or not. This means we are looking to see if A is true at some point between time 1 and time 4. Given the rule, for A to be true at some point between time 1 and time 4. Given the rule, for A to be true at some point between time 1 and time 11. Given the rule, for A to be true at some point between time 1 and time 4. B would need to be true at some point between time 1 and time 1. However, B is only true between time 1 and 11 (1-000, 4-000); ** However, B is only true between time 7 (1+6) and 14 (4+10). However, B is only true between time 7 and 11 or between time 7 and 11 or between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. B blods from 3.000 to 10.000, 10.000], ** Therefore, B holds sometime in from 1,000 is [7.000, 11.000]. Therefore, B holds sometime in from 2.000 is [8.000, 12.000]. B holds from 3.000 to 10.000, which overlaps with [7.000, 10.000]. Therefore, B holds sometime in [8.000, 12.000]. B holds from 3.000 to 10.000, which overlaps with [8.000, 10.000]. Therefore, B holds sometime in [9.000, 13.000]. B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. Therefore, B holds sometime in [9.000, 13.000]. B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. Therefore, B holds sometime in [9.000, 13.000]. B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. Therefore, B holds sometime in [10.000, 4.000], B holds sometime in [10.000, 4.000], B holds sometime in the future from 4.000; 10.000]. Therefore, B holds sometime in [10.000, 4.000], B holds sometime in the future interval [6.000, 10.000]. Therefore, Can be substituted by the firm point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000].	1137		means that if B is true at some point	
Now, let's look at the data: B@[3,10]. This means that B is true at some point between time 3 and time 10. We are asked to determine if A@[1,4] is true or not. This means that B will hold sometime between 6,000 and 10,000 hours in the future. A holds at each time such that B will hold sometime between 6,000 and 10,000 hours in the future from 2,146 and 11 (1+10). For A to be true at time 1, B would need to be true at some point between time 7 (1+6) and 11 (1+10). For A to be true at time 4, B would need to be true at some point between time 7 (1+6) and 14 (4+10). However, B is only true between time 3 and time 10. Therefore, B is not true at any point between time 10 and 14. So, A@[1,4] is not true. So, A@[1,4] is not true.	1138			
B@[3,10]. This means that B is true at some point between time 3 and time 10. We are asked to determine if 1444 A@[1,4] is true or not. This means we are looking to see if A is true at some point between time 1 and time 4. Given the rule, for A to be true at some point between time 1 and time 4. Given the rule, for A to be true at some point between time 7 (1+6) and 11 (1+10). For A to be true at some point between time 7 (1+6) and 14 (1+10). For A to be true at some point between time 7 (1+6) and 14 (1+10). For A to be true at some point between time 7 (1+6) and 14 (1+10). For A to be true at some point between time 10 (4+6) and 14 (1+10). For A to be true at some point between time 10 (a4+6) and 14 (1+10). However, B is only true between time 3 and time 10. Therefore, B is not true at any point between time 7 and 11 or between time 17 and 11 or between time 10 and 14. So, A@[1,4] is not true. A holds from 3.000 to 10.000, which overlaps with [7.000, 10.000]. - For time 2.000 is [8.000, 12.000]. - B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. - B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [9.000, 13.000]. - B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000]. - B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. - Therefore, B holds sometime in [10.000, 14.000]. - B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 10.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 10.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000: - 6.000 to 10.000 hours in the future from 4.000: - 6.000 to 10.000 hours in the future from 4.000: - 6.000 to 10.000 hours	1139			
at some point between time 3 and time 10. We are asked to determine if A@[1,4] is true or not. This means we are looking to see if A is true at some point between time 1 and time 4. Given the rule, for A to be true at time 1, B would need to be true at some point between time 7 (1+6) and 11 (1+10). For A to be true at time 4, B would need to be true at some point between time 10 (4+6) and 14 (4+10). However, B is only true between time 3 and 11 or between time 10 (4+6) and 14 (4+10). However, B is only true between time 3 and time 10. Therefore, B is not true at any point between time 10 and 14. So, A@[1,4] is not true. Therefore, B holds sometime in [7,000, 11,000]. - For time 2,000: - B holds from 3,000 to 10,000, which overlaps with [8,000, 10,000]. - Therefore, B holds sometime in [8,000, 12,000]. - B holds from 3,000 to 10,000, which overlaps with [9,000, 11,000]. - Therefore, B holds sometime in [8,000, 12,000]. - Therefore, B holds sometime in [9,000, 13,000]. - Therefore, B holds sometime in [9,000, 14,000]. - Therefore, B holds sometime in [10,000, 14,000]. - Therefore, B holds	1140		· ·	
1142 time 10.	1141			
143	1142			
A@[1,4] is true or not. This means we are looking to see if A is true at some point between time I and time 4.	1143			
we are looking to see if A is true at some point between time 1 and time 4.	1144			
1146 Some point between time 1 and time 4.	1145			
4. Given the rule, for A to be true at time 1, B would need to be true at some point between time 7 (146) and 11 (1+10). For A to be true at some point between time 10 (446) and 14 (4+10). 1152	1146			
time 1, B would need to be true at some point between time 7 (1+6) and 11 (1+10). For A to be true at time 4, B would need to be true at time 4, B would need to be true at some point between time 10 (4+6) and 14 (4+10). However, B is only true between time 3 and time 10. Therefore, B is not true at any point between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1171 1172 1174 1177 1179 1180 1180 1181 1181 1181 1181 1184 1184 1185 1186	1147		-	
some point between time 7 (1+6) and 11 (1+10). For A to be true at time 4, B would need to be true at some point between time 10 (4+6) and 14 (4+10). However, B is only true between time 3 and time 10. Therefore, B is not true at any point between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. So, A@[1,4] is not true. So, A@[1,4] is not true. For time 1.000: B holds from 3.000 to 10.000, which overlaps with [7.000, 11.000]. For time 2.000: -6.000 to 10.000 hours in the future from 2.000 is [8.000, 12.000]. -B holds from 3.000 to 10.000, which overlaps with [8.000, 10.000]. -Therefore, B holds sometime in [8.000, 12.000]. -B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. -B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. -B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. -B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. -B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. -For time 4.000: -6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000]. -B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. -For time 4.000: -6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000]. -For time 2.000: -For time 3.000: -For time 4.00: -For time 4.0	1148		Given the rule, for A to be true at	4. **Check Each Time Point in
and 11 (1+10). For A to be true at time 4, B would need to be true at some point between time 10 (4+6) and 14 (4+10). However, B is only true between time 1 and 14. So, A@[1,4] is not true. 1157 and 11 or between time 10 and 14. So, A@[1,4] is not true. 1158 So, A@[1,4] is not true. 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1171 1172 1173 1174 1175 1176 1177 1177 1178 1179 1180 1180 1181 1181 1180 1181 1181 1181 1181 1182 and 11 (1+10). For A to be true at time 4, B would need to be true at some point between time 10 (4+6) and 14 (4+10). However, B is only true between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. -6.000 to 10.000 hours in the future from 2.000 is [8.000, 12.000]. - For time 2.000: -6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000]. - For time 3.000: -6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000]. - Therefore, B holds sometime in [9.000, 13.000]. - For time 4.000: -6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000]. - For time 4.000: -6.000 to 10.000 hours in the future from 3.000 to 10.000, which overlaps with [9.000, 10.000]. - Therefore, B holds sometime in [10.000, 14.000]. - For time 4.000: -6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000]. - Therefore, B holds sometime in [10.000, 14.000]. - Therefore, B holds sometime in [10.000, 14.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000]. - Therefore, B holds sometime in [10.000, 14.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 3.000 to 4.000. - Therefore, B holds from 3.000 to 4.000. - Therefore, B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. - Therefore, B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. - Therefore, B holds from 3.000 to 10.000, which overlaps with [9	1149			
time 4, B would need to be true at some point between time 10 (4+6) and 14 (4+10). However, B is only true between time 3 and time 10. Therefore, B is not true at any point between time 7 and 11 or between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. So, A@[1,4] is not true. from 1.000 is [7.000, 11.000]. B holds from 3.000 to 10.000, which overlaps with [7.000, 11.000]. For time 2.000: -6.000 to 10.000 hours in the future from 2.000 is [8.000, 12.000]. B holds from 3.000 to 10.000, which overlaps with [8.000, 10.000]. Therefore, B holds sometime in [8.000, 12.000]. B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. Therefore, B holds sometime in [8.000, 12.000]. B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. Therefore, B holds sometime in [9.000, 13.000]. For time 4.000: -6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000]. Therefore, B holds sometime in [9.000, 13.000]. B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. Therefore, B holds sometime in [9.000, 14.000]. B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. Therefore, B holds sometime in [10.000, 14.000]. B holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1150			
