

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 LEARNING WHAT MATTERS NOW: DYNAMIC PREFERENCE INFERENCE UNDER CONTEXTUAL SHIFTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Humans often juggle multiple, sometimes conflicting objectives and shift their priorities as circumstances change, rather than following a fixed objective function. In contrast, most computational decision-making and multi-objective RL methods assume static preference weights or a known scalar reward. In this work, we study sequential decision-making problem when these preference weights are unobserved latent variables that drift with context. Specifically, we propose Dynamic Preference Inference (DPI), a cognitively inspired framework in which an agent maintains a probabilistic belief over preference weights, updates this belief from recent interaction, and conditions its policy on inferred preferences. We instantiate DPI as a variational preference inference module trained jointly with a preference-conditioned actor-critic, using vector-valued returns as evidence about latent trade-offs. In queueing, gridworld maze, and multi-objective continuous-control environments with event-driven changes in objectives, DPI adapts its inferred preferences to new regimes and achieves higher post-shift performance than fixed-weight and heuristic envelope baselines.

1 INTRODUCTION

Human behavior is widely modeled as goal-directed and value-driven, but people typically juggle multiple goals and adjust their priorities as circumstances change, rather than acting on a single fixed priority ordering (Simon, 1955; Payne et al., 1993; Carver & Scheier, 2001; Wrosch et al., 2003). We reweight priorities, abandon infeasible objectives, and reorient toward what remains achievable. For instance, as illustrated in Fig. 1, a person waiting in line may initially value fairness and patience, but as hunger escalates and time runs out, they may rationalize cutting ahead. Work on self-regulation, multiple-goal pursuit, and constructed preferences formalizes such behavior as feedback-based goal control and context-dependent weighting of attributes (Payne et al., 1993; Slovic, 1995; Lichtenstein & Slovic, 2006). Yet, despite its importance, computational modeling of *dynamic value preference adaptation* remains underexplored in artificial intelligence and multi-objective decision-making (Roijsers et al., 2013; Yang et al., 2019; Agarwal et al., 2022; Basaklar et al., 2023; Liu et al., 2025).

A large literature in cognitive psychology and cognitive science has examined how people regulate goals and reconcile competing motives. Theories of self-regulation and multiple-goal pursuit emphasize feedback-based adjustment of goal importance and effort allocation (Carver & Scheier, 2001; 2004; Wrosch et al., 2003), while multi-attribute and context-dependent choice models show that attribute weights and even preferences themselves can shift with task demands and elicitation formats (Payne et al., 1993; Slovic, 1995; Lichtenstein & Slovic, 2006). Abstracting from these literatures, we conceptually separate two tightly coupled processes: (1) *value appraisal*—forming an internal judgment about what matters most *right now* in a given situation; and (2) *action selection*—choosing behavior conditional on the current value preference. In this paper, we use these terms purely as labels for components of our computational framework: the second has been extensively studied as policy optimization under a given reward or utility function, whereas the first—how an agent constructs and *updates* its value function from experience and context—remains comparatively underexplored in computational models.

From a modeling perspective, many psychological and choice-theoretic accounts provide rich *descriptions* of how humans adjust goals and preferences, but they are not directly formulated as al-

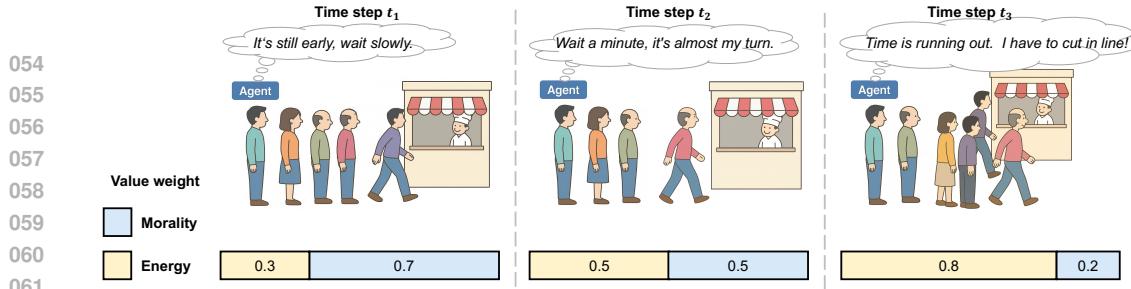


Figure 1: **Adaptive value preference adjustment in a queueing scenario.** At early stages (t_1), the agent prioritizes morality and chooses to wait. As the deadline approaches (t_2), preferences between morality (M) and energy (E) become balanced. When time is nearly exhausted (t_3), energy becomes dominant and the agent rationalizes cutting in line, illustrating dynamic reweighting of values under changing pressures.

gorithms that can be deployed in high-dimensional, partially observable, and non-stationary control problems. In contrast, artificial agents in safety-critical domains must make a stream of sequential decisions from raw observations, under changing resource, time, or risk constraints. This motivates the computational question at the core of our work: **given only vector-valued rewards and partial observations in a non-stationary environment, how can an agent infer and adapt its current trade-off over objectives online in a way that is both effective and interpretable?** We address this question in the language of multi-objective reinforcement learning, using dynamic preference inference as a bridge between cognitive theories of goal regulation and practical control algorithms.

Many computational models of sequential decision-making—including Markov decision processes and modern reinforcement learning agents—assume a fixed and externally specified utility or reward function (Bellman & Kalaba, 1957; Russell & Norvig, 1995). While this assumption simplifies learning and planning, it fails to capture the fluid, context-dependent nature of value trade-offs observed in realistic settings. In multi-objective environments (e.g., efficiency vs. safety, energy vs. morality), agents inevitably face *shifting constraints*: some goals become infeasible, temporarily irrelevant, or disproportionately important as resources, time, or external conditions change (Rojers et al., 2013; Vamplew et al., 2011). Without the capacity for dynamic value reconfiguration, such agents risk either pursuing unattainable goals or neglecting emergent priorities—leading to suboptimal or even catastrophic outcomes in domains such as autonomous driving or healthcare (Amodei et al., 2016; Dulac-Arnold et al., 2021).

To mitigate this limitation, recent work in multi-objective decision-making has developed preference-conditioned policies, where an agent is trained to optimize under different trade-offs specified by a preference vector (Van Moffaert & Nowé, 2014; Yang et al., 2019; Basaklar et al., 2023; Liu et al., 2025). Such approaches enable generalization across static preferences and complement earlier scalarization and envelope methods (Vamplew et al., 2011; Mossalam et al., 2016). However, they typically assume that the preference vector is given. In realistic scenarios, preferences are rarely observed directly: the agent must *infer* its priorities from incomplete, noisy, and evolving perceptual data. This calls for an online preference inference mechanism that is sensitive to environmental cues yet robust to transient noise—a capability that is both cognitively plausible and computationally underexplored.

In this work, we propose a **Dynamic Preference Inference (DPI)** framework that makes this gap explicit. The key idea is to treat the preference vector encoding the relative importance of multiple objectives as a *latent* state that must be inferred online rather than fixed a priori. The agent maintains a posterior distribution $q_\phi(\omega_t | s_{t-H+1:t})$ over current preference vector ω_t , parameterized by a recurrent encoder over recent history. Sampling from this posterior captures epistemic uncertainty and lets the agent explore alternative value configurations before acting. A preference-conditioned actor-critic then conditions its policy on ω_t to adapt behavior as task demands shift. To keep updates stable and interpretable, we regularize q_ϕ with a Gaussian prior and a directional alignment term that encourages preference changes consistent with observed return vectors. DPI thus provides a compact variational Bayesian formulation of value appraisal, in which the agent maintains a belief over “what matters now” and revises it only when recent outcomes provide sufficient evidence.

The main contributions of this work are:

- 108 • We formalize a setting where preference weights in environments are *unknown and dynamically varying*, and highlight the challenge of enabling agents to infer and adapt their priorities online from experience.
- 109
- 110
- 111 • We introduce the **Dynamic Preference Inference (DPI)** framework, a computational architecture that jointly learns (i) a probabilistic preference inference model from perceptual history and (ii) a preference-conditioned policy, regularized for stability and interpretability.
- 112
- 113
- 114 • We empirically evaluate DPI in a dynamic Queue environment and a dynamic Maze environment, showing consistent gains over fixed-preference and static-inference baselines in adaptability, robustness, and cumulative performance, and illustrating more interpretable, event-aligned adaptive strategies.
- 115
- 116
- 117
- 118

120 2 RELATED WORK

122 2.1 MULTI-OBJECTIVE DECISION-MAKING IN COGNITIVE SCIENCE

124 Human decision-making rarely involves optimizing a single objective in isolation. Instead, individuals continuously negotiate multiple, sometimes conflicting goals such as efficiency, fairness, energy preservation, and social norms. Classical theories of bounded rationality (Simon, 1955) argue 125 that humans rely on satisficing heuristics rather than globally optimal strategies. Dynamic models 126 such as Decision Field Theory (Busemeyer & Townsend, 1993) and Prospect Theory (Kahneman & 127 Tversky, 2013) emphasize that preferences evolve with time pressure, risk, and context. Research 128 on multi-attribute decision-making (Payne et al., 1993; Zanakis et al., 1998) shows that humans 129 flexibly reweight attributes depending on contextual demands—for example, prioritizing efficiency 130 under time pressure or fairness in cooperative settings. Theories of self-regulation and control further 131 highlight that goal pursuit is adaptive, context-sensitive, and autonomy-driven (Shenhav et al., 132 2013; Deci & Ryan, 1985; 2012). These insights motivate computational frameworks that treat 133 preferences not as fixed constants, but as latent variables dynamically inferred from context.

136 2.2 COMPUTATIONAL APPROACHES TO MULTI-OBJECTIVE DECISION-MAKING

138 Multi-objective reinforcement learning (MORL) provides a principled framework for sequential 139 decision-making with vector-valued rewards. Classical approaches rely on scalarization (Vamplew 140 et al., 2011; Roijers et al., 2013; Agarwal et al., 2022), collapsing the reward vector into a scalar using 141 a fixed preference vector. While effective for static settings, these approaches fail under shifting 142 priorities. Pareto-based methods, such as Envelope Q-learning and Pareto-conditioned policy 143 optimization (Van Moffaert & Nowé, 2014; Yang et al., 2019; Basaklar et al., 2023; Liu et al., 2025), 144 approximate the Pareto front of optimal policies, enabling post-hoc preference selection. However, 145 they still assume externally specified preferences and lack online adaptation. Recent work explores 146 nonlinear and dynamic scalarization (Mossalam et al., 2016; Abels et al., 2019), meta-learning for 147 preference adaptation, and learning from human feedback (Christiano et al., 2017; Ibarz et al., 2018; 148 Ramachandran & Amir, 2007; Fu et al., 2018). Nevertheless, few methods explicitly treat 149 preference weights as latent states to be inferred online. Our approach addresses this gap by framing 150 preference adaptation as a variational inference problem, enabling agents to maintain a belief over 151 preferences and dynamically reweight objectives in response to environmental changes, aligning 152 with psychological theories of adaptive goal regulation.

