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Abstract

Small language models (SLMs) have emerged001
as a promising solution for deploying resource-002
constrained devices, such as smartphones and003
Web of Things. This work presents the first004
comprehensive study of over 60 SLMs such005
as Microsoft Phi and Google Gemma that are006
publicly accessible. Our findings show that007
state-of-the-art SLMs outperform 7B models in008
general tasks, proving their practical viability.009
However, SLMs’ in-context learning capabil-010
ities remain limited, and their efficiency has011
significant optimization potential. We identify012
key SLM optimization opportunities, includ-013
ing dynamic task-specific routing, architecture-014
hardware co-design, and vocabulary/KV cache015
compression. Overall, we expect the work to016
reveal an all-sided landscape of SLMs, benefit-017
ing the research community across algorithm,018
model, system, and hardware levels.019

1 Introduction020

The evolution of language models is diverging. On021

one hand, in the pursuit of artificial general intelli-022

gence, increasingly large language models (LLM)023

have been born in datacenters that host hundreds of024

thousands of GPUs (Kaplan et al., 2020; Xu et al.,025

2024c). The aim of this path is to demonstrate026

that machines can solve the most challenging lan-027

guage tasks, with the ultimate goal of advancing028

human civilization by pushing the boundaries of029

science and technology. On the other hand, there is030

a growing focus on small language models (SLM),031

designed for resource-efficient and ubiquitous de-032

ployment on scenarios such as mobile devices and033

robotics. The vision behind SLMs is to democra-034

tize access to machine intelligence, making it both035

accessible and affordable to a wider range of users.036

This approach seeks to make intelligence ubiqui-037

tous and practical, available to anyone, anywhere,038

at any time – much like the human brain, which039

everyone possesses.040

Both LLM and SLM are important in reshaping 041

our daily lives, yet the latter receives significantly 042

less attention in academia. There has been very 043

few literature exploring SLM capabilities (Lepag- 044

nol et al., 2024; Schick and Schütze, 2020; Zhou 045

et al., 2023) or their runtime cost on devices (Li 046

et al., 2024b; Laskaridis et al.; Xu et al., 2024b), 047

often with limited scale or depth. In industrial, 048

however, SLMs have already been integrated into 049

commercial off-the-shelf (COTS) devices on a mas- 050

sive scale (Yuan et al., 2023; Dubiel et al., 2024). 051

For instance, almost every popular browser has 052

built-in access to local SLM capability, including 053

Google Chrome (chr, 2024), Microsoft Edge (edg, 054

2024) and Opera (ope, 2024). At system level, the 055

latest Google/Samsung smartphones have built-in 056

LLM services (Gemini Nano), allowing third-party 057

mobile apps to leverage LLM capabilities through 058

prompts and LoRA modules (goo, 2024). 059

This work presents the first in-depth, systematic 060

investigation of SLMs, thoroughly discussing their 061

capabilities and runtime performance. The scope 062

of this work is limited to those language models 063

with 100M–5B parameters in decoder-only trans- 064

former architecture for their wide deployment on 065

edge devices, which covers the range from low- 066

end WoT/wearable gadgets like smartwatches to 067

high-end mobile devices such as smartphones and 068

tablets. In total, we collected 68 popular SLMs 069

released by 24 organizations, spanning from OPT 070

(2022.05) to Llama3.2 (2024.09). The details of 071

those models are shown in Table 1. 072

We then built up an end-to-end benchmark that 073

comprehensively evaluates the model capabilities 074

(mainly commonsense reasoning and in-context 075

learning) through 10 widely used datasets, as well 076

as their runtime costs (prefill and decode speed, 077

memory footprint, etc.) on two real development 078

edge boards. Through such investigation, we try to 079

answer the following crucial questions concerning 080

SLMs: “Can SLMs catch up to LLMs in terms of 081
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intelligence?” “What datasets are more likely to082

produce a highly capable SLM?” “How different083

SLM architecture (e.g., depth, width, atten type)084

and the deployment environments (quantization085

algorithms, hardware type, etc) impact runtime per-086

formance?”087

Based on the benchmarking results, we obtain088

valuable insights of SLMs. Here, we summarize089

a few of them. (1) SLMs capabilities are fast090

evolving, closing the gap with Llama-7B/8B se-091

ries (§2.3). (2) Not all SLMs benefit from in-092

context learning (§2.3). (3) SLMs are typically093

trained on way more tokens than what Chinchilla094

recommends (“over trained”) (§2.4). (4) Dataset095

quality is more crucial than dataset size (§2.4). (5)096

Model architecture has non-trivial impacts on in-097

ference speed (§3.1). (6) Quantization gains di-098

minish in long context (§3.2). We will explain099

how these insights create opportunities for the ad-100

vancement of SLMs. Overall, our findings paint a101

promising picture of on-device ubiquitous SLMs,102

yet also highlight the challenges towards resource103

efficiency. Specifically, the findings show strong104

implications for multiple stakeholders of the SLM105

development pipeline. We expect the work to re-106

veal an all-sided landscape of SLM and benefit the107

research community, including those working on108

the algorithm, model, system, and hardware levels.109

In summary, we make the following contribu-110

tions in this work.111

• We exhaustively review 68 small language112

models released in recent years, benchmark113

their capability as well as on-device cost.114

• To this end, we have developed the first mobile115

SLM evaluation suite, which handles down-116

loading, quantizing, deploying, and measur-117

ing the performance of SLMs across hetero-118

geneous edge devices. A leaderboard website119

is created as well to advance and facilitate the120

SLM research.121

• Through such in-depth experimental investiga-122

tion combined with comprehensive literature123

review, we obtain valuable insights from open-124

sourced SLMs, fostering future light-weight125

SLM research. We also summarize a few po-126

tential research topics in SLM.127

Affiliation Model
name Size Date Attention Activation

Open
training
datasets

Max
context
window

Meta

OPT (Facebook, 2022.05)

125M

2022.05 MHA ReLU ✓ 2k350M
1.3B
2.7B

Galactica (Facebook, 2022.11) 125M 2022.11 MHA GELU 2k1.3B

Llama 3.2 (Meta, 2024.09) 1B 2024.09 MHA GELU 128k3B

BigScience
Bloom (BigScience, 2022.11a) 560M 2022.11 MHA

GELUtanh ✓ 2k1.1B

Bloomz (BigScience, 2022.11b) 1.1B 2022.11 MHA560M

EleutherAI Pythia (EleutherAI, 2023.03)

