
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Accelerating the decentralized federated learning via
manipulating edges in complex graph

Anonymous Author(s)*

ABSTRACT

Federated learning enables collaborative AI training across
organizations without compromising data privacy. Decen-
tralized federated learning (DFL) improves this by offering
enhanced reliability and security through peer-to-peer (P2P)
model sharing. However, DFL faces challenges in terms of
slow convergence rate due to the complex P2P graphs. To
address this issue, we propose an efficient algorithm to ac-
celerate DFL by introducing a limited number 𝑘 of edges
into the P2P graphs. Specifically, we establish a connection
between the convergence rate and the second smallest eigen-
value of the laplacian matrix of the P2P graph. We prove that
finding the optimal set of edges to maximize this eigenvalue
is an NP-complete problem. Our quantitative analysis shows
the positive effect of strategic edge additions on improving
this eigenvalue. Based on the analysis, we then propose an
efficient algorithm to compute the best set of candidate edges
to maximize the second smallest eigenvalue, and consequently
the convergence rate is maximized. Our algorithm has low
time complexity of 𝑂(𝑘𝑟𝑛2). Experimental results on diverse
datasets validate the effectiveness of our proposed algorithms
in accelerating DFL convergence.

CCS CONCEPTS

∙ Computing methodologies → Distributed comput-
ing methodologies.

KEYWORDS

Decentralized federated learning, convergence rate, influential
edge

ACM Reference Format:

Anonymous Author(s). 2018. Accelerating the decentralized fed-
erated learning via manipulating edges in complex graph. In

Proceedings of Make sure to enter the correct conference title
from your rights confirmation emai (Conference acronym ’XX).
ACM, New York, NY, USA, 10 pages. https://doi.org/XXXXXXX.

XXXXXXX

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first
page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
c○ 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

Artificial intelligence (AI) has found applications in diverse
domains, such as natural language processing, face recogni-
tion, recommender systems, and smart transportation. How-
ever, due to privacy concerns and commercial competition,
certain data cannot be shared or moved among different orga-
nizations or agents [1]. To address this challenge, Federated
Learning (FL) has emerged as a promising approach that en-
ables multiple agents to collaboratively train AI models while
preserving the privacy of local data [2]. In classical federated
learning, each agent trains a local model and shares its model
parameters (or parameter gradients) with a central parame-
ter server. The server then updates the model and sends it
back to the agents. However, this approach is hindered by
communication and computational bottlenecks of the central
server with the number increase of agents [1]. Additionally, in
situations such as wireless sensor networks, some agents may
not have direct access to the central parameter server. As a
result, Decentralized Federated Learning (DFL) has garnered
significant attention in recent years [3, 4]. This approach
eliminates the need for a centralized parameter server and
allows agents to exchange model parameters solely with their
neighboring agents. By doing so, the decentralized framework
mitigates the bandwidth requirements for the server and
presents a more scalable and efficient solution for systems
with millions(or more) of agents [5].

In DFL, ensuring model consensus among different agents
is a prerequisite. The consensus criteria in the fields of decen-
tralized learning and complex networked systems is commonly
characterized by the ratio of the second smallest eigenvalue
to the largest eigenvalue of the laplacian matrix of a graph
[4, 6, 7]. An interesting and more general problem emerges:
how to enhance the convergence rate of DFL. This problem
is closely related to various factors such as the computation
speed of agents, the bandwidth between agents, the commu-
nication protocol, and the graph topology [4, 5]. Over past
decades, the sizes of deep learning models have been rapid-
ly growing, reaching up to more than 100MB. Frequently
transferring such large model parameters, even with model
compression, imposes a significant burden on the bandwidth
[5]. To address this issue, designing an appropriate graph
topology to expedite convergence and reduce the frequency
of model exchange between agents becomes a plausible solu-
tion [4, 8]. On one hand, previous research has shown that
many real-world large graphs, including social/mobilephone
networks with over 1 million users, exhibit remarkably slow
convergence rates [9], implying that we should add more
edges to accelerate the convergence rate. On the other hand,
certain edges in the graph may contribute minimally, or not

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

at all, to the model consensus, implying that we should re-
move these edges to avoid insignificant communication. To
the best of our knowledge, there is a scarcity of literature that
quantitatively analyzes the optimization of graph topology
associated with convergence rate in DFL.

In this paper, we propose a novel approach, namely Second
Smallest Eigenvalue Optimization (SSEO) and its variant
SSEO+, to enhance the convergence rate of DFL by incor-
porating a budget number 𝑘 of additional edges. We first
show that accelerating DFL could be achieved by increasing
the second smallest eigenvalue of the Laplacian matrix as-
sociated with a graph, and how determining the best set of
edges is an NP-complete problem. Subsequently, we employ
the eigenvalue perturbation technique to analyze the impact
of edge addition on the second smallest eigenvalue. Finally,
we devise an efficient algorithm to select the optimal set of
edges to accelerate DFL. The primary contributions of this
study can be summarized as follows:

∙ Understanding Convergence Through Graph Metrics:
Our research explores the intricate relationship be-
tween model training convergence rate and the second
smallest eigenvalue of the associated graph’s Lapla-
cian matrix. We extend this by investigating how edge
manipulation–specifically, the addition or removal of
edges–affects this critical eigenvalue.