153 3 METHODOLOGY

155 We ground our study on the assumption of a boundedly rational agent, capable of reappraising what 156 matters in response to situational changes (Simon, 1955; Carver & Scheier, 2001; Kruglanski et al., 157 2018). Human decision-making in dynamic, multi-objective settings rarely follows a single, fixed 158 plan. Instead, we continuously reappraise our goals in light of the current situation—deciding not 159 just how to act, but also what matters most right now. This dual process is reflected in cognitive 160 models such as appraisal theory in emotion research (Lazarus, 1991; Scherer, 1999; Frijda, 1993) 161 and dual-process frameworks in psychology (Kahneman, 2011; Stanovich et al., 2000; Kahneman, 2012), where value assessment and action selection are distinct yet tightly coupled.

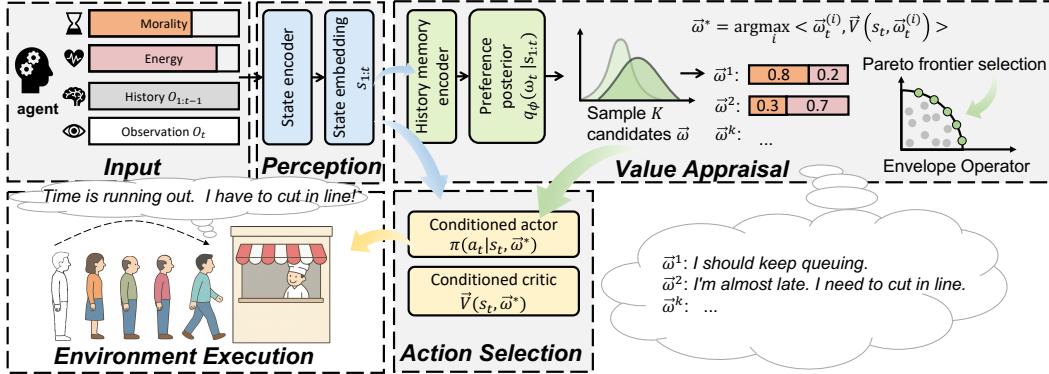


Figure 2: Two-stage cognitive-inspired decision framework. History states are transformed into latent preferences via **Value Appraisal**, which in turn guide the **Action Selection**. The resulting policy drives environment execution, forming a dynamic decision pipeline analogous to human appraisal-action coupling.

In this work, we operationalize these principles through a two-module computational agent (Fig. 2):

- **Value Appraisal Module (history → preferences):** From a short history-memory window of states, a recurrent encoder infers a distribution over the latent preference vector $\omega_t \in \Delta^{d-1}$ (a point on the simplex), from which a sample $\hat{\omega}_t$ is drawn for control.
- **Action Selection Module (state, preferences → action):** An actor-critic conditions jointly on the current state and inferred preferences to produce vector value estimates and a policy. At decision time, an on-policy envelope operator evaluates K preference samples and selects the $\hat{\omega}_t$ that maximizes the predicted scalarized value.
- **Stability & Alignment:** Training is regularized by a variational evidence lower bound (ELBO) with a simple prior, a directional alignment between inferred preferences and vector returns, and a self-consistency term anchoring posterior predictions to the envelope-selected $\hat{\omega}_t$. Together, these stabilize preference inference and improve interpretability.

This division is consistent with cognitive models of dual-process decision-making: a working memory-based appraisal system that updates value priorities, and a controller that acts accordingly.

3.1 VALUE APPRAISAL AS VARIATIONAL INFERENCE OVER DYNAMIC PREFERENCES

Cognitive & statistical generative assumption. Let $\omega_t^* \in \Delta^{d-1}$ denote the (unobserved) preference weights over d objectives at time t . We assume a non-stationary latent dynamics $\omega_t^* \sim p(\omega_t^* | \omega_{t-1}, \xi_t)$, driven by unmodeled situational factors ξ_t (e.g., urgency, risk, energy scarcity). In practice, ξ_t is not explicitly modeled but absorbed into the stochastic posterior updates. The agent does not observe ω_t^* but receives a state stream $s_{t-H+1:t}$ (which may contain observation $o_{t-H+1:t}$ and self-states such as energy and deadline time) over a finite working-memory horizon $H > 1$. Following the Bayesian brain view (Knill & Pouget, 2004; Colombo & Seriès, 2012; Bottemanne, 2025), it maintains beliefs $p(\omega_t | s_{t-H+1:t}) \propto p(s_t | \omega_t) \cdot p(\omega_t | s_{t-H+1:t-1})$ and updates them as new evidence arrives. Note that this generative factorization is an internal perceptual model used by the agent to infer preferences; the actual environment transition kernel $p_{\text{env}}(s_{t+1} | s_t, a_t)$ in all our experiments is independent of ω_t and follows the standard MDP assumption (see Appendix A).

Latent Representation and Posterior Approximation. Instead of treating preferences as fixed inputs, we approximate them as distributional latent states that capture both epistemic uncertainty and exploratory variation in preference space. Concretely, we introduce an unconstrained latent vector $\mathbf{z}_t \in \mathbb{R}^d$ with $q_\phi(\mathbf{z}_t | s_{t-H+1:t}) = \mathcal{N}(\mu_t, \text{diag}(\sigma_t^2))$, and $\omega_t = \text{softmax}(\mathbf{z}_t)$. This design provides: (i) uncertainty over value preference weight: ambiguous situations produce broader posteriors, explicitly capturing the agent’s uncertainty. (ii) exploration in value preference space: instead of committing to a single trade-off, the agent samples \mathbf{z}_t from the posterior, which slightly perturbs ω_t and encourages trying nearby preferences before acting. A unit Gaussian prior $p_0(\mathbf{z}) = \mathcal{N}(0, I)$ regularizes the posterior, anchoring values unless evidence strongly suggests change. Detailed implementations are provided in Appendix C.

216 **Learning objective.** Since the latent preference state z_t cannot be directly observed, we resort to
 217 variational inference and approximate its posterior by $q_\phi(z_t | e_t)$, where $e_t := s_{t-H+1:t}$ denotes
 218 the recent state history within a finite working-memory window. We map z_t to a preference vector
 219 on the simplex via a deterministic function $\omega_t = f_\theta(z_t)$ (e.g., a linear layer followed by a softmax).

220 This requires specifying how the collected evidence e_t supports different preference configurations.
 221 Following bounded-rational choice models (Luce et al., 1959) and the free-energy formulation of
 222 Bayesian brain theories (Friston, 2010), we treat the scalarized return under a preference vector as a
 223 Boltzmann-rational likelihood of the evidence:

$$224 \quad p(e_t | z_t) \propto \exp(\beta U_t(\omega_t; e_t)), \quad \beta > 0, \quad (1)$$

225 where $U_t(\omega_t; e_t) = \langle \omega_t, \vec{G}_t(e_t) \rangle$ represents a scalar utility and $\vec{G}_t(e_t) \in \mathbb{R}^d$ is the vector return
 226 estimated by the actor-critic from the history e_t .

227 With an isotropic Gaussian prior $p_0(z_t) = \mathcal{N}(\mathbf{0}, \mathbf{I})$, Bayes' rule yields the (unnormalized) target
 228 posterior

$$229 \quad p^*(z_t | e_t) \propto p_0(z_t) \exp(\beta U_t(\omega_t; e_t)). \quad (2)$$

230 We approximate p^* with $q_\phi(z_t | e_t)$ and optimize q_ϕ by minimizing $\text{KL}(q_\phi \parallel p^*)$, which is equivalent
 231 to maximizing the following evidence lower bound (ELBO):

$$232 \quad \mathcal{L}_{\text{ELBO}} = \beta \mathbb{E}_{z_t \sim q_\phi(\cdot | e_t)} [U_t(\omega_t; e_t)] - \text{KL}(q_\phi(z_t | e_t) \parallel \mathcal{N}(\mathbf{0}, \mathbf{I})). \quad (3)$$

233 This objective balances fit to the current evidence (the utility term) against regularization from the
 234 prior, yielding stable yet adaptive updates of preference beliefs. A complete derivation is provided
 235 in Appendix A.

238 3.2 ACTION SELECTION BASED ON PREFERENCE WEIGHTS

239 Humans rarely commit to a single immutable weighting of goals. When facing trade-offs (e.g.,
 240 morality vs. survival), we may entertain several plausible configurations and act according to the
 241 one that seems most promising at the moment. Inspired by this, our agent does not rely on a fixed
 242 preference, but rather evaluates a small set of candidates and selects the one that yields the highest
 243 predicted utility. To achieve this goal, we employ a preference-conditional policy method, which can
 244 adopt policy based on the given preference weights. Specifically, both policy and value functions
 245 are conditioned on preferences: $\pi_\theta(a_t | s_t, \omega_t)$, $\vec{V}_\theta(s_t, \omega_t) \in \mathbb{R}^d$. Given a preference weight vector,
 246 the scalarized value is obtained by $V^{\text{scalar}}(s_t, \omega_t) = \langle \omega_t, \vec{V}_\theta(s_t, \omega_t) \rangle$.

247 **Envelope Operator.** At each step, K preference candidates are sampled from the appraisal posterior
 248 $q_\phi(\cdot | s_{t-H+1:t})$, and the one with the highest predicted scalarized value is selected as $\hat{\omega}_t$, e.g.,

$$249 \quad \hat{\omega}_t = \arg \max_{i \in \{1, \dots, K\}} \langle \omega_t^{(i)}, \vec{V}_\theta(s_t, \omega_t^{(i)}) \rangle. \quad (4)$$

250 This is exactly the *envelope operator* (Yang et al., 2019), but executed *on-policy* during action selection,
 251 using a single preference-conditioned actor-critic. In addition, we denote by ω_t^{pred} preference
 252 prediction of the encoder. This ω_t^{pred} is used for regularization terms below.

253 **Vector-valued GAE.** Given vector rewards \vec{r}_t , we compute temporal differences for each dimension:

$$254 \quad \delta_t = \vec{r}_t + \gamma \vec{V}_\theta(s_{t+1}, \hat{\omega}_t) - \vec{V}_\theta(s_t, \hat{\omega}_t), \quad (5)$$

255 and accumulate vector advantages \vec{A}_t using standard GAE recursion. This ensures temporal credit
 256 assignment is handled per-dimension.

257 **Scalarized advantage for PPO.** The policy update requires a scalar advantage. We project using
 258 the same on-policy $\hat{\omega}_t$: $A_t = \langle \hat{\omega}_t, \vec{A}_t \rangle$, $\tilde{A}_t = \text{normalize}(A_t)$, calculating the usual clipped surrogate

$$259 \quad \mathcal{L}_{\text{PPO}}(\theta) = \mathbb{E} \left[\min \left(r_t(\theta) \tilde{A}_t, \text{clip}(r_t, 1 \pm \epsilon) \tilde{A}_t \right) \right], \quad (6)$$

260 with $r_t(\theta) = \frac{\pi_\theta(a_t | s_t, \hat{\omega}_t)}{\pi_{\theta_{\text{old}}}(a_t | s_t, \hat{\omega}_t)}$, ensuring on-policy consistency in both action and preference space.

