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Abstract

As Al systems become more embedded in everyday life, the development of fair
and unbiased models becomes more critical. Considering the social impact of Al
systems is not merely a technical challenge but a moral imperative. As evidenced
in numerous research studies, learning fair and robust representations has proven
to be a powerful approach to effectively debiasing algorithms and improving fair-
ness while maintaining essential information for prediction tasks. Representation
learning frameworks, particularly those that utilize self-supervised and contrastive
learning, have demonstrated superior robustness and generalizability across various
domains. Despite the growing interest in applying these approaches to tabular data,
the issue of fairness in these learned representations remains underexplored. In
this study, we introduce a contrastive learning framework specifically designed
to address bias and learn fair representations in tabular datasets. By strategically
selecting positive pair samples and employing supervised and self-supervised con-
trastive learning, we significantly reduce bias compared to existing state-of-the-art
contrastive learning models for tabular data. Our results demonstrate the efficacy of
our approach in mitigating bias with minimum trade-off in accuracy and leveraging
the learned fair representations in various downstream tasks.

1 Introduction

The real-world application of deep learning approaches is expanding rapidly. These approaches are
susceptible to stereotypes or societal biases inherited in the data, resulting in models biased against
individuals with specific sensitive attributes and treating them unfairly. Well-known examples include
a recidivism risk prediction model that predicts reoffending rates for individuals of certain races
at twice the rate compared to others [[1} 9, 33] , or recruitment models showing bias towards male
candidates over equally qualified female candidates[29, [11} [10]. Consequently, there is an increasing
amount of research focused on algorithmic fairness, with the primary objective being to guarantee
that sensitive attributes have no impact on algorithmic outcomes.

Learning fair and robust representations has shown its potential in effectively debiasing and improving
fairness while keeping the essential information for the prediction task [44]. In representation learning
frameworks, self-supervised learning and particularly contrastive learning have shown superior
robustness and generalizability across various domains, including natural language processing (NLP)
and computer vision, even in scenarios with fully labeled or few labeled data [4]]. Contrastive learning
is more challenging when applied to tabular datasets compared to other data types such as images, text,
or speech. This is because these datasets typically contain spatial, semantic, and vocal relationships,
which provide structured information not present in tabular data. Although contrastive learning for
tabular data is receiving increased attention, the fairness in these learned representations has not been
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thoroughly explored. Our particular interest lies in investigating whether contrastive learning methods
can be utilized to mitigate bias and improve the fairness of representations. We argue that other
contrastive learning models for tabular data, such as VIME [45] and SCAREF [3]], which do not address
fairness issues, exhibit bias in their predictions in downstream tasks, leading to discrimination.

In this study, we propose a contrastive learning framework for tabular dataset, to mitigate bias and
learn fair representations. For positive pairs, each privileged sample with favorable outcome is paired
with one randomly selected unprivileged sample with favorable outcome. Other samples are paired
with one randomly selected sample with the same class and the same sensitive attribute. In our
supervised and unsupervised framework, supervised contrastive learning loss [27] and InfoNCE loss
[17, 132]] combined with binary cross-entropy loss are used, respectively. Our proposed method is
evaluated on various prevalent datasets in the fairness domain. The results demonstrate a significant
reduction in bias compared to existing state-of-the-art contrastive learning frameworks for tabular
datasets. Moreover, our framework results in learning fair representations that can be utilized in any
downstream tasks.

2 Related Work

Self-Supervised Learning for tabular data. As access to unlabeled data expands, self-supervised
learning (SSL) has received attention across various domains, including natural language processing
(NLP), computer vision, and speech recognition. SSL approaches are representation learning frame-
works that use unlabeled data to learn robust and meaningful representations. SSL also demonstrates
its ability in robustness and generalizability even in scenarios with fully labeled or few labeled data
[4]. SSL methods highly depend on the correlations within the features of the data. Recently, there
has been an increasing focus within the representation learning field on employing SSL for tabular
data. Unlike other data types such as images, text, or speech, which possess distinct structures such
as spatial, semantic, and vocal relationships respectively, tabular data are more challenging [42]]. This
is primarily due to the absence of explicit relationships for learning representation, which also varies
across different tabular datasets[42]].