1952 some point between time 10 (4+6) and 14 (4+10).	1151			
1153	1152			
However, B is only true between time 3 and time 10. Therefore, B is not true at any point between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. So, A@[1,4] is not true. For time 2.000: -6.000 to 10.000 hours in the future from 2.000 is [8.000, 12.000] B holds from 3.000 to 10.000, which overlaps with [8.000, 10.000] For time 3.000: -6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000] B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000] B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000] B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000] B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000] Therefore, B holds sometime in [9.000, 13.000] Therefore, B holds sometime in [9.000, 13.000] For time 4.000: -6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000, 14.000] For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1153			
time 3 and time 10. Therefore, B is not true at any point between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. So, Oo to 10.000 hours in the future from 2.000 is [8.000, 12.000]. B holds from 3.000 to 10.000, which overlaps with [8.000, 10.000]. B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. Therefore, B holds sometime in [9.000, 13.000]. For time 4.000: So, Oo to 10.000 hours in the future from 4.000 is [10.000, 14.000]. B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. Therefore, B holds sometime in [10.000, 14.000]. Therefore, B holds sometime in the future interval [1.000, 10.000] hours from that time point. Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1154			
not true at any point between time 7 and 11 or between time 10 and 14. So, A@[1,4] is not true. 158	1155			
1157 1158 1159 1159 1150 1159 1150 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1177 1177 1178 1177 1178 1180 1181 1182 1183 1184 1185 1186	1156			
159	1157			= =
- B holds from 3.000 to 10.000, which overlaps with [8.000, 10.000] Therefore, B holds sometime in [8.000, 12.000] For time 3.000: - 6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000] B holds from 3.000 to 10.000, which overlaps with [9.000, 11.000] B holds from 3.000 to 10.000, which overlaps with [9.000, 11.000] Therefore, B holds sometime in [9.000, 13.000] Therefore, B holds sometime in [9.000, 13.000] For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 14.000] For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] For cach time point in the interval [10.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000 So, based on the given rule and data, A holds from 1.000 to 4.000.	1158		So, A@[1,4] is not true.	- 6.000 to 10.000 hours in the future
which overlaps with [8.000, 10.000]. Therefore, B holds sometime in [8.000, 12.000]. For time 3.000: - 6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000]. - B holds from 3.000 to 10.000, which overlaps with [9.000, 11.000]. - Therefore, B holds sometime in [9.000, 13.000]. - Therefore, B holds sometime in [9.000, 13.000]. - Therefore, B holds sometime in [9.000, 13.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000 hours in the future from 4.000 is [10.000, 14.000]. - B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. - Therefore, B holds sometime in [10.000, 14.000]. - Therefore, according to the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point. - Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1159			
1162 1163 1164 1165 1166 1166 1166 1167 1168 1169 1170 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1179 1179 1180 1180 1180 1181 1181 1182 1186 1186 1186 1186 1186	1160			
- Therefore, B holds sometime in [8.000, 12.000] For time 3.000: - 6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000] B holds from 3.000 to 10.000, which overlaps with [9.000, 11.000] Therefore, B holds sometime in [9.000, 13.000] Therefore, B holds sometime in [9.000, 13.000] For time 4.000: - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000] Therefore, according to the interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000 So, based on the given rule and data, A holds from 1.000 to 4.000.	1161			
[8.000, 12.000]. For time 3.000: 6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000]. B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. Therefore, B holds sometime in [9.000, 13.000]. For time 4.000: For time 4.000: For time 4.000: For time 4.000: Therefore, B holds sometime in [9.000, 13.000]. For time 4.000 is [10.000 hours in the future from 4.000 is [10.000, 14.000]. B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. Therefore, B holds sometime in [10.000, 14.000]. Therefore, B holds sometime in [10.000, 14.000]. For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point. Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1162			_
- For time 3.000: - 6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000] B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000] Therefore, B holds sometime in [9.000, 13.000] For time 4.000: - Therefore, B holds sometime in [9.000, 13.000] For time 4.000: - Therefore, B holds sometime in [9.000, 13.000] For time 4.000: - For time 4.000, 10.000, 10.000, which overlaps with [10.000, 14.000] B holds from 3.000 to 10.000, 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, according to the rule, A holds from 1.000 to 4.000 So, based on the given rule and data, A holds from 1.000 to 4.000.	1163			
- 6.000 to 10.000 hours in the future from 3.000 is [9.000, 13.000]. - B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. - Therefore, B holds sometime in [9.000, 13.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000]. - B holds from 3.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000]. - B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. - Therefore, B holds sometime in [10.000, 14.000]. - Therefore, B holds sometime in [10.000, 14.000]. - Therefore, B holds sometime in [10.000, 14.000]. - Therefore, according to the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point. - Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1164			
from 3.000 is [9.000, 13.000]. - B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000]. - Therefore, B holds sometime in [9.000, 13.000]. - For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000]. - B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. - B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. - Therefore, B holds sometime in [10.000, 14.000]. - Therefore, B holds sometime in [10.000, 14.000]. - For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point. - Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1165			
- B holds from 3.000 to 10.000, which overlaps with [9.000, 10.000] Therefore, B holds sometime in [9.000, 13.000] Therefore, B holds sometime in [9.000, 13.000] For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, B holds sometime in [10.000, 14.000] For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1166			
1169 1170 1171 1172 1173 1174 1175 1176 1177 1177 1178 1179 1180 1181 1182 1184 1185 1186	1167			
- Therefore, B holds sometime in [9.000, 13.000] For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, B holds sometime in [10.000, 14.000] Therefore a holds sometime in [10.000, 14.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, according to the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1168			which overlaps with [9.000,
[9.000, 13.000] For time 4.000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, B holds sometime in [10.000, 14.000] For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1169			
- For time 4,000: - 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, B holds sometime in [10.000, 14.000] For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1170			
- 6.000 to 10.000 hours in the future from 4.000 is [10.000, 14.000] B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, B holds sometime in [10.000, 14.000] For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1171			
from 4.000 is [10.000, 14.000]. - B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000]. - Therefore, B holds sometime in [10.000, 14.000]. 5. **Conclusion:** - For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point. - Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1172			
- B holds from 3.000 to 10.000, which overlaps with [10.000, 10.000] Therefore, B holds sometime in [10.000, 14.000] Therefore, B holds sometime in [10.000, 14.000] For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1173			
which overlaps with [10.000, 10.000]. 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 which overlaps with [10.000, 10.000]. 10.000]. - Therefore, B holds sometime in [10.000, 14.000]. 5. **Conclusion:** - For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point. - Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1174			
1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 10.000] Therefore, B holds sometime in [10.000, 14.000]. 5. **Conclusion:** - For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1175			[
- Therefore, B holds sometime in [10.000, 14.000]. 5. **Conclusion:** - For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1176			1 2 7 1
5. **Conclusion: ** - For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point. - Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1177			
- For each time point in the interval [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1178			[10.000, 14.000].
1181 1182 1183 1184 1185 1186 [1.000, 4.000], B holds sometime in the future interval [6.000, 10.000] hours from that time point Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1179			
the future interval [6.000, 10.000] hours from that time point. Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1180			
hours from that time point. Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1181			
- Therefore, according to the rule, A holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1182			
holds from 1.000 to 4.000. So, based on the given rule and data, A holds from 1.000 to 4.000.	1183			
So, based on the given rule and data, A holds from 1.000 to 4.000.	1184			
A holds from 1.000 to 4.000.	1185			