261 **Dual critic loss.** To stabilize learning process, we combine vector-level supervision with scalarized
 262 supervision:

$$263 \quad \mathcal{L}_{\text{critic}} = \xi \cdot \|\vec{V}_\theta(s_t, \hat{\omega}) - \vec{G}\|_2^2 + (1 - \xi) \cdot (V_\theta^{\text{scalar}}(s_t, \hat{\omega}) - \langle \hat{\omega}, \vec{G} \rangle)^2, \quad (7)$$

264 where \vec{G} are vectorized returns from vector-GAE.

270 3.3 STABILITY AND ALIGNMENT OF PREFERENCES
271

272 **Preference Alignment.** Intuitively, simply maximizing $U_t(\omega_t) = \langle \omega_t, \vec{G}_t \rangle$ risks degenerate sol-
273 lutions: unstable oscillations of ω_t or opportunistic “gaming” of temporary fluctuations. Humans
274 avoid this by adjusting preferences smoothly and in line with feasible opportunities. Instead of max-
275 imizing utility directly, we introduce two cognitive-inspired regularizers to stabilize the learning
276 process. In detail, to encourage the predicted preference weights ω aligned with true environment
277 dynamics, we apply a direction alignment loss:

$$278 \quad \mathcal{L}_{\text{dir}} = \mathbb{E} \left[1 - \frac{\langle \omega_t^{\text{pred}}, \vec{G}_t \rangle}{\|\omega_t^{\text{pred}}\|_2 \|\vec{G}_t\|_2} \right], \quad (8)$$

281 which is applied only when $\|\vec{G}_t\| > 0$. This discourages caring about objectives that are unattainable
282 at the moment.

283 **Self-consistency.** In addition, to ensure the predicted preference matches the envelope-selected one:

$$285 \quad \mathcal{L}_{\text{stab}} = \|\omega_t^{\text{pred}} - \hat{\omega}_t\|_2^2. \quad (9)$$

287 We aim to conduct a posterior instance self-consistency constraint, e.g., if envelope consistently
288 selects a mode, the encoder should directly predict it, reducing policy–preference mismatch.

289 **Model Optimization.** Together with the ELBO term, the overall training objective of DPI is formu-
290 lated as

$$291 \quad \mathcal{L} = \mathcal{L}_{\text{PPO}} + \mathcal{L}_{\text{critic}} - \mathcal{L}_{\text{ELBO}} + \lambda \mathcal{L}_{\text{dir}} + \gamma \mathcal{L}_{\text{stab}}, \quad (10)$$

292 where λ and γ are coefficient. The complete training procedure is summarized in Algorithm 1.

294 4 EXPERIMENTS
295

297 In this section, we evaluate our framework along three key aspects: (i) **Q1: Effectiveness**–Does
298 dynamic preference inference improve task performances? (Sec. 4.4) (ii) **Q2: Rationality**–Does
299 the agent adapt its preferences to environmental changes? (Sec. 4.5) (iii) **Q3: Interpretability**–Are
300 the inferred preferences interpretable and semantically aligned? (Sec. 4.6)

311 4.1 EXPERIMENT ENVIRONMENTS
312

313 **(i) Queue.** As is illustrated in Fig. 6a, Queue is a simple but illustrative toy problem, where an
314 agent must decide whether to wait in line or cut ahead to obtain food, balancing two conflicting
315 objectives: energy (survival) and morality (fairness). No fixed weighting suffices: always waiting
316 risks starvation, always cutting erodes morality. Success requires dynamically rebalancing prefer-
317 ences according to context. **(ii) Maze.** We mainly conduct our experiments on Maze environment
318 (as is shown in Fig. 6b), which introduces a 2D navigation task with multiple objectives in pixel
319 space: reaching the goal, meeting deadlines, avoiding hazards, and conserving energy. Random
320 hazard storms and shifting costs introduce non-stationarity, making any static value composition
321 fail. Dynamic value appraisal is essential for progress under varying conditions. **(iii) Continuous**
322 **control.** We have modified a multi-objective variants of MuJoCo with widely used baselines. See
323 Appendix D.3 for details. Despite differences in modality, these three environments share a struc-
324 tural property: **without dynamic preference adjustment, it is difficult for the agent to complete**
325 **the task.**

326 4.2 BASELINES
327

328 We compare DPI against a diverse set of representative baselines: (1) **Fixed-Preference MORL**
329 **(FIXED)**: a strong baseline where the preference vector ω is fixed to emphasize task-completion
330 objectives (e.g., progress and deadline) (Mossalam et al., 2016), simulating conventional single-
331 objective RL methods that optimize for a scalar reward with secondary penalties treated as regu-
332 larizers. (2) **Randomized Switching (RS)**: ω is randomly resampled at runtime, testing whether
333 naive stochastic preference variation can mimic adaptivity. (3) **Heuristic MORL (HEURISTIC)**:
334 hand-crafted preference schedules are applied for different event types and then converted into static

ω settings, serving as a strong rule-based baseline. (4) **Rule-based Envelope Q-learning (ENVELOPE)**: policies conditioned on externally supplied ω as in a rule-based envelope Q-learning (Yang et al., 2019) with event-dependent preferences (5) **Random Policy (RANDOM)**: a uniformly random agent that samples actions independently at each step, providing a lower bound on performance. This serves as a sanity check to confirm that learned policies achieve meaningful improvement over chance-level behavior. (6) **Dense Oracle**: receives access to the same event signals and additionally uses time / energy information to continuously update preference weights at each timestep (see Appendix D.2), which provide a practical upper bound under our settings.

4.3 EVALUATION METRICS

We report three complementary metrics to comprehensively evaluate overall performance, success rate and adaptation under distribution shifts, respectively. (i) **Mean Episodic Return (MER)**. We compute the total return across N episode: $\bar{R} = \frac{1}{N} \sum_{i=1}^N \sum_{t=1}^T r_t^{(i)}$, where T is the step length and $r_t^{(i)}$ is the scalar reward at step t . (ii) **Success Rate (SR)**. We measure the fraction of episodes achieving task success: $SR = \frac{1}{N} \sum_{i=1}^N \mathbf{1}\{\psi = 1\}$, where $\psi \in \{0, 1\}$ is a task-specific completion flag (e.g., successfully obtaining food in Queue or reaching the goal in Maze). (iii) **Post-Shift Performance (PS@K)**. For an environment event occurring at the change point t^* , we measure the average return in the first K steps following the change: $PS@K = \frac{1}{N} \sum_{i=1}^N \frac{1}{K} \sum_{t=t^*+1}^{t^*+K} r_t^{(i)}$, which captures adaptation ability after environment contextual shifts. All reported results are averaged over $N = 200$ evaluation episodes for each of 10 random seeds. We report all metrics with the mean and 95% confidence interval (CI) across N episodes: $CI(\cdot) = 1.96 \cdot \frac{\sigma(\cdot)}{\sqrt{N}}$.

4.4 EFFECTIVENESS — DOES DYNAMIC PREFERENCE INFERENCE IMPROVE TASK PERFORMANCE?

Method	Queue		Maze	
	MER	SR (%)	MER	SR (%)
RANDOM	-24.24 ± 0.58	17.25 ± 10.42	-223.55 ± 10.61	0.00 ± 0.01
FIXED	-4.19 ± 2.55	10.05 ± 3.24	16.15 ± 1.62	1.12 ± 0.06
RS	-4.29 ± 0.01	11.43 ± 4.01	-23.66 ± 4.42	0.01 ± 0.00
HEURISTIC	-1.60 ± 0.01	10.05 ± 8.12	-3.65 ± 0.18	0.00 ± 0.00
ENVELOPE	-3.54 ± 0.02	25.10 ± 6.01	10.36 ± 0.18	0.01 ± 0.00
Ours				
w/ Q-learning	3.74 ± 2.30	29.09 ± 5.33	27.35 ± 1.25	42.94 ± 3.72
w/ PPO	10.34 ± 0.02	39.95 ± 2.75	30.16 ± 1.22	59.04 ± 0.10

Table 1: Mean episodic return (MER) and Success rate (SR) across all baselines.

Toy Environment Result. We begin with a symbolic Queue environment, a minimal toy setting where the agent must balance survival (energy) against fairness (morality) dynamically. Table 1 shows that our DPI agent substantially improves MER and achieves a 14.85% higher SR than the strongest baseline (ENVELOPE). This demonstrates that dynamically inferred preferences not only improve cumulative performance but also enable the agent to successfully complete the task, whereas fixed or heuristic preferences frequently fail. We additionally analyze the pre- and post-event Pareto fronts over efficiency and fairness, showing that any fixed scalarization necessarily sacrifices performance in at least one regime, whereas DPI adapts its inferred preferences to remain close to the dynamic front (Appendix D.1). Combined with the MER- and SR-PPO (Appendix D.2), this suggests that DPI’s gains are not simply due to optimizing a particular scalar metric.

Main result. Table 1 reports mean episodic return (MER) and success rate (SR) in the Maze environment. RS fails catastrophically, yielding extremely low and highly variable returns. HEURISTIC also performs poorly in this non-stationary setting, indicating that simple hand-designed preference schedules cannot handle the combinatorial diversity of event configurations. ENVELOPE, which is given event-dependent preferences but does not infer them, achieves substantially higher MER, highlighting the importance of conditioning on ω at deployment. Our Dynamic Preference Inference (DPI) agent achieves the highest overall MER, outperforming ENVELOPE by +191.1%, confirming that online inference over preferences enables more robust long-term behavior under distributional

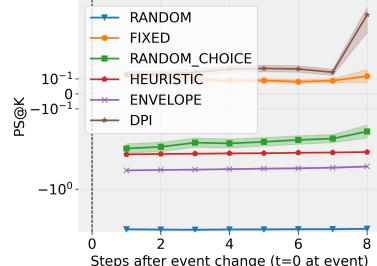


Figure 3: Post-shift performance (PS@K) on Queue environment.

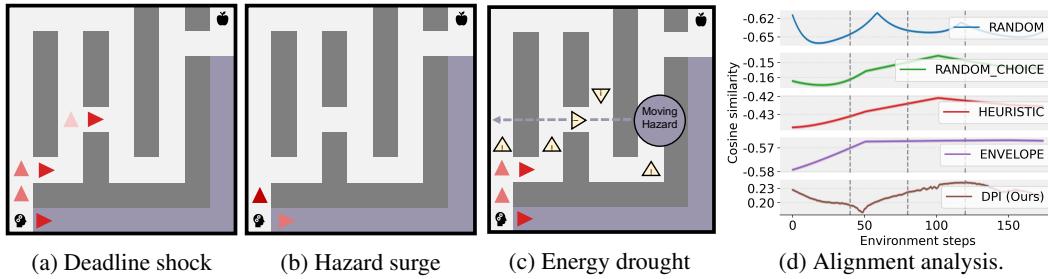


Figure 4: **Event-aligned trajectories in Maze environment.** After each event, DPI updates its preferences and modifies its behavior in a contextually appropriate way: (a) prioritizes shorter routes under deadline shock. (b) exhibits increased avoidance under hazard surge. (c) prefers waiting and selecting minimal-cost routes under energy drought. Arrows indicate agent motion; shaded regions mark environmental hazards or costs. (d) **Alignment between inferred preferences and reward vectors.** DPI maintains positive cosine similarity and sharply increases alignment after event onsets, whereas baselines remain near zero or negative, indicating that only DPI learns a value representation that tracks task semantics.

shifts. Classical baselines such as FIXED, HEURISTIC, and ENVELOPE all achieve near-zero SR, even when FIXED attains relatively high MER, showing that they cannot complete the task reliably under all event configurations. DPI attains the highest SR (59.0%), significantly outperforming all ablations and demonstrating its ability to consistently adapt and complete the task under dynamically changing conditions. For completeness, Appendix D.2 further compares DPI against scalarized RL baselines that directly optimize MER or SR (MER-PPO and SR-PPO), as well as a Dense Oracle with privileged access to event signals; DPI still yields superior post-shift performance and success rate in these settings. We further confirm these trends in the modified multi-objective continuous-control setting, where DPI again matches or surpasses strong fixed-preference and oracle baselines (see Appendix D.3).

