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Accelerating the decentralized federated learning via
manipulating edges in complex graph

Anonymous Author(s)*

ABSTRACT

Federated learning enables collaborative AI training across
organizations without compromising data privacy. Decen-
tralized federated learning (DFL) improves this by offering
enhanced reliability and security through peer-to-peer (P2P)
model sharing. However, DFL faces challenges in terms of
slow convergence rate due to the complex P2P graphs. To
address this issue, we propose an efficient algorithm to ac-
celerate DFL by introducing a limited number 𝑘 of edges
into the P2P graphs. Specifically, we establish a connection
between the convergence rate and the second smallest eigen-
value of the laplacian matrix of the P2P graph. We prove that
finding the optimal set of edges to maximize this eigenvalue
is an NP-complete problem. Our quantitative analysis shows
the positive effect of strategic edge additions on improving
this eigenvalue. Based on the analysis, we then propose an
efficient algorithm to compute the best set of candidate edges
to maximize the second smallest eigenvalue, and consequently
the convergence rate is maximized. Our algorithm has low
time complexity of 𝑂(𝑘𝑟𝑛2). Experimental results on diverse
datasets validate the effectiveness of our proposed algorithms
in accelerating DFL convergence.

CCS CONCEPTS

∙ Computing methodologies → Distributed comput-
ing methodologies.
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1 INTRODUCTION

Artificial intelligence (AI) has found applications in diverse
domains, such as natural language processing, face recogni-
tion, recommender systems, and smart transportation. How-
ever, due to privacy concerns and commercial competition,
certain data cannot be shared or moved among different orga-
nizations or agents [1]. To address this challenge, Federated
Learning (FL) has emerged as a promising approach that en-
ables multiple agents to collaboratively train AI models while
preserving the privacy of local data [2]. In classical federated
learning, each agent trains a local model and shares its model
parameters (or parameter gradients) with a central parame-
ter server. The server then updates the model and sends it
back to the agents. However, this approach is hindered by
communication and computational bottlenecks of the central
server with the number increase of agents [1]. Additionally, in
situations such as wireless sensor networks, some agents may
not have direct access to the central parameter server. As a
result, Decentralized Federated Learning (DFL) has garnered
significant attention in recent years [3, 4]. This approach
eliminates the need for a centralized parameter server and
allows agents to exchange model parameters solely with their
neighboring agents. By doing so, the decentralized framework
mitigates the bandwidth requirements for the server and
presents a more scalable and efficient solution for systems
with millions(or more) of agents [5].

In DFL, ensuring model consensus among different agents
is a prerequisite. The consensus criteria in the fields of decen-
tralized learning and complex networked systems is commonly
characterized by the ratio of the second smallest eigenvalue
to the largest eigenvalue of the laplacian matrix of a graph
[4, 6, 7]. An interesting and more general problem emerges:
how to enhance the convergence rate of DFL. This problem
is closely related to various factors such as the computation
speed of agents, the bandwidth between agents, the commu-
nication protocol, and the graph topology [4, 5]. Over past
decades, the sizes of deep learning models have been rapid-
ly growing, reaching up to more than 100MB. Frequently
transferring such large model parameters, even with model
compression, imposes a significant burden on the bandwidth
[5]. To address this issue, designing an appropriate graph
topology to expedite convergence and reduce the frequency
of model exchange between agents becomes a plausible solu-
tion [4, 8]. On one hand, previous research has shown that
many real-world large graphs, including social/mobilephone
networks with over 1 million users, exhibit remarkably slow
convergence rates [9], implying that we should add more
edges to accelerate the convergence rate. On the other hand,
certain edges in the graph may contribute minimally, or not
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at all, to the model consensus, implying that we should re-
move these edges to avoid insignificant communication. To
the best of our knowledge, there is a scarcity of literature that
quantitatively analyzes the optimization of graph topology
associated with convergence rate in DFL.

In this paper, we propose a novel approach, namely Second
Smallest Eigenvalue Optimization (SSEO) and its variant
SSEO+, to enhance the convergence rate of DFL by incor-
porating a budget number 𝑘 of additional edges. We first
show that accelerating DFL could be achieved by increasing
the second smallest eigenvalue of the Laplacian matrix as-
sociated with a graph, and how determining the best set of
edges is an NP-complete problem. Subsequently, we employ
the eigenvalue perturbation technique to analyze the impact
of edge addition on the second smallest eigenvalue. Finally,
we devise an efficient algorithm to select the optimal set of
edges to accelerate DFL. The primary contributions of this
study can be summarized as follows:

∙ Understanding Convergence Through Graph Metrics:
Our research explores the intricate relationship be-
tween model training convergence rate and the second
smallest eigenvalue of the associated graph’s Lapla-
cian matrix. We extend this by investigating how edge
manipulation–specifically, the addition or removal of
edges–affects this critical eigenvalue.

∙ Design new Topology Optimization Algorithms: We
introduce two novel algorithms, SSEO and its enhanced
version SSEO+. These algorithms are designed to select
the most beneficial set of edges that maximize the
second smallest eigenvalue, serving as a pivotal factor
for faster convergence. Notably, SSEO operates with
a time complexity of 𝑂(𝑘𝑛2) while SSEO+ features a
time complexity of 𝑂(𝑘𝑟𝑛2).

∙ Conduct extensive empirical validation experiments:
We conduct extensive experiments using various dataset-
s. The results unequivocally demonstrate that SSEO
and SSEO+ outperform state-of-the-art baselines.