160M

2023.03 MHA GELU ✓ 2k
410M

1B
1.4B
2.8B

Cerebras Cerebras-GPT (Cerebras, 2023.03)

111M

2023.03 MHA GELU ✓ 2k
256M
590M
1.3B
2.7B

Microsoft

Phi-1 (Microsoft, 2023.09a) 1.3B 2023.09 MHA GELUtanh 2kPhi-1.5 (Microsoft, 2023.09b) 1.3B 2023.09 MHA GELUtanh
Phi-2 (Microsoft, 2023.12) 2.7B 2023.12 MHA GELUtanh 2k

Phi-3-mini* (Microsoft, 2024.04) 3.8B 2024.04 MHA SiLU 4k
Phi-3.5-mini* 2.7B 2024.09 MHA SiLU 4k

StabilityAI StableLM-zephyr* (StabilityAI, 2023.11) 3B 2023.11 MHA SiLU ✓ 1k
StableLM-2-zephyr* (StabilityAI, 2024.01) 1.6B 2024.01 MHA SiLU ✓ 4k

TinyLlama TinyLlama (Unknown, 2023.12) 1.1B 2023.12 GQA SiLU ✓ 2k
Meituan MobileLLaMA (Meituan, 2023.12) 1.4B 2023.12 GQA SiLU ✓ 2k

Alibaba

Qwen 1 (Alibaba, 2023.11) 1.8B 2023.11 MHA SiLU 8k
Qwen 1.5 (Alibaba, 2024.02a) 0.5B 2024.02 MHA SiLU 32k

Qwen 2 (Alibaba, 2024.02b) 1.8B 2024.06 MHA SiLU 32k
4B 32k

Qwen 2.5 (Alibaba, 2024.09)
0.5B

2024.09 GQA SiLU 32k1.5B
3B

MBZUAI
MobiLlama (MBZUAI, 2024.02) 0.5B 2024.02 GQA SiLU ✓ 2k1B

LaMini-GPT (MBZUAI, 2023.04) 774M 2023.04 MHA GELUtanh 1k1.5B

Google
Gemma (Google, 2024.02) 2B 2024.02 MQA GELU 8k

recurrentGemma (Google, 2024.04) 2B 2024.04 MQA GELUtanh 8k
Gemma-2 (Google, 2024.07) 2B 2024.07 GQA GELUtanh 8k

OpenBMB MiniCPM (OpenBMB, 2024.04) 1B 2024.04 GQA SiLU 128k
2B 131k

MiniCPM3 (OpenBMB, 2024.09) 4B 2024.09 MLA SiLU

Apple OpenELM (Apple, 2024.04)

270M

2024.04 GQA SiLU ✓ 2k450M
1.1B
3B

H2O danube3 (H2O.ai, 2024) 0.5B 2024.07 GQA SiLU 8k
4B 8k

TensorOpera AI Fox (TensorOpera, 2024) 1.6B 2024.07 GQA SiLU 8k

HuggingFace SmolLM (HuggingFace, 2024.07)
135M

2024.07
GQA

SiLU ✓ 2k360M GQA
1.7B MHA

Toyota DCLM (Toyota, 2024.08) 1.4B 2024.08 MHA SiLU ✓ 50k
DataBricks Dolly-v2* (DataBricks, 2023.04) 3B 2023.04 MHA GELU 2k

AllenAI OLMo (AllenAI, 2024.04) 1.18B 2024.04 MHA SiLU ✓ 50k

Princeton Sheared-LLaMA (Princeton, 2023.11) 1.3B 2023.11 MHA SiLU 4k
2.7B 2023.11 MHA SiLU 4k

Xiaohongshu MiniMA (Xiaohongshu, 2023.11) 3B 2023.11 UKN SiLU 4096
MiniMA2 (Xiaohongshu, 2024.07) 1B 2024.07 SiLU 4k

Nvidia Minitron (Nvidia, 2024.07) 4B 2024.07 GQA ReLU2 4k
M.A.P. CT-LLM (M.A.P., 2024.04) 2B 2024.04 MHA SiLU 4k
AMD AMD-Llama (AMD, 2024.08) 135M 2024.08 MHA SiLU 2k

Table 1: Detailed configurations of SLMs benchmarked.
We mainly use the base models in experiments, with ex-
ceptions of StableLM, Phi-3/3.5, and Dolly-v2 (marked
with *) that only provide the instruct version.

2 SLM Overview and Benchmarking 128

2.1 Collecting Popular SLMs 129

SLMs have gained increasing attention from both 130

the research and industrial communities. Notably, 131

since the end of 2023, the number of SLM models 132

has surged significantly. To understand their capa- 133

bility and cost, we comprehensively collect SLMs 134

based on the following criteria: (1) Decoder-Only 135

Transformer Architecture. (2) Open Weights to 136

evaluate them freely. (3) Parameter Range between 137

100M and 5B parameters. (4) Base Model Focus: 138

Only base pre-trained models are included, except 139

for cases where only instruct versions exist (e.g., 140

Microsoft Phi, StabilityAI StableLM). 141

These models, detailed in Table 1, encom- 142

pass a broad spectrum from both industry and 143

academia, differing in hyperparameters and train- 144

ing datasets. While they share similar architectures, 145

some datasets remain closed-source, leading to per- 146

formance variations across tasks, as discussed in 147
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LLaMA 2
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Figure 1: SLM capabilities over time. Performance is
the average of all tasks (except for Math). The size of
the circle is proportional to the model size. Red dashed
lines show the state-of-the-art model at different time,
indicating the trend that SLMs are getting better over
time. Instruction-tuned models are highlighted with
bold borders. LLaMA-7B series models are shown in
horizontal blue dashed lines for comparison.

following sections. The details about our evalua-148

tion suite are shown in Appendix A.149

2.2 Evaluation Datasets and Metrics150

Dataset Description
HellaSwag (Zellers et al., 2019) Tests narrative completion.
TruthfulQA (Lin et al., 2022) Assesses truthfulness.
Winogrande (Sakaguchi et al., 2020) Evaluates pronoun resolution.
CommonsenseQA (Talmor et al., 2019) Commonsense multiple-choice questions.
PIQA (Bisk et al., 2020) Physical commonsense reasoning.
OpenBookQA (Mihaylov et al., 2018) Open-book science questions.
BoolQ (Clark et al., 2019) Yes/no questions requiring reasoning.
ARC Easy (Clark et al., 2018) Simple science questions.
ARC Challenge (Clark et al., 2018) Complex science questions.
MMLU (Hendrycks et al., 2021) Problem-solving across disciplines.