4.5 RATIONALITY—DOES THE AGENT ADAPT ITS PREFERENCES TO ENVIRONMENTAL CHANGES?

To verify that DPI performs meaningful preference adaptation rather than merely exploiting reward structure, we report Post-Shift Performance (PS@K) for $K = 1, \dots, 8$ in Fig. 3. When events are triggered, both HEURISTIC and the ENVELOPE baselines exhibit persistently low post-shift performance, indicating their inability to adapt to non-stationary dynamics. Interestingly, FIXED attains moderately good PS@K values by greedily pursuing the highest scalarized reward under a static weighting. However, as confirmed in Table 1, this strategy fails to reliably complete the task, demonstrating that no single fixed preference vector is sufficient to handle all event configurations. In contrast, DPI shows rapid recovery after each change point, maintaining high post-shift reward and significantly outperforming all baselines. Together with its 59.04% success rate, these results indicate that DPI is not merely memorizing action sequences, but aligns its internal value preferences with changing environmental demands.

4.6 INTERPRETABILITY—ARE THE INFERRED PREFERENCES INTERPRETABLE AND SEMANTICALLY ALIGNED?

Qualitative evidence: event → preference → behavior. Fig. 4a, 4b, 4c shows three representative Maze episodes with distinct event types: deadline shock, hazard surge, and energy drought. After each change-point, DPI reweights its preferences in a context-consistent manner and correspondingly switches its behavior—accelerating when deadlines shrink, rerouting when hazards intensify, and conserving movement under energy scarcity. This event→preference→action chain indicates that DPI is dynamically revising *what matters now* instead of replaying a fixed plan.

Quantitative alignment with reward structure. To verify that the inferred preferences track task objectives, we compute the cosine similarity between the inferred preference $\hat{\omega}_t$ and the instantaneous reward vector \vec{r}_t : $\text{Align}(t) = \frac{\langle \hat{\omega}_t, \vec{r}_t \rangle}{\|\hat{\omega}_t\|_2 \|\vec{r}_t\|_2}$. As shown in Fig. 4d, DPI maintains consistently positive alignment and exhibits sharp but smooth rises following event onsets, suggesting that its internal value representation reorients toward the most relevant objectives. In contrast, random, heuristic, and envelope baselines remain negative, showing no systematic relation to the reward

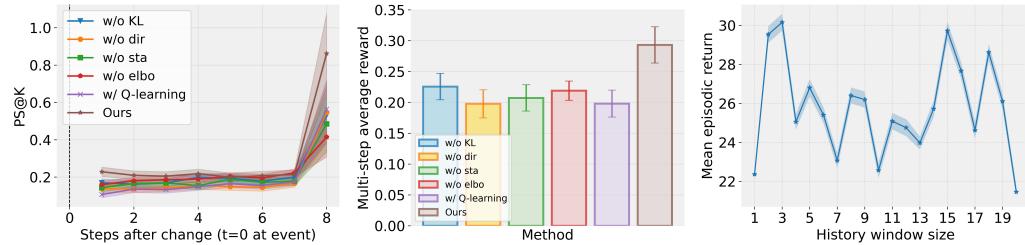


Figure 5: **Ablation study results.** (a) Post-Shift Performance (PS@K) curves over the first $K = 8$ steps after each event. (b) Multi-step average PS@K, summarizing short-term recovery into a single metric for each method. (c) Mean episodic return (MER) as a function of history window size H . Across all plots, our full DPI agent consistently outperforms ablations, confirming the necessity of KL regularization, directional alignment, and self-consistency, and showing that performance is robust to H beyond a small temporal context.

structure. Together, these results demonstrate that DPI not only adapts its preferences to recover performance, but does so in a semantically interpretable way that reflects the true task demands.

4.7 ABLATION STUDY

Component-wise Ablation. To isolate the contribution of each design component in DPI, we compare against three variants: (i) **w/o KL**, removing the KL prior term from the ELBO objective; (ii) **w/o dir**, removing the directional alignment constraint between preferences and return gradients; (iii) **w/o sta**, removing the self-consistency regularization that anchors posterior predictions to envelope-selected preferences. We also replace the preference-conditioned actor–critic with a simple Q-learning baseline (**w/ Q-learning**) to test whether a purely value-based method suffices.

Fig. 5a reports Post-Shift Performance (PS@K) over $K = 1, \dots, 8$ steps after each event, showing how quickly each variant recovers reward after distributional shifts. To provide a single-number summary of short-term recovery, we also report the multistep average PS@K (Fig. 5b), which averages performance across $K = 1 \dots 8$. Removing any of the three components leads to a measurable performance drop, confirming that KL regularization, directional alignment, and posterior anchoring are all critical for stabilizing preference inference and improving adaptation. Moreover, replacing PPO with Q-learning significantly degrades recovery ability, highlighting the importance of using a preference-conditioned actor–critic for fast on-policy adjustment.

History Window Size. We additionally study the effect of the history encoder’s receptive field size H , varying the number of past observations fed into the preference encoder. Fig. 5c reports the mean episodic return (MER) as a function of H (mean \pm 95% CI). Performance degrades significantly for very small history sizes (e.g., $H = 1$), indicating that the model needs sufficient temporal context to infer preferences. However, performance plateaus for moderately large windows ($H \geq 9$), suggesting that our approach is robust to the exact choice of H . In all experiments, we choose $H = 3$ as a good trade-off between performance and computational cost.

Hyperparameter ablations and training stability. See Appendix D.4 and Appendix D.6 for ablations and learning curves, which show that DPI is robust to the main hyperparameters and trains stably without early collapse.

5 CONCLUSION AND FUTURE DIRECTIONS

In this work, we introduced a cognitively inspired framework that abstracts value preference adjustment in dynamic multi-objective environments. We formalized a setting in which preference weights are latent, context-dependent variables that must be inferred online, and proposed DPI, which combines a variational preference inference module with a preference-conditioned policy. Experiments in Queueing, Maze, and multi-objective continuous-control tasks show that DPI enables context-aware preference adaptation and improves performance under event-driven distribution shifts. A key limitation is that our environments remain controlled and simulated rather than open-ended or real-world. Future work will focus on scaling DPI to more realistic 3D embodied and multi-agent settings, and on developing more expressive inference mechanisms for long-horizon and socially coupled preference dynamics.

486 REFERENCES
487

488 Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steckelmacher. Dynamic
489 weights in multi-objective deep reinforcement learning. In *International conference on machine
490 learning*, pp. 11–20. PMLR, 2019.

491 Mridul Agarwal, Vaneet Aggarwal, and Tian Lan. Multi-objective reinforcement learning with non-
492 linear scalarization. In *Proceedings of the 21st International Conference on Autonomous Agents
493 and Multiagent Systems*, pp. 9–17, 2022.

494 Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané. Con-
495 crete problems in ai safety. *arXiv preprint arXiv:1606.06565*, 2016.

496

497 Toygun Basaklar, Suat Gumussoy, and Umit Ogras. Pd-morl: Preference-driven multi-objective
498 reinforcement learning algorithm. In *The Eleventh International Conference on Learning Repre-
499 sentations*, 2023.

500 Richard Bellman and Robert Kalaba. Dynamic programming and statistical communication theory.
501 *Proceedings of the National Academy of Sciences*, 43(8):749–751, 1957.

502

503 Hugo Bottmanne. Bayesian brain theory: Computational neuroscience of belief. *Neuroscience*,
504 566:198–204, 2025.

505 Jerome R Busemeyer and James T Townsend. Decision field theory: a dynamic-cognitive approach
506 to decision making in an uncertain environment. *Psychological review*, 100(3):432, 1993.

507

508 Charles S Carver and Michael F Scheier. *On the self-regulation of behavior*. cambridge university
509 press, 2001.

510 Charles S Carver and Michael F Scheier. Self-regulation of action and affect. *Handbook of self-
511 regulation: Research, theory, and applications*, pp. 13–39, 2004.

512

513 Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
514 reinforcement learning from human preferences. *Advances in neural information processing sys-
515 tems*, 30, 2017.

516 Matteo Colombo and Peggy Seriès. Bayes in the brain—on bayesian modelling in neuroscience.
517 *The British journal for the philosophy of science*, 2012.

518

519 Edward L Deci and Richard M Ryan. The general causality orientations scale: Self-determination
520 in personality. *Journal of research in personality*, 19(2):109–134, 1985.

521 Edward L Deci and Richard M Ryan. Self-determination theory. *Handbook of theories of social
522 psychology*, 1(20):416–436, 2012.

523

524 Gabriel Dulac-Arnold, Nir Levine, Daniel J Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal,
525 and Todd Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and
526 analysis. *Machine Learning*, 110(9):2419–2468, 2021.

527 Nico H Frijda. The place of appraisal in emotion. *Cognition & Emotion*, 7(3-4):357–387, 1993.

528

529 Karl Friston. The free-energy principle: a unified brain theory? *Nature reviews neuroscience*, 11
530 (2):127–138, 2010.

531 Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse rein-
532 forcement learning. In *International Conference on Learning Representations*, 2018.

533

534 Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario Amodei. Reward
535 learning from human preferences and demonstrations in atari. *Advances in neural information
536 processing systems*, 31, 2018.

537 Daniel Kahneman. *Thinking, fast and slow*. macmillan, 2011.

538

539 Daniel Kahneman. Of 2 minds: How fast and slow thinking shape perception and choice [excerpt].
Scientific American, 15, 2012.

540 Daniel Kahneman and Amos Tversky. Prospect theory: An analysis of decision under risk. In
 541 *Handbook of the fundamentals of financial decision making: Part I*, pp. 99–127. World Scientific,
 542 2013.

543 David C Knill and Alexandre Pouget. The bayesian brain: the role of uncertainty in neural coding
 544 and computation. *TRENDS in Neurosciences*, 27(12):712–719, 2004.

545 Arie W Kruglanski, James Y Shah, Ayelet Fishbach, Ron Friedman, Woo Young Chun, and David
 546 Sleeth-Keppler. A theory of goal systems. In *The motivated mind*, pp. 207–250. Routledge, 2018.