2 RELATED WORK

Federated learning: FL was initially proposed by researcher-
s at Google in 2016 [3]. FL operates by sharing model parame-
ters rather than user data, thus ensuring privacy preservation
and overcoming geographical limitations, enabling efficient
collaboration on a global scale [2, 10, 11]. However, tradition-
al central server-based FL faces challenges of communication
and computational bottlenecks [2, 5]. As a result, DFL has
garnered significant attention in recent years. Noteworthy s-
tudies in this area encompass peer-to-peer FL [12], server-free
FL [8], serverless FL [13], device-to-device FL [14], swarm
learning [15], among others [2]. In DFL, each agent interact-
s with its neighboring agents, leading to the formation of
diverse structures, including line, ring, fully-connected, and
complex graph structures [4]. Aysal et al. [16, 17] investigat-
ed the communication protocols. Additionally, Nedić et al.

[4] examine the influence of network topology on the prob-
lem. Furthermore, Yuan et al. [2] provided a comprehensive
summary of recent works on DFL.

Distributed Optimization: The distributed optimiza-
tion models aims to design enhance the performance of learn-
ing models in distributed environment. Tsitsiklis et al. [18–21]
demonstrated that the decentralized gradient descent strate-
gy achieves average consensus and presented convergence rate
criteria for both static and time-varying graphs. Furthermore,
Nedić et al. [22–24] investigated decentralized optimization
of nondifferentiable (but convex) functions. Kempe et al.
[25–27] extended decentralized optimization from directed
graphs to directed graphs. Ram et al. [28–30] examined the
influence of noise on the DFL. Additionally, He et al. [8]
introduced DFL in single-sided trust social networks. It was
shown by Nedić et al. [4] that a dense topology leads to a
faster convergence rate, implying less training epochs, but it
may result in network congestion and long time delays. To
address this, Wang et al. [1, 31] proposed MATCHA, which
divides the original topology into disjoint communication sub-
graphs, reducing the frequency of model transmission. Zhou
et al. [32] accelerate decentralized training by assigning a
high probability to high-speed links for peer communication.

Edge manipulation: Manipulating edges in the graph is
a plausible solution to improve the convergence rate of DFL.
This involves adding new edges to the graphs and removing
redundant ones. The problem has been extensively studied
in the context of synchronization (consensus) in complex
networks [33, 34]. Various researchers have made significant
contributions in this area. For instance, Pecora et al. [35, 36]
explored synchronization criteria based on the eigenvalues
of the graph’s Laplacian matrix. They investigated how the
addition, removal, and relocation of individual edges influ-
enced the network’s ability to synchronize. Similarly, Tong et
al. [9, 37, 38] identified and removed the influential nodes to
manipulate the eigenvalues of the adjacency matrix and Lapla-
cian matrix respectively. Additionally, Hagberg et al. [6, 39]
proposed a method to improve synchronization by rewiring
the edges in the graph. The studied graphs encompass varia-
tions such as undirected/directed, unweighted/weighted, and
time-varying properties [40–42].

Our study draws parallels with the edge rewiring optimiza-
tion and influential edge detection in refs. [9, 39]. In these
studies, the authors focused on rewiring edges to enhance
synchronization. In contrast, our objective is to manipulate
a budget number of influential edges to augment the conver-
gence rate of DFL. Our work differs from previous studies
in three key aspects: (a) We employ a distinct criterion to
quantify the impact of edge addition on the second smallest
eigenvalue. (b) We propose a rapid algorithm that guaran-
tees the performance error, whereas previous methods were
predominantly heuristic. (c) While prior works rewired edges
to enhance synchronization, our algorithm concurrently adds
new edges and removes redundant existing ones. To the best
of our knowledge, research on edge manipulation specifically
targeting DFL remains limited. Hence, our paper offers a
viable way to increase the convergence rate of DFL.

2
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3 NOTATIONS AND PROBLEM
DEFINITIONS

In this paper, we focus on the Decentralized Federated Learn-
ing (DFL) involving a set of 𝑛 clients, where each client
represents an edge server or another type of computing de-
vice (e.g., a mobile phone). Each client possesses local private
data 𝒟𝑖 and a local model x𝑖, 𝑖 = 1, 2, ..., 𝑛. The commu-
nication structure among these agents can be represented
by an undirected graph G = (V,E), which is conveniently
represented by the adjacency matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, where
𝑎𝑖𝑗 = 1 if node 𝑖 is connected to node 𝑗, and 𝑎𝑖𝑗 = 0 oth-
erwise. Notably, each node can only transmit its model x𝑖

to its neighbors. The objective of DFL is to leverage this
decentralized nodes to collectively train a shared model x
based on the joint dataset. Specifically, we typically optimize
the objective function 𝐹 (x) to compute x:

𝐹 (x) =
1

𝑛

𝑛∑︁
𝑖=1

𝐹𝑖(x) =
1

𝑛

𝑛∑︁
𝑖=1

1

|𝒟𝑖|
∑︁
𝑠∈𝒟𝑖

𝑙(x; 𝑠), (1)

where 𝐹𝑖(x) is the local objective function associated with
node 𝑖 and 𝑙(x; 𝑠) is the loss function for a data sample 𝑠.

The most common algorithm to minimize 𝐹 (x) is the
stochastic gradient descent (SGD). In DFL, we usually use
vanilla decentralized SGD (DecenSGD) to optimize 𝐹 (x). Let

x
(𝑡)
𝑖 denote the machine learning model on node 𝑖 at time 𝑡.

DecenSGD updates x
(𝑡)
𝑖 as follows:

(1) Initially, all nodes have identical model parameters

x
(0)
𝑖 = x(0), 𝑖 = 1, 2, ..𝑛.

(2) Parallel local SGD : Node 𝑖 computes the stochastic

gradient with respect to its local model parameters x
(𝑡)
𝑖 :

𝑔𝑖(x
(𝑡)
𝑖 ) = 1

|ℬ|
∑︀

𝑠∈ℬ ∇𝑙(x
(𝑡)
𝑖 ; 𝑠), where ℬ is a min-batch

of randomly samples from the local dataset 𝒟𝑖. Node 𝑖

updates the local model as: x
(𝑡+ 1

2
)

𝑖 = x
(𝑡)
𝑖 − 𝜂𝑔𝑖(x

(𝑡)
𝑖 ),

where 𝜂 is the learning rate.
(3) Communication with neighbors: Node 𝑖 sends its local

parameter x
(𝑡+ 1

2
)

𝑖 to its neighbors, denoted as 𝑁𝑖, and

receives parameters from its neighbors {x(𝑡+ 1
2
)

𝑗 }𝑗∈𝑁𝑖 .