User Prompt	Based on your previous response, without any explanation state your an-		
	swers to the question. You should only output "true" or "false"		
LLM's output	false true		
Expected Answer	true		

D.2 CASES THAT ARE INCORRECT IN ZERO-SHOT BY ARE CORRECT WHEN CHAIN OF THOUGHT IS APPLIED

Example 1:

	Wat of T	Wid C T
	Without CoT	With CoT
System Prompt	You are given a dataset and a tem-	You are given a dataset and a tem-
	poral rule, and your task is to judge	poral rule, and your task is to judge
	whether the given fact is entailed by	whether the given fact is entailed by
	the dataset and the rule.	the dataset and the rule.
	The rules are expressed as Data-	The rules are expressed as Data-
	logMTL, a knowledge representa-	logMTL, a knowledge representa-
	tion language that extends Datalog	tion language that extends Datalog
	with operators from metric temporal	with operators from metric temporal
	logic (MTL). The semantics of four	logic (MTL). The semantics of four
	MTL operators are given as follows:	MTL operators are given as follows:
	If Diamondminus[a,b]A is true at	If Diamondminus[a,b]A is true at
	the time t, it requires that A needs	the time t, it requires that A needs
	to be true at some time between t-b	to be true at some time between t-b
	and t-a.	and t-a.
	If Boxminus[a,b]A is true at the time	If Boxminus[a,b]A is true at the time
	t, it requires that A needs to be true	t, it requires that A needs to be true
	continuously between t-b and t-a.	continuously between t-b and t-a.
	If Diamondplus[a,b]A is true at the	If Diamondplus[a,b]A is true at the
	time t, it requires that A needs to be	time t, it requires that A needs to be
	true at some point between t+a and	true at some point between t+a and
	t+b.	t+b.
	If Boxplus[a,b]A is true at the time	If Boxplus[a,b]A is true at the time
	t, it requires that A needs to be true	t, it requires that A needs to be true
	continuously between t+a and t+b.	continuously between t+a and t+b.
	You should not give any explanation	continuously between the and the.
	and you should only output "true" or	
	"false"	
User Prompt	Now we have some temporal data	Now we have some temporal data
1	and some rules, data:	and some rules, data:
	B@[6,9]	B@[6,9]
	rule: A:-Diamondminus[6,15]B	rule: A:-Diamondminus[6,15]B
	Is A@[12,18] true or not?	Is A@[12,18] true or not? Do not
		answer directly, think step by step.

1242			
1243	LLM's output		First, let's understand the rule: A:-
1244			Diamondminus[6,15]B. This rule
1245			means that if B is true at some point
1246			between t-15 and t-6, then A is true
1247			at time t.
1248			Now, let's consider the fact
1249			A@[12,18]. This means we are checking if A is true at some point
1250			between time 12 and 18.
1251			To check this, we need to see if B
1252			is true at some point between (12-
1253			15) and (12-6), i.e., between time -3
1254			and 6, or between (18-15) and (18-
1255			6), i.e., between time 3 and 12.
1256			From the given data, we know that
1257			B is true between time 6 and 9. This
1258			falls within the required time range for A to be true.
1259			Therefore, A@[12,18] is true.
1260	User Prompt		Based on your previous response,
1261	Osci i tompi		without any explanation state your
1262			answers to the question. You should
1263			only output "true" or "false"
1264	LLM's output	false	true
1265	Expected Answer	true	
1266			

Example 2:

•		
	Without CoT	With CoT
System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether the given fact is entailed by the dataset and the rule. The rules are expressed as DatalogMTL, a knowledge representation language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b. You should not give any explanation and you should only output "true" or "false"	You are given a dataset and a temporal rule, and your task is to judge whether the given fact is entailed by the dataset and the rule. The rules are expressed as DatalogMTL, a knowledge representation language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows: If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a. If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a. If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b. If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b.

User Prompt	Now we have some temporal data	Now we have some temporal of
_	and some rules, data:	and some rules, data:
	A@[8,13]	A@[8,13]
	rule: B:-Diamondminus[10,12]A	rule: B:-Diamondminus[10,12]A
	Is B@[21,24] true or not?	Is B@[21,24] true or not? Do not
		swer directly, think step by step.
LLM's output		First, let's understand the rule:
		Diamondminus[10,12]A. This
		means that if A is true at some p
		between t-12 and t-10, then B is
		at time t.
		Now, let's look at the d A@[8,13]. This means that
		is true continuously from time
		time 13.
		Now, we need to check
		B@[21,24] is true or not.
		B to be true at any time between
		and 24, A needs to be true at so
		point between (t-12) and (t-10).
		Let's check for each time t
		[21,24]:
		- For t=21, A needs to be true
		some point between 21-12=9
		21-10=11. A is true at these ti
		according to the data.
		- For t=22, A needs to be true
		some point between 22-12=10
		22-10=12. A is true at these ti according to the data.
		- For t=23, A needs to be true
		some point between 23-12=11
		23-10=13. A is true at these times
		according to the data.
		- For t=24, A needs to be true
		some point between 24-12=12
		24-10=14. A is true at time 12,
		not at time 14. However, the rule
		quires A to be true at some point
		tween these times, not at all tir
		so this condition is satisfied.
		Therefore, B@[21,24] is true.
User Prompt		Based on your previous respon
		without any explanation state y
		answers to the question. You sho
****		only output "true" or "false"
LLM's output	false	true
Expected Answer	r true	

D.3 SINGLEATOM ERROR CASES

False Negative Example:

1350		
1351	System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether
1352	1	the given fact is entailed by the dataset and the rule. The rules are expressed
1353		as DatalogMTL, a knowledge representation language that extends Datalog
1354		with operators from metric temporal logic (MTL). The semantics of four
1355		MTL operators are given as follows:If Diamondminus[a,b]A is true at the
1356		time t, it requires that A needs to be true at some time between t-b and
1357		t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
1358		true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
1359		time t, it requires that A needs to be true at some point between t+a and
1360		t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
1361	II D	continuously between t+a and t+b.
	User Prompt	Now we have some temporal data and some rules, data: A@[7,15]
1362		rule: B:-Boxminus[3,5]A Is B@[8,30] true or not? Do not answer directly, think step by step.
1363	LLM's output	To determine whether (B@[8,30]) is true given the data and the rule, we
1364	LLIVI'S Output	need to follow these steps:
1365		1. **Understand the Rule**: The rule is (B leftarrow Boxminus[3,5]A).
1366		This means that (B) is true at time (t) if (A) is true continuously in the
1367		interval ([t-5, t-3]).
1368		2. **Check the Interval for (B@[8,30])**: We need to check if (B) is
1369		true for every time point in the interval ([8, 30]). For each time (t) in this
1370		interval, (A) must be true continuously in the interval ([t-5, t-3]).
1371		3. **Analyze the Data**: The data given is (A@[7,15]), which means (A
1372) is true continuously from time 7 to time 15.
1373		4. **Check Each Time Point in ([8, 30])**:
1374		- For $(t = 8)$: The interval $([t-5, t-3])$ is $([3, 5])$. (A) is not true in this
1375		interval because (A) is only true from 7 to 15.
1376		- For $(t = 9)$: The interval ([t-5, t-3]) is ([4, 6]). (A) is not true in this
1377		interval. For $(t = 10)$: The interval ([t 5 t 2]) is ([5 7]) (A) is not true continu
1378		- For ($t = 10$): The interval ([t -5, t -3]) is ([5, 7]). (A) is not true continuously in this interval (it starts at 7).
1379		For $(t = 11)$: The interval ([t-5, t-3]) is ([6, 8]). (A) is true continuously
1380		in this interval.
1381		- For (t = 12): The interval ([t-5, t-3]) is ([7, 9]). (A) is true continuously
1382		in this interval.
1383		- For ($t = 13$): The interval ([t -5, t -3]) is ([8 , 10]). (A) is true continuously
1384		in this interval.
1385		- For ($t = 14$): The interval ([t -5, t -3]) is ([9, 11]). (A) is true continuously
1386		in this interval.
1387		- For $(t = 15)$: The interval ([t-5, t-3]) is ([10, 12]). (A) is true continuously
1388		in this interval.
1389		- For $(t = 16)$: The interval ([t-5, t-3]) is ([11, 13]). (A) is true continuously
1390		in this interval For (t = 17): The interval ([t-5, t-3]) is ([12, 14]). (A) is true continuously
1391		in this interval.
1392		- For (t = 18): The interval ([t-5, t-3]) is ([13, 15]). (A) is true continuously
1393		in this interval.
1394		- For (t = 19): The interval ([t-5, t-3]) is ([14, 16]). (A) is not true in this
1395		interval (it ends at 15).
1396		- For ($t = 20$) to ($t = 30$): The intervals ([t-5, t-3]) will be ([15, 17]) to
1397		([25, 27]). (A) is not true in any of these intervals.
1398		5. **Conclusion**: (B) is not true for all time points in the interval ([8,
1399		30]). Specifically, (B) is not true at ($t = 8, 9, 10, 19,)$ and any (t) from 20
1400		to 30. Therefore, (B@[8,30]) is not true.
1401	User Prompt	Based on your previous response, without any explanation state your an-
1402	LIM	swers to the question. You should only output "true" or "false"
1403	LLM's output	false
	Expected Answer	true

False Positive Example:

System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether
-	the given fact is entailed by the dataset and the rule. The rules are expressed
	as DatalogMTL, a knowledge representation language that extends Datalog
	with operators from metric temporal logic (MTL). The semantics of four
	MTL operators are given as follows:If Diamondminus[a,b]A is true at the
	time t, it requires that A needs to be true at some time between t-b and
	t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
	true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
	time t, it requires that A needs to be true at some point between t+a and
	t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
	continuously between t+a and t+b.
User Prompt	Now we have some temporal data and some rules, data: A@[0,3]
-	rule: B:-Diamondminus[2,4]A
	Is B@[-34,8] true or not? Do not answer directly, think step by step.
LLM's output	To determine whether (B@[-34,8]) is true given the data and the rule, we
•	need to follow these steps:
	1. **Understand the Rule**: The rule is (B leftarrow Diamondminus[2,4]A
). This means that (B) is true at time (t) if (A) is true at some time between
	(t-4) and (t-2).
	2. **Determine the Time Interval for (B@[-34,8])**: We need to check if
	(B) is true at any time within the interval ([-34, 8]).
	3. **Apply the Rule to Each Time Point in the Interval**: - For each time
	(t) in the interval ([-34, 8]), we need to check if (A) is true at some time
	between (t-4) and (t-2).
	4. **Check the Data**: The data given is (A@[0,3]), which means (A) is
	true from time 0 to time 3.
	5. **Evaluate the Rule for Each Time Point**: - For ($t = -34$): We need (
	A) to be true between ([-38, -36]). Since (A) is only true between ([0, 3]),
	(A) is not true in this interval For ($t = -33$): We need (A) to be true
	between ([-37, -35]). Again, (A) is not true in this interval Continue this
	process up to $(t = 8)$: - For $(t = 0)$: We need (A) to be true between $([-4,$
	-2]). (A) is not true in this interval For ($t = 1$): We need (A) to be true
	between ([-3, -1]). (A) is not true in this interval For ($t = 2$): We need (
	A) to be true between ([-2, 0]). (A) is not true in this interval For ($t = 3$)
): We need (A) to be true between ([-1, 1]). (A) is true at time 0, which is
	within this interval For $(t = 4)$: We need (A) to be true between $([0, 2])$.
	(A) is true in this interval For $(t = 5)$: We need (A) to be true between
	([1, 3]). (A) is true in this interval For (t = 6): We need (A) to be true
	between ([2, 4]). (A) is true at time 2 and 3, which is within this interval
	For $(t = 7)$: We need (A) to be true between ([3, 5]). (A) is true at time 3,
	which is within this interval For $(t = 8)$: We need (A) to be true between
	([4, 6]). (A) is not true in this interval. 6. **Conclusion**: Since (A) is true at some time between (t-4) and (t-2)
) for (t = 3, 4, 5, 6,) and (7), (B) is true at these times. Therefore, (B) is true at some points within the interval ([-34, 8]).
Hear Dromat	Thus, (B@[-34,8]) is true.
User Prompt	Based on your previous response, without any explanation state your an-
IIM's systemat	swers to the question. You should only output "true" or "false" true
LLM's output Expected Answer	false

D.4 COMPARISON BETWEEN COT PROMPT AND DEEPSEEK REASONING

Example 1:

Table 9: A detailed context comparison between GPT-40 with CoT and DeepSeek-R1-Distill-Qwen-32B $\,$

	Qwen2.5-32B-Instruct with CoT	DeepSeek-R1-Distill-Qwen-32B
System Prompt	You are given a dataset and a tem-	You are given a dataset and a tem-
	poral rule, and your task is to judge	poral rule, and your task is to judge
	whether the given fact is entailed by	whether the given fact is entailed by
	the dataset and the rule.	the dataset and the rule.
	The rules are expressed as DatalogMTL, a knowledge representa-	The rules are expressed as DatalogMTL, a knowledge representa-
	tion language that extends Datalog	tion language that extends Datalog
	with operators from metric temporal	with operators from metric temporal
	logic (MTL). The semantics of four	logic (MTL). The semantics of four
	MTL operators are given as follows:	MTL operators are given as follows:
	If Diamondminus[a,b]A is true at	If Diamondminus[a,b]A is true at
	the time t, it requires that A needs	the time t, it requires that A needs
	to be true at some time between t-b	to be true at some time between t-b
	and t-a.	and t-a.
	If Boxminus[a,b]A is true at the time	If Boxminus[a,b]A is true at the time
	t, it requires that A needs to be true continuously between t-b and t-a.	t, it requires that A needs to be true continuously between t-b and t-a.
	If Diamondplus[a,b]A is true at the	If Diamondplus[a,b]A is true at the
	time t, it requires that A needs to be	time t, it requires that A needs to be
	true at some point between t+a and	true at some point between t+a and
	t+b.	t+b.
	If Boxplus[a,b]A is true at the time	If Boxplus[a,b]A is true at the time
	t, it requires that A needs to be true	t, it requires that A needs to be true
	continuously between t+a and t+b.	continuously between t+a and t+b.
	•	You should not give any explanation
		and you should only output "true" or
		"false"
User Prompt	Now we have some temporal data	Now we have some temporal data
	and some rules, data:	and some rules, data:
	A@[9,12]	A@[9,12]
	rule: B:-Diamondminus[3,13]A	rule: B:-Diamondminus[3,13]A
	Is B@[25,25] true or not? Do not an-	Is B@[25,25] true or not?
	swer directly, think step by step.	