547 Richard S Lazarus. *Emotion and adaptation*. Oxford University Press, 1991.

548 Sarah Lichtenstein and Paul Slovic. *The construction of preference*. Cambridge University Press,
 549 2006.

550 Ruohong Liu, Yuxin Pan, Linjie Xu, Lei Song, Pengcheng You, Yize Chen, and Jiang Bian. Ef-
 551 ficient discovery of pareto front for multi-objective reinforcement learning. In *The Thirteenth*
 552 *International Conference on Learning Representations*, 2025.

553 R Duncan Luce et al. *Individual choice behavior*, volume 4. Wiley New York, 1959.

554 Hossam Mossalam, Yannis M Assael, Diederik M Roijers, and Shimon Whiteson. Multi-objective
 555 deep reinforcement learning. *arXiv preprint arXiv:1610.02707*, 2016.

556 John W Payne, James R Bettman, and Eric J Johnson. *The adaptive decision maker*. Cambridge
 557 university press, 1993.

558 Deepak Ramachandran and Eyal Amir. Bayesian inverse reinforcement learning. In *IJCAI*, vol-
 559 ume 7, pp. 2586–2591, 2007.

560 Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley. A survey of multi-
 561 objective sequential decision-making. *Journal of Artificial Intelligence Research*, 48:67–113,
 562 2013.

563 Stuart Jonathan Russell and Peter Norvig. *Artificial intelligence: A modern approach;[the intelligent*
 564 *agent book]*. Prentice hall, 1995.

565 KR Scherer. Appraisal theory. *Handbook of cognition and emotion*, pp. 637–663, 1999.

566 Amitai Shenhav, Matthew M Botvinick, and Jonathan D Cohen. The expected value of control: an
 567 integrative theory of anterior cingulate cortex function. *Neuron*, 79(2):217–240, 2013.

568 Herbert A Simon. A behavioral model of rational choice. *The quarterly journal of economics*, pp.
 569 99–118, 1955.

570 Paul Slovic. The construction of preference. *American psychologist*, 50(5):364, 1995.

571 Keith E Stanovich, Richard F West, and JE Alder. Individual differences in reasoning: Implications
 572 for the rationality debate?-open peer commentary-three fallacies. *Behavioral and Brain Sciences*,
 573 23(5):665–665, 2000.

574 Peter Vamplew, Richard Dazeley, Adam Berry, Rustam Issabekov, and Evan Dekker. Empirical
 575 evaluation methods for multiobjective reinforcement learning algorithms. *Machine learning*, 84
 576 (1):51–80, 2011.

577 Kristof Van Moffaert and Ann Nowé. Multi-objective reinforcement learning using sets of pareto
 578 dominating policies. *The Journal of Machine Learning Research*, 15(1):3483–3512, 2014.

579 Carsten Wrosch, Michael F Scheier, Gregory E Miller, Richard Schulz, and Charles S Carver. Adap-
 580 tive self-regulation of unattainable goals: Goal disengagement, goal reengagement, and subjective
 581 well-being. *Personality and social psychology bulletin*, 29(12):1494–1508, 2003.

582 Runzhe Yang, Xingyuan Sun, and Karthik Narasimhan. A generalized algorithm for multi-objective
 583 reinforcement learning and policy adaptation. *Advances in neural information processing systems*,
 584 32, 2019.

594 Stelios H Zanakis, Anthony Solomon, Nicole Wishart, and Sandipa Dublish. Multi-attribute decision
595 making: A simulation comparison of select methods. *European journal of operational research*,
596 107(3):507–529, 1998.
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

648 A DERIVATION OF THE PREFERENCE OPTIMIZATION OBJECTIVE 649

650 **Problem definition.** At each time step t , the agent maintains a latent preference logit vector $\mathbf{z}_t \in$
651 \mathbb{R}^d , which is mapped to the probability simplex by
652

$$653 \quad \boldsymbol{\omega}_t = f_\theta(\mathbf{z}_t) := \text{softmax}(\mathbf{z}_t) \in \Delta^{d-1}. \quad (11)$$

654 Let the evidence at time t be the recent history $e_t := s_{t-H+1:t}$. Given a d -dimensional vector return
655 $\vec{G}_t(e_t) \in \mathbb{R}^d$ (estimated by the actor-critic from e_t ; see Sec. 3.2), we define the scalar utility under
656 preference $\boldsymbol{\omega}_t$ as
657

$$658 \quad U_t(\boldsymbol{\omega}_t; e_t) = \langle \boldsymbol{\omega}_t, \vec{G}_t(e_t) \rangle. \quad (12)$$

659 Our goal is to infer \mathbf{z}_t from the evidence e_t .

660 **Assumption 1 (prior and Boltzmann-rational evidence).** (i) Prior: $p_0(\mathbf{z}_t) = \mathcal{N}(\mathbf{0}, \mathbf{I})$; (ii) Evi-
661 dence model: following quantal response and free-energy formulations, we posit the *unnormalized*
662 likelihood

$$663 \quad \log p(e_t | \mathbf{z}_t) = \beta U_t(\boldsymbol{\omega}_t; e_t) + C(e_t), \quad \beta > 0, \quad (13)$$

664 where $C(e_t)$ does not depend on \mathbf{z}_t (hence its gradient vanishes w.r.t. ϕ).¹ The corresponding
665 (unnormalized) target posterior is
666

$$667 \quad p^*(\mathbf{z}_t | e_t) \propto p_0(\mathbf{z}_t) \exp(\beta U_t(\boldsymbol{\omega}_t; e_t)). \quad (14)$$

669 **1. Objective: maximize marginal evidence.** The marginal evidence is

$$670 \quad p(e_t) = \int p_0(\mathbf{z}_t) p(e_t | \mathbf{z}_t) d\mathbf{z}_t, \quad (15)$$

673 which is intractable because $\boldsymbol{\omega}_t = f_\theta(\mathbf{z}_t) = \text{softmax}(\mathbf{z}_t)$ is nonlinear.

675 **2. Variational family.** We approximate the posterior by $q_\phi(\mathbf{z}_t | e_t) = \mathcal{N}(\boldsymbol{\mu}_t, \text{diag}(\boldsymbol{\sigma}_t^2))$, where
676 $(\boldsymbol{\mu}_t, \log \boldsymbol{\sigma}_t)$ are the outputs of the encoder given e_t .

678 **3. KL expansion.** By Bayes' rule,

$$679 \quad p^*(\mathbf{z}_t | e_t) = \frac{p_0(\mathbf{z}_t) p(e_t | \mathbf{z}_t)}{p(e_t)}. \quad (16)$$

682 Thus

$$684 \quad \text{KL}(q_\phi(\mathbf{z}_t | e_t) \| p^*(\mathbf{z}_t | e_t)) = \mathbb{E}_{q_\phi} \left[\log q_\phi(\mathbf{z}_t | e_t) - \log p_0(\mathbf{z}_t) - \log p(e_t | \mathbf{z}_t) \right] + \log p(e_t). \quad (17)$$

686 Rearranging yields

$$687 \quad \log p(e_t) = \underbrace{\mathbb{E}_{q_\phi} [\log p(e_t | \mathbf{z}_t)]}_{\mathcal{L}_t(\phi)} - \text{KL}(q_\phi(\mathbf{z}_t | e_t) \| p_0(\mathbf{z}_t)) + \text{KL}(q_\phi(\mathbf{z}_t | e_t) \| p^*(\mathbf{z}_t | e_t)). \quad (18)$$

691 **4. ELBO.** Therefore,

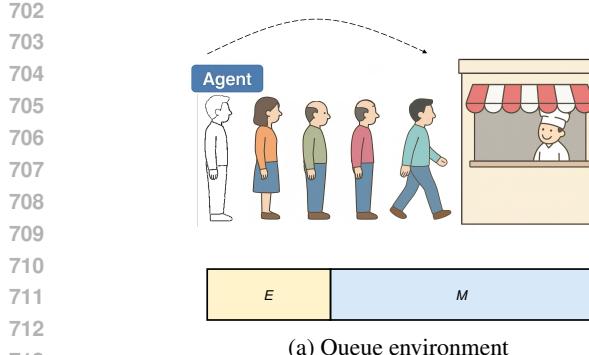
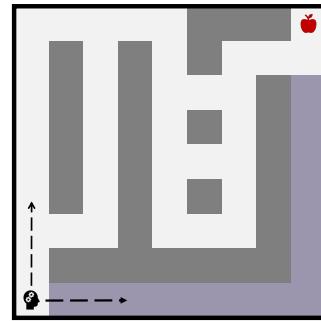
$$692 \quad \log p(e_t) \geq \mathcal{L}_t(\phi) = \mathbb{E}_{q_\phi(\mathbf{z}_t | e_t)} [\log p(e_t | \mathbf{z}_t)] - \text{KL}(q_\phi(\mathbf{z}_t | e_t) \| \mathcal{N}(\mathbf{0}, \mathbf{I})). \quad (19)$$

694 Substituting the evidence model and dropping the $C(e_t)$ term, we obtain

$$696 \quad \mathcal{L}_t(\phi) = \beta \mathbb{E}_{q_\phi(\mathbf{z}_t | e_t)} [\langle f_\theta(\mathbf{z}_t), \vec{G}_t(e_t) \rangle] - \text{KL}(q_\phi(\mathbf{z}_t | e_t) \| \mathcal{N}(\mathbf{0}, \mathbf{I})). \quad (20)$$

697 Maximizing $\mathcal{L}_t(\phi)$ is equivalent to minimizing $\text{KL}(q_\phi \| p^*)$ and tightens the lower bound on
698 $\log p(e_t)$. Over a window $t = 1, \dots, T$, the overall preference-inference objective is
699

$$700 \quad \max_{\phi} \sum_{t=1}^T \mathcal{L}_t(\phi) = \sum_{t=1}^T \left\{ \beta \mathbb{E}_{q_\phi(\mathbf{z}_t | e_t)} [\langle f_\theta(\mathbf{z}_t), \vec{G}_t(e_t) \rangle] - \text{KL}(q_\phi(\mathbf{z}_t | e_t) \| \mathcal{N}(\mathbf{0}, \mathbf{I})) \right\}. \quad (21)$$