(4) Model fusion: Node 𝑖 mixes the local model parameter
with these of its neighbors using a weighted average

scheme: x
(𝑡+1)
𝑖 =

∑︀
𝑗∈𝑁𝑖

⋃︀
{𝑖} 𝑤𝑗𝑖x

(𝑡+ 1
2
)

𝑗 , where 𝑤𝑗𝑖 is

the (𝑗, 𝑖)−𝑡ℎ entry of the mixing matrix 𝑊 = (𝑤𝑗𝑖)𝑛×𝑛.

(5) Iteration: Iteratively run the steps 2–4 until the x
(𝑡)
𝑖

converges to a predefined error.

The overall update rule of DecenSGD follows as:

x
(𝑡+1)
𝑖 =

𝑛∑︁
𝑗=1

𝑤𝑗𝑖[x
(𝑡)
𝑗 − 𝜂𝑔𝑗(x

(𝑡)
𝑗 )]. (2)

The convergence of DecenSGD has been extensively explored
in the field of decentralized learning. When analyzing the
convergence property, we usually assume that the objective
function is convex and the gradient norm is bounded (al-
though specific assumptions may differ across studies). Based

on these common assumptions, we ususally have the following
convergence lemma:

Lemma 1 (Convergence property of DecenSGD [43,
44]). Let x̄ denote the averaged model of all x𝑖. After 𝐾
iterations, we have:

1

𝐾

𝐾∑︁
𝑡=1

E||∇𝐹 (x̄(𝑡))||2 = 𝑂(
𝑛

𝐾

𝜌

(1 −√
𝜌)2

+
1√
𝑛𝐾

), (3)

where 𝜌 represents the largest singular value of matrix 𝑊 −
11𝑇 /𝑛, 1 = [1, 1, ..., 1]𝑇𝑛×1.

Based on Lemma 1, the convergence rate of the DecenSGD
algorithm depends on three key factors: the number 𝑛 of n-
odes, iterations 𝐾, and the largest eigenvalue of 𝑊 − 11𝑇 /𝑛.
It is worth noting that a smaller 𝜌 leads to a reduced conver-
gence error bound and a higher convergence rate. Thus, our
investigation focuses on the manipulation of 𝑊 to achieve a
decrease in 𝜌.

In order to guarantee the consensus among the nodes,
we set 𝑊 as a symmetric and doubly stochastic mixing
matrix (i.e., the sum of each column/row is 1) [4, 31]. In the
model aggregation, a common choice is equal weight for each
neighboring nodes, defined as follows:

𝑊 = 𝐼 − 𝛼𝐿, (4)

where 𝛼 is a small positive number and 𝐿 = 𝐷 − 𝐴 is the
Laplacian matrix, 𝐷 = 𝑑𝑖𝑎𝑔{𝑑1, 𝑑2, ..., 𝑑𝑛} with 𝑑𝑖 being the
degree of node 𝑖. 𝑊 satisfies symmetric and doubly-stochastic
properties and is widely used in previous works [4, 31]. 𝜌 is
simplified as

𝜌 = 𝑚𝑎𝑥{(1 − 𝛼𝜆𝑛))2, (1 − 𝛼𝜆2)2}, (5)

where 𝜆1 = 0 < 𝜆2 < ... < 𝜆𝑛 is the eigenvalues of matrix
𝐿 and the corresponding eigenvector is v𝑖, |v𝑖| = 1. Given a
connected graph, there exists a trival eigenvalue 𝜆1 = 0 and
the corresponding eigenvector v1 = [1, 1, ..., 1]𝑇 . In practical
scenarios, 𝜌 is usually small and 𝜌 is usually characterized by
(1 − 𝛼𝜆2)2 [4, 31]. Hence, a larger 𝜆2 will result in a smaller
𝜌 and better convergence rate. Our concern is how to choose
a set of edges(denoted as 𝒮) that could maximize 𝜆2(𝐿(𝒮)),
where 𝐿(𝒮) is the laplacian matrix after we add the set 𝒮 of
edges to the graph, abbreviated as 𝜆2(𝒮).

Problem 1. Computing the optimal set 𝒮 of edges.

Given: The adjacency matrix of a connected graph and a
budget number 𝑘.

Find: A budget number 𝑘 of edges 𝒮 (|𝒮| = 𝑘 ) that, when
added, could maximize the second smallest eigenvalue
𝜆2(𝒮) of the Laplacian matrix 𝐿(𝒮).

Remark 1. Maximizing 𝜆2(𝒮) could increase 𝜌, thereby
improving the convergence rate. A parallel challenge arises
when determining the optimal set of redundancy edges to be
removed that don’t influence 𝜆2(𝒮). The key issue of Problem
1 is to characterize the importance of edges, which could also
be used to identifying the insignificant edges (i.e., edges to
be removed) with minor modification. Hence, in the method,
we focus on the analysis of adding edges. In the experiment,
we also present the results of removing edges.

3
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4 THE PROPOSED ACCELERATING
ALGORITHM

4.1 Complexity of 𝜆2(𝒮) optimization

we first consider five types of graphs in Fig. 1: star, line, circle,
sparse graph, and fully connected graph. Fully connected
graph has the same performance with the central-based FL,
because every node has the same updating scheme with
the parameter server in central-based FL. We observe that
certain graphs may possess varying numbers of edges while
sharing the same 𝜆2, implying that certain edges contribute
insignificantly to the convergence rate of DFL.

