
Demystifying Small Language Models for Edge Deployment

Anonymous ACL submission

Abstract

Small language models (SLMs) have emerged001
as a promising solution for deploying resource-002
constrained devices, such as smartphones and003
Web of Things. This work presents the first004
comprehensive study of over 60 SLMs such005
as Microsoft Phi and Google Gemma that are006
publicly accessible. Our findings show that007
state-of-the-art SLMs outperform 7B models in008
general tasks, proving their practical viability.009
However, SLMs’ in-context learning capabil-010
ities remain limited, and their efficiency has011
significant optimization potential. We identify012
key SLM optimization opportunities, includ-013
ing dynamic task-specific routing, architecture-014
hardware co-design, and vocabulary/KV cache015
compression. Overall, we expect the work to016
reveal an all-sided landscape of SLMs, benefit-017
ing the research community across algorithm,018
model, system, and hardware levels.019

1 Introduction020

The evolution of language models is diverging. On021

one hand, in the pursuit of artificial general intelli-022

gence, increasingly large language models (LLM)023

have been born in datacenters that host hundreds of024

thousands of GPUs (Kaplan et al., 2020; Xu et al.,025

2024c). The aim of this path is to demonstrate026

that machines can solve the most challenging lan-027

guage tasks, with the ultimate goal of advancing028

human civilization by pushing the boundaries of029

science and technology. On the other hand, there is030

a growing focus on small language models (SLM),031

designed for resource-efficient and ubiquitous de-032

ployment on scenarios such as mobile devices and033

robotics. The vision behind SLMs is to democra-034

tize access to machine intelligence, making it both035

accessible and affordable to a wider range of users.036

This approach seeks to make intelligence ubiqui-037

tous and practical, available to anyone, anywhere,038

at any time – much like the human brain, which039

everyone possesses.040

Both LLM and SLM are important in reshaping 041

our daily lives, yet the latter receives significantly 042

less attention in academia. There has been very 043

few literature exploring SLM capabilities (Lepag- 044

nol et al., 2024; Schick and Schütze, 2020; Zhou 045

et al., 2023) or their runtime cost on devices (Li 046

et al., 2024b; Laskaridis et al.; Xu et al., 2024b), 047

often with limited scale or depth. In industrial, 048

however, SLMs have already been integrated into 049

commercial off-the-shelf (COTS) devices on a mas- 050

sive scale (Yuan et al., 2023; Dubiel et al., 2024). 051

For instance, almost every popular browser has 052

built-in access to local SLM capability, including 053

Google Chrome (chr, 2024), Microsoft Edge (edg, 054

2024) and Opera (ope, 2024). At system level, the 055

latest Google/Samsung smartphones have built-in 056

LLM services (Gemini Nano), allowing third-party 057

mobile apps to leverage LLM capabilities through 058

prompts and LoRA modules (goo, 2024). 059

This work presents the first in-depth, systematic 060

investigation of SLMs, thoroughly discussing their 061

capabilities and runtime performance. The scope 062

of this work is limited to those language models 063

with 100M–5B parameters in decoder-only trans- 064

former architecture for their wide deployment on 065

edge devices, which covers the range from low- 066

end WoT/wearable gadgets like smartwatches to 067

high-end mobile devices such as smartphones and 068

tablets. In total, we collected 68 popular SLMs 069

released by 24 organizations, spanning from OPT 070

(2022.05) to Llama3.2 (2024.09). The details of 071

those models are shown in Table 1. 072

We then built up an end-to-end benchmark that 073

comprehensively evaluates the model capabilities 074

(mainly commonsense reasoning and in-context 075

learning) through 10 widely used datasets, as well 076

as their runtime costs (prefill and decode speed, 077

memory footprint, etc.) on two real development 078

edge boards. Through such investigation, we try to 079

answer the following crucial questions concerning 080

SLMs: “Can SLMs catch up to LLMs in terms of 081

1

intelligence?” “What datasets are more likely to082

produce a highly capable SLM?” “How different083

SLM architecture (e.g., depth, width, atten type)084

and the deployment environments (quantization085

algorithms, hardware type, etc) impact runtime per-086

formance?”087

Based on the benchmarking results, we obtain088

valuable insights of SLMs. Here, we summarize089

a few of them. (1) SLMs capabilities are fast090

evolving, closing the gap with Llama-7B/8B se-091

ries (§2.3). (2) Not all SLMs benefit from in-092

context learning (§2.3). (3) SLMs are typically093

trained on way more tokens than what Chinchilla094

recommends (“over trained”) (§2.4). (4) Dataset095

quality is more crucial than dataset size (§2.4). (5)096

Model architecture has non-trivial impacts on in-097

ference speed (§3.1). (6) Quantization gains di-098

minish in long context (§3.2). We will explain099

how these insights create opportunities for the ad-100

vancement of SLMs. Overall, our findings paint a101

promising picture of on-device ubiquitous SLMs,102

yet also highlight the challenges towards resource103

efficiency. Specifically, the findings show strong104

implications for multiple stakeholders of the SLM105

development pipeline. We expect the work to re-106

veal an all-sided landscape of SLM and benefit the107

research community, including those working on108

the algorithm, model, system, and hardware levels.109

In summary, we make the following contribu-110

tions in this work.111

• We exhaustively review 68 small language112

models released in recent years, benchmark113

their capability as well as on-device cost.114

• To this end, we have developed the first mobile115

SLM evaluation suite, which handles down-116

loading, quantizing, deploying, and measur-117

ing the performance of SLMs across hetero-118

geneous edge devices. A leaderboard website119

is created as well to advance and facilitate the120

SLM research.121

• Through such in-depth experimental investiga-122

tion combined with comprehensive literature123

review, we obtain valuable insights from open-124

sourced SLMs, fostering future light-weight125

SLM research. We also summarize a few po-126

tential research topics in SLM.127

Affiliation Model
name Size Date Attention Activation

Open
training
datasets

Max
context
window

Meta

OPT (Facebook, 2022.05)

125M

2022.05 MHA ReLU ✓ 2k350M
1.3B
2.7B

Galactica (Facebook, 2022.11) 125M 2022.11 MHA GELU 2k1.3B

Llama 3.2 (Meta, 2024.09) 1B 2024.09 MHA GELU 128k3B

BigScience
Bloom (BigScience, 2022.11a) 560M 2022.11 MHA

GELUtanh ✓ 2k1.1B

Bloomz (BigScience, 2022.11b) 1.1B 2022.11 MHA560M

EleutherAI Pythia (EleutherAI, 2023.03)

160M

2023.03 MHA GELU ✓ 2k
410M

1B
1.4B
2.8B

Cerebras Cerebras-GPT (Cerebras, 2023.03)

111M

2023.03 MHA GELU ✓ 2k
256M
590M
1.3B
2.7B

Microsoft

Phi-1 (Microsoft, 2023.09a) 1.3B 2023.09 MHA GELUtanh 2kPhi-1.5 (Microsoft, 2023.09b) 1.3B 2023.09 MHA GELUtanh
Phi-2 (Microsoft, 2023.12) 2.7B 2023.12 MHA GELUtanh 2k

Phi-3-mini* (Microsoft, 2024.04) 3.8B 2024.04 MHA SiLU 4k
Phi-3.5-mini* 2.7B 2024.09 MHA SiLU 4k

StabilityAI StableLM-zephyr* (StabilityAI, 2023.11) 3B 2023.11 MHA SiLU ✓ 1k
StableLM-2-zephyr* (StabilityAI, 2024.01) 1.6B 2024.01 MHA SiLU ✓ 4k

TinyLlama TinyLlama (Unknown, 2023.12) 1.1B 2023.12 GQA SiLU ✓ 2k
Meituan MobileLLaMA (Meituan, 2023.12) 1.4B 2023.12 GQA SiLU ✓ 2k

Alibaba

Qwen 1 (Alibaba, 2023.11) 1.8B 2023.11 MHA SiLU 8k
Qwen 1.5 (Alibaba, 2024.02a) 0.5B 2024.02 MHA SiLU 32k

Qwen 2 (Alibaba, 2024.02b) 1.8B 2024.06 MHA SiLU 32k
4B 32k

Qwen 2.5 (Alibaba, 2024.09)
0.5B

2024.09 GQA SiLU 32k1.5B
3B

MBZUAI
MobiLlama (MBZUAI, 2024.02) 0.5B 2024.02 GQA SiLU ✓ 2k1B

LaMini-GPT (MBZUAI, 2023.04) 774M 2023.04 MHA GELUtanh 1k1.5B

Google
Gemma (Google, 2024.02) 2B 2024.02 MQA GELU 8k

recurrentGemma (Google, 2024.04) 2B 2024.04 MQA GELUtanh 8k
Gemma-2 (Google, 2024.07) 2B 2024.07 GQA GELUtanh 8k

OpenBMB MiniCPM (OpenBMB, 2024.04) 1B 2024.04 GQA SiLU 128k
2B 131k

MiniCPM3 (OpenBMB, 2024.09) 4B 2024.09 MLA SiLU

Apple OpenELM (Apple, 2024.04)

270M

2024.04 GQA SiLU ✓ 2k450M
1.1B
3B

H2O danube3 (H2O.ai, 2024) 0.5B 2024.07 GQA SiLU 8k
4B 8k

TensorOpera AI Fox (TensorOpera, 2024) 1.6B 2024.07 GQA SiLU 8k

HuggingFace SmolLM (HuggingFace, 2024.07)
135M

2024.07
GQA

SiLU ✓ 2k360M GQA
1.7B MHA

Toyota DCLM (Toyota, 2024.08) 1.4B 2024.08 MHA SiLU ✓ 50k
DataBricks Dolly-v2* (DataBricks, 2023.04) 3B 2023.04 MHA GELU 2k

AllenAI OLMo (AllenAI, 2024.04) 1.18B 2024.04 MHA SiLU ✓ 50k

Princeton Sheared-LLaMA (Princeton, 2023.11) 1.3B 2023.11 MHA SiLU 4k
2.7B 2023.11 MHA SiLU 4k

Xiaohongshu MiniMA (Xiaohongshu, 2023.11) 3B 2023.11 UKN SiLU 4096
MiniMA2 (Xiaohongshu, 2024.07) 1B 2024.07 SiLU 4k

Nvidia Minitron (Nvidia, 2024.07) 4B 2024.07 GQA ReLU2 4k
M.A.P. CT-LLM (M.A.P., 2024.04) 2B 2024.04 MHA SiLU 4k
AMD AMD-Llama (AMD, 2024.08) 135M 2024.08 MHA SiLU 2k

Table 1: Detailed configurations of SLMs benchmarked.
We mainly use the base models in experiments, with ex-
ceptions of StableLM, Phi-3/3.5, and Dolly-v2 (marked
with *) that only provide the instruct version.