Several studies [2, 135} 3,457,118} 23} 140} 43]] have been proposed that deploy SSL methods in tabular
datasets. These approaches can be categorized to two groups : 1. employing the pretext tasks and
2. contrastive learning. Deploying the pretext task is the most widely-used category. [45] proposes
Value Imputation and Mask Estimation(VIME), a self and semi supervised framework for tabular
data. In the self supervised framework, they pre-trained an encoder on unlabeled corrupted/masked
data and extracted the features. Then these representations are passed through “mask estimation” and
“feature estimation” heads for recovering the binary mask used for corruption, and the value of the
feature that has been masked. This pre-trained encoder is utilized in the semi-supervised learning
framework as well. Their choice of the corruption strategy is to choose a mask randomly sampled
from a Bernoulli distribution. For the filling strategy they utilize CutMix [46]], which replaces all
masked values of each sample with values from another randomly selected sample. VIME achieved
state-of-the-art on clinical and genomics datasets. On the other hand, the main concept of contrastive
learning is to pull similar instances (positive pairs) together and push dissimilar instances (negative
pairs) away. This is achieved by maximizing agreement (or minimizing the distance) within the
embedding space of positive pairs while maximizing the distances with negative pairs. [8| 136, 32| [14].
These methods have been very successful in computer vision. In data types such as images, the
positive pairs can be generated through a data augmentation module (i.e., through transformation
of the image such as cropping and resizing, rotation, color dissertation, etc.), while negative pairs
correspond to other images in the batch [§]. More recently the scope of contrastive learning has
been extended to weakly supervised [38], semi-supervised, and supervised setup. These studies have
introduced an extra conditional variable such as details about the downstream task [37] or labels from
downstream tasks [27} 26]], to improve the quality of the representations. In the supervised contrastive
learning setup, the positive pairs belong to the same class while negative pairs belong to different
classes [27]. In the NLP domain, it has been demonstrated that the model’s robustness to noise and
data sparsity can be improved when supervised contrastive learning is combined with a cross entropy
loss [15)134]. SCAREF proposed by [3]] is another state-of-the-art approach that deploys contrastive
learning on tabular data. In the SSL setting Scarf method masks 60% of the features for each data
point and then uses Random Feature Corruption to replace these masked values. Finally they fine-tune
their encoder weights with a classification head on top through some labeled data. The authors of this
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study claim the contrastive learning setting of SCAREF is superior compared to pre-trained models
such as VIME. They compared their methods with other random feature corruption methods, such
as CutMix [46] and MixUp [48] and argue that their proposed random feature corruption method is
more effective. As mentioned earlier, CutMix [46]] replaces values from one randomly chosen sample
for all of the masked values in each sample, whereas SCARF method randomly selects a sample for
each masked value. In addition, the corruption method of MixUp [48] is to replace it with a linear
combination of the sample and another randomly chosen sample. It is demonstrated that MixUp is
more effective when corruption is done on the embedding space rather than input space [335].

Fair Contrastive learning Contrastive learning has been extensively used to address fairness concerns
in the field of computer vision [47, 22} |5, 39]. In contrast, while the application of self-supervised
contrastive learning to tabular data is gaining attention, its use for fairness-specific objectives remains
comparatively underexplored. [30] introduces a conditional contrastive learning (CCL) approach
primarily designed for vision tasks, which they also extend to tabular data. Their method selects
positive and negative pairs conditioned on the sensitive attribute to minimize sensitive leakage while
improving class separability. However, their augmentation strategy, adding isotropic Gaussian noise
to standardized tabular features, originates from vision-based contrastive frameworks and is less
well-suited for tabular data. Many tabular features are discrete, semantically structured, or non-
continuous, making Gaussian perturbations potentially unrealistic or semantically meaningless. In
the domains of NLP and computer vision, [34] proposed a contrastive learning-based method for
bias mitigation that encourages representations of samples with the same class label to be close,
while pushing apart representations that share the same protected attribute. Although developed for
unstructured data, the underlying principle of this approach, decoupling class and sensitive attribute
representations, is also applicable to tabular data. [6] employs self-supervised setting on tabular data
in an encoder- decoder framework and discusses fairness; however, they do not utilize contrastive
learning. DualFair [19] presents a self-supervised representation learning framework that jointly
addresses both group fairness and counterfactual fairness. It achieves this by generating counterfactual
samples using a cyclic variational autoencoder (C-VAE), applying fairness-aware contrastive loss to
align embeddings across sensitive groups and counterfactuals, and using self-knowledge distillation
to maintain representation quality.