714
715
716
717
718 Figure 6: Two environments used in our experiments. (a) Queue provides a simple but illustrative
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
17310
17311
17312
17313
17314
17315
17316
17317
17318
17319
17320
17321
17322
17323
17324
17325
17326
17327
17328
17329
17330
17331
17332
17333
17334
17335
17336
17337
17338
17339
173310
173311
173312
173313
173314
173315
173316
173317
173318
173319
173320
173321
173322
173323
173324
173325
173326
173327
173328
173329
173330
173331
173332
173333
173334
173335
173336
173337
173338
173339
1733310
1733311
1733312
1733313
1733314
1733315
1733316
1733317
1733318
1733319
1733320
1733321
1733322
1733323
1733324
1733325
1733326
1733327
1733328
1733329
1733330
1733331
1733332
1733333
1733334
1733335
1733336
1733337
1733338
1733339
17333310
17333311
17333312
17333313
17333314
17333315
17333316
17333317
17333318
17333319
17333320
17333321
17333322
17333323
17333324
17333325
17333326
17333327
17333328
17333329
17333330
17333331
17333332
17333333
17333334
17333335
17333336
17333337
17333338
17333339
173333310
173333311
173333312
173333313
173333314
173333315
173333316
173333317
173333318
173333319
173333320
173333321
173333322
173333323
173333324
173333325
173333326
173333327
173333328
173333329
173333330
173333331
173333332
173333333
173333334
173333335
173333336
173333337
173333338
173333339
1733333310
1733333311
1733333312
1733333313
1733333314
1733333315
1733333316
1733333317
1733333318
1733333319
1733333320
1733333321
1733333322
1733333323
1733333324
1733333325
1733333326
1733333327
1733333328
1733333329
1733333330
1733333331
1733333332
1733333333
1733333334
1733333335
1733333336
1733333337
1733333338
1733333339
17333333310
17333333311
17333333312
17333333313
17333333314
17333333315
17333333316
17333333317
17333333318
17333333319
17333333320
17333333321
17333333322
17333333323
17333333324
17333333325
17333333326
17333333327
17333333328
17333333329
17333333330
17333333331
17333333332
17333333333
17333333334
17333333335
17333333336
17333333337
17333333338
17333333339
173333333310
173333333311
173333333312
173333333313
173333333314
173333333315
173333333316
173333333317
173333333318
173333333319
173333333320
173333333321
173333333322
173333333323
173333333324
173333333325
173333333326
173333333327
173333333328
173333333329
173333333330
173333333331
173333333332
173333333333
173333333334
173333333335
173333333336
173333333337
173333333338
173333333339
1733333333310
1733333333311
1733333333312
1733333333313
1733333333314
1733333333315
1733333333316
1733333333317
1733333333318
1733333333319
1733333333320
1733333333321
1733333333322
1733333333323
1733333333324
1733333333325
1733333333326
1733333333327
1733333333328
1733333333329
1733333333330
1733333333331
1733333333332
1733333333333
1733333333334
1733333333335
1733333333336
1733333333337
1733333333338
1733333333339
17333333333310
17333333333311
17333333333312
17333333333313
17333333333314
17333333333315
17333333333316
17333333333317
17333333333318
17333333333319
17333333333320
17333333333321
17333333333322
17333333333323
17333333333324
17333333333325
17333333333326
17333333333327
17333333333328
17333333333329
17333333333330
17333333333331
17333333333332
17333333333333
17333333333334
17333333333335
17333333333336
17333333333337
17333333333338
17333333333339
173333333333310
173333333333311
173333333333312
173333333333313
173333333333314
173333333333315
173333333333316
173333333333317
173333333333318
173333333333319
173333333333320
173333333333321
173333333333322
173333333333323
173333333333324
173333333333325
173333333333326
173333333333327
173333333333328
173333333333329
173333333333330
173333333333331
173333333333332
173333333333333
173333333333334
173333333333335
173333333333336
173333333333337
173333333333338
173333333333339
1733333333333310
1733333333333311
1733333333333312
1733333333333313
1733333333333314
1733333333333315
1733333333333316
1733333333333317
1733333333333318
1733333333333319
1733333333333320
1733333333333321
1733333333333322
1733333333333323
1733333333333324
1733333333333325
1733333333333326
1733333333333327
1733333333333328
1733333333333329
1733333333333330
1733333333333331
1733333333333332
1733333333333333
1733333333333334
1733333333333335
1733333333333336
1733333333333337
1733333333333338
1733333333333339
17333333333333310
17333333333333311
17333333333333312
17333333333333313
17333333333333314
17333333333333315
17333333333333316
17333333333333317
17333333333333318
17333333333333319
17333333333333320
17333333333333321
17333333333333322
17333333333333323
17333333333333324
17333333333333325
17333333333333326
17333333333333327
17333333333333328
17333333333333329
17333333333333330
17333333333333331
17333333333333332
17333333333333333
17333333333333334
17333333333333335
17333333333333336
17333333333333337
17333333333333338
17333333333333339
173333333333333310
173333333333333311
173333333333333312
173333333333333313
1733333

756 Table 2: Detailed specifications of environments. Each domain introduces dynamic events that
 757 invalidate fixed preferences, requiring agents to adapt their value weights.
 758

759	Environment	State Space	Action Space	Reward Vector	Dynamic Events
760	761	762	763	764	765
766	767	768	769	770	771
772	773	774	775	776	777
778	779	780	781	782	783
784	785	786	787	788	789
790	791	792	793	794	795
796	797	798	799	800	801
802	803	804	805	806	807
808	809				

B.2 MAZE

We design a Maze navigation environment with multiple interacting objectives to evaluate adaptive preference inference under dynamic constraints. The agent starts in the bottom-left corner and must reach a goal location in the top-right corner. Each episode terminates upon reaching the goal or exceeding a maximum step budget $T = 200$. At each step the agent observes its current (x, y) position, a global timer normalized to $[0, 1]$, remaining energy, and a binary hazard map indicating nearby dangerous cells. The state is encoded as an image $s_t \in \mathbb{R}^{H \times W \times 3}$, where the three channels are [observation, time ratio, energy ratio], respectively.

Action space. The agent chooses from $\mathcal{A} = \{\text{UP}, \text{DOWN}, \text{LEFT}, \text{RIGHT}\}$, moving one cell per step unless blocked by a wall.

Reward vector. Each transition produces a $d = 5$ -dimensional reward vector:

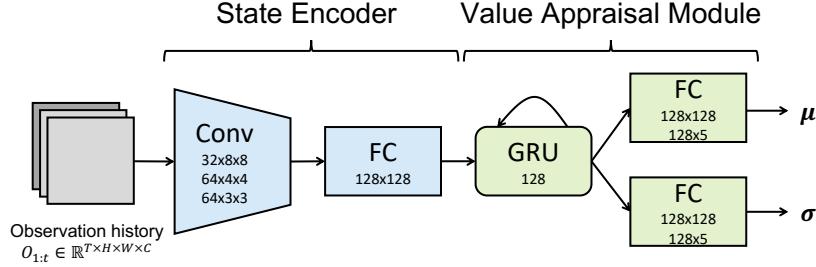
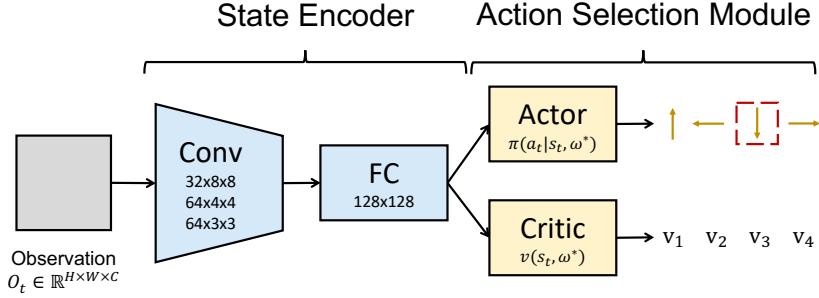
$$\vec{r}_t = [r_t^{\text{prog}}, r_t^{\text{time}}, r_t^{\text{hazard}}, r_t^{\text{energy}}, r_t^{\text{deadline}}], \quad (23)$$

where $r_t^{\text{prog}} = +1$ for moving closer to the goal, $r_t^{\text{time}} = -1$ as a per-step time penalty, $r_t^{\text{hazard}} = -\kappa$ if stepping into a hazardous cell, and $r_t^{\text{energy}} = -\lambda$ proportional to energy consumption, $r_t^{\text{deadline}} = +\beta$ if reached before the deadline. No fixed scalarization is applied; the agent must learn to reweight these objectives.

Dynamic events. To induce non-stationarity, we introduce three event types at random steps:

- (i) **Deadline shock**: remaining time budget is suddenly shortened by 30%, increasing the urgency of reaching the goal.
- (ii) **Hazard surge**: a new region of static hazards appears, increasing collision risk along the shortest path.
- (iii) **Energy drought**: the agent’s energy consumption per step doubles, requiring more conservative movement. Each episode may contain multiple events in sequence, forcing the agent to continuously reappraise what matters most (e.g., prioritize speed when the deadline is tight, or safety when hazards dominate).

Despite their surface differences (as in Table 2), both domains share the same structural property: **without dynamic preference adjustment, the agent rarely succeeds. In our implementations, we empirically observe that no single fixed preference vector over the exposed reward components achieves high MER and SR across all event configurations.** This unified design highlights the necessity of our proposed framework, which equips agents with cognitive-like value reappraisal to remain effective under shifting constraints.

810
811 C IMPLEMENTATION DETAILS812
813 C.1 NETWORK ARCHITECTURE825
826 Figure 7: The architecture of our Value Appraisal Module, where the numbers represent channel
numbers and kernel size827
828 **Value Appraisal Module.** The network structure of the proposed value appraisal module used in
829 Maze experiments is illustrated in Fig. 7. In detail, the state encoder consists of two convolutional
830 layers and a fully connected layer for encoding observations. Then a GRU network is employed to
831 aggregate historical information, which is connected with two two-layer fully connected network
832 to model the mean and the standard deviation. Each convolutional layer is activated by ReLU, and
833 each fully connected layer is activated by leaky ReLU. In particular, we use two fully connected
834 layers as state encoder for Queue.840
841 Figure 8: The architecture of our Action Selection Module, where the numbers represent channel
842 numbers and kernel size.843
844 **Action Selection Module.** We employ a value preference conditional actor-critic as our action
845 selection module, as shown in Fig. 8. Specifically, the state encoder is the same as the value appraisal
846 module. The actor and critic are both consists of two fully connected layers activated by leaky ReLU.847
848 C.2 OPTIMIZATION849
850 The algorithm process for the DPI is shown in Algorithm 1.851
852 The encoder f_ϕ outputs $(\mu_t, \log \sigma_t)$ for a diagonal Gaussian $q_\phi(z_t | s_{t-H+1:t}) = \mathcal{N}(\mu_t, \text{diag}(\sigma_t^2))$
853 over the unconstrained latent z_t , and preferences are obtained via $\omega(z_t) = \text{softmax}(z_t)$. We esti-
854 mate the expectation in equation 20 by the reparameterization trick $z_t = \mu_t + \sigma_t \odot \varepsilon, \varepsilon \sim \mathcal{N}(0, I)$,
855 using $1-K$ Monte Carlo samples per update. The temperature β controls evidence sensitivity (larger
856 β gives sharper posteriors). Without loss of generality, we set $\beta = 1$; we keep β fixed unless stated
857 otherwise. Vector targets \tilde{G}_t are computed per dimension from the critic (see Sec. 3.2), and are
858 treated as constants w.r.t. ϕ during preference updates.