2 SLM Overview and Benchmarking 128

2.1 Collecting Popular SLMs 129

SLMs have gained increasing attention from both 130

the research and industrial communities. Notably, 131

since the end of 2023, the number of SLM models 132

has surged significantly. To understand their capa- 133

bility and cost, we comprehensively collect SLMs 134

based on the following criteria: (1) Decoder-Only 135

Transformer Architecture. (2) Open Weights to 136

evaluate them freely. (3) Parameter Range between 137

100M and 5B parameters. (4) Base Model Focus: 138

Only base pre-trained models are included, except 139

for cases where only instruct versions exist (e.g., 140

Microsoft Phi, StabilityAI StableLM). 141

These models, detailed in Table 1, encom- 142

pass a broad spectrum from both industry and 143

academia, differing in hyperparameters and train- 144

ing datasets. While they share similar architectures, 145

some datasets remain closed-source, leading to per- 146

formance variations across tasks, as discussed in 147

2

LLaMA 1

LLaMA 2

LLaMA 3

LLaMA 3.1

Phi 1.5

StableLM
StableLM 2

Qwen 1.5

Phi 3

Danube3

Phi 3.5

MiniMA 2
MiniCPM 3

Phi 2

LaMini
Pythia

Figure 1: SLM capabilities over time. Performance is
the average of all tasks (except for Math). The size of
the circle is proportional to the model size. Red dashed
lines show the state-of-the-art model at different time,
indicating the trend that SLMs are getting better over
time. Instruction-tuned models are highlighted with
bold borders. LLaMA-7B series models are shown in
horizontal blue dashed lines for comparison.

following sections. The details about our evalua-148

tion suite are shown in Appendix A.149

2.2 Evaluation Datasets and Metrics150

Dataset Description
HellaSwag (Zellers et al., 2019) Tests narrative completion.
TruthfulQA (Lin et al., 2022) Assesses truthfulness.
Winogrande (Sakaguchi et al., 2020) Evaluates pronoun resolution.
CommonsenseQA (Talmor et al., 2019) Commonsense multiple-choice questions.
PIQA (Bisk et al., 2020) Physical commonsense reasoning.
OpenBookQA (Mihaylov et al., 2018) Open-book science questions.
BoolQ (Clark et al., 2019) Yes/no questions requiring reasoning.
ARC Easy (Clark et al., 2018) Simple science questions.
ARC Challenge (Clark et al., 2018) Complex science questions.
MMLU (Hendrycks et al., 2021) Problem-solving across disciplines.

Table 2: Datasets used to evaluate SLM capabilities.

We used 10 datasets as described in Table 2 to151

evaluate the SLM performance. Following (Gao152

et al., 2024), we use accuracy as the primary eval-153

uation metric. Accuracy measures the compute154

log-likelihood of generating a continuation from a155

context. The default shown accuracy is instructed156

by 5 shots, as it is the most common setting in the157

released model.158

2.3 SLM Capabilities159

Figure 1 illustrates the progress of small language160

models (SLMs) in commonsense reasoning and161

problem-solving. From March 2023 to Septem-162

ber 2024, SLM performance improved by 12.5%163

on average, surpassing the 7.5% improvement of164

LLaMA models over the same period. Notably,165

SLMs have outpaced LLaMA-7B series (v1–3.1),166

highlighting their growing potential for on-device167

tasks.168

The Phi family, trained on closed-source169

datasets, leads in performance, reaching 70% av-170

erage accuracy, comparable to LLaMA 3.1 (7B 171

parameters). As of September 2024, Phi-3.5- 172

mini (2.7B) achieves the highest accuracy, rivaling 173

LLaMA 3.1 (8B). This advantage likely stems from 174

careful data engineering, instruction tuning, and 175

potential dataset overfitting (Zhang et al., 2024a). 176

These findings suggest that SLMs are rapidly clos- 177

ing the gap with LLMs in general reasoning tasks. 178

While larger models generally perform better, 179

exceptions exist. Qwen2-1.5B outperforms many 180

3B-parameter SLMs, demonstrating that smaller 181

models can excel in specific tasks. 182

The gap between open-source and closed-source 183

SLMs is narrowing, driven by high-quality datasets 184

like DCLM and FineWeb-Edu. Notably, SmolLM 185

(64.2%) and DCLM-1B (63.8%) achieve strong 186

performance in commonsense reasoning, highlight- 187

ing the impact of high-quality training data. 188

Insight#1: We draw following key insights
from the evolvement of SLMs: (1) From
March 2023 to September 2024, SLMs exhib-
ited significant performance improvements
across various language tasks, outpacing the
improvements of the LLaMA-7B/8B series.
Among them, the Phi family consistently
achieves state-of-the-art performance across
most tasks. (2) Smaller models like Qwen 2-
1.5B can excel in specific tasks despite having
fewer parameters. (3) SLMs trained on open-
source datasets are closing the gap, thanks to
high-quality datasets.
Opportunity#1 State-of-the-art SLMs have
surpassed 7B models in general tasks, demon-
strating that their capabilities for real-world
deployment. Moreover, the exceptional per-
formance of certain SLMs on specific tasks
highlights their potential for task-specific
model routing, where different models are
dynamically assigned based on task require-
ments to optimize efficiency and accuracy.

189

In-context Learning Capabilities. We evalu- 190

ate various SLMs and their 2B-parameter variants 191

(or the closest available ones) on 8 tasks, includ- 192

ing commonsense reasoning and problem-solving. 193

In-context learning (ICL) generally improves per- 194

formance, with five-shot ICL increasing zero-shot 195

accuracy by 2.1% on average. 196

However, HellaSwag and PIQA show minimal 197

improvement, likely due to their lower complexity 198

compared to datasets like ARC Challenge. LaMini 199

3

0 1 5
of Shots

0.35

0.40

0.45

0.50

0.55

Pe
rf

or
m

an
ce

 S
co

re

Average

OPT
Galactica
StableLM
Hare

Phi
Cerebras-GPT
Qwen 2
Gemma

MobileLLaMA
Fox
GPT-2 Medium
LaMini-GPT

MobiLlama
OpenELM
Danube2
Bloomz

Bloomz
Pythia
MiniCPM
SmolLM

TinyLlama
DCLM
OLMo
Llama 3.2

0 1 5
of Shots

0.2

0.3

0.4

0.5

arc_challenge

0 1 5
of Shots

0.3

0.4

0.5

0.6
hellaswag

0 1 5
of Shots

0.5

0.6

0.7

winogrande

0 1 5
of Shots

0.2

0.3

0.4

0.5

0.6
mmlu

0 1 5
of Shots

0.30

0.35

0.40

0.45

0.50
truthful

0 1 5
of Shots

0.2

0.4

0.6

commonsense

0 1 5
of Shots

0.6

0.7

0.8

piqa

0 1 5
of Shots

0.2

0.3

0.4

openbookqa

(a) SLM in-context capabilities across tasks.

Gemma
MiniCPM3

StableLM

Bloomz

LaMini

DCLM

OPT
Galactica
StableLM
Hare

Dolly
Ohi
Cerabras-GPT
Qwen 2

Qwen 1
Qwen 1.5
Gemma
recurrentGemma

MobiLLaMA
Fox
GPT-2
LaMini

MobiLlama
OpenELM
danube3
Bloom

Bloomz
Pythia
MiniCPM
SmolLM

TinyLlama
DCLM
MiniCPM3

(b) Average accuracy improvement after in-context learning
across different SLM model size.

Figure 2: In-context learning performance with different
tasks and models. Red line in (b) highlights the trend
of the average score improvement with the increase of
model size.

is the only model with a performance drop of over200

2%, possibly due to overfitting, where additional201

context introduces noise. Gemma 2 exhibits the202

most significant improvement, with accuracy in-203

creasing by 4.8%. Notably, ICL effectiveness im-204

proves with model size.205

Insights#2: We draw two key insights from
the in-context learning capacity of SLMs: (1)
Most SLMs exhibit in-context learning ability,
but its effectiveness varies by task. Signifi-
cant gains are observed in ARC Challenge,
while HellaSwag and PIQA show minimal
benefits across all models. (2) Larger models
generally perform better in in-context learn-
ing, while some smaller SLMs experience
performance declines.
Opportunity#2: Due to the smaller parame-
ter size of SLMs, the effectiveness of ICL is
limited. Combining ICL with supervised fine-
tuning (SFT) may yield better performance
(Zhu et al., 2024).

206

2.4 Training Datasets207

We investigate how the open-sourced pre-training208

datasets are used in training the SLMs. Overall, we209

find 12 such datasets being used and show them in210

Table 3.211

Comparing the quality of pre-training212

datasets. We analyzed the quality of open-source213

Subcaption Model Date Tokens (B) Datasets Acc ↓

<1B

SmolLM-360M 24.07 600 FineWeb-
Edub,StarCoder,Cosmopediaa

0.448

OpenELM-450M 24.04 1500 RefinedWeb, The Pile, Red-
Pajama, Dolma

0.417

SmolLM-135M 24.07 600 FineWeb-
Edub,StarCoder,Cosmopediaa

0.416

MobiLlama-0.5B 24.02 1259 RedPajama, RefinedWeb 0.405
OpenELM-270M 24.04 1500 RefinedWeb, The Pile, Red-

Pajama, Dolma
0.393

Pythia-410M 23.03 300 The Pile 0.388
BLOOMZ-560M 22.11 350 WuDaoCorpora 0.366
BLOOM-560M 22.11 350 WuDaoCorpora 0.363
OPT-125M 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.361

Cerebras-GPT-590M 23.03 12 The Pile 0.358
OPT-125M 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.349

Pythia-160M 23.03 300 The Pile 0.347
Cerebras-GPT-111M 23.03 2 The Pile 0.330

1B–1.4B

DCLM-1B 24.08 4300 DCLM-baselineb 0.577
OpenELM-1.1B 24.04 1500 RefinedWeb, The Pile, Red-

Pajama, Dolma
0.463

TinyLlama-1.1B 23.12 3000 SlimPajama, StarCoder 0.436
MobiLlama-1B 24.02 1259 RedPajama, RefinedWeb 0.434
MobileLLaMA-1.4B 23.12 1300 RedPajama 0.428
Pythia-1.4B 23.03 300 The Pile 0.423
OPT-1.3B 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.413

Pythia-1B 23.03 300 The Pile 0.406
Bloom-1B1 22.11 350 WuDaoCorpora 0.394
Bloomz-1B1 22.11 350 WuDaoCorpora 0.384
Cerebras-GPT-1.3B 23.03 26 The Pile 0.383

1.5B–2B
StableLM-2-zephyr-1.6B 24.01 2000 RefinedWeb, RedPajama,

The Pile, StarCoder, Cul-
turaX

0.556

SmolLM-1.7B 24.07 1000 FineWeb-
Edub,StarCoder,Cosmopediaa

0.503

2.5B–3B
StableLM-zephyr-3B 23.11 400 RefinedWeb, RedPajama,

The Pile, StarCoder
0.582

Pythia-2.8B 23.03 300 The Pile 0.448
OPT-2.7B 22.05 180 RoBERTa, The Pile,

PushShift.io Reddit
0.439

Cerebras-GPT-2.7B 23.03 53 The Pile 0.405

Table 3: Classify according to the model parameter
quantity and sort in descending order according to av-
erage normalized accuracy. Acc(Avg) is the average of
the accuracies of the two types of tasks, Commonsense
reasoning/understanding and Problem solving. a indi-
cates that this dataset is generated by LLM. b indicates
that this dataset has been filtered by LLM.
pre-training datasets by evaluating SLM perfor- 214

mance across models trained on them. SLMs from 215

the past three years were grouped by parameter 216

size (<0.5B, 1B, 2B, and 3B) and ranked by av- 217

erage accuracy on Commonsense Reasoning/Un- 218

derstanding and Problem Solving tasks (Table 3). 219

The results highlight DCLM and FineWeb-Edu 220

as the top-performing datasets, both employing 221

model-based data filtering. Additionally, many pre- 222

training datasets, including StarCoder, contain cod- 223

ing data, despite SLMs on edge devices not priori- 224

tizing coding tasks. This inclusion is likely driven 225

by the belief that coding data enhances reasoning 226

ability (Zhang et al., 2024b). 227

The number of training tokens vs. the size of 228

model parameters. The Chinchilla law (Hoff- 229

mann et al., 2022) suggests an optimal parameter- 230

to-token ratio of 1:20 (e.g., a 1B model with 20B 231

tokens). We analyzed SLMs under 4B parameters 232

from 2022 to 2024, as shown in Figure 3(a) and 233

found that recent models use significantly more to- 234

kens (typically over 1.5T) than this guideline (Fig- 235

ure 3(a)). Typically, larger models are trained on 236

4

0 1 2 3 4
Parameters (Billions)

0

1000

2000

3000

4000

5000
Tr

ai
ni

ng
 T

ok
en

s (
B

ill
io

ns
)

StableLM-zephyr-3B

Phi-2

Qwen 1.5-4B

Phi-3

Gemma-2-2B

ChinchillaChinchilla

0.40

0.45

0.50

0.55

0.60

0.65

Av
g.