3 Method

Figure[T]illustrates the general framework of our proposed model. A customized technique is used
to selectively pair positive samples from the original input based on specific criteria. These positive
pairs are integrated into the training process using a contrastive loss, alongside classification tasks, in
an end-to-end manner.

The selection of negative pairs in our contrastive learning framework depends on whether the setting
is supervised or self-supervised. In the supervised version, negative pairs within a batch are formed
from samples of different classes. In the self-supervised version, all other samples in the batch are
treated as negatives.

For positive pairs, instances from the same class are further conditioned on the sensitive attribute.
That is, we sample pair instances within the same subgroup (defined by outcome * sensitive attribute),
such as Female with low income paired with another Female with low income. The only exception
is for the privileged group with a favorable outcome. This design helps preserve subgroup-specific
characteristics in the learned representations, ensuring the model remains accurate within subgroups
while maintaining clear separation between them.

For the privileged group with favorable outcomes, positive pairs are drawn from the unprivileged
group with the same favorable outcome, as the privileged group poses challenges to the classifier’s
ability to ensure fair predictions. For example, we pair a Male high income instance with a Female
high income instance. Keeping them in the same class (high income) ensures that the model learns to
minimize representational distance between them. This approach encourages the model not to rely on
the sensitive attribute in favorable outcome predictions, aligning with the fairness criterion of equality
of opportunity by promoting intra-group similarity across sensitive attributes.

The general idea behind contrastive learning is to train a model to bring similar samples closer
together in a learned representation space while pushing dissimilar samples apart. Our strategy
embeds fairness into the model’s learning process without altering the core contrastive learning
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mechanism. By encouraging instances from favorable outcomes with different sensitive attributes to
be closer in representation space, we naturally achieve fairness goals without relying on additional
fairness-specific constraint-based loss functions. Incorporating our custom sampling strategy and
optimizing with contrastive loss encourages the embeddings of selected groups to converge, reducing
bias and mitigating discrimination while preserving model utility.

To implement this approach, our architecture includes an encoder z = Enc(z), which maps the input
to a representation. These representations are then used to calculate both the contrastive loss and the
classification loss. Within this framework, we investigate a range of contrastive loss functions:

* Self-supervised contrastive loss: Self-supervised contrastive learning does not require
explicit labels for training. Instead, it leverages positive and negative pairs of the data
sample. In this context, given a mini-batch with a set of N randomly selected samples,
let i € {1...N} be the index of an arbitrary sample, called the anchor and let j be the
index of random augmentations (a.k.a., “views”), also called the positive, the corresponding
mini-batch consists of 2V pairs where the other 2(N — 1) indices {1...N} \ {i} are called
the negatives. Here z; = Enc(x;), Z; = Enc(Z;) denotes the embeddings generated from
the encoder and the self-supervised contrastive loss is calculated as [8} 136, [21]]:

Lself Zl €Xp Slm(zﬂ Z])/T) (1)
# Tz oxp(sim(zi, 20)/7)
where sim function is the Cosine Similarity (Eq. 2).
ZTZJ
Izill2-11Z51l2

T € R™ is a scalar temperature parameter controlling softness.

(@)

sim(zi, Zj) =

* Supervised contrastive loss: In the realm of supervised learning, the contrastive loss
outlined in Eq. [T|encounters limitations when multiple samples are known to belong to the
same class [27]]. Eq.[3]presents the most direct approaches for extending Eq. [I]to include
supervision [27]:

2

L5uP — 7i

Z log exp(zi - 2p/7) 3)

T2, Sacato oxpl 2477

where the symbol - denotes the inner (dot) product and Q( ) = {1..N}\ {i}, P( ) =
{p e Q( ) : yp = y; } is the set of indices of all positives in the batch distinct from ¢, and
| P(2)] is its cardinality.

As shown in Figure[I] our final objective function is formulated as a weighted combination of a
binary cross-entropy loss and contrastive loss.

Liotal = aLpce + Lscr, @

3.1 Theoretical Analysis

Let (X,Y,S) ~ Paas Where X € X' C R are features, Y € {0,1} is the target, and S € {0,1}
is a binary sensitive attribute. An encoder fs : X — Z C R% maps a sample to a representation
Z = fo(X). Similarity between two representations is measured by g-(z, 2’) = exp((z, 2’)/7) with
temperature 7 > 0.