Table 2: Datasets used to evaluate SLM capabilities.

We used 10 datasets as described in Table 2 to151

evaluate the SLM performance. Following (Gao152

et al., 2024), we use accuracy as the primary eval-153

uation metric. Accuracy measures the compute154

log-likelihood of generating a continuation from a155

context. The default shown accuracy is instructed156

by 5 shots, as it is the most common setting in the157

released model.158

2.3 SLM Capabilities159

Figure 1 illustrates the progress of small language160

models (SLMs) in commonsense reasoning and161

problem-solving. From March 2023 to Septem-162

ber 2024, SLM performance improved by 12.5%163

on average, surpassing the 7.5% improvement of164

LLaMA models over the same period. Notably,165

SLMs have outpaced LLaMA-7B series (v1–3.1),166

highlighting their growing potential for on-device167

tasks.168

The Phi family, trained on closed-source169

datasets, leads in performance, reaching 70% av-170

erage accuracy, comparable to LLaMA 3.1 (7B 171

parameters). As of September 2024, Phi-3.5- 172

mini (2.7B) achieves the highest accuracy, rivaling 173

LLaMA 3.1 (8B). This advantage likely stems from 174

careful data engineering, instruction tuning, and 175

potential dataset overfitting (Zhang et al., 2024a). 176

These findings suggest that SLMs are rapidly clos- 177

ing the gap with LLMs in general reasoning tasks. 178

While larger models generally perform better, 179

exceptions exist. Qwen2-1.5B outperforms many 180

3B-parameter SLMs, demonstrating that smaller 181

models can excel in specific tasks. 182

The gap between open-source and closed-source 183

SLMs is narrowing, driven by high-quality datasets 184

like DCLM and FineWeb-Edu. Notably, SmolLM 185

(64.2%) and DCLM-1B (63.8%) achieve strong 186

performance in commonsense reasoning, highlight- 187

ing the impact of high-quality training data. 188

Insight#1: We draw following key insights
from the evolvement of SLMs: (1) From
March 2023 to September 2024, SLMs exhib-
ited significant performance improvements
across various language tasks, outpacing the
improvements of the LLaMA-7B/8B series.
Among them, the Phi family consistently
achieves state-of-the-art performance across
most tasks. (2) Smaller models like Qwen 2-
1.5B can excel in specific tasks despite having
fewer parameters. (3) SLMs trained on open-
source datasets are closing the gap, thanks to
high-quality datasets.
Opportunity#1 State-of-the-art SLMs have
surpassed 7B models in general tasks, demon-
strating that their capabilities for real-world
deployment. Moreover, the exceptional per-
formance of certain SLMs on specific tasks
highlights their potential for task-specific
model routing, where different models are
dynamically assigned based on task require-
ments to optimize efficiency and accuracy.

189

In-context Learning Capabilities. We evalu- 190

ate various SLMs and their 2B-parameter variants 191

(or the closest available ones) on 8 tasks, includ- 192

ing commonsense reasoning and problem-solving. 193

In-context learning (ICL) generally improves per- 194

formance, with five-shot ICL increasing zero-shot 195

accuracy by 2.1% on average. 196

However, HellaSwag and PIQA show minimal 197

improvement, likely due to their lower complexity 198

compared to datasets like ARC Challenge. LaMini 199
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(a) SLM in-context capabilities across tasks.
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(b) Average accuracy improvement after in-context learning
across different SLM model size.

Figure 2: In-context learning performance with different
tasks and models. Red line in (b) highlights the trend
of the average score improvement with the increase of
model size.

is the only model with a performance drop of over200

2%, possibly due to overfitting, where additional201

context introduces noise. Gemma 2 exhibits the202

most significant improvement, with accuracy in-203

creasing by 4.8%. Notably, ICL effectiveness im-204

proves with model size.205

Insights#2: We draw two key insights from
the in-context learning capacity of SLMs: (1)
Most SLMs exhibit in-context learning ability,
but its effectiveness varies by task. Signifi-
cant gains are observed in ARC Challenge,
while HellaSwag and PIQA show minimal
benefits across all models. (2) Larger models
generally perform better in in-context learn-
ing, while some smaller SLMs experience
performance declines.
Opportunity#2: Due to the smaller parame-
ter size of SLMs, the effectiveness of ICL is
limited. Combining ICL with supervised fine-
tuning (SFT) may yield better performance
(Zhu et al., 2024).

206

2.4 Training Datasets207

We investigate how the open-sourced pre-training208

datasets are used in training the SLMs. Overall, we209

find 12 such datasets being used and show them in210

Table 3.211

Comparing the quality of pre-training212

datasets. We analyzed the quality of open-source213

Subcaption Model Date Tokens (B) Datasets Acc ↓

<1B

SmolLM-360M 24.07 600 FineWeb-
Edub,StarCoder,Cosmopediaa

0.448

OpenELM-450M 24.04 1500 RefinedWeb, The Pile, Red-
Pajama, Dolma

0.417

SmolLM-135M 24.07 600 FineWeb-
Edub,StarCoder,Cosmopediaa

0.416

MobiLlama-0.5B 24.02 1259 RedPajama, RefinedWeb 0.405
OpenELM-270M 24.04 1500 RefinedWeb, The Pile, Red-

Pajama, Dolma
0.393

Pythia-410M 23.03 300 The Pile 0.388
BLOOMZ-560M 22.11 350 WuDaoCorpora 0.366
BLOOM-560M 22.11 350 WuDaoCorpora 0.363
OPT-125M 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.361

Cerebras-GPT-590M 23.03 12 The Pile 0.358
OPT-125M 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.349

Pythia-160M 23.03 300 The Pile 0.347
Cerebras-GPT-111M 23.03 2 The Pile 0.330

1B–1.4B

DCLM-1B 24.08 4300 DCLM-baselineb 0.577
OpenELM-1.1B 24.04 1500 RefinedWeb, The Pile, Red-