 A
cc

ur
ac

y
(%

)

(a) The relationship between
tokens and parameters.

0 2000 4000
Training Tokens(B)

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Av
g.

 A
cc

ur
ac

y(
%

) StableLM-zephyr-3B

Phi-2

Qwen 1.5-4B

Phi-3

Gemma-2-2B

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Pa
ra

m
(B

)

(b) The influence of training
tokens on accuracy

Figure 3: The relationship between the number of train-
ing tokens, the number of model parameters, and the
model accuracy. Here, the “accuracy” is averaged across
all benchmarks in Table 3. (a) The relationship between
the number of training tokens and model parameters
size. According to scaling law(Chinchilla), that SLMs
are often over-trained for better performance at deploy-
ment stage. (b) The influence of the number of training
tokens on the model accuracy.

more tokens , but some smaller SLMs exceed larger237

ones (e.g., Qwen 2-0.5B with 12T tokens vs. Qwen238

2-1.5B with 7T tokens), indicating over-training.239

This strategy aims to enhance SLM performance240

for resource-constrained deployment by increasing241

training-time FLOPs. However, over-training can242

lead to performance saturation (Godey et al., 2024).243

The amount of training tokens vs. model accu-244

racy. Figure 3(b) shows the relationship between245

the number of training tokens and the accuracy of246

the model. In general, there is a positive correlation247

between the two metrics, especially for those with248

less than 700B tokens. However, the correlation249

is weak, since the data quality often outweighs the250

impacts of more training tokens, especially when251

the training tokens exceed 1T.252

Insights#3: We make two key observations
in SLM training. (1) Data quality plays a
crucial role in SLM capability, often out-
weighing data quantity and model architec-
ture. A key trend in dataset research is model-
based filtering, leading to state-of-the-art
open-source pre-training datasets: FineWeb-
Edu (1.3T/5.4T)(Penedo et al., 2024) and
DCLM-baseline (4T)(Li et al., 2024a). (2)
Recent SLMs are trained over large amount of
tokens (typically >1.5T), disregarding their
parameter sizes. In some cases, smaller SLMs
are trained over even more data (e.g., Qwen2-
0.5B at 12T tokens but Qwen2-1.5B at 7T

253

0 500 1000 1500 2000 2500 3000
Parameters (Million)

25

50

75

100

125

150

La
te

nc
y

(m
s)

Qwen2-0.5B

Qwen1.5-0.5B

Qwen1.5-1.8BOpenELM-1.1B

Pythia-1.4B

Phi-2

OpenELM-3B

25.4% more params
but 31.9% faster

30.5% more params
but 18.5% faster

9.4% more params
but 9.9% faster

0 500 1000 1500 2000 2500 3000
Parameters (Million)

20

40

60

80

La
te

nc
y

(m
s)

Qwen2-0.5B

Qwen1.5-0.5B

OpenELM-1.1B
Pythia-1.4B

Phi-2 OpenELM-3B

25.4% more params
but 11.8% faster

0 500 1000 1500 2000 2500 3000
Parameters (Million)

500

1000

1500

2000

2500

M
em

or
y

(M
B

)

Bloom-560M

Bloom-1B1

Gemma-2B

OpenELM-1.1B

OpenELM-3B

32.3% more params
but 23.8% less memory usage

21.1% more params
but 13.8% less memory usage

(a) First token time for models with different sizes

(b) Decode latency per token for models with different sizes

(c) Memory usage for models with different sizes

Bloom-560M
OpenELM-270M
OpenELM-450M
Pythia-160M

Qwen2-0.5B
Qwen1.5-0.5B
SmolLM-135M
SmolLM-360M

Bloom-1B1
OpenELM-1.1B
Pythia-1.4B
Phi-1

Phi-1.5
Qwen2-1.5B
Qwen1.5-1.8B
SmolLM-1.7B

Gemma-2B
OpenELM-3B
Phi-2
Pythia-2.8B

Figure 4: Latency and memory overview.

tokens).
Opportunity#3 SLMs trained on model-
based filtering datasets achieve competitive
performance with those using closed datasets,
significantly improving research reproducibil-
ity. Additionally, over-training can cause satu-
ration and performance degradation. Defining
an edge-optimized Chinchilla law is essential
to ensure that additional tokens contribute to
performance gains rather than diminishing
returns.

254

3 SLM Runtime Cost 255

Setup In this section, we measure models of dif- 256

ferent sizes on robotic platform (Jetson Orin) and 257

smartphone. We first analyze the latency and mem- 258

ory usage of models with different parameter sizes. 259

Next, we assess the impact of quantization methods 260

and hardware on model latency. Finally, we break 261

down the latency and memory usage to identify the 262

key factors influencing these metrics across various 263

parts of the model. To eliminate the impact of in- 264

ference engine implementations, we evaluated 20 265

models supported by llama.cpp, a widely recog- 266

nized open-source inference engine. 267

We set a standard prompt length of 50 and a 268

token generation length of 50 unless specified oth- 269

erwise. To measure larger models, we applied 4-bit 270

quantization to all models before conducting exper- 271

iments in all sections except § 3.2.1. 272

5

Device Name Specifications Release Time
Jetson Orin NX 1024-core, 16G DRAM Feb. 2023

Pixel 7Pro GoogleTensor G2,12G RAM Oct. 2022
Xiaomi 12S Snapdragon 8Gen1+ ,12G RAM Jul. 2022

MEIZU 18Pro Snapdragon 888,8G RAM Mar. 2021

Table 4: Testing devices.

3.1 Cost Overview273

3.1.1 Inference Latency274

Figure 4 presents inference latency, including first275

token time and per-token decode latency, for mod-276

els ranging from 0.1B to 3B parameters. Latency277

scales with model size across three categories: 0.1-278

1B, 1-2B, and 2-3B. For models of similar size but279

different architectures, first token time varies sig-280

nificantly. For example, Qwen2-0.5B’s first token281

time is 1.46× that of Qwen1.5-0.5B and compara-282

ble to OpenELM-1.1B, which has 2.18× the param-283

eters. Qwen2’s architecture shares the embedding284

layer and LM head, allocating more parameters285

to attention and FFN, increasing computational286

cost. Notably, Pythia-1.4B has higher latency than287

SmolLM-1.7B, Qwen2-1.5B, and Qwen-1.8B de-288

spite being smaller. Phi-2 also exhibits 1.11× the289

latency of OpenELM-3B, a larger model. The pre-290

fill stage dominates on-device LLM inference due291

to long-context processing for personalization on292

edge (Xu et al., 2024a).293

Decode-stage latency generally follows a linear294

trend with model size and is primarily memory-295

bound, unlike the compute-bound prefill stage.296

Qwen2-0.5B and Qwen1.5-0.5B show similar de-297

code latency, while Pythia-1.4B has lower latency298

than larger models. Among 2-3B models, Gemma-299

2B, Phi-2, and OpenELM-3B show a positive cor-300

relation between latency and model size. Archi-301

tectural differences impact compute-bound stages302

more significantly, with wider, shallower models303

benefiting from higher parallelism.304

3.1.2 Memory Footprint305

Figure 4 evaluates memory footprint using306

llama.cpp on Jetson for models ranging from307

0.1B to 3B parameters, with memory usage be-308

tween 275MB and 2456MB. Since llama.cpp allo-309

cates KV cache and compute buffer based on max-310

imum context length, we standardized it to 2048311

across all models. Memory usage generally scales312

linearly with model size, but some models devi-313

ate. Gemma-2B, with a vocabulary of 256,000, and314

Bloom-560M/Bloom-1B1, with 250,880, consume315

more memory than expected due to their large vo-316

cabularies. In contrast, OpenELM models use less317

10 20 30 40 50
Tokens

40

50

60

70

80

90

La
te

nc
y(

m
s)

Q8_0
Q3_K
FP16
Q6_K
Q5_K
Q4_K_M

(a) First token time

10 20 30 40 50
Tokens

30

35

40

45

50

55

60

65

La
te

nc
y(

m
s)

Q8_0
Q3_K
FP16
Q6_K
Q5_K
Q4_K_M

(b) Decode latency per token

Figure 5: The relationship between the latency and
quantization methods

memory than similarly sized models, benefiting 318

from a smaller 32,000-token vocabulary (compared 319

to the typical 50,000) and GQA instead of MHA, 320

reducing KV cache requirements. The impact of 321

vocabulary size on memory usage is detailed in 322

§ 3.3.2. 323

Insights#4: We draw following insights re-
garding the runtime cost of SLMs on devices.
(1) Model architecture has a greater impact
on inference latency than model size, espe-
cially for smaller models (<1B). The corre-
lation is likely hardware-dependent. (2) The
impacts of model architecture on inference
speed is more significant at prefill stage than
decode stage because the compute bound of
prefill stage. (3) Memory footprint scales
with model size, but vocabulary size has a
disproportionate impact.
Opportunity#4: SLM architectures should
align with hardware design, optimizing vo-
cabulary size, FFN width, and layer depth
for efficiency. Given different bottlenecks in
prefill and decode, cloud systems adopt PD-
separated clusters, while edge devices should
leverage hardware heterogeneity, using NPUs
for prefill and CPUs for decode.

324

3.2 Impact of Quantization and Hardware 325

3.2.1 Impact of Quantization 326

On Jetson and similar mobile devices without low- 327

bit hardware support, quantization improves effi- 328

ciency by reducing memory access overhead. On 329

server GPUs, it lowers inference latency through 330

higher Tensor Core throughput for int8 operations, 331

lower memory usage leading to higher batch size, 332

and lower memory access overhead. 333

We evaluated five quantization methods for Phi- 334

1.5 (Figure 5). Qn_K (and Qn_K_M) apply n-bit 335

quantization using the k-quants method, with Qn_0 336

denoting symmetric quantization. In the prefill 337

stage, quantization reduces latency by at least 25% 338

6

10 15 20 25 30 35 40 45 50
Tokens

0

250

500

750

1000

1250

1500

1750

2000
La

te
nc

y
(m

s)

Jetson Orin NX 16GB
Meizu 18 Pro

(a) Prefill

0 10 20 30 40 50
Tokens

30

40

50

60

70

80

La
te

nc
y

(m
s)

Jetson Orin NX 16GB
Meizu 18 Pro

(b) Decode
Figure 6: Latency under different hardware.

20 40 60 80 100
Tokes

1

2

3

4

5

Pr
ef

ill
 to

ta
l t

im
e

(s
)

Pixel 7Pro
Meizu 18Pro
Xiaomi 12S

(a) Prefill

20 30 40 50 60 70 80 90
Tokens

1

2

3

4

5

6

7

8

D
ec

od
e

to
ta

l t
im

e
(s

)

Pixel 7Pro
Meizu 18Pro
Xiaomi 12S

(b) Decode

Figure 7: Latency on different smartphones.

for short prompts, but the benefit diminishes with339

longer inputs. At a prompt length of 50, even the340

best-performing Q4_K_M achieves only a 13% re-341

duction. This is because weights are shared across342

tokens, diluting the per-token benefit as prompt343

length increases. In the decode stage, quantization344

provides more consistent improvements, reducing345

latency by 17% to 75%, as weights are accessed346

per token, benefiting memory efficiency. Among347

methods, Q4_K_M consistently outperforms oth-348

ers, reducing latency by an average of 50%. In349

contrast, Q6_K and Q3_K become ineffective for350

long prompts, with latency matching or exceeding351

FP16. The inferior performance is due to irreg-352

ular bit-widths, leading to higher overhead from353

alignment and padding.354

Insights#5: We draw following insights re-
garding the quantization technique on SLM
deployment. (1) Quantization is more effec-
tive in the bandwidth-bound decode stage
than in the compute-bound prefill stage, es-
pecially when prompt length increasing. (2)
Regular quantization precision enhances effi-
ciency by avoiding extra hardware overhead.
Opportunity#5: Reducing memory access
through quantization is not enough to signif-
icantly lower latency in edge deployments.
Hardware designed for low-bit computation
are essential.