1512			
1513	LLM's output	To determine if B@[25,25] is true	Okay, so I need to figure out if B is
1514	1	given the rule and the data, we need	true at time 25 based on the given
1515		to follow these steps:	data and rule. Let me start by under-
1516		1. **Understand the Rule**: The	standing the problem step by step.
1517		rule is B:-Diamondminus[3,13]A.	First, the data provided is A@[9,12].
1518		This means that B is true at a time	This means that A is true from time
1519		t if A is true at some point between	9 up to and including time 12. So, A
1520		t-13 and t-3. 2. **Identify the Time Interval for	is active during the interval [9,12]. Next, the rule given is B:-
1521		B**: We are checking if B@[25,25]	Diamondminus[3,13]A. I need
1522		is true. This means we are looking at	to parse this rule correctly. In
1523		the time $t = 25$.	DatalogMTL, the Diamondminus
1524		3. **Determine the Relevant Time	operator is used, which has a spe-
1525		Interval for A**: According to the	cific meaning. From the semantics
1526		rule, for B to be true at $t = 25$, A	provided, Diamondminus[a,b]A
1527		must be true at some point between	being true at time t means that A
1528		25-13 and 25-3, which is between 12 and 22.	must be true at some time between t - b and t - a.
1529		4. **Check the Data for A**: The	So, breaking down the rule: B is
1530		data provided is A@[9,12]. This	derived if there exists some time
1531		means A is true from time 9 to time	within the interval [t - 13, t - 3]
1532		12.	where A is true. Therefore, for B to
1533		5. **Compare the Intervals**: The	hold at time t, A must be true at least
1534		interval for A (9 to 12) does not	once in that interval.
1535		overlap with the interval required by	Now, the question is whether B is
1536		the rule for B (12 to 22). Specifi-	true at time 25, specifically at the
1537		cally, A is only true up to time 12, and the rule requires A to be true at	point [25,25]. So, t is 25. Let's compute the interval for A based on the
1538		some point between 12 and 22.	rule.
1539		6. **Conclusion**: Since A is not	The interval for A would be from t -
1540		true at any point between 12 and 22,	b to t - a, which is 25 - 13 to 25 - 3.
1541		B@[25,25] cannot be true based on	Calculating that:
1542		the given rule and data.	25 - 13 = 12 25 - 3 = 22
1543		Therefore, B@[25,25] is not true.	So, the interval is [12,22]. This
1544 1545			means that for B to be true at 25, A
1545			must be true at some point between 12 and 22.
1547			Looking back at the data, A is true
1548			from 9 to 12. So, A is true at 12,
1549			which is the end of its interval. Now,
1550			does 12 fall within [12,22]? Yes,
1551			it does. Therefore, A is true at 12,
1552			which is within the required interval
1553			for B to hold at 25.
1554			Wait, but I should double-check.
1555			The interval for A is [9,12], so A is true at 12. The rule requires A to be
1556			true at some point between 12 and
1557			22. Since 12 is included in both in-
1558			tervals, A is true at 12, which satis-
1559			fies the condition.
1560			Therefore, B should be true at time
1561			25.
1562	User Prompt	Based on your previous response,	
1563		without any explanation state your	
1564		answers to the question. You should only output "true" or "false"	
1565	LLM's output	false	true
	output	10100	02 WW

Expected Answer true

Example 2:

Table 10: A detailed context comparison between GPT-40 with CoT and DeepSeek-R1-Distill-Qwen-32B

	Qwen2.5-32B-Instruct with CoT	DeepSeek-R1-Distill-Qwen-32
System Prompt	You are given a dataset and a tem-	You are given a dataset and a
	poral rule, and your task is to judge	poral rule, and your task is to
	whether the given fact is entailed by	whether the given fact is entai
	the dataset and the rule.	the dataset and the rule.
	The rules are expressed as Data-	The rules are expressed as
	logMTL, a knowledge representa-	logMTL, a knowledge repre
	tion language that extends Datalog	tion language that extends D
	with operators from metric temporal	with operators from metric ter
	logic (MTL). The semantics of four	logic (MTL). The semantics of
	MTL operators are given as follows:	MTL operators are given as fo
	If Diamondminus[a,b]A is true at	If Diamondminus[a,b]A is t
	the time t, it requires that A needs	the time t, it requires that A
	to be true at some time between t-b	to be true at some time between
	and t-a.	and t-a.
	If Boxminus[a,b]A is true at the time	If Boxminus[a,b]A is true at th
	t, it requires that A needs to be true	t, it requires that A needs to b
	continuously between t-b and t-a.	continuously between t-b and
	If Diamondplus[a,b]A is true at the	If Diamondplus[a,b]A is true
	time t, it requires that A needs to be	time t, it requires that A needs
	true at some point between t+a and t+b.	true at some point between t+t+b.
		* . * .
	If Boxplus[a,b]A is true at the time	If Boxplus[a,b]A is true at the
	t, it requires that A needs to be true continuously between t+a and t+b.	t, it requires that A needs to be continuously between t+a and
	continuously between t+a and t+b.	You should not give any expla
		and you should only output "tr
		"false"
User Prompt	Now we have some temporal data	Now we have some tempora
Osei Fionipi	and some rules, data:	and some rules, data:
	A@[6,6]	A@[6,6]
	rule: A:-Diamondminus[2,2]A	rule: A:-Diamondminus[2,2]A
	Is A@[80,80] true or not? Do not	Is A@[80,80] true or not?
	answer directly, think step by step.	is Ae [60,60] true or not?
	answer directly, tillik step by step.	

1620			
1621	LLM's output	To determine whether A@[80,80]	Okay, so I'm trying to figure out
1622		is true given the rule A:-	whether A@[80,80] is true based on
1623		Diamondminus[2,2]A and the	the given data and rule. Let me break
1624		data A@[6,6], we need to follow	this down step by step.
1625		these steps:	First, the data provided is
1626		1. **Understand the Rule**: The	A@[6,6]. That means at time
1627		rule A:-Diamondminus[2,2]A	6, A is true. Now, the rule is A:-
1628		means that A is true at time t if A is true at some point between t-2 and	Diamondminus[2,2]A. I need to understand what this rule means.
1629		t+2.	The Diamondminus operator in
1630		2. **Analyze the Data**: The data	MTL is defined such that Diamond-
1631		provided is A@[6,6], which means	minus[a,b]A is true at time t if
1632		A is true at time 6.	A is true at some time between
1633		3. **Apply the Rule to the Data**:	t-b and t-a. So, for the rule A:-
1634		According to the rule, A@[t] is true	Diamondminus[2,2]A, it means that
1635		if A is true at some point between	A is true at time t if there exists some
1636		t-2 and t+2. We need to check if	time between t-2 and t-2 (since a and
1637		A@[6,6] can satisfy the rule for any	b are both 2) where A is true.
1638		time t.	Wait, that seems a bit confusing. Let
1639		4. **Check the Time Interval for	me clarify. The operator Diamond-
1640		A@[80,80]**: We need to see if A@[80,80] can be true based on the	minus[2,2]A at time t requires that A is true at some point between t-2
1641		rule. For A@[80,80] to be true, A	and t-2. But t-2 and t-2 is just a sin-
1642		must be true at some point between	gle point in time, t-2. So, effectively,
1643		80-2 and 80+2, i.e., between 78 and	this rule is saying that A is true at
1644		82.	time t if A was true at time t-2.
1645		5. **Compare the Given Data with	So, applying this rule, if A is true
1646		the Required Interval**: The data	at time t-2, then A is true at time t.
1647		A@[6,6] indicates that A is true at	Now, looking at the data, A is true at
1648		time 6. However, this does not fall	time 6. So, according to the rule, A
1649		within the interval [78, 82]. 6. **Conclusion**: Since A@[6,6]	should also be true at time $6 + 2 =$
1650		does not fall within the interval	8. Then, applying the rule again, A at 8 would imply A at 10, and so on.
1651		[78, 82], A@[80,80] cannot be true	This creates a chain where A is true
1652		based on the given rule and data.	at every even time starting from 6: 6,
1653		Therefore, A@[80,80] is not true.	8, 10, 12, etc.
1654			But the question is about
1655			A@[80,80]. Is 80 an even number?
1656			Yes, 80 is even. So, following the
1657			chain, A should be true at 80 be-
1658			cause it's $6 + 2*37 = 80$. Therefore, A is true at 80 .
1659			Wait, but let me double-check. The
1660			rule is A:-Diamondminus[2,2]A,
1661			which as I understood, means A at
1662			t if A was at t-2. So starting from 6,
1663			A is true at 8, then 10, and so on. So
1664			80 is $6 + 2*37$, which is correct. So
1665			yes, A should be true at 80.
1666			I think that's the correct reasoning. So the answer should be true.
1667	User Prompt	Based on your previous response,	so the allswer should be true.
1668	OSCI I Tompt	without any explanation state your	
1669		answers to the question. You should	
1670		only output "true" or "false"	
1671 1672	LLM's output	false	true
1673	Expected Answer	tro	ue