864 **Algorithm 1 Dynamic Preference Inference (DPI) with On-Policy Envelope Actor–Critic**

865 **Input:** Policy parameters θ , preference encoder ϕ
 866 **Repeat** for each training iteration:
 867 **Collect trajectories:**
 868 For $t = 1, \dots, T$:
 869 Encode recent history $s_{t-H+1:t}$ via GRU f_ϕ to obtain mean μ_t , log-variance $\log \sigma_t$:
 870 $q_\phi(\mathbf{z}_t \mid s_{t-H+1:t}) = \mathcal{N}(\mu_t, \text{diag}(\sigma_t^2)), \quad \omega_t^{(k)} = \text{softmax}(\mathbf{z}_t^{(k)}).$
 871 Sample K candidates $\mathbf{z}_t^{(k)}$ and select $\hat{\omega}_t = \arg \max_k \langle \omega_t^{(k)}, \vec{V}_\theta(s_t, \omega_t^{(k)}) \rangle$
 872 Sample action $a_t \sim \pi_\theta(\cdot \mid s_t, \hat{\omega}_t)$ and step the environment.
 873 **Optimize:**
 874 Compute vector returns: \vec{G}_t by multi-objective GAE.
 875 Compute scalar advantage: $A_t = \langle \hat{\omega}_t, \vec{A}_t \rangle$.
 876 Compute actor-critic loss: $\mathcal{L}_\pi = \mathcal{L}_{\text{ppo}} + \mathcal{L}_{\text{critic}}$.
 877 Update θ by minimizing \mathcal{L}_π .
 878 Compute elbo $\mathcal{L}_{\text{ELBO}}$:
 879 $\mathcal{L}_{\text{ELBO}} = -\mathbb{E}_{\mathbf{z}_t \sim q_\phi} [\langle \text{softmax}(\mathbf{z}_t), \vec{G}_t \rangle] + \text{KL}(q_\phi(\mathbf{z}_t \mid s_{t-H+1:t}) \parallel \mathcal{N}(\mathbf{0}, \mathbf{I}))$
 880 Directional alignment regularization: $\mathcal{L}_{\text{dir}} = 1 - \lambda \frac{\langle \omega_t^{\text{pred}}, \vec{G}_t \rangle}{\|\omega_t^{\text{pred}}\|_2 \|\vec{G}_t\|_2}$
 881 Self-consistency regularization: $\mathcal{L}_{\text{stab}} = \|\omega_t^{\text{pred}} - \hat{\omega}_t\|_2^2$.
 882 Update ϕ by minimizing $\mathcal{L}_{\text{prefer}} = \mathcal{L}_{\text{ELBO}} + \lambda \mathcal{L}_{\text{dir}} + \gamma \mathcal{L}_{\text{stab}}$.

883
884 **C.3 COMPUTE RESOURCES AND REPRODUCIBILITY**
885

886 **Compute Resources.** All experiments were conducted on a single workstation equipped with an
 887 NVIDIA RTX 4090 GPU (24GB VRAM) and an Intel Core i9-14900K CPU (32 cores, 64GB
 888 RAM). This setup allows 6–8 experiments to be run in parallel without resource contention. Training
 889 a single DPI agent on Maze for 1.5×10^5 environment steps takes approximately 15 minutes, and
 890 completing all reported experiments across 10 random seeds requires 6 hours in total. Our imple-
 891 mentation is based on PyTorch 2.4.1 with CUDA 11.8, and uses Gymnasium 1.0.0 for environment
 892 simulation. All code is optimized to run on a single GPU; no distributed training is required.
893

894 **Reproducibility.** We fix all random seeds for NumPy, PyTorch, and Gymnasium to ensure repro-
 895 ducibility. Hyperparameters are summarized in Table 3. We report results averaged over 10 inde-
 896 pendent seeds and present 95% confidence intervals (CI) to account for stochasticity. For ablation
 897 studies and sensitivity analyses (e.g., history window size H), we sweep parameters in a controlled
 898 range and report mean \pm CI to ensure robustness.
899

900 **D EXTRA EXPERIMENTS**
901902 **D.1 PARETO ANALYSIS OF PRE- AND POST-EVENT REGIMES IN QUEUE**
903

904 To illustrate that the Pareto-optimal trade-offs before and after an event are structurally different, we
 905 approximate Pareto fronts in the Queue environment under the pre-event (normal arrival and service
 906 rates) and post-event (arrival burst + service slowdown + energy shock) regimes.
907

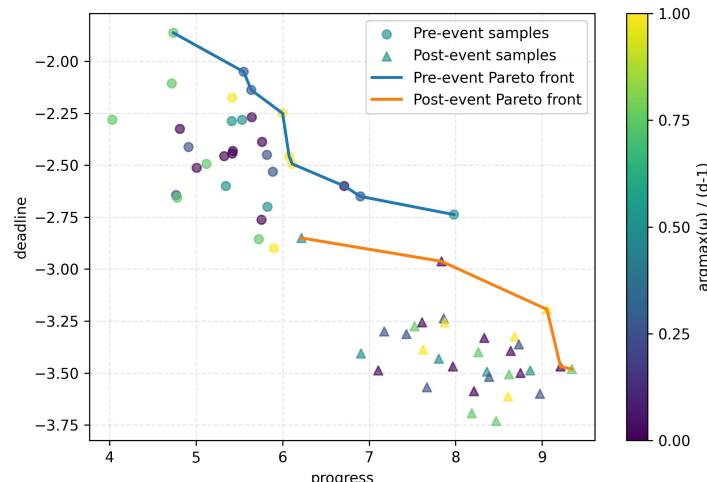
908 For this analysis, we fix a family of linear scalarizations over the vector reward,
909

$$U(\omega, e) = \langle \omega, \vec{G}(e) \rangle, \quad (24)$$

910 and sweep ω over a grid on the simplex. For each ω , we train a policy in the pre-event regime and
 911 in the post-event regime, and estimate the corresponding vector returns $\vec{G}_{\text{pre}}(\omega)$ and $\vec{G}_{\text{post}}(\omega)$ from
 912 rollouts. In Fig. 9 we project these vectors onto a 2D objective space: (i) *progress* (higher is better)
913

918
919
920
Table 3: Hyperparameters used in all experiments. Values are shared across Maze and Queue unless
otherwise noted.

921	Hyperparameter	Value
922	Learning rate	2.5×10^{-4}
923	Batch size	1024 transitions per update
924	Discount factor	0.99
925	GAE parameter	0.95
926	PPO clip ratio (ϵ)	0.2
927	Entropy coefficient	0.01
928	Value loss coefficient (ξ)	0.5
929	KL regularization weight (α_{kl})	0.1
930	Direction alignment weight (λ)	0.1
931	Self-consistency weight (γ)	0.01
932	Optimizer	Adam
933	Number of epochs per update	1
934	History window size (H)	3 (unless otherwise varied in ablation)
935	Preference samples per step (K)	8
936	Training steps per run	1.5×10^5 environment steps
937	Number of seeds	10 (results reported as mean \pm 95% CI)

938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
Figure 9: **Queue environment: Pareto fronts before and after the event.** We approximate Pareto fronts in a 2D objective space (progress vs. deadline-related penalty) by training policies with fixed linear scalarizations ω over the vector reward. Each point is a policy; circles and triangles denote pre- and post-event regimes, respectively, and colors encode the dominant component of ω . The blue curve shows the pre-event Pareto front, which lies predominantly in the upper-left region (smaller deadline penalty with moderate progress), while the orange curve shows the post-event Pareto front, which shifts towards the lower-right (higher progress at the cost of larger deadline penalties). The scalarizations that are near-optimal in the pre-event regime induce strongly suboptimal trade-offs in the post-event regime, and vice versa, indicating that the Pareto-optimal preference configurations before and after the event are largely disjoint. This supports our claim that no single fixed ω over the exposed reward vector is robust across all event configurations.966
967
968
969
on the x -axis, and (ii) a *deadline-related penalty* on the y -axis (higher on the plot corresponds to smaller penalty / more deadline slack).970
971
Each marker in Fig. 9 corresponds to a policy trained with a fixed scalarization ω : circles denote pre-event policies, triangles denote post-event policies. From these samples we extract the non-dominated points in each regime, which we plot as the pre-event and post-event Pareto fronts.

972 D.2 RL BASELINES OPTIMIZING STATIC METRICS AND DENSE ORACLE BASELINE RESULTS
973974 We add three extra baselines in which we tune the scalarization weights separately for MER and SR
975 (MER-PPO and SR-PPO).976 which are:
977

- 978 • MER-PPO: PPO with a metric-specific scalar reward $r_t^{\text{MER}} = \langle \omega^{\text{eval}}, \vec{r}_t \rangle$, where the eval-
979 uation weight ω^{eval} is given to the agent (oracle static scalarization).
- 980 • SR-PPO: PPO with a sparse success reward (1 on success, 0 otherwise).
- 981 • Dense Oracle: based on PPO that receives access to the same event signals and additionally
982 uses time / energy information to continuously update preference weights at each timestep
983 (e.g., gradually increasing deadline weight as the deadline approaches, increasing hazard
984 weight in proportion to hazard intensity).

985 We tuned two baselines carefully, and report their performance:
986988 Table 4: Comparison results on Queue and Maze.
989

990 Method	991 Queue		992 Maze	
	993 MER	994 SR (%)	995 MER	996 SR (%)
MER-PPO	15.01 \pm 0.46	0.98 \pm 0.05	85.55 \pm 0.12	0.05 \pm 0.01
SR-PPO	-5.64 \pm 5.22	46.91 \pm 0.00	-15.28 \pm 0.96	61.13 \pm 0.05
Dense Oracle	14.41 \pm 5.18	49.27 \pm 15.40	40.33 \pm 3.73	62.92 \pm 0.02
DPI-PPO	10.34 \pm 0.02	39.95 \pm 2.75	30.16 \pm 1.22	59.04 \pm 0.01

997 Note that, for MER-PPO and SR-PPO, while these baselines can do well on individual metrics
998 in stationary settings, they struggle to maintain high performance across all metrics under non-
999 stationary event sequences, whereas DPI maintains consistently good MER and SR. In addition,
1000 Dense-Oracle baseline can serve as a strong upper bound.
10011002 Empirically, PPO-MER achieves competitive mean episodic return, but still suffers from low success
1003 rate, confirming that single fixed scalarization can hardly cope with all event configurations. Our
1004 DPI agent maintains comparable MER while substantially improving SR, and additionally provides
1005 interpretable, event-aligned preference trajectories (as shown in Fig. 4). This supports our claim
1006 that explicit dynamic preference inference offers benefits beyond standard single-objective RL. In
1007 addition, designing a Markovian reward that directly optimizes PS@K would require explicit access
1008 to change points and the evaluation horizon K , which we intentionally do not assume. We therefore
1009 treat PS@K as an evaluation-only metric and focus on MER/SR for single-objective RL baselines.
10101011 D.3 CONTINUOUS CONTROL ENVIRONMENT EXPERIMENTS
10121013 To demonstrate the scalability of the proposed method, we modified and implemented a continuous
1014 environment based on multi-objective mujoco. The experiment result is reported in Table 5.
10151016 We further construct a continuous-control benchmark by extending the multi-objective HalfCheetah
1017 environment from mo-gymnasium (mo-halfcheetah-v5) with dynamic events and resource
1018 constraints. The agent controls a planar cheetah to run forward while trading off forward progress,
1019 control effort, and energy consumption under a stochastic schedule of events. Compared to the grid-
1020 based Maze in the main text, this environment probes preference inference in a higher-dimensional,
1021 continuous state-action space.1022 **State and observation.** Let $o_t \in \mathbb{R}^{d_o}$ denote the standard MuJoCo observation of HalfCheetah
1023 at time t (joint positions/velocities, torso state, etc.). To provide short-term temporal context, we
1024 expose to the agent a stacked history of length H :
1025

$$s_t = [o_{t-H+1}, \dots, o_t] \in \mathbb{R}^{H \times d_o}, \quad (25)$$

1026 with $H = 8$ in all experiments. Internally, the environment also maintains a remaining deadline
 1027 $D_t \in \mathbb{N}$ and an energy budget $E_t \in \mathbb{R}_+$, which govern termination but are not directly observed
 1028 by the agent (making the task partially observable with respect to constraints). We set a maximum
 1029 horizon $T_{\max} = 200$, an initial deadline $D_0 = 200$, and an initial energy budget $E_0 = 100$.
 1030