Positive-pair sampler. Given an anchor sample (x,y, s) with y = 1 (favourable label), we draw the
positive according to the mixture

Ppos = T Peross + (1 - 77) Pwithin (5)

where
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Figure 1: The schematic diagram illustrates the proposed fairness-aware contrastive learning frame-
work. Our approach involves selectively sampling positive pairs based on specific criteria and
integrating them into the training process with a contrastive loss in an end-to-end manner. Although
combining supervised contrastive learning with cross-entropy loss improves model robustness, con-
trastive loss without explicit bias mitigation can unintentionally separate instances across sensitive
attributes in the representation space. Our proposed fairness-aware contrastive loss, together with
cross-entropy, reduces this separation by bringing positive-class instances from different sensitive

groups closer, thereby improving fairness without requiring additional fairness-specific constraint
loss functions.

* Peross (2,4, 8), (#F,y ™, s7)) places probability mass only on pairs satisfying y© =y =1
and s # s;

* Puwithin places mass on pairs with y© =y = 1 and sT = s.
Consequently, 7 = Pr[ST # S | Y = 1] is determined entirely by the data.

Contrastive loss. With one positive and K negatives, the InfoNCE loss is

gr(2,27)
Lnce() = —E(z ot)py, [108 — (6)
U (52 ) + il 902 5,
Let C € {cross, within} be the indicator
cross if ST # 9,
within if ST =9 (7N

= Pr[C =cross] =x, Pr[C = within] =1— 7.

Lemma 3.1 (InfoNCE lower bound [32])). For any encoder fy and any positive-pair distribution,
—Lxce(9) +log K = 1(Z; Z%) — Dxi(pz.z+ | pzpz+)
——

MI of pairs

<I1(z, 7).

®)

>0

187 Thus minimising Lncg maximises the mutual information 1(Z; Z7).
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Assumptions (for this proposition only).
1. (Pair-wise Markov property)

7 1 7+ ! {Y if C = cross,

(Y,S) if C = within.

2. C'is a deterministic function of (S, S*);hence C L Z | (Y,S)and C L Z*t | (Y, 5).
Proposition 3.2 (Mutual-information decomposition). Under Assumptions
NZ,27) = I(Z;Y) + (1-m)1(Z;S|Y). ©)

Proof (chain rule only). Start from the law of total expectation for mutual information:

1(Z;2Y=1(Z;ZY |C) + I1(Z:C) — I(Z:C|Z") . (10)
——— —— —_———
case analysis =0 by (Assumption@ =0 by (Assumption@])

Because I(Z;C) = 0 and I(Z;C | Z*) = 0, only the first term remains. Expand it with the
definition of conditional mutual information:

I(Z;Z7|C)=n-1(Z; ZT | C = cross)

i (11)
+(1—m)-1(Z; Z* | C = within).
the cross-S branch:
When C' = cross, Assumption gives the Markov chain Z I ZT | Y. By the chain rule,
I(Z;Z7 | C =cross) = I(Z;Y | C =cross) (Z1LZT|Y). (a)

the within-S branch:
When C' = within, the Markov chainis Z 1. ZT | (Y, S). A second application of the chain rule
yields

1(Z; Z* | C = within)
= I(Z;Y,S | C = within)
= I(Z;Y | C = within) + I(Z; S | Y, C = within). (b)

dropping the C-condition inside the MI terms. Because C is a function of (S, ST) and is independent
of Z once (Y, 5) is fixed (Assumption 2), conditioning on C' adds no information beyond (Y, S):

I(Z;Y | C)=1(Z;Y),

1(Z;8 Y, C = within) = I(Z; S | V). ©

Plugging (a)—(c) into the weighted sum gives
Nz, 29 =71(Z;Y)+ (1 —m) [ I(Z;Y)+ [(Z;S | V)]
=1(Z;Y) + 1-mI(Z;S|Y),
which is exactly (9). O
Theorem 3.3 (InfoNCE <= information bottleneck). Let \ := 1 — w. Under the assumptions of
Proposition[3.2]
argming Lxcg(0) = argmaxe{I(Z;Y) —MI(Z;S | Y)} (12)

Proof. Combine Lemma 3.1]and the exact identity (9):

Lnce(0) = —1(Z;Z%) +log K

=-1(Z;Y)-(1-mI(Z;S|Y) +log K. 13)

Since log K is constant in 6, minimising zLNcE is equivalent to maximising the right-hand side

of (12). O
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Table 1: Hyperparameter configuration used for training on the Adult, Health, and German datasets.
All models were optimized using the Adam optimizer with a fixed learning rate and temperature for
the contrastive loss.