355

3.2.2 Impact of Hardware356

We tested Bloom-1B1 on two edge devices: Jetson357

Orin NX 16GB (GPU) and Meizu 18 Pro (CPU).358

The GPU is 40× faster than the CPU in the pre-359

fill stage but only 1.84× faster in decode. Pre-360

Qwen1.5-0.5B Qwen2-0.5B
Model

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

Pr
op

or
tio

n

Embedding
Attention

FFN
LM Head

Prefill
Decode

(a) Layer granularity

Qwen1_5-0.5B Qwen2-0.5B
Model

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

Pr
op

or
tio

n

mul_mat_vec_q
cpy_f32_f16
k_bin_bcast

quantize_q8_1
gemm
other

Prefill
Decode

(b) Op granularity
Figure 8: On-device inference latency Breakdown.

fill benefits from high parallelism, leveraging the 361

GPU’s numerous computing units, while decode 362

is sequential, limiting GPU efficiency. In the pre- 363

fill stage, first token time increases linearly with 364

prompt length, with Jetson’s advantage expanding. 365

In decode, latency per token rises as more tokens 366

are generated. On Meizu, latency spikes from 1 to 367

10 tokens due to thermal throttling, then stabilizes 368

at high latency. Jetson, with better cooling, fluctu- 369

ates only after 30 tokens. We tested Qwen1.5-1.8B 370

on three smartphones with 60s intervals to reduce 371

power effects. Latency scales linearly with token 372

count. The Xiaomi 12S had the lowest latency, 373

showcasing the efficiency of Snapdragon 8 Gen 1+. 374

The Pixel 7 Pro followed, while the Meizu 18 Pro 375

had the highest latency due to its older Snapdragon 376

888 and lower memory configuration. 377

Insights#6: We draw following insights of
impacts of hardware. (1) GPU has greater
advantage in the prefill stage. (2) Jetson
maintains consistent latency due to its simpler
hardware structure and better heat dissipation,
whereas smartphones experience higher ther-
mal fluctuations during long inference tasks.
(3) The development of System on a Chip
(SoC) generations effectively improves infer-
ence efficiency.
Opportunity#6: For smartphones, fully uti-
lizing the heterogeneous computing power
of the SoC (e.g., GPU, NPU) can signifi-
cantly improve prefill efficiency. Addition-
ally, power consumption from continuous re-
quests or long-context processing remains a
major challenge.

378

3.3 Latency and Memory Breakdown 379

3.3.1 Latency Breakdown 380

Figure 7 presents a breakdown analysis of Qwen 381

2-0.5B and Qwen 1.5-0.5B, two models of similar 382

size but different latencies. We measured the time 383

distribution across Embedding, Attention, FFN, 384

7

SmolL
M-13

5M

Pyth
ia-

16
0M

Ope
nE

LM-27
0M

SmolL
M-36

0M

Ope
nE

LM-45
0M

Qwen
2-0

.5B

Qwen
1.5

-0.
5B

Bloo
m-56

0M

Ope
nE

LM-1_
1B

Pyth
ia-

1.4
B
Phi-

1

Phi-
1_

5

Bloo
m-1B

1

Qwen
2-1

.5B

SmolL
M-1.

7B

Qwen
-1_

8B

Qwen
1.5

-1.
8B

Gem
ma-2

B
Phi-

2

Pyth
ia-

2.8
B

Stab
leL

M-ze
ph

yr-
3B

Ope
nE

LM-3B

Models

0

500

1000

1500

2000

2500

M
em

or
y

U
sa

ge
 (M

B
)

Compute Buffer KV Cache

(a) 2048 context window.

SmolL
M-13

5M

Pyth
ia-

16
0M

Ope
nE

LM-27
0M

SmolL
M-36

0M

Ope
nE

LM-45
0M

Qwen
2-0

.5B

Qwen
1.5

-0.
5B

Bloo
m-56

0M

Ope
nE

LM-1_
1B

Pyth
ia-

1.4
B
Phi-

1

Phi-
1_

5

Bloo
m-1B

1

Qwen
2-1

.5B

SmolL
M-1.

7B

Qwen
-1_

8B

Qwen
1.5

-1.
8B

Gem
ma-2

B

Gem
ma2

-2BPhi-
2

Pyth
ia-

2.8
B

Stab
lel

m-ze
ph

yr-
3B

Ope
nE

LM-3B

Models

0

2000

4000

6000

8000

M
em

or
y

U
sa

ge
 (M

B
)

Model Parameter Other Memory

(b) Max context window.

Figure 9: Memory Breakdown.

and LM Head.385

In the prefill stage, both models are dominated by386

Attention and FFN layers. In Qwen 1.5, Attention387

accounts for a slightly higher proportion of latency388

than FFN, whereas in Qwen 2, FFN contributes389

significantly more due to its wider FFN layer. Dur-390

ing the decode stage, Attention latency increases in391

Qwen 1.5, likely due to KV Cache growth, while392

FFN remains the dominant bottleneck in Qwen393

2. At the operator level, mul_mat_vec_q (matrix-394

vector multiplication) accounts for over 80% of395

total latency in both prefill and decode stages. This396

proportion is even higher in Qwen 2-0.5B due to its397

wider FFN layer, further increasing computation398

time.399

3.3.2 Memory Breakdown400

As shown in Figure 9a, vocabulary size signif-401

icantly influences memory consumption beyond402

model size. Larger vocabularies increase com-403

pute buffer memory due to the hidden_size × vo-404

cabulary_size matrix in the output layer. For in-405

stance, Bloom-560M (vocabulary: 250,880) re-406

quires 492MB memory, 3.5× more than OpenELM-407

1.1B (vocabulary: 32,000), while Bloom-1B1 re-408

quiring 496MB memory exceeds Qwen2-1.5B (vo-409

cabulary: 151,936) by 1.6×. Models using GQA410

have reduced KV cache size compared to MHA.411

OpenELM-3B is 3.9× smaller than StableLM-412

zephyr-3B. At long context lengths, compute buffer413

and KV cache dominate memory usage. For414

Qwen2 series (context length: 131,072), they ac-415

count for 85%, while for Qwen1.5 (context length:416

32,768), they make up 87%.417

Insights#7: We have following insights re-
garding the breakdown of SLM runtime cost.
(1) Mul_mat_vec (matrix by vector multipli-
cation) is the most time-consuming opera-
tions of SLM, which constitute more than
70% end-to-end inference time. (2) Vocab-
ulary size and Context length is crucial for
model runtime memory usage.

418

Opportunity#7: SLMs are increasingly ex-
panding vocabulary size to enhance perfor-
mance. However, larger vocabulary increases
inference latency and memory usage, ne-
cessitating compression strategies that pre-
serve model capability. Similarly, as long-
context support becomes a key trend, KV
cache compression and quantization are cru-
cial for SLMs.

419

4 Related Work 420

Benchmarking SLM capability. Several public 421

leaderboards evaluate the capabilities of LLMs, 422

such as Open LLM Leaderboard (ope) support 423

by Hugging Face clusters, FlagEval (fla). Some 424

datasets have released their own leaderboards, such 425

as SuperCLUE (Xu et al., 2023), C-Eval (cev), and 426

MMLU (mml). These leaderboards include lim- 427

ited SLMs and lack a rich variety of datasets. Mo- 428

bileAIBench (Murthy et al., 2024) and MELTing 429

point (Laskaridis et al., 2024) also evaluate some 430

LLMs on device. Compared to them, we are the 431

first dive into the SLM capability through experi- 432

ments on a large number of representative SLMs. 433

Benchmarking SLM runtime cost. Currently, 434

some studies have measured the inference through- 435

put and power consumption of LLMs on various 436

hardware devices. MELTing point focuses on the 437

throughput and energy consumption across differ- 438

ent hardware. MELODI (Husom et al., 2024) also 439

proposes a framework that focuses on energy con- 440

sumption of LLMs. Using its dataset, the study 441

explores how prompt attributes, such as length and 442

complexity, correlate with energy expenditure. Ad- 443

ditionally, MobileAIBench evaluates the runtime 444

cost of 3 models under 3 billion parameters after 445

4-bit quantization on an iPhone 14. However, these 446

studies have measured only a limited number of 447

SLMs, and miss crucial observations such as the 448

influence of model architecture on runtime costs. 449

5 Conclusions 450

In this work, we conduct a comprehensive study on 451

the capabilities and performance of small language 452

models (100M–5B parameters). We evaluate most, 453

if not all, open-source SLMs and analyze their re- 454

sults, drawing key insights to guide future research. 455

These insights provide a clear understanding of 456

SLM strengths and limitations, identifying areas 457

for architectural improvements and deployment op- 458

timizations. 459

8

6 Limitations460

For SLM capability evaluation, we selected 10 com-461

monsense reasoning and problem-solving datasets,462

excluding math datasets due to the performance463

gap between SLMs and larger models in mathemat-464

ical reasoning. For cost analysis, to ensure con-465

sistency and eliminate inference engine variations,466

we evaluated 20 models supported by llama.cpp,467

excluding those not compatible with it.468

References469

FlagEval - leaderboard.470

Leaderboard | C-Eval: A Multi-Level Multi-Discipline471
Chinese Evaluation Suite for Foundation Models.472

MMLU Benchmark (Multi-task Language Understand-473
ing) | Papers With Code.474

Open LLM Leaderboard 2 - a Hugging Face Space by475
open-llm-leaderboard.476

2024. Copilot in microsoft edge. https://support.477
microsoft.com/en-us/topic/copilot-in-mic478
rosoft-edge-3fe6c1d4-9bd8-4492-a063-2cc6a479
5d01fef.480

2024. Google ai edge sdk for gemini nano. https:481
//developer.android.com/ai/aicore.482

2024. Opera becomes the first major browser with built-483
in access to local ai models. https://press.oper484
a.com/2024/04/03/ai-feature-drops-local-l485
lms/.486

2024. Unlocking 7b+ language models in your browser:487
A deep dive with google ai edge’s mediapipe. https:488
//research.google/blog/unlocking-7b-langu489
age-models-in-your-browser-a-deep-dive-w490
ith-google-ai-edges-mediapipe/.491

Alibaba. 2023.11. Qwen 1. https://huggingface.492
co/alibaba/Qwen-1.493

Alibaba. 2024.02a. Qwen 1.5. https://huggingface.494
co/alibaba/Qwen-1.5.495

Alibaba. 2024.02b. Qwen 2. https://huggingface.496
co/alibaba/Qwen-2.497

Alibaba. 2024.09. Qwen 2.5. https://qwenlm.githu498
b.io/blog/qwen2.5/.499

AllenAI. 2024.04. allenai/olmo-1b-hf. https://hugg500
ingface.co/allenai/OLMo-1B-hf.501

AMD. 2024.08. Llama. https://huggingface.co/a502
md/AMD-Llama-135m.503

Apple. 2024.04. Openelm. https://huggingface.co504
/apple/OpenELM.505

Jason Baumgartner, Savvas Zannettou, Brian Keegan, 506
Megan Squire, and Jeremy Blackburn. 2020. The 507
pushshift reddit dataset. In Proceedings of the inter- 508
national AAAI conference on web and social media, 509
volume 14, pages 830–839. 510