Pajama, Dolma
0.463

TinyLlama-1.1B 23.12 3000 SlimPajama, StarCoder 0.436
MobiLlama-1B 24.02 1259 RedPajama, RefinedWeb 0.434
MobileLLaMA-1.4B 23.12 1300 RedPajama 0.428
Pythia-1.4B 23.03 300 The Pile 0.423
OPT-1.3B 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.413

Pythia-1B 23.03 300 The Pile 0.406
Bloom-1B1 22.11 350 WuDaoCorpora 0.394
Bloomz-1B1 22.11 350 WuDaoCorpora 0.384
Cerebras-GPT-1.3B 23.03 26 The Pile 0.383

1.5B–2B
StableLM-2-zephyr-1.6B 24.01 2000 RefinedWeb, RedPajama,

The Pile, StarCoder, Cul-
turaX

0.556

SmolLM-1.7B 24.07 1000 FineWeb-
Edub,StarCoder,Cosmopediaa

0.503

2.5B–3B
StableLM-zephyr-3B 23.11 400 RefinedWeb, RedPajama,

The Pile, StarCoder
0.582

Pythia-2.8B 23.03 300 The Pile 0.448
OPT-2.7B 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.439

Cerebras-GPT-2.7B 23.03 53 The Pile 0.405

Table 3: Classify according to the model parameter
quantity and sort in descending order according to av-
erage normalized accuracy. Acc(Avg) is the average of
the accuracies of the two types of tasks, Commonsense
reasoning/understanding and Problem solving. a indi-
cates that this dataset is generated by LLM. b indicates
that this dataset has been filtered by LLM.
pre-training datasets by evaluating SLM perfor- 214

mance across models trained on them. SLMs from 215

the past three years were grouped by parameter 216

size (<0.5B, 1B, 2B, and 3B) and ranked by av- 217

erage accuracy on Commonsense Reasoning/Un- 218

derstanding and Problem Solving tasks (Table 3). 219

The results highlight DCLM and FineWeb-Edu 220

as the top-performing datasets, both employing 221

model-based data filtering. Additionally, many pre- 222

training datasets, including StarCoder, contain cod- 223

ing data, despite SLMs on edge devices not priori- 224

tizing coding tasks. This inclusion is likely driven 225

by the belief that coding data enhances reasoning 226

ability (Zhang et al., 2024b). 227

The number of training tokens vs. the size of 228

model parameters. The Chinchilla law (Hoff- 229

mann et al., 2022) suggests an optimal parameter- 230

to-token ratio of 1:20 (e.g., a 1B model with 20B 231

tokens). We analyzed SLMs under 4B parameters 232

from 2022 to 2024, as shown in Figure 3(a) and 233

found that recent models use significantly more to- 234

kens (typically over 1.5T) than this guideline (Fig- 235

ure 3(a)). Typically, larger models are trained on 236
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Figure 3: The relationship between the number of train-
ing tokens, the number of model parameters, and the
model accuracy. Here, the “accuracy” is averaged across
all benchmarks in Table 3. (a) The relationship between
the number of training tokens and model parameters
size. According to scaling law(Chinchilla), that SLMs
are often over-trained for better performance at deploy-
ment stage. (b) The influence of the number of training
tokens on the model accuracy.

more tokens , but some smaller SLMs exceed larger237

ones (e.g., Qwen 2-0.5B with 12T tokens vs. Qwen238

2-1.5B with 7T tokens), indicating over-training.239

This strategy aims to enhance SLM performance240

for resource-constrained deployment by increasing241

training-time FLOPs. However, over-training can242

lead to performance saturation (Godey et al., 2024).243

The amount of training tokens vs. model accu-244

racy. Figure 3(b) shows the relationship between245

the number of training tokens and the accuracy of246

the model. In general, there is a positive correlation247

between the two metrics, especially for those with248

less than 700B tokens. However, the correlation249

is weak, since the data quality often outweighs the250

impacts of more training tokens, especially when251

the training tokens exceed 1T.252

Insights#3: We make two key observations
in SLM training. (1) Data quality plays a
crucial role in SLM capability, often out-
weighing data quantity and model architec-
ture. A key trend in dataset research is model-
based filtering, leading to state-of-the-art
open-source pre-training datasets: FineWeb-
Edu (1.3T/5.4T)(Penedo et al., 2024) and
DCLM-baseline (4T)(Li et al., 2024a). (2)
Recent SLMs are trained over large amount of
tokens (typically >1.5T), disregarding their
parameter sizes. In some cases, smaller SLMs
are trained over even more data (e.g., Qwen2-
0.5B at 12T tokens but Qwen2-1.5B at 7T
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Figure 4: Latency and memory overview.

tokens).
Opportunity#3 SLMs trained on model-
based filtering datasets achieve competitive
performance with those using closed datasets,
significantly improving research reproducibil-
ity. Additionally, over-training can cause satu-
ration and performance degradation. Defining
an edge-optimized Chinchilla law is essential
to ensure that additional tokens contribute to
performance gains rather than diminishing
returns.

254

3 SLM Runtime Cost 255

Setup In this section, we measure models of dif- 256

ferent sizes on robotic platform (Jetson Orin) and 257

smartphone. We first analyze the latency and mem- 258

ory usage of models with different parameter sizes. 259

Next, we assess the impact of quantization methods 260

and hardware on model latency. Finally, we break 261

down the latency and memory usage to identify the 262

key factors influencing these metrics across various 263

parts of the model. To eliminate the impact of in- 264

ference engine implementations, we evaluated 20 265

models supported by llama.cpp, a widely recog- 266

nized open-source inference engine. 267

We set a standard prompt length of 50 and a 268

token generation length of 50 unless specified oth- 269

erwise. To measure larger models, we applied 4-bit 270

quantization to all models before conducting exper- 271

iments in all sections except § 3.2.1. 272
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Device Name Specifications Release Time
Jetson Orin NX 1024-core, 16G DRAM Feb. 2023

Pixel 7Pro GoogleTensor G2,12G RAM Oct. 2022
Xiaomi 12S Snapdragon 8Gen1+ ,12G RAM Jul. 2022

MEIZU 18Pro Snapdragon 888,8G RAM Mar. 2021

Table 4: Testing devices.