𝝀𝟐 = 1 𝝀𝟐 = 0.268 𝝀𝟐 = 1 𝝀𝟐 = 1 𝝀𝟐 = 6 

Figure 1: An example of 𝜆2 in different types of
graphs. Notice that some graphs may have different
number of edges but have the same 𝜆2.

We consider the variation of 𝜆2 (eigen-var), ∆(𝒮) = 𝜆2(𝒮)−
𝜆2, where 𝜆2(𝒮) denotes the second smallest eigenvalue of the
Laplacian matrix after adding edges 𝒮 to the graph. Problem
1 is rephrased of finding the optimal set 𝒮 that maximizes
∆(𝒮). We have the following theorem:

Theorem 1. Finding the best set 𝒮 of added edges to
maximize ∆(𝒮) is NP-Complete.

Proof : We transfer the problem into the eigenvalue op-
timization of adjacency matrix. Let 𝑄 = 𝐼 − 𝛿𝐿, where 𝛿
is a small positive number, 𝛿 < 1

𝑑𝑚𝑎𝑥
with 𝑑𝑚𝑎𝑥 being the

largest degree of the graph. We have 𝑄𝑖𝑗 = 𝛿𝑎𝑖𝑗 , 𝑖 ̸= 𝑗, and
otherwise 𝑄𝑖𝑗 = 1 − 𝛿𝑑𝑖, 𝑖 = 𝑗. Hence, we could treat 𝑄
an adjacency matrix of a graph that contain selfloops. 𝑄
has a trival (largest) eigenvalue 1. 𝜆2 could be calculated as
𝜆2 = (1 − 𝜆𝑛−1(𝑄))/𝛿, where 𝜆𝑛−1(𝑄) is the second largest
eigenvalue of 𝑄. Hence, maximizing ∆(𝒮) is equivalent to
minimizing 𝜆𝑛−1(𝑄). Based on refs. [9, 38, 45], the eigenvalue
minimization based on edge manipulation has been proved
to be NP-Complete. Hence, we arrive at Theorem 1.�

For NP-Complete problem, it is impossible to calculate
the optimal solution in polynomial time. Thus, we propose
an approximation solution to solve the problem.

4.2 Approximation of 𝜆2(𝒮)
After adding the set of edges 𝒮 to the graph, we assess the
eigenvalue of 𝜆2(𝒮) as̃︀𝜆2(𝒮) = 𝜆2 +

∑︁
(𝑖,𝑗)∈𝒮

(v2,𝑖 − v2,𝑗)
2, (6)

where v2,𝑖 is the 𝑖−th entry of the eigenvector v2 and ̃︀𝜆2(𝒮)
means the estimation of 𝜆2(𝒮). Intuitively, based on Eq, 6,
the addition of an edge has high ‘eigen-var’ if the endpoints
of the edge are dissimilar with either. Adding edges to the

graph increases ̃︀𝜆2(𝒮) and removing existing edges might

decrease ̃︀𝜆2(𝒮).
Lemma 2. Let 𝜎 = 𝜆3 −𝜆2 denote the eigen-gap between

the second and third smallest eigenvalues of 𝐿. If 𝜎 >=
2
√

2𝑘2 + 2𝑘, then

∆(𝒮) =
∑︁

(𝑖,𝑗)∈𝒮

(v2,𝑖 − v2,𝑗)
2 + 𝑂(2𝑘2 + 2𝑘), (7)

where ∆(𝒮) = 𝜆2(𝒮) − 𝜆2.
Proof : We first construct a perturbed matrix 𝐸 ∈ R𝑛×𝑛

after adding edges set 𝒮. For the off-diagonal elements, 𝐸𝑖𝑗 =
−1 if (𝑖, 𝑗) ∈ 𝒮; 𝐸𝑖𝑗 = 0 otherwise. For the diagonal elements,
𝐸𝑖𝑖 = −

∑︀
𝑗=1:𝑛,𝑗 ̸=𝑖 𝐸𝑖𝑗 . 𝐸 could be decomposed of 𝑘 sub-

matrices, 𝐸 = 𝐸1 + 𝐸2 + ... + 𝐸𝑘, where each 𝐸𝑖 represents
the corresponding perturbed matrix of one edge in 𝒮. Let
the 𝑖−th edge in 𝒮 has two endpoints (𝑎, 𝑏), we have

v𝑇
2 𝐸𝑖v2 = v2

2,𝑎 + v2
2,𝑏 − 2v2,𝑎v2,𝑏 = (v2,𝑎 − v2,𝑏)

2. (8)

According to the matrix perturbation theory [46], we have

𝜆2(𝒮) = 𝜆2 + v𝑇
2 𝐸v2 + 𝑂(||𝐸||2𝐹 )

= 𝜆2 +
∑︁
𝑖=1:𝑘

v𝑇
2 𝐸𝑖v2 + 𝑂(||𝐸||2𝐹 )

= 𝜆2 +
∑︁

(𝑎,𝑏)∈𝒮

(v2,𝑎 − v2,𝑏)
2 + 𝑂(||𝐸||2𝐹 ), (9)

where ||𝐸||𝐹 is the Frobenious norm of 𝐸, ||𝐸||𝐹 =
√︁∑︀

𝑖

∑︀
𝑗 𝐸

2
𝑖𝑗 .

Recalling the property of 𝐸 that there are 2𝑘 off-diagonal ele-
ments with value −1, and the sum of the diagonal elements of
𝐸 is 2k, hence we have 4𝑘 ≤ ||𝐸||2𝐹 , ||𝐸||22 ≤ 2𝑘2 + 2𝑘, where
||𝐸||2 is the 𝑙2 norm of 𝐸. Moreover, based on the matrix
perturbation theory [46], we also havẽ︀𝜆2(𝒮) ≤ 𝜆2 + ||𝐸||2 ≤ 𝜆2 +

√︀
2𝑘2 + 2𝑘, (10)̃︀𝜆𝑖(𝒮) ≥ 𝜆𝑖 − ||𝐸||2 ≥ 𝜆𝑖 −

√︀
2𝑘2 + 2𝑘, 𝑖 = 3, 4, ..., 𝑛. (11)

Since 𝜎 >= 2
√

2𝑘2 + 2𝑘, we have ̃︀𝜆2(𝒮) < ̃︀𝜆𝑖(𝒮), 𝑖 = 3, 4, ..., 𝑛.