D.5 A SYSTEMATIC TAXONOMY OF LLM FAILURES

We devised a method that uses the powerful Gemini-2.5-Pro model as a proxy to analyze the chain-of-thought (CoT) processes in failure cases generated by Qwen 2.5 32B. This automated analysis revealed six recurring categories of errors:

1. Failure to apply rules recursively

1	6	8	0
1	6	8	1

System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether the given fact is entailed by the dataset and the rule. The rules are expressed as DatalogMTL, a knowledge representation language that extends Datalog with operators from metric temporal logic (MTL). The semantics of four MTL operators are given as follows:If Diamondminus[a,b]A is true at the time t, it requires that A needs to be true at some time between t-b and t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the time t, it requires that A needs to be true at some point between t+a and t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b.
User Prompt	Now we have some temporal data and some rules, data: A@[4,14] rule: A:-Diamondminus[1,8]A
LLM's output	Is A@[218,365] true or not? Do not answer directly, think step by step. To determine if A@[218,365] is true given the rule A:-Diamondminus[1,8]A and the data A@[4,14], we need to follow these steps: 1. **Understand the Rule**: The rule A:-Diamondminus[1,8]A means that A is true at a time t if A is true at some point between t-8 and t-1. 2. **Analyze the Data**: The data provided is A@[4,14], which means A is true between time 4 and time 14. 3. **Apply the Rule to the Given Time Interval**: We need to check if A@[218,365] can be true based on the rule and the data. - For A@[218,365] to be true, there must be some time t between 218 and 365 where A is true at some point between t-8 and t-1 We need to check if the interval [218-8, 218-1] = [210, 217] or any other interval within [218, 365] intersects with the interval [4, 14] where A is true. 4. **Check for Intersection**: - The interval [210, 217] does not intersect with [4, 14] Similarly, any interval [t-8, t-1] for t in [218, 365] will not intersect with [4, 14]. Since there is no overlap between the interval [4, 14] and any interval [t-8, t-1] for t in [218, 365], the rule A:-Diamondminus[1,8]A cannot be satisfied for A@[218,365]. Therefore, A@[218,365] is not true based on the given rule and data.
User Prompt	Based on your previous response, without any explanation state your answers to the question. You should only output "true" or "false"
LLM's output	false
Expected Answer	true
	I.

The reasoning process fails to account for the recursive application of the rule. It performs only a single-step check and does not apply the rule to its own conclusions, thus missing the chain of derivations that would prove the query.

2. Incorrect interval overlap or boundary check

1728		
1729	System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether
1730		the given fact is entailed by the dataset and the rule. The rules are expressed
1731		as DatalogMTL, a knowledge representation language that extends Datalog
1732		with operators from metric temporal logic (MTL). The semantics of four
1733		MTL operators are given as follows: If Diamondminus[a,b]A is true at the
1734		time t, it requires that A needs to be true at some time between t-b and t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
1735		true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
1736		time t, it requires that A needs to be true at some point between t+a and
1737		t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
1738		continuously between t+a and t+b.
1739	User Prompt	Now we have some temporal data and some rules, data: A@[9,12]
1740	- · · · · · · · · · · · · · · · · · · ·	rule: B:-Diamondminus[3,13]A
1741		Is B@[25,25] true or not? Do not answer directly, think step by step.
1742	LLM's output	To determine if B@[25,25] is true given the rule and the data, we need to
1743		follow these steps:
1744		1. **Understand the Rule**: The rule is B:-Diamondminus[3,13]A. This
1745		means that B is true at a time t if A is true at some point between t-13 and
1746		t-3.
1747		2. **Identify the Time Interval for B**: We are checking if B@[25,25] is
1748		true. This means we are looking at the time t = 25. 3. **Determine the Relevant Time Interval for A**: According to the rule,
1749		for B to be true at $t = 25$, A must be true at some point between 25-13 and
1750		25-3, which is between 12 and 22.
1751		4. **Check the Data for A**: The data provided is A@[9,12]. This means
1752		A is true from time 9 to time 12.
1753		5. **Compare the Intervals**: The interval for A (9 to 12) does not overlap
1754		with the interval required by the rule for B (12 to 22). Specifically, A is only
1755		true up to time 12, and the rule requires A to be true at some point between
1756		12 and 22.
1757		6. **Conclusion**: Since A is not true at any point between 12 and 22,
1758		B@[25,25] cannot be true based on the given rule and data.
1759	Han Dan and	Therefore, B@[25,25] is not true.
1760	User Prompt	Based on your previous response, without any explanation state your answers to the question. You should only output "true" or "false"
1761	LLM's output	false
1762	Expected Answer	true
1763		1

The reasoning claims there is no overlap between the interval where A is true ([9,12]) and the interval required by the rule ([12,22]). This is incorrect. The two intervals intersect at the single time point t=12.

3. Misinterpretation of query semantics

System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether
	the given fact is entailed by the dataset and the rule. The rules are expressed
	as DatalogMTL, a knowledge representation language that extends Datalog
	with operators from metric temporal logic (MTL). The semantics of four
	MTL operators are given as follows:If Diamondminus[a,b]A is true at the
	time t, it requires that A needs to be true at some time between t-b and
	t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
	true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
	time t, it requires that A needs to be true at some point between t+a and
	t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
	continuously between t+a and t+b.