3.1 Cost Overview273

3.1.1 Inference Latency274

Figure 4 presents inference latency, including first275

token time and per-token decode latency, for mod-276

els ranging from 0.1B to 3B parameters. Latency277

scales with model size across three categories: 0.1-278

1B, 1-2B, and 2-3B. For models of similar size but279

different architectures, first token time varies sig-280

nificantly. For example, Qwen2-0.5B’s first token281

time is 1.46× that of Qwen1.5-0.5B and compara-282

ble to OpenELM-1.1B, which has 2.18× the param-283

eters. Qwen2’s architecture shares the embedding284

layer and LM head, allocating more parameters285

to attention and FFN, increasing computational286

cost. Notably, Pythia-1.4B has higher latency than287

SmolLM-1.7B, Qwen2-1.5B, and Qwen-1.8B de-288

spite being smaller. Phi-2 also exhibits 1.11× the289

latency of OpenELM-3B, a larger model. The pre-290

fill stage dominates on-device LLM inference due291

to long-context processing for personalization on292

edge (Xu et al., 2024a).293

Decode-stage latency generally follows a linear294

trend with model size and is primarily memory-295

bound, unlike the compute-bound prefill stage.296

Qwen2-0.5B and Qwen1.5-0.5B show similar de-297

code latency, while Pythia-1.4B has lower latency298

than larger models. Among 2-3B models, Gemma-299

2B, Phi-2, and OpenELM-3B show a positive cor-300

relation between latency and model size. Archi-301

tectural differences impact compute-bound stages302

more significantly, with wider, shallower models303

benefiting from higher parallelism.304

3.1.2 Memory Footprint305

Figure 4 evaluates memory footprint using306

llama.cpp on Jetson for models ranging from307

0.1B to 3B parameters, with memory usage be-308

tween 275MB and 2456MB. Since llama.cpp allo-309

cates KV cache and compute buffer based on max-310

imum context length, we standardized it to 2048311

across all models. Memory usage generally scales312

linearly with model size, but some models devi-313

ate. Gemma-2B, with a vocabulary of 256,000, and314

Bloom-560M/Bloom-1B1, with 250,880, consume315

more memory than expected due to their large vo-316

cabularies. In contrast, OpenELM models use less317
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Figure 5: The relationship between the latency and
quantization methods

memory than similarly sized models, benefiting 318

from a smaller 32,000-token vocabulary (compared 319

to the typical 50,000) and GQA instead of MHA, 320

reducing KV cache requirements. The impact of 321

vocabulary size on memory usage is detailed in 322

§ 3.3.2. 323

Insights#4: We draw following insights re-
garding the runtime cost of SLMs on devices.
(1) Model architecture has a greater impact
on inference latency than model size, espe-
cially for smaller models (<1B). The corre-
lation is likely hardware-dependent. (2) The
impacts of model architecture on inference
speed is more significant at prefill stage than
decode stage because the compute bound of
prefill stage. (3) Memory footprint scales
with model size, but vocabulary size has a
disproportionate impact.
Opportunity#4: SLM architectures should
align with hardware design, optimizing vo-
cabulary size, FFN width, and layer depth
for efficiency. Given different bottlenecks in
prefill and decode, cloud systems adopt PD-
separated clusters, while edge devices should
leverage hardware heterogeneity, using NPUs
for prefill and CPUs for decode.

324

3.2 Impact of Quantization and Hardware 325

3.2.1 Impact of Quantization 326

On Jetson and similar mobile devices without low- 327

bit hardware support, quantization improves effi- 328

ciency by reducing memory access overhead. On 329

server GPUs, it lowers inference latency through 330

higher Tensor Core throughput for int8 operations, 331

lower memory usage leading to higher batch size, 332

and lower memory access overhead. 333

We evaluated five quantization methods for Phi- 334

1.5 (Figure 5). Qn_K (and Qn_K_M) apply n-bit 335

quantization using the k-quants method, with Qn_0 336

denoting symmetric quantization. In the prefill 337

stage, quantization reduces latency by at least 25% 338
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Figure 7: Latency on different smartphones.

for short prompts, but the benefit diminishes with339

longer inputs. At a prompt length of 50, even the340

best-performing Q4_K_M achieves only a 13% re-341

duction. This is because weights are shared across342

tokens, diluting the per-token benefit as prompt343

length increases. In the decode stage, quantization344

provides more consistent improvements, reducing345

latency by 17% to 75%, as weights are accessed346

per token, benefiting memory efficiency. Among347

methods, Q4_K_M consistently outperforms oth-348

ers, reducing latency by an average of 50%. In349

contrast, Q6_K and Q3_K become ineffective for350

long prompts, with latency matching or exceeding351

FP16. The inferior performance is due to irreg-352

ular bit-widths, leading to higher overhead from353

alignment and padding.354

Insights#5: We draw following insights re-
garding the quantization technique on SLM
deployment. (1) Quantization is more effec-
tive in the bandwidth-bound decode stage
than in the compute-bound prefill stage, es-
pecially when prompt length increasing. (2)
Regular quantization precision enhances effi-
ciency by avoiding extra hardware overhead.
Opportunity#5: Reducing memory access
through quantization is not enough to signif-
icantly lower latency in edge deployments.
Hardware designed for low-bit computation
are essential.

355

3.2.2 Impact of Hardware356

We tested Bloom-1B1 on two edge devices: Jetson357

Orin NX 16GB (GPU) and Meizu 18 Pro (CPU).358

The GPU is 40× faster than the CPU in the pre-359

fill stage but only 1.84× faster in decode. Pre-360
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Figure 8: On-device inference latency Breakdown.

fill benefits from high parallelism, leveraging the 361

GPU’s numerous computing units, while decode 362

is sequential, limiting GPU efficiency. In the pre- 363

fill stage, first token time increases linearly with 364

prompt length, with Jetson’s advantage expanding. 365

In decode, latency per token rises as more tokens 366

are generated. On Meizu, latency spikes from 1 to 367

10 tokens due to thermal throttling, then stabilizes 368

at high latency. Jetson, with better cooling, fluctu- 369

ates only after 30 tokens. We tested Qwen1.5-1.8B 370

on three smartphones with 60s intervals to reduce 371

power effects. Latency scales linearly with token 372

count. The Xiaomi 12S had the lowest latency, 373

showcasing the efficiency of Snapdragon 8 Gen 1+. 374

The Pixel 7 Pro followed, while the Meizu 18 Pro 375

had the highest latency due to its older Snapdragon 376

888 and lower memory configuration. 377

Insights#6: We draw following insights of
impacts of hardware. (1) GPU has greater
advantage in the prefill stage. (2) Jetson
maintains consistent latency due to its simpler
hardware structure and better heat dissipation,
whereas smartphones experience higher ther-
mal fluctuations during long inference tasks.
(3) The development of System on a Chip
(SoC) generations effectively improves infer-
ence efficiency.
Opportunity#6: For smartphones, fully uti-
lizing the heterogeneous computing power
of the SoC (e.g., GPU, NPU) can signifi-
cantly improve prefill efficiency. Addition-
ally, power consumption from continuous re-
quests or long-context processing remains a
major challenge.