Hence ̃︀𝜆2(𝒮) is the estimation of 𝜆2(𝒮) and we arrive at

∆(𝒮) =
∑︁

(𝑖,𝑗)∈𝒮

(v2,𝑖 − v2,𝑗)
2 + 𝑂(2𝑘2 + 2𝑘), (12)

which completes the proof.�
Lemma 2 provides a convenient and efficient approach for

the rapid evaluation of the eigen-var, instead of recalculat-
ing the corresponding eigenvalue. In the subsequent section,
we leverage Lemma 2 to devise a fast algorithm aimed at
maximizing 𝜆2(𝒮).

4.3 Proposed algorithm SSEO

The propose Second Smallest Eigenvalue Optimization (SSEO)
algorithm is shown in Alg. 1. The central issue of Alg. 1 is

to choose the best set of edges to maximize ̃︀𝜆2(𝒮) in Eq. 6.
In Algorithm 1, the Laplacian matrix 𝐿 (line 1) and the

second smallest eigen-pair (𝜆2,v2) (line 2) are computed. We
initialize the set 𝒮 as empty (line 3) and use a temporary
array 𝑈 to store the values of each potential edge (line 4).
The values of each nonexisting edge are calculated in lines

4
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5-14. The top-𝑘 edges in 𝑈 are determined in lines 14-15
using a sorting algorithm and the selected edges are then
stored in 𝒮.

Algorithm 1: Algorithm to optimize 𝜆2(𝒮) (SSEO)

Input: The adjacency matrix 𝐴, and a budget number 𝑘.
Output: Edge set 𝒮 with 𝑘 elements.

1 Compute the Laplacian matrix 𝐿 = 𝐷 −𝐴;

2 Compute the second smallest eigenvalue 𝜆2 and the
corresponding eigenvector v2;

3 Initialize 𝒮 to be empty;

4 initialize an array 𝑈 [𝑛][𝑛]; //Each element corresponds
to one potential edge.

5 for 𝑖 = 1 : 𝑛 do
6 for 𝑗 = 𝑖 + 1 : 𝑛 do
7 if 𝐴[𝑖][𝑗] == 1 then
8 𝑈 [𝑖][𝑗] = 0;

9 else
10 𝑈 [𝑖][𝑗] = (v2,𝑖 − v2,𝑗)

2;

11 end

12 end

13 end

14 Get the top-𝑘 elements from the uppertriangular part of
𝑈 by the descending order and save the values and
corresponding edges to array 𝑅;

15 Add edges in 𝑅 to 𝒮.

16 return 𝒮;

Next, we analyze the accuracy and efficiency of SSEO.

Theorem 2 Effectiveness of SSEO: Let ̃︀∆(𝒮) =
∑︀

(𝑖,𝑗)∈𝒮

(v2,𝑖 − v2,𝑗)
2. Alg. 1 could maximize the ̃︀∆(𝒮).

Proof : Let 𝒮 and 𝒮* denote the sets detemined by Alg. 1
and the theoretical best set, respectively, and the correspond-

ing eigenvalue variances are ̃︀∆(𝒮) and ̃︀∆(𝒮*).
We consider two cases:
Case 1: 𝒮

⋂︀
𝒮* = ∅. In lines 14–15, we chosen edges with

top-𝑘 values, and hence ∀(𝑎, 𝑏) ∈ 𝑆 and ∀(𝑐, 𝑑) ∈ 𝑆*, (v2,𝑎 −
v2,𝑏)

2 ≥ (v2,𝑐 − v2,𝑑)2. Consequently, ̃︀∆(𝒮) ≥ ̃︀∆(𝒮*). Since

𝒮* is the best set, we also have ̃︀∆(𝒮) ≤ ̃︀∆(𝒮*). As a result,̃︀∆(𝒮) = ̃︀∆(𝒮*).

Case 2: 𝐻 = 𝒮
⋂︀

𝒮* ̸= ∅. ̃︀∆(𝒮) and ̃︀∆(𝒮*) could be de-

composed as ̃︀∆(𝒮) = ̃︀∆(ℋ) + ̃︀∆(𝒮 ∖ ℋ). ̃︀∆(𝒮*) = ̃︀∆(ℋ) +̃︀∆(𝒮* ∖ ℋ). Based on case 1, we also have ̃︀∆(𝒮 ∖ ℋ) = ̃︀∆(𝒮* ∖ ℋ).

Hence, ̃︀∆(𝒮) = ̃︀∆(𝒮*).

Combing the two cases, we have ̃︀∆(𝒮) = ̃︀∆(𝒮*). �
Lemma 3 Time complexity of SSEO. The computa-

tional complexity of Alg. 1 is 𝑂(𝑛2 + 𝑘 ln(𝑛)).
Proof : Line 1 costs time 𝑂(𝑛). Computing the eigen-pair

(𝜆2,v2) (line 2) costs 𝑂(|𝐸|). Lines 3–4 cost 𝑂(1). Lines 5–13
cost 𝑂(𝑛2). Lines 14–15 could be executed by heap sort that
has time complexity 𝑂(𝑘 ln(𝑛2)). Hence, the overall time
complexity is 𝑂(𝑛2 + 𝑘 ln(𝑛)).�

Lemma 4 Space cost of SSEO. The space cost of Alg.
1 is 𝑂(𝑛2).