Loubna Ben Allal, Anton Lozhkov, Guilherme Penedo, 511
Thomas Wolf, and Leandro von Werra. 2024. Cos- 512
mopedia. 513

BigScience. 2022.11a. bigscience/bloom-560m. http 514
s://huggingface.co/bigscience/bloom-560m. 515

BigScience. 2022.11b. bigscience/bloomz-1b1. https: 516
//huggingface.co/bigscience/bloomz-1b1. 517

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jian- 518
feng Gao, and Yejin Choi. 2020. Piqa: Reasoning 519
about physical commonsense in natural language. In 520
Proceedings of the AAAI Conference on Artificial 521
Intelligence. 522

Cerebras. 2023.03. cerebras/cerebras-gpt-111m. http 523
s://huggingface.co/cerebras/Cerebras-GPT 524
-111M. 525

Christopher Clark, Kenton Lee, Ming-Wei Chang, 526
Tom Kwiatkowski, Michael Collins, and Kristina 527
Toutanova. 2019. Boolq: Exploring the surprising 528
difficulty of natural yes/no questions. In Proceedings 529
of the 2019 Conference of the North American Chap- 530
ter of the Association for Computational Linguistics: 531
Human Language Technologies. 532

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, 533
Ashish Sabharwal, Carissa Schoenick, and Oyvind 534
Tafjord. 2018. Think you have solved question an- 535
swering? try arc, the ai2 reasoning challenge. In 536
arXiv preprint arXiv:1803.05457. 537

Together Computer. 2023. Redpajama: an open dataset 538
for training large language models. 539

DataBricks. 2023.04. databricks/dolly-v2-3b. https: 540
//huggingface.co/databricks/dolly-v2-3b. 541

Mateusz Dubiel, Yasmine Barghouti, Kristina Kudryavt- 542
seva, and Luis A Leiva. 2024. On-device query intent 543
prediction with lightweight llms to support ubiqui- 544
tous conversations. Scientific Reports, 14(1):12731. 545

EleutherAI. 2023.03. Eleutherai/pythia-410m. https: 546
//huggingface.co/EleutherAI/pythia-410m. 547

Facebook. 2022.05. facebook/opt-125m. https://hu 548
ggingface.co/facebook/opt-125m. 549

Facebook. 2022.11. facebook/galactica-125m. https: 550
//huggingface.co/facebook/galactica-125m. 551

Leo Gao, Stella Biderman, Sid Black, Laurence Gold- 552
ing, Travis Hoppe, Charles Foster, Jason Phang, Ho- 553
race He, Anish Thite, Noa Nabeshima, et al. 2020. 554
The pile: An 800gb dataset of diverse text for lan- 555
guage modeling. arXiv preprint arXiv:2101.00027. 556

9

https://flageval.baai.ac.cn/#/leaderboard
https://cevalbenchmark.com/static/leaderboard.html
https://cevalbenchmark.com/static/leaderboard.html
https://cevalbenchmark.com/static/leaderboard.html
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://paperswithcode.com/sota/multi-task-language-understanding-on-mmlu
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://support.microsoft.com/en-us/topic/copilot-in-microsoft-edge-3fe6c1d4-9bd8-4492-a063-2cc6a5d01fef
https://support.microsoft.com/en-us/topic/copilot-in-microsoft-edge-3fe6c1d4-9bd8-4492-a063-2cc6a5d01fef
https://support.microsoft.com/en-us/topic/copilot-in-microsoft-edge-3fe6c1d4-9bd8-4492-a063-2cc6a5d01fef
https://support.microsoft.com/en-us/topic/copilot-in-microsoft-edge-3fe6c1d4-9bd8-4492-a063-2cc6a5d01fef
https://support.microsoft.com/en-us/topic/copilot-in-microsoft-edge-3fe6c1d4-9bd8-4492-a063-2cc6a5d01fef
https://support.microsoft.com/en-us/topic/copilot-in-microsoft-edge-3fe6c1d4-9bd8-4492-a063-2cc6a5d01fef
https://support.microsoft.com/en-us/topic/copilot-in-microsoft-edge-3fe6c1d4-9bd8-4492-a063-2cc6a5d01fef
https://developer.android.com/ai/aicore
https://developer.android.com/ai/aicore
https://developer.android.com/ai/aicore
https://press.opera.com/2024/04/03/ai-feature-drops-local-llms/
https://press.opera.com/2024/04/03/ai-feature-drops-local-llms/
https://press.opera.com/2024/04/03/ai-feature-drops-local-llms/
https://press.opera.com/2024/04/03/ai-feature-drops-local-llms/
https://press.opera.com/2024/04/03/ai-feature-drops-local-llms/
https://research.google/blog/unlocking-7b-language-models-in-your-browser-a-deep-dive-with-google-ai-edges-mediapipe/
https://research.google/blog/unlocking-7b-language-models-in-your-browser-a-deep-dive-with-google-ai-edges-mediapipe/
https://research.google/blog/unlocking-7b-language-models-in-your-browser-a-deep-dive-with-google-ai-edges-mediapipe/
https://research.google/blog/unlocking-7b-language-models-in-your-browser-a-deep-dive-with-google-ai-edges-mediapipe/
https://research.google/blog/unlocking-7b-language-models-in-your-browser-a-deep-dive-with-google-ai-edges-mediapipe/
https://research.google/blog/unlocking-7b-language-models-in-your-browser-a-deep-dive-with-google-ai-edges-mediapipe/
https://research.google/blog/unlocking-7b-language-models-in-your-browser-a-deep-dive-with-google-ai-edges-mediapipe/
https://huggingface.co/alibaba/Qwen-1
https://huggingface.co/alibaba/Qwen-1
https://huggingface.co/alibaba/Qwen-1
https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/alibaba/Qwen-1.5
https://huggingface.co/alibaba/Qwen-2
https://huggingface.co/alibaba/Qwen-2
https://huggingface.co/alibaba/Qwen-2
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://huggingface.co/allenai/OLMo-1B-hf
https://huggingface.co/allenai/OLMo-1B-hf
https://huggingface.co/allenai/OLMo-1B-hf
https://huggingface.co/amd/AMD-Llama-135m
https://huggingface.co/amd/AMD-Llama-135m
https://huggingface.co/amd/AMD-Llama-135m
https://huggingface.co/apple/OpenELM
https://huggingface.co/apple/OpenELM
https://huggingface.co/apple/OpenELM
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/datasets/HuggingFaceTB/cosmopedia
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloom-560m
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/bigscience/bloomz-1b1
https://huggingface.co/cerebras/Cerebras-GPT-111M
https://huggingface.co/cerebras/Cerebras-GPT-111M
https://huggingface.co/cerebras/Cerebras-GPT-111M
https://huggingface.co/cerebras/Cerebras-GPT-111M
https://huggingface.co/cerebras/Cerebras-GPT-111M
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://github.com/togethercomputer/RedPajama-Data
https://huggingface.co/databricks/dolly-v2-3b
https://huggingface.co/databricks/dolly-v2-3b
https://huggingface.co/databricks/dolly-v2-3b
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/opt-125m
https://huggingface.co/facebook/galactica-125m
https://huggingface.co/facebook/galactica-125m
https://huggingface.co/facebook/galactica-125m

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman,557
Sid Black, Anthony DiPofi, Charles Foster, Laurence558
Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li,559
Kyle McDonell, Niklas Muennighoff, Chris Ociepa,560
Jason Phang, Laria Reynolds, Hailey Schoelkopf,561
Aviya Skowron, Lintang Sutawika, Eric Tang, An-562
ish Thite, Ben Wang, Kevin Wang, and Andy Zou.563
2024. A framework for few-shot language model564
evaluation.565

Nathan Godey, Éric de la Clergerie, and Benoît Sagot.566
2024. Why do small language models underperform?567
studying language model saturation via the softmax568
bottleneck. arXiv preprint arXiv:2404.07647.569

Google. 2024.02. Gemma. https://huggingface.co570
/google/Gemma.571

Google. 2024.04. recurrentgemma. https://huggin572
gface.co/google/recurrentGemma.573

Google. 2024.07. Gemma-2. https://huggingface.574
co/google/Gemma-2.575

H2O.ai. 2024. h2o-danube3-4b-base. https://hugg576
ingface.co/h2oai/h2o-danube3-4b-base.577

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou,578
Mantas Mazeika, Dawn Song, and Jacob Steinhardt.579
2021. Measuring massive multitask language under-580
standing. arXiv preprint arXiv:2009.03300.581

Jordan Hoffmann, Sebastian Borgeaud, Arthur Men-582
sch, Elena Buchatskaya, Trevor Cai, Eliza Ruther-583
ford, Diego de Las Casas, Lisa Anne Hendricks,584
Johannes Welbl, Aidan Clark, et al. 2022. Train-585
ing compute-optimal large language models. arXiv586
preprint arXiv:2203.15556.587

HuggingFace. 2024.07. Smollm. https://huggingf588
ace.co/huggingface/SmolLM.589

Erik Johannes Husom, Arda Goknil, Lwin Khin Shar,590
and Sagar Sen. 2024. The Price of Prompting: Profil-591
ing Energy Use in Large Language Models Inference.592
arXiv preprint. ArXiv:2407.16893 [cs].593

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B594
Brown, Benjamin Chess, Rewon Child, Scott Gray,595
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.596
Scaling laws for neural language models. arXiv597
preprint arXiv:2001.08361.598

Stefanos Laskaridis, Kleomenis Katevas, Lorenzo599
Minto, and Hamed Haddadi. Mobile and edge evalu-600
ation of large language models. In Workshop on Effi-601
cient Systems for Foundation Models II@ ICML2024.602

Stefanos Laskaridis, Kleomenis Katevas, Lorenzo603
Minto, and Hamed Haddadi. 2024. MELTing point:604
Mobile Evaluation of Language Transformers. arXiv605
preprint. ArXiv:2403.12844 [cs].606

Pierre Lepagnol, Thomas Gerald, Sahar Ghannay,607
Christophe Servan, and Sophie Rosset. 2024. Small608
language models are good too: An empirical609
study of zero-shot classification. arXiv preprint610
arXiv:2404.11122.611

Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, 612
Matt Jordan, Samir Gadre, Hritik Bansal, Etash 613
Guha, Sedrick Keh, Kushal Arora, et al. 2024a. 614
Datacomp-lm: In search of the next generation of 615
training sets for language models. arXiv preprint 616
arXiv:2406.11794. 617

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 618
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 619
Marone, Christopher Akiki, Jia Li, Jenny Chim, 620
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 621
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 622
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 623
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 624
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, 625
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo 626
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp 627
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 628
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, 629
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo 630
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel 631
Romero, Tony Lee, Nadav Timor, Jennifer Ding, 632
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri 633
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, 634
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan- 635
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry 636
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, 637
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro 638
von Werra, and Harm de Vries. 2023. Starcoder: may 639
the source be with you! 640

Xiang Li, Zhenyan Lu, Dongqi Cai, Xiao Ma, and Meng- 641
wei Xu. 2024b. Large language models on mobile 642
devices: Measurements, analysis, and insights. In 643
Proceedings of the Workshop on Edge and Mobile 644
Foundation Models, pages 1–6. 645

Stephanie Lin, Jacob Hilton, and Owain Evans. 2022. 646
Truthfulqa: Measuring how models mimic human 647
falsehoods. arXiv preprint arXiv:2109.07958. 648

Yinhan Liu. 2019. Roberta: A robustly opti- 649
mized bert pretraining approach. arXiv preprint 650
arXiv:1907.11692. 651