378

3.3 Latency and Memory Breakdown 379

3.3.1 Latency Breakdown 380

Figure 7 presents a breakdown analysis of Qwen 381

2-0.5B and Qwen 1.5-0.5B, two models of similar 382

size but different latencies. We measured the time 383

distribution across Embedding, Attention, FFN, 384
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Figure 9: Memory Breakdown.

and LM Head.385

In the prefill stage, both models are dominated by386

Attention and FFN layers. In Qwen 1.5, Attention387

accounts for a slightly higher proportion of latency388

than FFN, whereas in Qwen 2, FFN contributes389

significantly more due to its wider FFN layer. Dur-390

ing the decode stage, Attention latency increases in391

Qwen 1.5, likely due to KV Cache growth, while392

FFN remains the dominant bottleneck in Qwen393

2. At the operator level, mul_mat_vec_q (matrix-394

vector multiplication) accounts for over 80% of395

total latency in both prefill and decode stages. This396

proportion is even higher in Qwen 2-0.5B due to its397

wider FFN layer, further increasing computation398

time.399

3.3.2 Memory Breakdown400

As shown in Figure 9a, vocabulary size signif-401

icantly influences memory consumption beyond402

model size. Larger vocabularies increase com-403

pute buffer memory due to the hidden_size × vo-404

cabulary_size matrix in the output layer. For in-405

stance, Bloom-560M (vocabulary: 250,880) re-406

quires 492MB memory, 3.5× more than OpenELM-407

1.1B (vocabulary: 32,000), while Bloom-1B1 re-408

quiring 496MB memory exceeds Qwen2-1.5B (vo-409

cabulary: 151,936) by 1.6×. Models using GQA410

have reduced KV cache size compared to MHA.411

OpenELM-3B is 3.9× smaller than StableLM-412

zephyr-3B. At long context lengths, compute buffer413

and KV cache dominate memory usage. For414

Qwen2 series (context length: 131,072), they ac-415

count for 85%, while for Qwen1.5 (context length:416

32,768), they make up 87%.417

Insights#7: We have following insights re-
garding the breakdown of SLM runtime cost.
(1) Mul_mat_vec (matrix by vector multipli-
cation) is the most time-consuming opera-
tions of SLM, which constitute more than
70% end-to-end inference time. (2) Vocab-
ulary size and Context length is crucial for
model runtime memory usage.

418

Opportunity#7: SLMs are increasingly ex-
panding vocabulary size to enhance perfor-
mance. However, larger vocabulary increases
inference latency and memory usage, ne-
cessitating compression strategies that pre-
serve model capability. Similarly, as long-
context support becomes a key trend, KV
cache compression and quantization are cru-
cial for SLMs.

419

4 Related Work 420

Benchmarking SLM capability. Several public 421

leaderboards evaluate the capabilities of LLMs, 422

such as Open LLM Leaderboard (ope) support 423

by Hugging Face clusters, FlagEval (fla). Some 424

datasets have released their own leaderboards, such 425

as SuperCLUE (Xu et al., 2023), C-Eval (cev), and 426

MMLU (mml). These leaderboards include lim- 427

ited SLMs and lack a rich variety of datasets. Mo- 428

bileAIBench (Murthy et al., 2024) and MELTing 429

point (Laskaridis et al., 2024) also evaluate some 430

LLMs on device. Compared to them, we are the 431

first dive into the SLM capability through experi- 432

ments on a large number of representative SLMs. 433

Benchmarking SLM runtime cost. Currently, 434

some studies have measured the inference through- 435

put and power consumption of LLMs on various 436

hardware devices. MELTing point focuses on the 437

throughput and energy consumption across differ- 438

ent hardware. MELODI (Husom et al., 2024) also 439

proposes a framework that focuses on energy con- 440

sumption of LLMs. Using its dataset, the study 441

explores how prompt attributes, such as length and 442

complexity, correlate with energy expenditure. Ad- 443

ditionally, MobileAIBench evaluates the runtime 444

cost of 3 models under 3 billion parameters after 445

4-bit quantization on an iPhone 14. However, these 446

studies have measured only a limited number of 447

SLMs, and miss crucial observations such as the 448

influence of model architecture on runtime costs. 449

5 Conclusions 450

In this work, we conduct a comprehensive study on 451

the capabilities and performance of small language 452

models (100M–5B parameters). We evaluate most, 453

if not all, open-source SLMs and analyze their re- 454

sults, drawing key insights to guide future research. 455

These insights provide a clear understanding of 456

SLM strengths and limitations, identifying areas 457

for architectural improvements and deployment op- 458

timizations. 459
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6 Limitations460

For SLM capability evaluation, we selected 10 com-461

monsense reasoning and problem-solving datasets,462

excluding math datasets due to the performance463

gap between SLMs and larger models in mathemat-464

ical reasoning. For cost analysis, to ensure con-465

sistency and eliminate inference engine variations,466

we evaluated 20 models supported by llama.cpp,467

excluding those not compatible with it.468
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fers models to target devices, where models are823

quantized, and prompts are generated to prepare824

for cost evaluation. After testing, the A800 server825

analyzes cost results, generating a detailed report826

Google 7Pro Xiaomi 12S MEIZU 18Pro

PHONEJETSON

SSH
Cost Results

Llama.cpp

ADB

A800 SERVER

Lm-Eval/OpenCompass

Capability ResultsModels Capability Tasks

Jetson Orin NX

Models

Figure 10: Framework.