Proof : The space of 𝐿 is 𝑂(𝑛2) in line 1. In line 4, 𝑈 costs
space 𝑂(𝑛2). In line 14, we could use a temporary array to
save the sorted top-𝑘 values, which costs 𝑂(𝑛2). Hence the
overall space cost is 𝑂(𝑛2).�

Algorithm 2: Algorithm to optimize 𝜆2(𝒮) (SSEO+)

Input: The adjacency matrix 𝐴, an integer 𝑟, and a
budget number 𝑘.

Output: Edge set 𝒮 with 𝑘 elements.
1 𝒮 = 𝑆𝑆𝐸𝑂(𝐴, 𝑘);

2 Compute the Laplacian matrix 𝐿 = 𝐷 −𝐴;

3 Compute the smallest-𝑟 eigenvalue 𝜆𝑖 and the
corresponding eigenvector v𝑖 (𝑖 = 1, 2, ..., 𝑟);

4 Calculate ̃︀𝜆𝑖(𝒮) based on Eq. 13;

5 initialize an array 𝑈 [𝑛][𝑛];

6 for i=1:k do
7 Let (𝑎, 𝑏) be the 𝑖−th edge in 𝒮 and compute

𝜁({(𝑎, 𝑏)}) based on Eq. 15;
8 Remove (𝑎, 𝑏) from 𝒮;

9 for 𝑖 = 1 : 𝑛 do
10 for 𝑗 = 𝑖 + 1 : 𝑛 do
11 if 𝐴[𝑖][𝑗] == 1 then
12 𝑈 [𝑖][𝑗] = 0;

13 else

14 𝜁({(𝑖, 𝑗)}) = ̃︀𝜆2(𝒮
⋃︀
{(𝑖, 𝑗)}) − ̃︀𝜆2(𝒮);

15 𝑈 [𝑖][𝑗] = 𝜁({(𝑖, 𝑗)});

16 end

17 end

18 end

19 Compute the largest elements from 𝑈 , denoted as
𝜁𝑚𝑎𝑥 and the corresponding edge is (𝑐, 𝑑);

20 if 𝜁({(𝑎, 𝑏)}) ≥ 𝜁𝑚𝑎𝑥 then
21 Add (𝑎, 𝑏) to 𝒮;

22 else
23 Add (𝑐, 𝑑) to 𝒮;

24 end

25 end

26 return 𝒮;

4.4 A Variant: SSEO+ Algorithm

In Lemma 2, it is required that the eigen-gap and the budget
number 𝑘 satisfy 𝜎 ≥ 2

√
2𝑘2 + 2𝑘. Consequently, we have

𝑘 ≤ 𝑘𝑚𝑎𝑥 =
√︁

𝜎
8

+ 1
4
− 1

2
. This constraint implies that in

order to obtain a high approximation of 𝜆2(𝒮), the number
of candidate edges should be less than 𝑘𝑚𝑎𝑥. However, this
constraint cannot be met when we aim to add more edges.
It is worth noting that 𝜎 is typically small in real graphs.
Previous research in the field of graph community detection
has shown that the Laplacian matrix of a graph has 𝑟 − 1
eigenvalues close to zero, where 𝑟 is the number of communi-
ties. Real-world graphs such as Internet AS graphs, online
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social graphs, and infrastructure graphs often exhibit com-
munity structure. Consequently, 𝜎 is usually small, rendering
Algorithm 1 inappropriate for large 𝑘.

To address the problem, we propose SSEO+ algorithm in

Alg. 2. In Alg. 2, we estimate the ̃︀𝜆2(𝒮) as̃︀𝜆2(𝒮) = 𝑚𝑖𝑛{𝜆𝑖 +
∑︁

(𝑎,𝑏)∈𝒮

(v𝑖,𝑎 − v𝑖,𝑏)
2, 𝑖 = 2, 3, ..., 𝑟}, (13)

where 𝑟 is the number of communities in the graph. In fact,
Eq. 6 is a particular case of Eq. 13 when 𝑟 = 2. The objective

is to choose the best 𝒮 that maximizes ̃︀𝜆2(𝒮) in Eq. 13, which
is a combinational optimization problem, defined as

𝑚𝑎𝑥𝒮{𝑚𝑖𝑛{𝜆𝑖 +
∑︁

(𝑎,𝑏)∈𝒮

(v𝑖,𝑎 − v𝑖,𝑏)
2, 𝑖 = 2, 3, ..., 𝑟}}, (14)

𝑠.𝑡.|𝒮| = 𝑘.

Optimizing the aboved combinational optimization problem
is NP-hard. In Alg. 2, SSEO+ optimizes Eq. 14 by improving
SSEO. After computing a candidate set 𝒮 based on SSEO
(line 1) in Alg. 2, we compute the contribution of each edge
in 𝒮 (line 7), where the contribution of edge (𝑖, 𝑗) ∈ 𝒮 is
evaluated as

𝜁({(𝑖, 𝑗)}) = ̃︀𝜆2(𝒮) − ̃︀𝜆2(𝒮 ∖ {(𝑖, 𝑗)}), (15)

where ̃︀𝜆2(𝒮) is computed by Eq. 13. If the contribution of an
edge (𝑖, 𝑗) in 𝒮 is less than the ones (𝑖′, 𝑗′) in the remaining
edge set, we remove (𝑖, 𝑗) from 𝒮 and add (𝑖′, 𝑗′) to 𝒮 (lines
6–25), where the contribution of (𝑖′, 𝑗′) is computed in lines
9–18.

By a similar procedure for SSEO, we can show that the
time complexity of SSEO+ is 𝑂(𝑘𝑛2𝑟); and its space cost is
the same as that of SSEO.