Hyperparameter Adult Health German
Encoder hidden layers [64, 64, 64] [128, 64,64] [32,32,32]
Classifier hidden layers [16] [16] [16]
Epochs 100 100 100
Contrastive loss temperature (7) 1 1 1
Learning rate 1x1073 1x1073 1x1073
Optimizer Adam Adam Adam

Corollary 3.3.1. The hyper-parameter X that trades off predictive utility I(Z;Y') against conditional
leakage I(Z; S | Y) is entirely data-driven: large values of  (many cross-group pairs) automatically
reduce the penalty on 1(Z; S | Y') and vice-versa.

Implications. Equation (TI2)) shows that our pair-selection policy alone turns standard contrastive
learning into an information bottleneck that (i) preserves label-relevant bits and (ii) suppresses
sensitive bits conditioned on the label. Unlike adversarial critics or explicit MI estimators, no
additional modules or tunable coefficients are needed; fairness—accuracy trade-offs emerge directly
from the data distribution. Empirically, we observe that increasing 7 tightens demographic-parity and
equal-opportunity gaps while maintaining task performance, corroborating the theoretical guarantee.

4 Experiments

We provide the full experimental setup details, including model architecture and training hyperparam-
eters, in Table[I] These configurations were selected through empirical tuning based on validation
performance. The model training was performed using an NVIDIA GeForce RTX 3090 GPU.

4.1 Datasets.
We validate our model on three benchmark datasets in the fairness domain.

* Adult. [[12] This dataset contains demographic data of 48,842 individuals, and the main task
is to predict whether the income of the individual is greater than 50k or not. The sensitive
attribute is gender.

* German Credit [[12] This dataset consists of 1000 individuals and their banking information.
The primary task is to predict an individual’s credit in repaying their loan. The sensitive
attribute is age. Consistent with the setup in [13]], we binarize the age feature into “younger”
and “older” groups, treating the “older” group as the privileged class. The threshold of 25
years is chosen based on findings from [25]], which identified this split as having the highest
potential for discriminatory impact.

» Heritage Health[] This dataset contains information of about 50k patients and their cor-
responding medical conditions. The task is to predict the Charlson Comorbidity Index, a
10-year mortality risk index. The sensitive attribute is age, which has been categorized
into nine values. Prior analyses have shown that the dataset exhibits bias against older
individuals.

4.2 Evaluation Metrics.

Various fairness notions have been defined and utilized in the fairness domain. Group fairness,
including metrics such as Demographic Parity (DP), Equalized Odds (EO), and Equal Opportunity
(EOPP) [20, 41]), is a commonly used concept in the literature. In this study, we adopt Demographic
Parity (DP), also known as statistical parity, as our main fairness metric. Demographic parity
ensures that the probability of receiving a favorable outcome is being equitably distributed across
groups(privileged and unprivileged). Specifically, this metric requires that the likelihood of all

"https://foreverdata.org/1015/index.html
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positive predictions (both true positives and false positives) be similar across these groups. Thus,
discrimination or disparities can be quantified by measuring the difference between the conditional
probabilities of positive predictions for the privileged and unprivileged groups:

PY=1|X,8S=1)=P(Y =1|X,5=0) (14)
4.3 Baselines.

We evaluate our proposed model, FairContrast, in both unsupervised and self-supervised settings and
compare our method with various baselines:

* Base MLP We train an MLP classifier without incorporating any fairness measures as our
biased base model.

* FCRL [16] A fair representation learning framework that introduces a robust method
to control parity using mutual information based on contrastive information estimators.
By constraining mutual information between representations and sensitive attributes, [[16]
controls the parity of any downstream classifier.

* CVIB [31] A fair representation learning framework that proposes a conditional variational
autoencoder to derive representations invariant to sensitive attribute. Their approach is based
on a single information-theoretic optimization without adversarial training.