1782		
1783	User Prompt	Now we have some temporal data and some rules, data: A@[0,15] B@[6,10]
1784		rule: C:-Diamondminus[2,15]A,Boxminus[6,9]B
1785		Is C@[-4,19] true or not? Do not answer directly, think step by step.
1786	LLM's output	To determine whether C@[-4,19] is true given the data and the rule, we
1787		need to break down the rule and check if the conditions are met for each
1788		time point in the interval [-4,19].
1789		The rule is: C :- Diamondminus[2,15]A, Boxminus[6,9]B
1790		This means that C is true at a time t if: 1. There exists some time between
1791		t-15 and t-2 where A is true (Diamondminus[2,15]A). 2. B is true continu-
1792		ously between t-9 and t-6 (Boxminus[6,9]B).
1793		Let's analyze the data: - A is true in the interval [0,15] B is true in the interval [6,10].
1794		Now, let's check the conditions for each time point in the interval [-4,19].
1795		### Condition 1: Diamondminus[2,15]A This condition requires that A is
1796		true at some point between t-15 and t-2. We need to check if this condition
1797		holds for each t in [-4,19].
1798		- For $t = -4$: The interval is $[-19, -6]$. A is not true in this interval For $t = -6$
1799		19: The interval is [4, 17]. A is true in this interval.
1800		Since A is true in the interval [0,15], we need to find the range of t where
		the interval [t-15, t-2] overlaps with [0,15].
1801		- The lower bound of the interval [t-15, t-2] should be less than or equal
1802		to 15: $t-15 \le 15 = t \le 30$ The upper bound of the interval [t-15, t-2]
1803		should be greater than or equal to 0: $t-2 \ge 0 = > t \ge 2$.
1804		So, the condition Diamondminus[2,15]A is true for t in the interval [2, 30].
1805		### Condition 2: Boxminus[6,9]B This condition requires that B is true con-
1806		tinuously between t-9 and t-6. We need to check if this condition holds for
1807		each t in [-4,19] For t = -4: The interval is [-13, -10]. B is not true in this interval For t =
1808		19: The interval is [10, 13]. B is not true in this interval.
1809		Since B is true in the interval [6,10], we need to find the range of t where
1810		the interval [t-9, t-6] is within [6,10].
1811		- The lower bound of the interval [t-9, t-6] should be greater than or equal
1812		to 6: $t-9 >= 6 => t >= 15$ The upper bound of the interval [t-9, t-6] should
1813		be less than or equal to 10: $t-6 \le 10 = t \le 16$.
1814		So, the condition Boxminus[6,9]B is true for t in the interval [15, 16].
1815		### Combining the Conditions To satisfy the rule, both conditions must
1816		be true simultaneously. Therefore, we need to find the intersection of the
1817		intervals [2, 30] and [15, 16].
1818		The intersection of [2, 30] and [15, 16] is [15, 16].
1819		### Conclusion C is true for t in the interval [15, 16]. Since the interval [15,
1820		16] is a subset of [-4, 19], C@[-4,19] is true for the time points in [15, 16].
1821	Hear Propert	Therefore, C@[-4,19] is true. Based on your previous response, without any explanation state your an-
1822	User Prompt	swers to the question. You should only output "true" or "false"
1823	LLM's output	true
1824	Expected Answer	false
1825	Expected Allswell	10150

This is incorrect. For C@[-4,19] to be true, C must be true for all time points from -4 to 19. Since C is only true for the interval [15,16], it is false for other parts of the query interval, such as [-4,15) and (16,19]. Therefore, the query C@[-4,19] is false. The reasoning mistakenly assumes that if C is true for any part of the query interval, the query itself is true.

4. Incorrect interval calculation

1836		
1837	System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether
1838		the given fact is entailed by the dataset and the rule. The rules are expressed
1839		as DatalogMTL, a knowledge representation language that extends Datalog
1840		with operators from metric temporal logic (MTL). The semantics of four
1841		MTL operators are given as follows:If Diamondminus[a,b]A is true at the
1842		time t, it requires that A needs to be true at some time between t-b and
1843		t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be
1844		true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
1845		time t, it requires that A needs to be true at some point between t+a and t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
1846		continuously between t+a and t+b.
1847	User Prompt	Now we have some temporal data and some rules, data: B@[2.795,14.633]
1848	CSCI I Tompt	rule: A:-Boxplus[5.046,10.683]B
1849		Is A@[-0.210,1.972] true or not? Do not answer directly, think step by step.
1850	LLM's output	To determine if A@[-0.210,1.972] is true given the rule A:-
1851	1	Boxplus[5.046,10.683]B and the data B@[2.795,14.633], we need to
1852		follow these steps:
1853		1. **Understand the Rule**: The rule A:-Boxplus[5.046,10.683]B means
1854		that A is true at a time t if B is true continuously between t+5.046 and
1855		t+10.683.
1856		2. **Analyze the Data**: The data B@[2.795,14.633] means that B is true
1857		between time 2.795 and 14.633. 3. **Determine the Time Interval for A**: We need to find the time interval
1858		for A such that B is true continuously between t+5.046 and t+10.683. This
1859		means we need to find the time t such that the interval [t+5.046, t+10.683]
1860		is within the interval [2.795, 14.633].
1861		4. **Calculate the Interval for t**: - The lower bound of the interval for B
1862		is 2.795, so $t+5.046 \le 2.795$ The upper bound of the interval for B is
1863		14.633, so t+10.683 <= 14.633.
1864		Solving these inequalities: - t+5.046 <= 2.795 => t <= 2.795 - 5.046 => t <=
1865		-2.251 - t+10.683 <= 14.633 => t <= 14.633 - 10.683 => t <= 3.950
1866		Since t must satisfy both conditions, we take the stricter condition: - t <=
1867		-2.251 5. **Check the Given Interval for A **: We need to check if the interval
1868		5. **Check the Given Interval for A**: We need to check if the interval $[-0.210, 1.972]$ satisfies the condition t <= -2.251. Clearly, the interval $[-0.210, 1.972]$
1869		$[-0.210, 1.972]$ satisfies the condition $t \le -2.231$. Clearly, the interval $[-0.210, 1.972]$ does not satisfy this condition because -0.210 is greater than
1870		-2.251.
1871		Therefore, A@[-0.210,1.972] is not true based on the given rule and data.
1872	User Prompt	Based on your previous response, without any explanation state your an-
1873		swers to the question. You should only output "true" or "false"
1874	LLM's output	false
1875	Expected Answer	true

LLM says that $t+5.046 \le 2.795$, which is incorrect. The correct one should be $t+5.046 \ge 2.795$.

5. Misinterpretation of operator semantics

System Prompt	You are given a dataset and a temporal rule, and your task is to judge whether
	the given fact is entailed by the dataset and the rule. The rules are expressed
	as DatalogMTL, a knowledge representation language that extends Datalog
	with operators from metric temporal logic (MTL). The semantics of four
	MTL operators are given as follows: If Diamondminus[a,b]A is true at the
	time t, it requires that A needs to be true at some time between t-b and
	t-a.If Boxminus[a,b]A is true at the time t, it requires that A needs to be true continuously between t-b and t-a.If Diamondplus[a,b]A is true at the
	time t, it requires that A needs to be true at some point between t+a and
	t+b.If Boxplus[a,b]A is true at the time t, it requires that A needs to be true
	continuously between t+a and t+b.
User Prompt	Now we have some temporal data and some rules, data: B@[2,12]
C ser I rompt	rule: C:-Diamondplus[5,8]A A:-Boxplus[10,12]B
	Is C@[-5,-5] true or not? Do not answer directly, think step by step.
LLM's output	To determine whether C@[-5,-5] is true given the data and the rules, we
F	need to follow the rules step by step and see if the conditions are met.
	1. **Data Provided: ** - B@[2,12]: This means B is true continuously from
	time 2 to time 12.
	2. **Rules Provided:** - C :- Diamondplus[5,8]A: This means C is true at
	time t if A is true at some point between t+5 and t+8 A :- Boxplus[10,12]B:
	This means A is true at time t if B is true continuously between t+10 and
	t+12.
	3. **Determine A's Truth Value:** - We need to check if A is true at some
	time t such that B is true continuously between t+10 and t+12 Given
	B@[2,12], B is true from time 2 to time 12 For A to be true at time t,
	B must be true continuously from t+10 to t+12 The latest time B is true is
	12, so t+12 must be less than or equal to 12 Therefore, t must be less than or equal to 0 (t+12 \leq 12 \leq t \leq 0) The earliest time B is true is 2, so
	t+10 must be greater than or equal to 2 Therefore, t must be greater than
	or equal to -8 (t+10 >= 2 => t >= -8) Combining these, A is true for t in
	the range $[-8, 0]$.
	4. **Determine C's Truth Value:** - We need to check if C is true at time
	t such that A is true at some point between t+5 and t+8 A is true for t in
	the range [-8, 0] For C to be true at time t, A must be true at some point
	between t+5 and t+8 We need to find the range of t such that t+5 to t+8
	overlaps with [-8, 0] The latest time A is true is 0, so t+8 must be less than
	or equal to 0 Therefore, t must be less than or equal to -8 (t+8 \leq 0 =>
	$t \le -8$) The earliest time A is true is -8, so t+5 must be greater than or
	equal to -8 Therefore, t must be greater than or equal to -13 (t+5 \geq = -8 \geq
	$t \ge -13$) Combining these, C is true for t in the range [-13, -8].
	5. **Check C@[-5,-5]:** - We need to check if C is true at time -5 From
	the previous step, C is true for t in the range [-13, -8] Since -5 is not in the
	range [-13, -8], C is not true at time -5.
IIP	Therefore, C@[-5,-5] is not true.
User Prompt	Based on your previous response, without any explanation state your an-
I I M'a autout	swers to the question. You should only output "true" or "false"
LLM's output	false
Expected Answer	true

The reasoning incorrectly applies the logic of a Box operator instead of a Diamond operator.