Determination of 𝑟: There is a free parameter 𝑟 in Al-
g. 2. It is important to note that increasing the value of
𝑟 has the potential to enhance the performance, with the
cost of more time consumption. Specifically, 𝑟 denotes the
number of communities in the graph. We could first perform
community detection to determine 𝑟. Numerous community
detection techniques can be employed for this purpose. In the
experiment, the Louvain method is utilized to determine the
value of 𝑟, where Louvain is a well known modularity-based
method to detect communities in graphs [47, 48].

Remark 2. SSEO and SSEO+ exclusively address the
scenario of adding new edges, failing to consider the removal
of redundant edges. However, it is possible to extend both
methods to account for removing redundant edges. Specifical-
ly, in Alg. 1, we adapt line 14 to select the least-𝑘 elements.
In Alg. 2, we modify line 19 to compute the smallest element
from set 𝑈 . These modifications are relatively minor in na-
ture. It is noteworthy that we also include the experimental
results pertaining to the removal of edges based on the minor
modifications.

5 EXPERIMENT

Here, we are interested in the performance of theoretical
analysis on real data. Our experiments run on a cluster

of four computers with 1 2.4GHz Intel(R) i7 CPU, 32GB
memory and 64bit Ubuntu 20.04.

5.1 Experimental setup

Datasets. We conduct experiments on four real datasets.
The four real datasets 1 include: (a) RealityMining: This is
an undirected graph containing human contact data among
students of the Massachusetts Institute of Technology (MIT),
collected by the Reality Mining experiment performed in
2004 as part of the Reality Commons project. The graph has
96 nodes and 2539 edges. (b) NetScience: This is a graphs
of co-authorships in the area of network science. The graph
has 379 nodes and 914 edges. (c) AS: This is an undirected
graph of autonomous systems of the Internet. Nodes are
autonomous systems (AS), and edges denote communication.
The graph has 487 nodes and 1078 edges. (d) Facebookego:
The is the friendship of an ego graph on Facebook. The graph
has 2888 nodes and 2981 edges.

Environment of DFL. On the computer cluster, we sim-
ulate the decentralized federated learning, where each node
is represented by a deep learning model and the connections
between nodes follow the structure introduced in the datasets.
We evaluate the performance in the image classification on
CIFAR-10 [49]. CIFAR-10 consists of 60000 color images in 10
classes. We use the classical ResNet-50 as the deep learning
model to be trained. All images are evenly partitioned over
all nodes. The initial learning rate is set as 0.8 and it decays
by 10 after 100 epochs (The learning rate is fine-tuned for
vanilla DecenSGD and used for all other algorithms). The
mini-batch size is 64 and the model is trained at most 1500
epochs.

Benchmark Methods. We compare our methods SSEO
and SSEO+ with four state-of-the-art methods.

∙ RW𝐶ℎ𝑎𝑜𝑠2008 [39]: This method increases the synchro-
nization in complex network by rewiring edges based
on the graph Laplacian eigenvectors. .

∙ RatioW𝑇𝑁𝑆𝐸2016 [6]: This method optimizes the syn-
chronization in complex graphs based on the perturba-
tion of the ratio of the second smallest eigenvalue and
the largest eigenvalue of the Laplacian matrix.

∙ MATCHA𝑇𝑆𝑃2022 [5]: This method allows nodes to
communicate more frequently over connectivity-critical
edges to increase the synchronization speed to solve
the bottleneck of communication delay.

∙ CoCo𝑇𝑀𝐶2023 [50]: This method accelerates DFL by
optimize the weight of the existing edges and model
compression. In the method, we allow the method to
optimize a budget 𝑘 of edges as well as our methods.

Evaluation metrics. The central metric to evaluate the
effectiveness of different methods is the second smallest eigen-
value 𝜆2(𝒮). Larger 𝜆2(𝒮) means more effectiveness of the
methods and is better. Besides, we also compare the conver-
gence rate of different methods and higher convergence rate
is better. At last, we compare the time consumption under
different graphs to evaluate the efficiency.

1Konect Network Collection. http://konect.cc/networks/
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5.2 Experiment results
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Figure 2: 𝜆2(𝒮) as a function of the number of
added edges. Larger 𝜆2(𝒮) is better. (a) RealityMin-
ing graph. (b) NetScience graph. (c) AS graph. (d)
Facebookego graph.

5.2.1 Effectiveness of SSEO and SSEO+. We compare the
𝜆2(𝒮) with respect to the number of added edges in Fig. 2. In
Fig. 2, our proposed method SSEO+ outperforms the existing
methods across all graph instances. We notice that MATCHA
exhibits poor performance in Fig. 2, because MATCHA aims
to optimize the communication frequencies on different edges
to mitigate communication delays. The underlying graph
structure remains unchanged by MATCHA, and hence, the
variation in 𝜆2(𝒮) is relatively minimal. On the other hand,
SSEO fluctuates largely in different graphs, SSEO performs
well in Fig. 2(a)(c), but not so good in (b)(d). Because we
assume that the eigen-gap between the second and third
largest eigenvalues of 𝐿 is large in Lemma 2. However, some
real graphs have small eigen-gaps that don’t satisfy the as-
sumption. Hence, SSEO exhibits poorer performance in such
graph instances. Conversely, SSEO+ considers the case of
small eigen-gaps, which greatly increases 𝜆2(𝒮).

Besides, we show the performance of SSEO and SSEO+ on
removing redundancy edges in Fig. 3. We modify SSEO and
SSEO+ by consider the least decrease of 𝜆2(𝒮) as discussed
in remark 2. Figure 3 shows that removing the redundancy
edges rarely influences the 𝜆2(𝒮) and the convergence rate,
validating the effectiveness of our methods.