* Adversarial forgetting [24] A novel representation learning framework for invariance
induction through the "forgetting" mechanism as an information bottleneck to learn invariant
representations.

¢ Counterfactual Data Augmentation To demonstrate the importance of data augmentation
in contrastive learning, we also conducted a comparison between our method and counter-
factual data augmentation. This approach is based on counterfactual fairness [28]], where a
decision is considered fair if it is the same in both the actual world and the counterfactual
world. We generate counterfactual data points by converting the sensitive attribute to coun-
terfactual values, while leaving all other attributes unchanged. We then integrate this data
augmentation into our supervised contrastive learning framework. This data aumentation is
only applicable on binary sensitive attributes.

* SCAREF [3]] As discussed earlier, SCAREF is a state-of-the-art contrastive learning approach
on tabular data. They mask 60% of the features and use Random Feature Corruption to
replace these masked values. They deploy these data augmentations as positive pairs in their
contrastive learning framework. They use InfoNCE as their loss function.

* VIME [45] As discussed earlier, VIME is a state-of-the-art self-supervised framework for
tabular data. They pre-train an encoder on unlabeled masked data to extract representations.
They used Bernoulli distribution to randomly generate the mask and the CutMix method
[46]] to fill the masked value. We evaluated this model in both semi- and self-supervised
settings.

4.4 Experimental Results.

The trade-off between accuracy and fairness across three datasets is shown in Figure [2] The optimal
region of the graph is in the lower right corner, indicating higher accuracy and fair outcome (lower
demographic parity). Similarly to [16]], the results reported for various benchmarks are average
accuracy and maximum demographic parity over five runs with random seeds. As evident from the
figures, in the Adult dataset, our FairContrast-supervised model stands out, achieving the highest
accuracy within the demographic parity range of 0 ~ 0.075, demonstrating its ability to provide fair
predictions while maintaining strong performance. Within the demographic parity range of 0.075 ~
0.125, our FairContrast-unsupervised model outperforms others, further showcasing the robustness of
our framework even without supervision. In contrast, models such as VIME and SCARF, which are
not explicitly designed to address fairness, exhibit a higher bias in their results, reflected by higher
DP values, similar to the unfair MLP. For the German dataset, both the FairContrast-supervised and
FairContrast-unsupervised models continue to demonstrate superior performance, particularly in the
demographic parity range of 0 ~ 0.05. Comparatively, models such as Adversarial Forgetting and
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Figure 2: Accuracy-fairness trade-off and comparison to various benchmark models across three
benchmark datasets: (a) UCI Adult dataset, (b) Heritage Health dataset, and (c) German Credit. The
optimal region on the graph is the lower right corner, representing high accuracy and low demographic
parity. Our model demonstrates a superior fairness-accuracy trade-off.

CVIB achieve lower DP values, but at the cost of significant accuracy loss. VIME model shows less
bias in this dataset, as indicated by their position on the graph. In the Health dataset, our FairContrast-
supervised model achieves the highest accuracy within the demographic parity range of 0.3 ~ 0.5,
confirming its effectiveness in providing fair and accurate predictions even in the more challenging
dataset. Our FairContrast-unsupervised model shows comparable performance within this range,
further underscoring the versatility of our approach. When focusing on the demographic parity range
of 0.2 ~ 0.3, both our supervised model and FCRL exhibit comparable accuracy, indicating that FCRL
is also competitive in this particular fairness range. However, models like SCARF and VIME again
demonstrate higher bias, as reflected by their positions further up in the DP range. Across all three
datasets, our FairContrast models, both supervised and unsupervised, consistently occupy the optimal
region of the trade-off graphs, balancing high accuracy with low demographic parity difference. This
confirms the effectiveness of our approach in achieving fairness without compromising performance.
In contrast, state-of-the-art models like VIME and SCARF, which do not explicitly target fairness,
exhibit bias levels similar to the Unfair MLP, as evidenced by their higher DP values across the
datasets. This analysis highlights the robustness and effectiveness of our FairContrast framework to
ensure that models not only perform well, but also adhere to fairness constraints, making it a valuable
contribution to the field of fair representation learning.