M.A.P. 2024.04. Ct-llm. https://huggingface.co 652
/m-a-p/CT-LLM-Base. 653

MBZUAI. 2023.04. Mbzuai/lamini-gpt-774m. https: 654
//huggingface.co/MBZUAI/LaMini-GPT-774M. 655

MBZUAI. 2024.02. Mobillama. https://huggingf 656
ace.co/mbzuai/MobiLlama. 657

Meituan. 2023.12. Mobilellama. https://huggingf 658
ace.co/meituan/MobileLLaMA. 659

Meta. 2024.09. meta-llama/llama-3.2-3b. https://hu 660
ggingface.co/meta-llama/Llama-3.2-3B. 661

Microsoft. 2023.09a. microsoft/phi-1. https://hugg 662
ingface.co/microsoft/phi-1. 663

Microsoft. 2023.09b. microsoft/phi-1_5. https://hu 664
ggingface.co/microsoft/phi-1_5. 665

10

https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://doi.org/10.5281/zenodo.12608602
https://huggingface.co/google/Gemma
https://huggingface.co/google/Gemma
https://huggingface.co/google/Gemma
https://huggingface.co/google/recurrentGemma
https://huggingface.co/google/recurrentGemma
https://huggingface.co/google/recurrentGemma
https://huggingface.co/google/Gemma-2
https://huggingface.co/google/Gemma-2
https://huggingface.co/google/Gemma-2
https://huggingface.co/h2oai/h2o-danube3-4b-base
https://huggingface.co/h2oai/h2o-danube3-4b-base
https://huggingface.co/h2oai/h2o-danube3-4b-base
https://huggingface.co/huggingface/SmolLM
https://huggingface.co/huggingface/SmolLM
https://huggingface.co/huggingface/SmolLM
http://arxiv.org/abs/2407.16893
http://arxiv.org/abs/2407.16893
http://arxiv.org/abs/2407.16893
http://arxiv.org/abs/2403.12844
http://arxiv.org/abs/2403.12844
http://arxiv.org/abs/2403.12844
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://huggingface.co/m-a-p/CT-LLM-Base
https://huggingface.co/m-a-p/CT-LLM-Base
https://huggingface.co/m-a-p/CT-LLM-Base
https://huggingface.co/MBZUAI/LaMini-GPT-774M
https://huggingface.co/MBZUAI/LaMini-GPT-774M
https://huggingface.co/MBZUAI/LaMini-GPT-774M
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/mbzuai/MobiLlama
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meituan/MobileLLaMA
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/meta-llama/Llama-3.2-3B
https://huggingface.co/microsoft/phi-1
https://huggingface.co/microsoft/phi-1
https://huggingface.co/microsoft/phi-1
https://huggingface.co/microsoft/phi-1_5
https://huggingface.co/microsoft/phi-1_5
https://huggingface.co/microsoft/phi-1_5

Microsoft. 2023.12. microsoft/phi-2. https://huggin666
gface.co/microsoft/phi-2.667

Microsoft. 2024.04. microsoft/phi-3-mini. https://668
huggingface.co/microsoft/phi-3-mini.669

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish670
Sabharwal. 2018. Can a suit of armor conduct elec-671
tricity? a new dataset for open book question an-672
swering. In Proceedings of the 2018 Conference on673
Empirical Methods in Natural Language Processing.674

Rithesh Murthy, Liangwei Yang, Juntao Tan, Tu-675
lika Manoj Awalgaonkar, Yilun Zhou, Shelby Hei-676
necke, Sachin Desai, Jason Wu, Ran Xu, Sarah Tan,677
Jianguo Zhang, Zhiwei Liu, Shirley Kokane, Zuxin678
Liu, Ming Zhu, Huan Wang, Caiming Xiong, and Sil-679
vio Savarese. 2024. MobileAIBench: Benchmarking680
LLMs and LMMs for On-Device Use Cases. arXiv681
preprint. ArXiv:2406.10290 [cs].682

Thuat Nguyen, Chien Van Nguyen, Viet Dac Lai, Hieu683
Man, Nghia Trung Ngo, Franck Dernoncourt, Ryan A684
Rossi, and Thien Huu Nguyen. 2023. Culturax: A685
cleaned, enormous, and multilingual dataset for large686
language models in 167 languages. arXiv preprint687
arXiv:2309.09400.688

Nvidia. 2024.07. Minitron. https://huggingface.689
co/nvidia/Minitron-4B-Base.690

OpenBMB. 2024.04. Minicpm. https://huggingfac691
e.co/openbmb/MiniCPM.692

OpenBMB. 2024.09. Minicpm3. https://huggingf693
ace.co/openbmb/MiniCPM3.694

Guilherme Penedo, Hynek Kydlíček, Anton Lozhkov,695
Margaret Mitchell, Colin Raffel, Leandro Von Werra,696
Thomas Wolf, et al. 2024. The fineweb datasets:697
Decanting the web for the finest text data at scale.698
arXiv preprint arXiv:2406.17557.699

Guilherme Penedo, Quentin Malartic, Daniel Hesslow,700
Ruxandra Cojocaru, Alessandro Cappelli, Hamza701
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei,702
and Julien Launay. 2023. The refinedweb dataset703
for falcon llm: outperforming curated corpora with704
web data, and web data only. arXiv preprint705
arXiv:2306.01116.706

Princeton. 2023.11. Sheared-llama. https://huggin707
gface.co/princeton-nlp/Sheared-LLaMA-1.3708
B.709

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhaga-710
vatula, and Yejin Choi. 2020. Winogrande: An ad-711
versarial winograd schema challenge at scale. In712
Proceedings of the AAAI Conference on Artificial713
Intelligence.714

Timo Schick and Hinrich Schütze. 2020. It’s not just715
size that matters: Small language models are also716
few-shot learners. arXiv preprint arXiv:2009.07118.717

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin 718
Schwenk, David Atkinson, Russell Authur, Ben Bo- 719
gin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, 720
Valentin Hofmann, Ananya Harsh Jha, Sachin Kumar, 721
Li Lucy, Xinxi Lyu, Nathan Lambert, Ian Magnusson, 722
Jacob Morrison, Niklas Muennighoff, Aakanksha 723
Naik, Crystal Nam, Matthew E. Peters, Abhilasha 724
Ravichander, Kyle Richardson, Zejiang Shen, Emma 725
Strubell, Nishant Subramani, Oyvind Tafjord, Pete 726
Walsh, Luke Zettlemoyer, Noah A. Smith, Hannaneh 727
Hajishirzi, Iz Beltagy, Dirk Groeneveld, Jesse Dodge, 728
and Kyle Lo. 2024. Dolma: an Open Corpus of Three 729
Trillion Tokens for Language Model Pretraining Re- 730
search. arXiv preprint. 731

StabilityAI. 2023.11. stabilityai/stablelm-zephyr-3b. ht 732
tps://huggingface.co/stabilityai/stablel 733
m-zephyr-3b. 734

StabilityAI. 2024.01. stabilityai/stablelm-2-zephyr*. 735
https://huggingface.co/stabilityai/stabl 736
elm-2-zephyr. 737

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and 738
Jonathan Berant. 2019. Commonsenseqa: A question 739
answering challenge targeting commonsense knowl- 740
edge. In Proceedings of the 2019 Conference of 741
the North American Chapter of the Association for 742
Computational Linguistics: Human Language Tech- 743
nologies. 744

TensorOpera. 2024. Fox-1-1.6b. https://huggingf 745
ace.co/tensoropera/Fox-1-1.6B. 746

Toyota. 2024.08. Dclm. https://huggingface.co/T 747
RI-ML/DCLM-1B. 748

Unknown. 2023.12. Tinyllama. https://huggingfac 749
e.co/tinyllama. 750

Xiaohongshu. 2023.11. Minima. https://huggingf 751
ace.co/GeneZC/MiniMA-3B. 752

Xiaohongshu. 2024.07. Minima2. https://huggingf 753
ace.co/GeneZC/MiniMA-2-1B. 754

Daliang Xu, Hao Zhang, Liming Yang, Ruiqi Liu, 755
Gang Huang, Mengwei Xu, and Xuanzhe Liu. 756
2024a. Empowering 1000 tokens/second on-device 757
llm prefilling with mllm-npu. arXiv preprint 758
arXiv:2407.05858. 759

Jiajun Xu, Zhiyuan Li, Wei Chen, Qun Wang, Xin Gao, 760
Qi Cai, and Ziyuan Ling. 2024b. On-device language 761
models: A comprehensive review. arXiv preprint 762
arXiv:2409.00088. 763

Liang Xu, Anqi Li, Lei Zhu, Hang Xue, Changtai Zhu, 764
Kangkang Zhao, Haonan He, Xuanwei Zhang, Qiyue 765
Kang, and Zhenzhong Lan. 2023. Superclue: A com- 766
prehensive chinese large language model benchmark. 767
Preprint, arXiv:2307.15020. 768

Mengwei Xu, Wangsong Yin, Dongqi Cai, Rongjie Yi, 769
Daliang Xu, Qipeng Wang, Bingyang Wu, Yihao 770
Zhao, Chen Yang, Shihe Wang, et al. 2024c. A sur- 771
vey of resource-efficient llm and multimodal founda- 772
tion models. arXiv preprint arXiv:2401.08092. 773

11

https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/phi-2
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/microsoft/phi-3-mini
https://huggingface.co/microsoft/phi-3-mini
http://arxiv.org/abs/2406.10290
http://arxiv.org/abs/2406.10290
http://arxiv.org/abs/2406.10290
https://huggingface.co/nvidia/Minitron-4B-Base
https://huggingface.co/nvidia/Minitron-4B-Base
https://huggingface.co/nvidia/Minitron-4B-Base
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM
https://huggingface.co/openbmb/MiniCPM3
https://huggingface.co/openbmb/MiniCPM3
https://huggingface.co/openbmb/MiniCPM3
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/princeton-nlp/Sheared-LLaMA-1.3B
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/stabilityai/stablelm-zephyr-3b
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/stabilityai/stablelm-2-zephyr
https://huggingface.co/tensoropera/Fox-1-1.6B
https://huggingface.co/tensoropera/Fox-1-1.6B
https://huggingface.co/tensoropera/Fox-1-1.6B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/TRI-ML/DCLM-1B
https://huggingface.co/tinyllama
https://huggingface.co/tinyllama
https://huggingface.co/tinyllama
https://huggingface.co/GeneZC/MiniMA-3B
https://huggingface.co/GeneZC/MiniMA-3B
https://huggingface.co/GeneZC/MiniMA-3B
https://huggingface.co/GeneZC/MiniMA-2-1B
https://huggingface.co/GeneZC/MiniMA-2-1B
https://huggingface.co/GeneZC/MiniMA-2-1B
https://arxiv.org/abs/2307.15020
https://arxiv.org/abs/2307.15020
https://arxiv.org/abs/2307.15020

Jinliang Yuan, Chen Yang, Dongqi Cai, Shihe Wang,774
Xin Yuan, Zeling Zhang, Xiang Li, Dingge Zhang,775
Hanzi Mei, Xianqing Jia, et al. 2023. Mobile776
foundation model as firmware. arXiv preprint777
arXiv:2308.14363.778

Sha Yuan, Hanyu Zhao, Zhengxiao Du, Ming Ding,779
Xiao Liu, Yukuo Cen, Xu Zou, Zhilin Yang, and780
Jie Tang. 2021. Wudaocorpora: A super large-scale781
chinese corpora for pre-training language models. AI782
Open, 2:65–68.783

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali784
Farhadi, and Yejin Choi. 2019. Hellaswag: Can a785
machine really finish your sentence? In Proceedings786
of the 57th Annual Meeting of the Association for787
Computational Linguistics.788