We then perform DFL using vanilla decentralized SGD on
different graphs. Here, we perform vanilla decentralized SGD
on two graphs (RealityMining and NetScience) and use the
classical cross entropy as the loss function. Figure 4 shows
the training loss evolution over epochs for the aforementioned
graphs. We see that the training loss of SSEO+ decays (de-
creases) faster than the other methods, which agrees well
with Fig. 2. To better capture the convergence rate, Table
1 displays the minimum number of epochs required for the
training loss to drop below 0.1 for Fig. 4. We see that SSEO+
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Figure 3: 𝜆2(𝒮) as a function of the number of re-
moved (redundancy) edges. Stable 𝜆2(𝒮) is better.

Table 1: The minimum epoches that the training
loss is less than 0.1. We train a ResNet-50 model on
CIFAR-10 dataset. We count the epoches that the
training loss first decreases to 0.1. Smaller is better.

graph RW RatioW CoCo SSEO SSEO+

RealityMining 255 254 255 232 232 ↓
NetScience 1490 1489 1055 1060 957 ↓

exhibits the lowest number of epochs, indicating a higher
convergence rate. In Table 1, we don’t show the minimum
epochs for MATCH method, because MATCH requires much
larger epochs to reach 0.1 in Fig. 4, which is omitted for space
limitation. Besides, the performance of vanilla decentralized
SGD in the other two graphs are similar to Fig. 4 and Table
1, which isn’t show to save space.
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Figure 4: The training loss as a function of epochs
in different graphs. We train a ResNet-50 model on
CIFAR-10 dataset. Each subfigure represents a re-
sult using different graphs as the structure of DFL.
(a) RealityMining graph. (b) NetScience graph.

5.2.2 Efficiency of SSEO and SSEO+. Since SSEO is actually
a specific case that focuses only on perturbing the second
smallest eigenvalue, we primarily investigates the time com-
plexity of SSEO+ in graphs with varying numbers of nodes
and edges. We first use the configuration model [7] to gener-
ate random graphs with different numbers of nodes. Figure 5
illustrates the time consumption as a function of the number
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Table 2: The pearson correlation between estimated

eigenvalue ̃︀𝜆2(𝒮) and real eigenvalue 𝜆2(𝒮) for differ-
ent budget 𝑘 of added edges.

k ‘RealityMining’ ‘NetScience’ ‘AS’ ‘Facebookego’

2 0.9995 0.9993 0.9997 0.9991
5 0.9991 0.9952 0.9991 0.9982
10 0.9972 0.9902 0.9634 0.9908
20 0.9945 0.9150 0.9837 0.9639
40 0.9989 0.7591 0.9805 0.8694

of nodes and edges. Figure 5(a) demonstrates that graphs
with the same number of edges and varying numbers of nodes
exhibit a quadratic increase in time consumption. Conversely,
Figure 5(b) shows that graphs with the same number of nodes
but different numbers of edges have negligible changes in time
consumption, as the time complexity is solely dependent on
the number of nodes.
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Figure 5: (a) Time consumption as a function of the
number of nodes in the graph. All graphs have 5000
edges, but different numbers of nodes. (b) Time con-
sumption as a function of the number of edges in
the graph. All graphs have 100 nodes, but different
numbers of edges.

5.2.3 Validation of our assumption. In Eq. 6, we evaluate the

eigenvalue ̃︀𝜆2(𝒮) based on the first-order perturbation of 𝜆2.

Table 2 presents the Pearson correlation between ̃︀𝜆2(𝒮) and
𝜆2(𝒮) for different budget 𝑘 of added edges. When 𝑘 is small,̃︀𝜆2(𝒮) approximates 𝜆2(𝒮) quite well; with the increase of
𝑘, the Pearson correlation is still high (≥ 0.8). Note that
when 𝑘 = 40, the Pearson correlation is less than 0.8 in the
NetScience graph, because the 𝜆2(𝒮) is determined by the
perturbation of other eigenvalues under the scenario, which
is also reflected in Fig. 2. If we use Eq. 13 to evaluate 𝜆2(𝒮),
the Pearson correlation is still larger than 0.8.

5.2.4 A case study in real graph. Our methods SSEO and
SSEO+ offer a solution for selecting influential edges to
enhance 𝜆2(𝒮), as well as identifying redundant edges that
can be removed without decreasing 𝜆2(𝒮).

We present a graphical representation (see Fig. 6) depicting
the addition of edges (highlighted in red) and the removal
of edges (highlighted in green) in the RealityMining graph

based on the SSEO+. In Fig. 6, the added edges tend to
connect nodes with distinct entry values in the eigenvector,
whereas the removed edges are inclined to connect nodes
with similar entry values. These findings are consistent with
the analysis of Eq. 6 that the contribution of each edge is
(v2,𝑖 − v2,𝑖)

2.
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Figure 6: A schematic illustration of added edges
(red) and removed edges (green) in RealityMining
graph. The color depth of nodes represents the en-
try value in the eigenvector v2. The added edges are
inclined to connect nodes with quite different color
depth; while the removed edges are inclined to con-
nect nodes with similar color depth.

6 CONCLUSION

In this paper, we address the issue of accelerating the Dis-
tributed Federated Learning by augmenting the communica-
tion graph with additional edges. Firstly, we formally define
the convergence rate of DFL and demonstrate that increas-
ing the second smallest eigenvalue of the Laplacian matrix
associated with the communication graph can enhance the
convergence rate. Subsequently, we investigate the problem
of how to choose edges that maximize the second smallest
eigenvalue. Through our analysis, we quantify the pertur-
bation in eigenvalues caused by the addition of new edges.
Furthermore, we develop effective algorithms to select the
optimal edges for maximizing the second smallest eigenvalue.
The experimental results clearly indicate that our algorithm
surpasses existing methods by a substantial margin.

Our method could be easily combined with existing accel-
erating methods, such as parameter compression and com-
munication scheduling. Besides, it is worth mentioning that
our approach can be extended to address the removal of such
insignificant edges. Within the communication framework
of DFL, certain edges may have negligible impact on the
convergence rate, but consume communication bandwidth.
Further investigation is still required to uncover the underly-
ing mechanisms governing redundant edges.
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