For quantitative comparison, we also report the best accuracy corresponding to the worst-case
scenario of demographic parity results for all models on the three datasets, summarized in Table[2]
Our proposed FairContrast-supervised model consistently demonstrates superior performance across
all three datasets—Adult, German, and Health—achieving the best or nearly the best results in both
accuracy and fairness (lowest DP). Specifically, in the Adult dataset, FairContrast-supervised achieved
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Table 2: Accuracy and demographic parity (DP) on three benchmark datasets. Lower DP indicates
higher fairness. highlights the baseline model (Unfair MLP), highlights our method
(FairContrast), bold marks the best performance among all methods, and italic denotes the second-
best.

Dataset | Model Accuracyt DP
Unfair MLP 84.5 0.1855
FCRL 83.29 0.16
CVIB 81.28 0.1350
Adversarial forgetting 84.1 0.1635
Adult Counterfact'ual 84.49 0.1639
VIME-semi 84.27 0.15
VIME-self 84.47 0.1779
SCARF 82.13 0.1848
FairContrast (Ours)-unsupervised 84.4 0.1201
FairContrast (Ours)-supervised 84.4 0.0255
Unfair MLP 78.5 0.3125
FCRL 72.4 0.1035
CVIB 69.5 0.0244
Adversarial forgetting 68 0.0963
German Counterfact_ua] 78 0.066
VIME-semi 76.5 0.0431
VIME-self 78 0.0482
SCARF 73 0.1862
FairContrast (Ours)-unsupervised 78 0.0297
FairContrast (Ours)-supervised 78 0.0099
Unfair MLP 84.64 0.6468
FCRL 78.27 0.4407
CVIB 78.9 0.4982
Adversarial forgetting 81.68 0.5733
Health | VIME-semi 82.2 0.5463
VIME-self 84.22 0.6192
SCARF 77.12 0.6444
FairContrast (Ours)-unsupervised 84.19 0.4410
FairContrast (Ours)-supervised 84.3 0.4135

an accuracy of 84.4 % with a DP of 0.0255, indicating a substantial reduction in bias compared
to other models. Similarly, in the German dataset, our model maintained strong accuracy at 78 %
while achieving the lowest DP of 0.0099, further confirming its ability to mitigate bias effectively.
Our proposed unsupervised model also performs well, with relatively low DP scores compared to
other models, though its accuracy is slightly lower than that of the FairContrast-supervised model.
Although other models like FCRL and CVIB offer competitive alternatives, particularly in fairness,
they often fall short in achieving the same level of accuracy or in minimizing bias as effectively
as FairContrast. State-of-the-art models, such as VIME and SCARF, which are not specifically
focused on enhancing fairness, achieve accuracy comparable to our supervised model. However,
the bias in their representations is similar to that found in the unfair MLP model. Overall, our
FairContrast framework represents a significant advancement in contrastive learning for tabular data,
offering a robust solution that does not compromise on fairness while maintaining strong predictive
performance.Our results suggest that contrastive learning, when properly supervised and designed
with fairness in mind, can lead to models that perform well both in terms of accuracy and fairness.

4.5 Ablation on Classification Loss Weight

To further analyze the impact of the loss weight o on the fairness—accuracy trade-off, we conduct an
ablation study using the Adult dataset. Specifically, we evaluate the Area Over the Fairness—Accuracy
Pareto Curve (AOC) at varying values of « in both supervised and unsupervised settings. The
AOC summarizes the feasible region in the parity—accuracy space and offers a quantitative proxy
for a method’s capacity to provide accurate predictions under fairness constraints. A higher AOC
indicates that a method can achieve better utility while satisfying a wider range of demographic parity
thresholds.

Following the interpretation presented in Gupta et al. [[16l], the parity—accuracy curve reflects the
achievable frontier between accuracy and fairness, where methods that shift the curve closer to
the bottom right are more desirable. Thus, the area under this frontier—the AOC—represents the

10



341
342
343

344

345
346
347
348
349
350
351

352
353
354
355
356
357
358
359

360
361
362

363

364
365
366

368
369
370
371

372
373
374

AOC vs. Alpha for Supervised and Unsupervised Settings

G012

8 Supervised

< % Unsupervised

2 X

2 0.10F

5

O

2

9008} X

5

&

>

3

€ 0.06

3

S

<

@ 0.041

[

E « "

5

' 0.02f x x %

> X

S X

© 4

£o00f X X
0 2 1 6 8

Figure 3: Effect of varying o on the Area Over the Fairness—Accuracy Pareto Curve (AOC) for
supervised and unsupervised settings. Each point represents the AOC score at a specific « value. The
trade-off stabilizes for @ > 1, indicating consistent fairness—accuracy performance in both learning
modes.

volume of favorable outcomes. In our results (Fig. [3), performance stabilizes across both learning
settings when o > 1, suggesting that moderate weighting of the classification loss produces robust
representations with respect to both utility and fairness.