Hugh Zhang, Jeff Da, Dean Lee, Vaughn Robinson,789
Catherine Wu, Will Song, Tiffany Zhao, Pranav Raja,790
Dylan Slack, Qin Lyu, et al. 2024a. A careful exami-791
nation of large language model performance on grade792
school arithmetic. arXiv preprint arXiv:2405.00332.793

Xinlu Zhang, Zhiyu Zoey Chen, Xi Ye, Xianjun Yang,794
Lichang Chen, William Yang Wang, and Linda Ruth795
Petzold. 2024b. Unveiling the impact of coding data796
instruction fine-tuning on large language models rea-797
soning. arXiv preprint arXiv:2405.20535.798

Zhengping Zhou, Lezhi Li, Xinxi Chen, and Andy799
Li. 2023. Mini-giants:" small" language mod-800
els and open source win-win. arXiv preprint801
arXiv:2307.08189.802

Junyi Zhu, Shuochen Liu, Yu Yu, Bo Tang, Yibo Yan,803
Zhiyu Li, Feiyu Xiong, Tong Xu, and Matthew B.804
Blaschko. 2024. Fastmem: Fast memorization of805
prompt improves context awareness of large language806
models. Preprint, arXiv:2406.16069.807

A Evaluation Suite808

The framework of our evaluation suites shown in809

Figure 10 evaluates SLMs across diverse devices,810

including smartphones (Google Pixel 7 Pro, Xi-811

aomi 12S, MEIZU 18 Pro) and Jetson Orin NX,812

focusing on capability evaluation and cost analysis.813

Capability evaluation is conducted on the A800814

server using Lm-Eval/OpenCompass, benchmark-815

ing models on various tasks.816

Cost analysis measures inference efficiency and817

resource consumption, with both Jetson and smart-818

phones executing cost tasks via llama.cpp. In the819

cost analysis, the A800 server serves as the cen-820

tral hub, managing model deployment, execution,821

and result aggregation. It downloads and trans-822

fers models to target devices, where models are823

quantized, and prompts are generated to prepare824

for cost evaluation. After testing, the A800 server825

analyzes cost results, generating a detailed report826

Google 7Pro Xiaomi 12S MEIZU 18Pro

PHONEJETSON

SSH
Cost Results

Llama.cpp

ADB

A800 SERVER

Lm-Eval/OpenCompass

Capability ResultsModels Capability Tasks

Jetson Orin NX

Models

Figure 10: Framework.

on latency, memory usage, and performance break- 827

downs. Communication between A800 and Jetson 828

occurs via SSH, while smartphones connect via 829

ADB, ensuring seamless task distribution and re- 830

sult collection. By integrating hardware diversity, 831

benchmarking tools, and evaluation metrics, the 832

framework enables a comprehensive analysis of 833

SLM efficiency across different deployment scenar- 834

ios. 835

B Model Architecture 836

While we focus on only decoder-only transformer 837

SLMs, their specific configurations still diversify, 838

as shown in Figure 11(a). The core of Transformer 839

is the multi-head self-attention(MHA) mechanism 840

and the Feed-Forward Neural Network(FFN). 841

Model architecture analysis. We conduct sta- 842

tistical analysis on the following several compo- 843

nents of the model architecture: 1) The type of 844

self-attention; 2) The type of feed-forward neu- 845

ral network; 3) The intermediate ratio of the feed- 846

forward network; 4) The activation function of the 847

feed-forward neural network; 5) The type of layer 848

normalization; 6) The vocabulary size. Figure 11(a) 849

shows the architecture of SLM and the pie chart 850

shows the distribution of six components. Figure 851

11(b) shows how these distributions change over 852

time. 853

1) The type of self-attention. The self-attention 854

mechanism is the core of the Transformer model. 855

In general, SLMs mainly use three types of atten- 856

tion mechanism: Multi-Head Attention (MHA), 857

Multi-Query Attention (MQA), Group-Query At- 858

12

https://arxiv.org/abs/2406.16069
https://arxiv.org/abs/2406.16069
https://arxiv.org/abs/2406.16069
https://arxiv.org/abs/2406.16069
https://arxiv.org/abs/2406.16069

(A)

q_proj k_proj v_proj

k_cache

matmul

RoPE

Mask

SoftMax

matmul

o_proj

+

(F) Norm

(F) Norm

up_proj

matmul

down_proj

gate_proj

act_fn

+

RoPE

(B) Feed-Forward Network

v_cache

(A) Attention

q_proj k_proj v_proj

Q(per head)Q(per head)Q(per head)Q(per head)
Q(per head)Q(per head)Q(per head)K(per head)

Q(per head)Q(per head)Q(per head)V(per head)

Q(per head)Q(per head)Q(per head)Q(per head) K(share) V(share)

Q(per head)Q(per head)Q(per head)Q(per head) Q(per head)K(share) Q(per head)V(share)

Group-Quary Attention

Multi-Query Attention

Multi-Head Attention

(B)

ACT 𝒙𝒘𝟏 + 𝒃𝟏 ⊙ 𝒙𝒘𝟑 + 𝒃𝟑 𝒘𝟐 + 𝒃𝟐

matmul(D) Activation

gate_proj up_proj

(D) Activation

down_proj

up_proj

Block #1

Embd

Input Tokens (E)Vocabulary Size

Block #2

Block #1

Block #2

… …

Block #n

lm_head

ArgMax

Output Token

(C) Intermediate Ratio =
Intermediate dim

hidden dim

(D)

(E) Vocabulary Size (F) Layer Norm:
𝒙𝒊−𝝁

𝝈𝟐+𝝐
× 𝜸 + 𝜷

 RMS Norm:
𝒙𝒊

𝟏

𝒅
σ𝒋=𝟏
𝒅 𝒙𝒋

𝟐+𝝐

× 𝜸

ACT 𝒙𝒘𝟏 + 𝒃𝟏 𝒘𝟐 + 𝒃𝟐

𝒙

𝟐
𝟏 + 𝒆𝒓𝒇

𝒙

𝟐

𝒙
𝒙

𝟏 + 𝒆−𝒙

𝒙

𝟐
𝟏 + 𝐭𝐚𝐧𝐡

𝟐

𝝅
𝒙 + 𝟎. 𝟎𝟒𝟕𝟏𝟓𝒙𝟑

𝒎𝒂𝒙 𝟎, 𝒙

down_proj

Q(per head)Q(per head)Q(per head)Q(per head)
Q(per head)Q(per head)Q(per head)K(per head)

Q(per head)Q(per head)Q(per head)V(per head)

projection

Multi-Head Latent Attention

(a) The architecture.

22.01-06 22.07-12 23.01-06 23.07-12 24.01-06 24.07-12
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
ou

nt

(A) Attention Types

Attention Type
GQA
MHA
MLA
MQA
nan

22.01-06 22.07-12 23.01-06 23.07-12 24.01-06 24.07-12
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(B) FFN Types

FFN Type
Gated
Standard

22.01-06 22.07-12 23.01-06 23.07-12 24.01-06 24.07-12
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(C) FFN Ratio

FFN Ratio
2.75
3
4
<2.75
>4

22.01-06 22.07-12 23.01-06 23.07-12 24.01-06 24.07-12
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

C
ou

nt

(D) FFN Activation

Activation
gelu
gelu_tanh
relu
silu

22.01-06 22.07-12 23.01-06 23.07-12 24.01-06 24.07-12
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(E) Vocab

Vocab
100k~150k
150k~200k
50k~100k
>200k

50k

22.01-06 22.07-12 23.01-06 23.07-12 24.01-06 24.07-12
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

(F) Norm

Norm
Layer Norm
RMS Norm

(b) Architecture distribution.

Figure 11: The architecture analysis of the SLM, highlighting 6 configurations: attention type, FFN type, FFN
ratio, FFN activation, vocabulary size, and normalization type. (a) presents the overall structure of the SLM,
and the categorizations with usage frequency of the 6 configurations; (b) analyzes the concrete selections of six
configurations over time.