on latency, memory usage, and performance break- 827

downs. Communication between A800 and Jetson 828

occurs via SSH, while smartphones connect via 829

ADB, ensuring seamless task distribution and re- 830

sult collection. By integrating hardware diversity, 831

benchmarking tools, and evaluation metrics, the 832

framework enables a comprehensive analysis of 833

SLM efficiency across different deployment scenar- 834

ios. 835

B Model Architecture 836

While we focus on only decoder-only transformer 837

SLMs, their specific configurations still diversify, 838

as shown in Figure 11(a). The core of Transformer 839

is the multi-head self-attention(MHA) mechanism 840

and the Feed-Forward Neural Network(FFN). 841

Model architecture analysis. We conduct sta- 842

tistical analysis on the following several compo- 843

nents of the model architecture: 1) The type of 844

self-attention; 2) The type of feed-forward neu- 845

ral network; 3) The intermediate ratio of the feed- 846

forward network; 4) The activation function of the 847

feed-forward neural network; 5) The type of layer 848

normalization; 6) The vocabulary size. Figure 11(a) 849

shows the architecture of SLM and the pie chart 850

shows the distribution of six components. Figure 851

11(b) shows how these distributions change over 852

time. 853

1) The type of self-attention. The self-attention 854

mechanism is the core of the Transformer model. 855

In general, SLMs mainly use three types of atten- 856

tion mechanism: Multi-Head Attention (MHA), 857

Multi-Query Attention (MQA), Group-Query At- 858
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Figure 11: The architecture analysis of the SLM, highlighting 6 configurations: attention type, FFN type, FFN
ratio, FFN activation, vocabulary size, and normalization type. (a) presents the overall structure of the SLM,
and the categorizations with usage frequency of the 6 configurations; (b) analyzes the concrete selections of six
configurations over time.
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tention (GQA) and Multi-Head Latent Atten-859

tion(MLA). Multi-Head Attention is a mechanism860

that allows the model to focus on different parts of861

the input data simultaneously by employing multi-862

ple attention heads, which is the most widely used863

self-attention mechanism in the Transformer mod-864

els. Multi-Query Attention simplifies multi-head865

attention by using a single shared query across all866

heads but allowing different key and value projec-867

tions. This reduces the complexity in both space868

and time. Group-Query Attention is a variant of869

multi-head attention that reduces computational870

complexity by sharing query representations across871

multiple heads, while allowing separate key and872

value representations. The idea is to use fewer873

query groups but still preserve a level of diversity874

in the attention mechanism. Multi-Head Latent At-875

tention achieves better results than MHA through876

low-rank key-value joint compression, and requires877

much less Key-Value(KV) Cache.878

Figure 11(b) 1⃝ shows the changing situation of879

choosing three self-attention mechanisms during880

these time periods from 2022 to 2024. We can881

see that MHA is gradually being phased out and882

replaced by GQA.883

2) The type of feed-forward neural network.884

Feed-forward network can be summarized into two885

types: the Standard FFN and the Gated FFN. The886

Standard FFN is a two-layer neural network with a887

activation function. The Gated FFN adds an addi-888

tional gate layer.889

The Figure 11(b) 2⃝ shows the changing situa-890

tion of type of FFN during these time periods from891

2022 to 2024. It shows that Standard FFN is gradu-892

ally being phased out and replaced by Gated FFN.893

3) The intermediate ratio of the feed-forward894

neural network. The intermediate ratio of FFN is895

the ratio of the intermediate dimension to the hid-896

den dimension. Figure 11(b) 3⃝ shows that the in-897

termediate ratio of the Standard FFN is commonly898

set to be 4, while the intermediate ratio of the Gated899

FFN is rather diversified ranging from 2 to 8.900

4) The activation function of the feed-forward901

neural network. There are 4 main kinds of ac-902

tivation functions used in FFN: ReLU (Rectified903

Linear Unit), GELU (Gaussian Error Linear Unit),904

GELUtanh, SiLU (Sigmoid Linear Unit). Observed905

from Figure 11(b) 4⃝ , the activation function of906

FFN was mostly ReLU in 2022, and then changed907

to GELU and its variants in 2023. For those re-908

leased in 2024, SiLU becomes the dominant type.909

5) The type of layer normalization. There are910

two main types of layer normalization: LayerNorm 911

and RMSNorm. The Figure 11(b) 5⃝ shows the 912

changing situation of type of the type of layer nor- 913

malization during these time periods from 2022 914

to 2024. layer normalization is gradually being 915

phased out and replaced by RMS normalization. 916

6) The vocabulary size. The vocabulary size is 917

the total number of unique tokens that an SLM can 918

recognize. The Figure 11(b) 6⃝ shows the chang- 919

ing situation of the vocabulary size during these 920

time periods from 2022 to 2024. We can see that 921

the vocabulary size of the model is gradually in- 922

creasing. The vocabulary of the latest models is 923

often larger than 50k 924

Model architecture innovations. While the 925

vanilla transformer architecture has been well rec- 926

ognized for its scaling ability, there still exist a few 927

architecture-level innovations in the tested SLMs, 928

namely parameter sharing and layer-wise parame- 929

ter scaling. 930

1) Parameter Sharing. Parameter Sharing is a 931

technique used in large language models to reuse 932

the same set of weights across different layers or 933

components of the network. This approach allows 934

the model to significantly reduce the number of 935

parameters, leading to more efficient training and 936

inference, while maintaining performance. 937

Embedding-lm_head sharing. Sharing the 938

weights of the embedding with the final lm_head 939

layer is the most common weight sharing technique. 940

It is the sharing of the word embedding layer and 941

has nothing to do with the rotary position encoding. 942

Models such as Gemma, and Qwen all used this 943

sharing technique. 944

layer-wise attention/FFN sharing. In this ap- 945

proach, the same set of weights is reused across 946

multiple layers of the model. This is commonly 947

seen in SLM/LLM, where all the transformer lay- 948

ers share the same parameters. For example, Mo- 949

biLLaMA shares the weights of the FFN of all the 950

transformer blocks; MobileLLM shares the weights 951

of the Attention and FFN of two adjacent trans- 952

former blocks. 953

2) Layer-wise parameter scaling. This technique 954

was proposed and used by OpenELM. Traditional 955

SLMs use the same configuration for each trans- 956

former layer in the model, resulting in a uniform 957

allocation of parameters across layers. Unlike these 958

models, each transformer layer in OpenELM has 959

a different configuration (e.g., number of heads 960

and feed forward network dimension), resulting 961

in variable number of parameters in each layer of 962
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the model. This lets OpenELM to better utilize963