E CAN LLM UNDERSTAND SYMBOLIC REPRESENTATION?

We ask LLM to translate generated natural language representations of logic rules to symbolic representations and them compare the translated symbolic representations with the ground truth symbolic representation to verify if LLM has the ability to understand symbolic representations. Specifically, we passed the same prompt that used in our symbolic evaluations, "The rules are expressed as Data-

1945

1946

1947

1948

1949

1950

1951

1952

1953

1954

1955

1957 1958 1959

1967

1968

1969

1996

1997

logMTL, a.....If Boxplus[a,b]A is true at the time t, it requires that A needs to be true continuously between t+a and t+b.", into LLMs, along with few examples telling LLM the output format, then ask LLM to translate verbalized samples into symbolic ones. If the translated symbolic rule from the verbalized rule is exactly the same as the original symbolic rule, then we consider LLM has the ability to understand both the symbolic rule and the verbalized rule.

We passed 6x50 samples selected from all six subsets into the LLMs. LLM accurately translated 100% of testing samples for most subsets, and 96% of testing samples for MultiRule subset, from verbalized representations to symbolic representations.

In addition, we noticed that larger LLMs with strong reasoning abilities, such as DeepSeek-R1, performs pertty good on some cases, further proving that the semantics is understood.

Considering all those points, We believe that LLM can understand the symbolic representation.

F DETAILED BENCHMARK CONSTRUCTION PSEUDO CODE

Our dataset generation algorithm is driven by generating rules. In a high level view, it generate rules one by one in a same context, while the generation process for each rule contains the context check, ensuring the generated rules are non-trivial.

```
Algorithm 1: Generate
1970
        Parameters: f: The set of features Enabled
1972
        Parameters: N: The number of rules
        Parameters: V: A boolean flag to control if the program should generate a positive sample or a
1973
                      negative sample
1974
        Output: A problem instance I containing a set of rules, a set of data, a query and a boolean
1975
                  value representing whether the query is valid or not.
1976
        G \leftarrow EmptyGraph();
        while i in 1....N do
1978
            do
1979
                G \leftarrow GenerateGraph(G);
                while n in G.nodes do
1981
                   Assign node with random values
1982
                end
                G \leftarrow GenerateRules(G)
            while New Info can be Inferred from I;
1984
        end
1985
        Rules, Data \leftarrow Extract Rules associted with G;
1986
        DeltaNew \leftarrow Facts\ Inferred\ From\ Graph\ G;
1987
        QueryEntity, Interval \leftarrow Randomly Select From DeltaNew;
1988
        if V then
1989
            QueryInterval \leftarrow A random sub-interval from Interval;
        else
            QueryInterval \leftarrow A random sub-interval that is not in Interval;
1992
        end
1993
        return Rules, Data, QueryEntity, QueryInterval, V
```

The graph generation algorithm 2 will generate a graph where nodes in the graph represents predicates such as A, B and C. We are going to attach details information about predicates and rules into the corresponding nodes and edges of the graph, but at this time we only need the structure of the graph, i.e. nodes and edges don't have special information attached.

```
1998
        Algorithm 2: Graph Generation
1999
        Input: G: The existing graph
2000
        Parameters: f: The set of features Enabled
        Output: G: The generated graph (including the old information in the existing graph)
2002
        Output: List[V]: The list of new nodes, representing predicates, in the new graph
2003
        Output: V_o: The output node which depends on the some other nodes (in case that recursive is
2004
                 not enabled in f) in List[V]
2005
        NewNode \leftarrow []
2006
        Determine the lowest possible number of nodes to add l and the highest number of possible
2007
         nodes to add r based on f.
2008
        N \leftarrow random(l, r);
        while i in 1....N do
2009
            p \leftarrow A \ randomly \ assigned \ predicate;
2010
            G.AddNode(p);
2011
            NewNode.Push(p);
2012
        end
2013
        OutNode \leftarrow RandomSelect(NewNode);
2014
        while p in NewNode do
2015
            if "recursive" not in f and p == OutNode then
2016
               continue;
2017
            end
2018
            G.AddEdge(p, OutNode)
2019
        end
2020
        return G, NewNode, OutNode
2021
```

After the structure of the graph is generated, we are going to attach rule information to each edge of the graph using the Rule Generation algorithm 3. Since we are doing Graph Generation and Rule Generation alternately, in the rule generation we only care about edges that don't already has a rule, we will skip the edges that already has a rule associated with that.

```
Algorithm 3: Rule Generation
```

2023

2024

20252026

204320442045

2046 2047

2048

2049

2050

2051

```
2027
        Input: G: The existing graph
2028
        Parameters: f: The set of features Enabled
2029
        Output: G: The generated graph (including the old information in the existing graph)
2030
        SelectedOp \leftarrow Set()
2031
        SelectedOp.add(RandomSelect(Boxminus, Boxplus, Diamondplusm, Diamondminus))
         if "mixed_operators" in f then
            Randomly select and add more operators to SelectedOp;
        end
        while Edge in G do
2035
            u, v, a \leftarrow G;
2036
            if No rule is associated with Edge then
2037
                Op \leftarrow \text{Randomly select an operator from } SelectedOp;
2038
                Interval \leftarrow Randomly create an interval;
2039
                Create an item literal with Op and Interval and associated that with Edge;
2040
            end
2041
        end
2042
        return G
```

G COMPUTATIONAL RESOURCE REQUIREMENT

For LLama-3-8B and Qwen2.5-32B, we used two NVIDIA H100 80GB HBM3 GPUs, and hosted using vLLM. Zero-shot and few-shot inference usually take less than 10 mintues, and chain-of-thought usually takes less than 1 hour.

For Distilled DeepSeek Models, we used two NVIDIA H100 80GB HBM3 GPUs, and inference usually takes less than 1 hour.

For DeepSeek R1, we used the cloud inference platform Fireworks AI⁴, and the full evaluation takes less than \$10 USD.

For GPT-40, we used the cloud inference platform OpenAI 5 . The full evaluation takes less than \$100 USD.

H LIMITATION

Our experiments were constrained by the speed, computational resources, and financial costs associated with utilizing GPT-40 and DeepSeek-R1. For instance, although our generator allows for the creation of temporal data and rules with arbitrary sizes, we obtained results across multiple temporal reasoning datasets of varying complexities on a relatively small scale due to the financial costs associated with GPT-40 and DeepSeek-R1 API calls.

Another limitation of this preliminary exploration into testing the temporal reasoning abilities of LLMs is that we present experimental results from only three prompting settings, despite the availability of more advanced prompting strategies. Additionally, while our results demonstrate that DeepSeek-R1 and its distilled models significantly outperform the other evaluated models, we do not establish the underlying factors contributing to this superiority. Our human analysis of certain error cases provides limited insights, and we do not propose an effective method for enhancing LLMs' ability to handle temporal logic reasoning problems.

⁴Fireworks AI Platform can be accessed at https://fireworks.ai/

⁵The OpenAI Platform can be accessed at https://platform.openai.com/