5 Conclusion

Contrastive learning has shown its effectiveness in improving model robustness and generalizability
across various domains, including Natural Language Processing (NLP), computer vision, and speech
recognition. Recently, there has been an increasing interest in applying self-supervised contrastive
learning to tabular data. Although handling data types such as images, text, or speech is less chal-
lenging due to their feature correlations, semantic relationships, and structured information, tabular
datasets pose unique challenges due to the lack of explicit relationships within their features, which
can vary across different datasets.

In this paper, we argue that current state-of-the-art models for tabular data, such as VIME and SCARF,
do not address fairness issues. The fairness of the learned representations has not been thoroughly
examined, and these models exhibit biases in their predictions, leading to discrimination in the
downstream tasks. To address this, we propose supervised and self-supervised contrastive learning
frameworks for tabular data to mitigate bias and improve fairness. Our approach involves selective
pairing of samples based on specific criteria and incorporating these pairs into the training process
with a contrastive loss. This method encourages the embeddings of paired instances to be closer
together, reducing discrimination based on sensitive attributes.

We evaluated our proposed method using three benchmark datasets in the fairness domain. The results
show a significant reduction in bias compared to existing state-of-the-art frameworks for tabular data.
Furthermore, these fair representations can be applied to any downstream tasks.

Although our framework achieves promising results, several limitations should be noted.

First, the work mainly addresses group fairness through metrics such as Demographic Parity. While
these are useful for capturing disparities between subgroups, they do not fully account for individual
fairness, which ensures that similar individuals are treated similarly. Future research could explore
approaches that jointly address both group and individual level fairness.

Second, our method currently emphasizes demographic parity. In real-world scenarios, multiple
fairness definitions may be relevant, and these can sometimes conflict with one another. Extending
the framework to accommodate several fairness criteria simultaneously would increase its practical
flexibility.

Third, although our approach was designed with tabular data in mind, the underlying methodology
could also be extended to other data types, including images, text, or multimodal systems. Exploring
these extensions remains an open avenue for future work.
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paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly outline the paper’s scope and key contri-
butions.
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* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Limitations and prospective research directions are presented in the conclusion
section.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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 All the theorems, formulas, and proofs in the paper should be numbered and cross-
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* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
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by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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Justification: The required details for reproducing this model have been provided.
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* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All the datasets used in this study are publicly available. the link to the code
can be provided at any time. For the review submission, we excluded the link to ensure
anonymous evaluation.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run
to reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The hyperparameters details are provided in Table[I]in the Experiments section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The significance of our work is clearly demonstrated through the provided
tables and figures.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: As noted in the Experiments section, the computations for this study were
carried out on a system equipped with an NVIDIA GeForce RTX 3090 GPU.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This study does not present any potential violations.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA|
Justification: NA
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets employed in this study are entirely original, publicly available (e.g.,
datasets), or properly credited.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a
dataset.

« For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: he GitHub repository containing the code and datasets will be shared upon
acceptance. To preserve anonymity during review, the link is withheld for now.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: NA
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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803 * We recognize that the procedures for this may vary significantly between institutions

804 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
805 guidelines for their institution.

806 * For initial submissions, do not include any information that would break anonymity (if
807 applicable), such as the institution conducting the review.

808 16. Declaration of LLM usage

809 Question: Does the paper describe the usage of LLMs if it is an important, original, or
810 non-standard component of the core methods in this research? Note that if the LLM is used
811 only for writing, editing, or formatting purposes and does not impact the core methodology,
812 scientific rigorousness, or originality of the research, declaration is not required.

813 Answer: [TODO]

814 Justification: [TODO]

815 Guidelines:

816 * The answer NA means that the core method development in this research does not
817 involve LLMs as any important, original, or non-standard components.

818 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what
819 should or should not be described.
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