13

tention (GQA) and Multi-Head Latent Atten-859

tion(MLA). Multi-Head Attention is a mechanism860

that allows the model to focus on different parts of861

the input data simultaneously by employing multi-862

ple attention heads, which is the most widely used863

self-attention mechanism in the Transformer mod-864

els. Multi-Query Attention simplifies multi-head865

attention by using a single shared query across all866

heads but allowing different key and value projec-867

tions. This reduces the complexity in both space868

and time. Group-Query Attention is a variant of869

multi-head attention that reduces computational870

complexity by sharing query representations across871

multiple heads, while allowing separate key and872

value representations. The idea is to use fewer873

query groups but still preserve a level of diversity874

in the attention mechanism. Multi-Head Latent At-875

tention achieves better results than MHA through876

low-rank key-value joint compression, and requires877

much less Key-Value(KV) Cache.878

Figure 11(b) 1⃝ shows the changing situation of879

choosing three self-attention mechanisms during880

these time periods from 2022 to 2024. We can881

see that MHA is gradually being phased out and882

replaced by GQA.883

2) The type of feed-forward neural network.884

Feed-forward network can be summarized into two885

types: the Standard FFN and the Gated FFN. The886

Standard FFN is a two-layer neural network with a887

activation function. The Gated FFN adds an addi-888

tional gate layer.889

The Figure 11(b) 2⃝ shows the changing situa-890

tion of type of FFN during these time periods from891

2022 to 2024. It shows that Standard FFN is gradu-892

ally being phased out and replaced by Gated FFN.893

3) The intermediate ratio of the feed-forward894

neural network. The intermediate ratio of FFN is895

the ratio of the intermediate dimension to the hid-896

den dimension. Figure 11(b) 3⃝ shows that the in-897

termediate ratio of the Standard FFN is commonly898

set to be 4, while the intermediate ratio of the Gated899

FFN is rather diversified ranging from 2 to 8.900

4) The activation function of the feed-forward901

neural network. There are 4 main kinds of ac-902

tivation functions used in FFN: ReLU (Rectified903

Linear Unit), GELU (Gaussian Error Linear Unit),904

GELUtanh, SiLU (Sigmoid Linear Unit). Observed905

from Figure 11(b) 4⃝ , the activation function of906

FFN was mostly ReLU in 2022, and then changed907

to GELU and its variants in 2023. For those re-908

leased in 2024, SiLU becomes the dominant type.909

5) The type of layer normalization. There are910

two main types of layer normalization: LayerNorm 911

and RMSNorm. The Figure 11(b) 5⃝ shows the 912

changing situation of type of the type of layer nor- 913

malization during these time periods from 2022 914

to 2024. layer normalization is gradually being 915

phased out and replaced by RMS normalization. 916

6) The vocabulary size. The vocabulary size is 917

the total number of unique tokens that an SLM can 918

recognize. The Figure 11(b) 6⃝ shows the chang- 919

ing situation of the vocabulary size during these 920

time periods from 2022 to 2024. We can see that 921

the vocabulary size of the model is gradually in- 922

creasing. The vocabulary of the latest models is 923

often larger than 50k 924

Model architecture innovations. While the 925

vanilla transformer architecture has been well rec- 926

ognized for its scaling ability, there still exist a few 927

architecture-level innovations in the tested SLMs, 928

namely parameter sharing and layer-wise parame- 929

ter scaling. 930

1) Parameter Sharing. Parameter Sharing is a 931

technique used in large language models to reuse 932

the same set of weights across different layers or 933

components of the network. This approach allows 934

the model to significantly reduce the number of 935

parameters, leading to more efficient training and 936

inference, while maintaining performance. 937

Embedding-lm_head sharing. Sharing the 938

weights of the embedding with the final lm_head 939

layer is the most common weight sharing technique. 940

It is the sharing of the word embedding layer and 941

has nothing to do with the rotary position encoding. 942

Models such as Gemma, and Qwen all used this 943

sharing technique. 944

layer-wise attention/FFN sharing. In this ap- 945

proach, the same set of weights is reused across 946

multiple layers of the model. This is commonly 947

seen in SLM/LLM, where all the transformer lay- 948

ers share the same parameters. For example, Mo- 949

biLLaMA shares the weights of the FFN of all the 950

transformer blocks; MobileLLM shares the weights 951

of the Attention and FFN of two adjacent trans- 952

former blocks. 953

2) Layer-wise parameter scaling. This technique 954

was proposed and used by OpenELM. Traditional 955

SLMs use the same configuration for each trans- 956

former layer in the model, resulting in a uniform 957

allocation of parameters across layers. Unlike these 958

models, each transformer layer in OpenELM has 959

a different configuration (e.g., number of heads 960

and feed forward network dimension), resulting 961

in variable number of parameters in each layer of 962

14

the model. This lets OpenELM to better utilize963

the available parameter budget for achieving higher964

accuracies.965

3) Nonlinearity compensation. PanGu-π ana-966

lyzes the state-of-the-art language model architec-967

tures and observes the feature collapse problem.968

PanGu-π adopts two techniques for nonlinearity969

compensation of language model to solve the fea-970

ture collapse problem. The series activation func-971

tion is adapted to FFN, and the augmented short-972

cuts are integrated into MHA, which effectively973

introduces more nonlinearity into the Transformer974

architecture.975

Insights: We make two key observations in
SLM architectures. (1) As of August 2024, a
typical SLM architecture tends to use group-
query attention, gated FFN with SiLU activa-
tion, an intermediate ratio of FFN between 2
and 8, RMS normalization, and a vocabulary
size larger than 50K. However, the choice
of such settings is mostly empirical, without
strict and public validation on the superiority
of such model’s capacity. Instead, the archi-
tecture innovations have relative larger im-
pacts on the runtime performance on devices,
as shown in §3. (2) The innovations to the
transformer architecture is limited in nowa-
day SLMs. For the few that did contribute
architectural innovation (except embedding-
lm head sharing), we do not observe strong
evidence showing them being significantly su-
perior to the vanilla transformer, and neither
are them being generally adopted or studied
across different research groups or companies.
The significance of those innovations remain
to be explored and validated.

976

C Training Datasets977

We find 12 open-source datasets being used:978

• The Pile (Gao et al., 2020) (825B tokens):979

a combination of smaller corpora in various980

domains.981

• FineWeb-Edu (Penedo et al., 2024) (1.3T to-982

kens): a collection of educational text filtered983

from FineWeb.984

• StarCoder (Li et al., 2023) (35B tokens):985

Python tokens.986

• Cosmopedia (Ben Allal et al., 2024) (25B to-987

kens): a dataset of synthetic textbooks, blog-988

posts, stories, posts and WikiHow articles gen- 989

erated by Mixtral-8x7B-Instruct-v0.1. 990

• RefinedWeb (Penedo et al., 2023) (5T tokens): 991

despite extensive filtering, high-quality data 992

extracted from the web remains plentiful, ob- 993

tained from CommonCrawl. 994

• RedPajama (Computer, 2023) (1.2T tokens): 995

includes over 100B text documents coming 996

from 84 CommonCrawl snapshots and pro- 997

cessed using the CCNet pipeline. 998

• Dolma (Soldaini et al., 2024): a English cor- 999

pora, which is deduplicated inner corpus and 1000

across corpus using MinHash algorithms. 1001

• WuDaoCorpora (Yuan et al., 2021) (4T to- 1002

kens): a super large-scale Chinese corpora, 1003

containing about 3T training data and 1.08T 1004

Chinese characters. 1005

• RoBERTa (Liu, 2019) CCNewsV2: contain- 1006

ing an updated version of the English portion 1007

of the CommonCrawl News dataset. 1008

• PushShift ().io Reddit (Baumgartner et al., 1009

2020): a social media data collection, anal- 1010

ysis, and archiving platform that since 2015 1011

has collected Reddit data and made it avail- 1012

able to researchers. 1013

• DCLM-baseline (Li et al., 2024a) (1.35T to- 1014

kens): a standardized corpus extracted from 1015

Common Crawl, effective pretraining recipes 1016

based on the OpenLM framework, and a broad 1017

suite of 53 downstream evaluations. 1018

• CulturaX (Nguyen et al., 2023) (6.3T tokens): 1019

a substantial multilingual dataset in 167 lan- 1020

guages. 1021

The usage preference of pre-training datasets. 1022

We then conducted statistics on the usage fre- 1023

quency of the datasets for training SLM from 2022 1024

to 2024. The results are illustrated in Figure 12. It 1025

shows that The Pile is the most widely used pre- 1026

training dataset especially in 2022 and 2023; yet 1027

more recently, more such datasets are proposed and 1028

the choice becomes diversified. In fact, The Pile 1029

has been abandoned in pre-training SLMs recently, 1030

and datasets such as "RefinedWeb" and "RedPa- 1031

jama" have gradually been widely used. It shows 1032

the active research and engineering efforts in con- 1033

structing pre-training datasts with better quality. 1034

15

RoBERTa
4 (25.0%)

The Pile
4 (25.0%)

PushShift.io Reddit
4 (25.0%)

WuDaoCorpora
4 (25.0%)

2022

The Pile
11 (68.8%)

RefinedWeb
1 (6.2%)

RedPajama
1 (6.2%)

StarCoder
2 (12.5%)

SlimPajama
1 (6.2%)

2023

RedPajama
8 (22.2%)

RefinedWeb
7 (19.4%)

The Pile
5 (13.9%)

StarCoder
4 (11.1%)

CulturaX
1 (2.8%)

Dolma
4 (11.1%)

FineWeb-Edu
3 (8.3%)

Cosmopedia
3 (8.3%)

DCLM
1 (2.8%)

2024

Figure 12: The usage frequency of each open-source pre-training dataset from 2022 to 2024

9k 13
k

17
k

21
k

25
k

29
k

31
k

32
k

Token Length

0

21

42

63

84

100

De
pt

h
Pe

rc
en

t(%
)

Overall Score:39.95
llama-3.2-1b-instruct-vllm

0

20

40

60

80

100

45.36 45.61 44.37

35.49 35.19 36.81 38.80 38.00

Average Depth Score

(a) Llama3.2-1B

9k 13
k

17
k

21
k

25
k

29
k

31
k

32
k

Token Length

0

21

42

63

84

100

De
pt

h
Pe

rc
en

t(%
)

Overall Score:57.81
llama-3.2-3b-instruct-vllm

0

20

40

60

80

100

64.48
61.90 61.25 61.32

55.09
52.56 53.23 52.62

Average Depth Score

(b) Llama3.2-3B

9k 13
k

17
k

21
k

25
k

29
k

31
k

32
k

Token Length

0

21

42

63

84

100

De
pt

h
Pe

rc
en

t(%
)

Overall Score:22.13
qwen1.5-0.5b-chat-vllm

0

20

40

60

80

100

47.73

38.08
32.63

18.25
13.02

8.96 9.27 9.09
Average Depth Score

(c) Qwen1.5-0.5B

9k 13
k

17
k

21
k

25
k

29
k

31
k

32
k

Token Length

0

21

42

63

84

100

De
pt

h
Pe

rc
en

t(%
)

Overall Score:44.83
qwen1.5-1.8b-chat-vllm

0

20

40

60

80

100

74.89
69.99

56.30

45.62

36.96

27.53
24.71 22.62

Average Depth Score

(d) Qwen1.5-1.8B

9k 13
k

17
k

21
k

25
k

29
k

31
k

32
k

Token Length

0

21

42

63

84

100

De
pt

h
Pe

rc
en

t(%
)

Overall Score:43.84
qwen2-0.5b-instruct-vllm

0

20

40

60

80

100

44.85 43.97 45.75 44.80 45.10 42.67 41.73 41.84

Average Depth Score

(e) Qwen2-0.5B

9k 13
k

17
k

21
k

25
k

29
k

31
k

32
k

Token Length

0

21

42

63

84

100

De
pt

h
Pe

rc
en

t(%
)

Overall Score:74.23
qwen2-1.5b-instruct-vllm

0

20

40

60

80

100

79.21 79.12
75.95 75.82

73.16
69.77 71.05 69.75

Average Depth Score

(f) Qwen2-1.5B

9k 13
k

17
k

21
k

25
k

29
k

31
k

32
k

Token Length

0

21

42

63

84

100

De
pt

h
Pe

rc
en

t(%
)

Overall Score:65.56
qwen2.5-0.5b-instruct-vllm

0

20

40

60

80

100

74.11 71.95 71.97

64.71
60.80 60.45 59.35 61.11

Average Depth Score

(g) Qwen2.5-0.5B

9k 13
k

17
k

21
k

25
k

29
k

31
k

32
k

Token Length

0

21

42

63

84

100

De
pt

h
Pe

rc
en

t(%
)

Overall Score:91.71
qwen2.5-3b-instruct-vllm

0

20

40

60

80

100

91.95 92.23 93.04 91.82 91.38 91.17 90.82 91.25

Average Depth Score

(h) Qwen2.5-3B

Figure 13: Needle In A Haystack

D Long Context Capabilities1035

We used Needle-In-A-Haystack provided by Open-1036

Compass to explore long-context capabilities of1037

SLMs. The tasks included Single-Needle Retrieval,1038

Multi-Needle Retrieval, and Multi-Needle Reason-1039

ing. The scores in Figure 7 are the average of1040

these three tasks. Different models showed large1041

variations in performance. Small models, such as1042

Qwen1.5-0.5B and Qwen2-0.5B, performed less1043

effectively. Qwen1.5-0.5B achieved an average ac-1044

curacy of 22.13%. Qwen2-0.5B performed slightly1045

better, reaching 43.84%. Qwen1.5-0.5B handled1046

shorter contexts (9k-17k) relatively well. How-1047

ever, its accuracy dropped sharply with longer1048

contexts. This was especially true for middle1049

inserted text (Depth Percent from 20% to 70%).1050

Larger models performed much better. Llama1051

3.2-3B had an average accuracy of 57.81%. It1052

worked well with shorter contexts but struggled1053

with deeper insertions when contexts exceeded 25k1054

tokens. Qwen2.5-3B achieved an average accuracy1055

of 91.71%. It maintained nearly perfect accuracy1056

across all context lengths and insertion positions.1057

This result highlights its strong ability to handle1058

long contexts and complex scenarios. 1059

Insights: We draw two key insights from the
long context capacity of SLMs: (1) Larger
parameters are crucial for long-context ca-
pabilities. Small models, such as Qwen1.5-
0.5B and Qwen2-0.5B, perform adequately
on short-context tasks but experience a signif-
icant drop in recognition accuracy as the con-
text length increases. In contrast, larger mod-
els, such as Qwen2.5-3B, excel with outstand-
ing performance, maintaining near-perfect ac-
curacy across all context lengths and inser-
tion positions. (2) "Lost in the Middle" also
occurs in small models. Compared to deep
or front insertions, the accuracy of middle-
position text (Depth Percent 20%-70%) is sig-
nificantly lower.

1060

16

	Introduction
	SLM Overview and Benchmarking
	Collecting Popular SLMs
	Evaluation Datasets and Metrics
	SLM Capabilities
	Training Datasets

	SLM Runtime Cost
	Cost Overview
	Inference Latency
	Memory Footprint

	Impact of Quantization and Hardware
	Impact of Quantization
	Impact of Hardware

	Latency and Memory Breakdown
	Latency Breakdown
	Memory Breakdown

	Related Work
	Conclusions
	Limitations
	Evaluation Suite
	Model Architecture
	Training Datasets
	Long Context Capabilities