the available parameter budget for achieving higher964

accuracies.965

3) Nonlinearity compensation. PanGu-π ana-966

lyzes the state-of-the-art language model architec-967

tures and observes the feature collapse problem.968

PanGu-π adopts two techniques for nonlinearity969

compensation of language model to solve the fea-970

ture collapse problem. The series activation func-971

tion is adapted to FFN, and the augmented short-972

cuts are integrated into MHA, which effectively973

introduces more nonlinearity into the Transformer974

architecture.975

Insights: We make two key observations in
SLM architectures. (1) As of August 2024, a
typical SLM architecture tends to use group-
query attention, gated FFN with SiLU activa-
tion, an intermediate ratio of FFN between 2
and 8, RMS normalization, and a vocabulary
size larger than 50K. However, the choice
of such settings is mostly empirical, without
strict and public validation on the superiority
of such model’s capacity. Instead, the archi-
tecture innovations have relative larger im-
pacts on the runtime performance on devices,
as shown in §3. (2) The innovations to the
transformer architecture is limited in nowa-
day SLMs. For the few that did contribute
architectural innovation (except embedding-
lm head sharing), we do not observe strong
evidence showing them being significantly su-
perior to the vanilla transformer, and neither
are them being generally adopted or studied
across different research groups or companies.
The significance of those innovations remain
to be explored and validated.

976

C Training Datasets977

We find 12 open-source datasets being used:978

• The Pile (Gao et al., 2020) (825B tokens):979

a combination of smaller corpora in various980

domains.981

• FineWeb-Edu (Penedo et al., 2024) (1.3T to-982

kens): a collection of educational text filtered983

from FineWeb.984

• StarCoder (Li et al., 2023) (35B tokens):985

Python tokens.986

• Cosmopedia (Ben Allal et al., 2024) (25B to-987

kens): a dataset of synthetic textbooks, blog-988

posts, stories, posts and WikiHow articles gen- 989

erated by Mixtral-8x7B-Instruct-v0.1. 990

• RefinedWeb (Penedo et al., 2023) (5T tokens): 991

despite extensive filtering, high-quality data 992

extracted from the web remains plentiful, ob- 993

tained from CommonCrawl. 994

• RedPajama (Computer, 2023) (1.2T tokens): 995

includes over 100B text documents coming 996

from 84 CommonCrawl snapshots and pro- 997

cessed using the CCNet pipeline. 998

• Dolma (Soldaini et al., 2024): a English cor- 999

pora, which is deduplicated inner corpus and 1000

across corpus using MinHash algorithms. 1001

• WuDaoCorpora (Yuan et al., 2021) (4T to- 1002

kens): a super large-scale Chinese corpora, 1003

containing about 3T training data and 1.08T 1004

Chinese characters. 1005

• RoBERTa (Liu, 2019) CCNewsV2: contain- 1006

ing an updated version of the English portion 1007

of the CommonCrawl News dataset. 1008

• PushShift ().io Reddit (Baumgartner et al., 1009

2020): a social media data collection, anal- 1010

ysis, and archiving platform that since 2015 1011

has collected Reddit data and made it avail- 1012

able to researchers. 1013

• DCLM-baseline (Li et al., 2024a) (1.35T to- 1014

kens): a standardized corpus extracted from 1015

Common Crawl, effective pretraining recipes 1016

based on the OpenLM framework, and a broad 1017

suite of 53 downstream evaluations. 1018

• CulturaX (Nguyen et al., 2023) (6.3T tokens): 1019

a substantial multilingual dataset in 167 lan- 1020

guages. 1021

The usage preference of pre-training datasets. 1022

We then conducted statistics on the usage fre- 1023

quency of the datasets for training SLM from 2022 1024

to 2024. The results are illustrated in Figure 12. It 1025

shows that The Pile is the most widely used pre- 1026

training dataset especially in 2022 and 2023; yet 1027

more recently, more such datasets are proposed and 1028

the choice becomes diversified. In fact, The Pile 1029

has been abandoned in pre-training SLMs recently, 1030

and datasets such as "RefinedWeb" and "RedPa- 1031

jama" have gradually been widely used. It shows 1032

the active research and engineering efforts in con- 1033

structing pre-training datasts with better quality. 1034
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Figure 12: The usage frequency of each open-source pre-training dataset from 2022 to 2024
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(c) Qwen1.5-0.5B
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(d) Qwen1.5-1.8B
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(e) Qwen2-0.5B
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Figure 13: Needle In A Haystack

D Long Context Capabilities1035

We used Needle-In-A-Haystack provided by Open-1036

Compass to explore long-context capabilities of1037

SLMs. The tasks included Single-Needle Retrieval,1038

Multi-Needle Retrieval, and Multi-Needle Reason-1039

ing. The scores in Figure 7 are the average of1040

these three tasks. Different models showed large1041

variations in performance. Small models, such as1042

Qwen1.5-0.5B and Qwen2-0.5B, performed less1043

effectively. Qwen1.5-0.5B achieved an average ac-1044

curacy of 22.13%. Qwen2-0.5B performed slightly1045

better, reaching 43.84%. Qwen1.5-0.5B handled1046

shorter contexts (9k-17k) relatively well. How-1047

ever, its accuracy dropped sharply with longer1048

contexts. This was especially true for middle1049

inserted text (Depth Percent from 20% to 70%).1050

Larger models performed much better. Llama1051

3.2-3B had an average accuracy of 57.81%. It1052

worked well with shorter contexts but struggled1053

with deeper insertions when contexts exceeded 25k1054

tokens. Qwen2.5-3B achieved an average accuracy1055

of 91.71%. It maintained nearly perfect accuracy1056

across all context lengths and insertion positions.1057

This result highlights its strong ability to handle1058

long contexts and complex scenarios. 1059

Insights: We draw two key insights from the
long context capacity of SLMs: (1) Larger
parameters are crucial for long-context ca-
pabilities. Small models, such as Qwen1.5-
0.5B and Qwen2-0.5B, perform adequately
on short-context tasks but experience a signif-
icant drop in recognition accuracy as the con-
text length increases. In contrast, larger mod-
els, such as Qwen2.5-3B, excel with outstand-
ing performance, maintaining near-perfect ac-
curacy across all context lengths and inser-
tion positions. (2) "Lost in the Middle" also
occurs in small models. Compared to deep
or front insertions, the accuracy of middle-
position text (Depth Percent 20%-70%) is sig-
nificantly lower.

1060
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