1031 **Action space.** The action $a_t \in \mathbb{R}^{d_a}$ is a continuous torque vector applied to the actuated joints,
 1032 identical to the standard HalfCheetah control interface. We use the same box-constrained action
 1033 space as mo-halfcheetah-v5.
 1034

1035 **Reward vector and constraints.** At each step the underlying mo-halfcheetah-v5 environ-
 1036 ment returns a vector reward
 1037

$$\tilde{\mathbf{r}}_t = [\tilde{r}_t^{\text{speed}}, \tilde{r}_t^{\text{ctrl}}], \quad (26)$$

1038 where $\tilde{r}_t^{\text{speed}}$ is the forward speed reward (proportional to the x -velocity of the torso) and $\tilde{r}_t^{\text{ctrl}}$
 1039 encodes a control-cost penalty.
 1040

1041 We construct a $d = 3$ dimensional reward vector
 1042

$$\vec{r}_t = [r_t^{\text{speed}}, r_t^{\text{ctrl}}, r_t^{\text{energy}}], \quad (27)$$

1043 with
 1044

$$\begin{aligned} r_t^{\text{speed}} &= \alpha_t^{\text{speed}} \tilde{r}_t^{\text{speed}}, \\ r_t^{\text{ctrl}} &= -\alpha_t^{\text{ctrl}} |\tilde{r}_t^{\text{ctrl}}|, \\ r_t^{\text{energy}} &= -\eta_t \|a_t\|_2 + r_t^{\text{deadline}}. \end{aligned} \quad (28)$$

1045 Here $\alpha_t^{\text{speed}}, \alpha_t^{\text{ctrl}}, \eta_t > 0$ are time-varying scales that may change when events occur (see below).
 1046 The energy budget is updated as
 1047

$$E_{t+1} = E_t - \eta_t \|a_t\|_2, \quad (29)$$

1048 and the deadline counts down as $D_{t+1} = D_t - 1$.
 1049

1050 The deadline component r_t^{deadline} is only non-zero at termination. If the episode terminates due to
 1051 reaching a goal state before exhausting the deadline or energy budget, we grant a positive bonus $+\beta$;
 1052 if it terminates due to deadline expiration, we assign a penalty $-\beta$; and if it terminates due to energy
 1053 exhaustion, we add an extra negative penalty on r_t^{energy} . In our implementation we use $\beta = 10$.
 1054 The environment terminates when either (i) the underlying MuJoCo simulator signals failure, (ii)
 1055 $D_t \leq 0$ (deadline reached), (iii) $E_t \leq 0$ (energy exhausted), or (iv) the maximum horizon T_{\max} is
 1056 reached (in which case we treat the episode as truncated). No fixed scalarization is hard-coded into
 1057 the environment; as in Maze, the agent must adaptively reweight the components of \vec{r}_t .
 1058

1059 **Dynamic events.** To induce non-stationary trade-offs, we introduce three types of exogenous
 1060 events that modify constraints and reward scales:
 1061

1062 **Deadline shock:** the remaining time budget is suddenly shortened by a fraction. Concretely,
 1063 at event time t , we sample a shrink ratio $\rho \in (0, 1)$ (default $\rho = 0.5$) and update
 1064

$$D_t \leftarrow \max\{1, D_t - \lceil \rho D_t \rceil\}, \quad (30)$$

1065 increasing the urgency of progress.
 1066

1067 **Speed surge:** the importance of forward speed is increased by multiplying its scale:
 1068

$$\alpha_t^{\text{speed}} \leftarrow c_{\text{speed}} \alpha_t^{\text{speed}}, \quad (31)$$

1069 with default multiplier $c_{\text{speed}} = 1.5$. This models scenarios where performance pressure (e.g., a
 1070 tighter external requirement on forward velocity) suddenly rises.
 1071

1072 **Energy drought:** the per-step energy cost increases, making actions more expensive:
 1073

$$\eta_t \leftarrow c_{\text{energy}} \eta_t, \quad (32)$$

1074 with default multiplier $c_{\text{energy}} = 2.0$. This mimics a sudden reduction in available power or effi-
 1075 ciency, pushing the agent to adopt more conservative control.
 1076

1080
 1081 Table 5: Comparison results on the modified continuous control environment. To handle a continuous
 1082 action space, we adapt the rule-based ENVELOPE Q-learning baseline to a PPO actor–critic im-
 1083 plementation (ENVELOPE-PPO). Dense Oracle is given privileged access to dynamic event signals
 1084 and hand-crafted rules for updating the preference weights, whereas DPI-PPO (ours) only observes
 1085 the standard environment state and must infer preferences purely from interaction.

Method	MER	SR(%)
ENVELOPE-PPO	13.52 ± 9.89	53.28 ± 12.00
Dense Oracle	66.95 ± 5.78	99.98 ± 0.01
DPI-PPO (Ours)	42.10 ± 6.25	81.00 ± 1.00

1092 D.4 HYPERPARAMETER SENSITIVITY ANALYSIS

1093 To evaluate how sensitive DPI is to the auxiliary loss coefficients, we conduct a experiment on
 1094 the QUEUE environment, varying the stability weight γ and the directional-alignment weight λ in
 1095 Eq. (10) while keeping all other hyperparameters fixed. For each setting, we train the agent with 10
 1096 random seeds and report the mean episodic return (MER) and success rate (SR) over 200 evaluation
 1097 episodes in Table 6. Overall, DPI is fairly robust to moderate changes of γ and λ : performance
 1098 under all tested configurations stays within one standard deviation of the default setting, and only
 1099 very small or very large coefficients lead to a mild degradation in SR.

1100 Table 6: Hyperparameter sensitivity analysis. Here γ and λ are reported as relative multipliers
 1101 around the default (γ_0, λ_0) used in the main experiments (i.e., 0.5 means $0.5\gamma_0$).

γ	λ	MER	SR(%)
0.5	1.0	10.84 ± 1.33	38.57 ± 2.10
1.0	1.0	10.34 ± 0.02	39.95 ± 2.75
2.0	1.0	9.55 ± 0.62	35.85 ± 1.02
1.0	0.5	9.70 ± 0.78	30.43 ± 3.27
1.0	2.0	8.85 ± 1.62	36.93 ± 0.46

1113 D.5 DISCUSSION ON COLD-START DYNAMICS

1114 In our implementation, early training is stabilized by two mechanisms.

1115 **(i) Gaussian prior and KL regularization.** Because $q_\phi(z_t | \cdot)$ is regularized toward $\mathcal{N}(0, I)$, the
 1116 induced preference weights $\omega_t = \text{softmax}(z_t)$ are initially close to a high-entropy, nearly uniform
 1117 distribution over objectives. This prevents the appraisal module from committing to extreme trade-
 1118 offs when the critic is still inaccurate.

1119 **(ii) Envelope selection with on-policy actor–critic.** Even when the multi-objective returns \vec{G}_t are
 1120 noisy, the envelope operator is applied over multiple ω_t samples drawn from a broad posterior, and
 1121 the PPO update is on-policy with respect to the selected ω_t . In practice, this behaves similarly to
 1122 a standard multi-objective actor–critic with stochastic exploration in preference space, rather than a
 1123 brittle deterministic scheduler.

1124 Empirically, we do not observe systematic early mode collapse of preferences. Instead, the entropy
 1125 of ω_t gradually decreases as the critic becomes more informative, consistent with a smooth transition
 1126 from exploratory to more specialized preference configurations.

1129 D.6 LEARNING CURVES

1130 To assess the training stability of DPI, we run 10 independent training runs on the Queue environ-
 1131 ment with different random seeds, using the default hyperparameters reported in Table 3. For each
 1132 run, we log performance throughout training as follows:

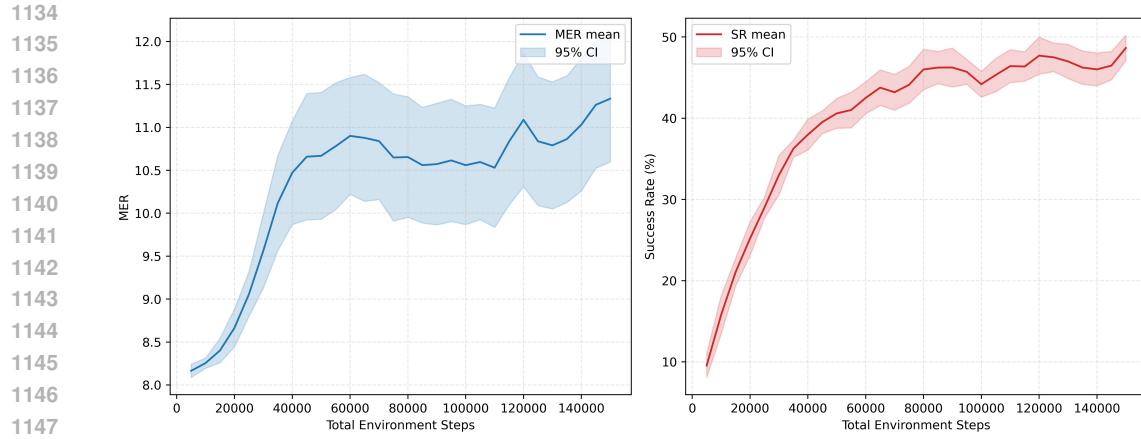


Figure 10: Mean episodic return (MER, left) and success rate (SR, right) as a function of environment steps. Solid lines show the mean over 10 random seeds and shaded regions denote the 95% confidence interval. DPI-PPO exhibits smooth and monotone improvement without divergence or collapse.

- After every 5,000 environment interaction steps, we fix the current policy and derive a greedy evaluation policy (breaking action ties uniformly at random).
- We then evaluate this policy on 200 episodes without exploration noise and compute the mean episodic return (MER) and success rate (SR) for that evaluation point.

For each evaluation step, we aggregate MER and SR across seeds and report the mean and the 95% confidence interval, which are plotted in Fig. 10. As shown in the figure, both MER and SR improve smoothly over time and eventually saturate, without divergence, collapse, or large oscillations. These observations indicate that the combined ELBO-based preference inference and PPO optimization yield stable training dynamics.