∙ Design new Topology Optimization Algorithms: We
introduce two novel algorithms, SSEO and its enhanced
version SSEO+. These algorithms are designed to select
the most beneficial set of edges that maximize the
second smallest eigenvalue, serving as a pivotal factor
for faster convergence. Notably, SSEO operates with
a time complexity of 𝑂(𝑘𝑛2) while SSEO+ features a
time complexity of 𝑂(𝑘𝑟𝑛2).

∙ Conduct extensive empirical validation experiments:
We conduct extensive experiments using various dataset-
s. The results unequivocally demonstrate that SSEO
and SSEO+ outperform state-of-the-art baselines.

2 RELATED WORK

Federated learning: FL was initially proposed by researcher-
s at Google in 2016 [3]. FL operates by sharing model parame-
ters rather than user data, thus ensuring privacy preservation
and overcoming geographical limitations, enabling efficient
collaboration on a global scale [2, 10, 11]. However, tradition-
al central server-based FL faces challenges of communication
and computational bottlenecks [2, 5]. As a result, DFL has
garnered significant attention in recent years. Noteworthy s-
tudies in this area encompass peer-to-peer FL [12], server-free
FL [8], serverless FL [13], device-to-device FL [14], swarm
learning [15], among others [2]. In DFL, each agent interact-
s with its neighboring agents, leading to the formation of
diverse structures, including line, ring, fully-connected, and
complex graph structures [4]. Aysal et al. [16, 17] investigat-
ed the communication protocols. Additionally, Nedić et al.

[4] examine the influence of network topology on the prob-
lem. Furthermore, Yuan et al. [2] provided a comprehensive
summary of recent works on DFL.

Distributed Optimization: The distributed optimiza-
tion models aims to design enhance the performance of learn-
ing models in distributed environment. Tsitsiklis et al. [18–21]
demonstrated that the decentralized gradient descent strate-
gy achieves average consensus and presented convergence rate
criteria for both static and time-varying graphs. Furthermore,
Nedić et al. [22–24] investigated decentralized optimization
of nondifferentiable (but convex) functions. Kempe et al.
[25–27] extended decentralized optimization from directed
graphs to directed graphs. Ram et al. [28–30] examined the
influence of noise on the DFL. Additionally, He et al. [8]
introduced DFL in single-sided trust social networks. It was
shown by Nedić et al. [4] that a dense topology leads to a
faster convergence rate, implying less training epochs, but it
may result in network congestion and long time delays. To
address this, Wang et al. [1, 31] proposed MATCHA, which
divides the original topology into disjoint communication sub-
graphs, reducing the frequency of model transmission. Zhou
et al. [32] accelerate decentralized training by assigning a
high probability to high-speed links for peer communication.

Edge manipulation: Manipulating edges in the graph is
a plausible solution to improve the convergence rate of DFL.
This involves adding new edges to the graphs and removing
redundant ones. The problem has been extensively studied
in the context of synchronization (consensus) in complex
networks [33, 34]. Various researchers have made significant
contributions in this area. For instance, Pecora et al. [35, 36]
explored synchronization criteria based on the eigenvalues
of the graph’s Laplacian matrix. They investigated how the
addition, removal, and relocation of individual edges influ-
enced the network’s ability to synchronize. Similarly, Tong et
al. [9, 37, 38] identified and removed the influential nodes to
manipulate the eigenvalues of the adjacency matrix and Lapla-
cian matrix respectively. Additionally, Hagberg et al. [6, 39]
proposed a method to improve synchronization by rewiring
the edges in the graph. The studied graphs encompass varia-
tions such as undirected/directed, unweighted/weighted, and
time-varying properties [40–42].

Our study draws parallels with the edge rewiring optimiza-
tion and influential edge detection in refs. [9, 39]. In these
studies, the authors focused on rewiring edges to enhance
synchronization. In contrast, our objective is to manipulate
a budget number of influential edges to augment the conver-
gence rate of DFL. Our work differs from previous studies
in three key aspects: (a) We employ a distinct criterion to
quantify the impact of edge addition on the second smallest
eigenvalue. (b) We propose a rapid algorithm that guaran-
tees the performance error, whereas previous methods were
predominantly heuristic. (c) While prior works rewired edges
to enhance synchronization, our algorithm concurrently adds
new edges and removes redundant existing ones. To the best
of our knowledge, research on edge manipulation specifically
targeting DFL remains limited. Hence, our paper offers a
viable way to increase the convergence rate of DFL.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Accelerating the decentralized federated learning via manipulating edges in complex graph Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

3 NOTATIONS AND PROBLEM
DEFINITIONS

In this paper, we focus on the Decentralized Federated Learn-
ing (DFL) involving a set of 𝑛 clients, where each client
represents an edge server or another type of computing de-
vice (e.g., a mobile phone). Each client possesses local private
data 𝒟𝑖 and a local model x𝑖, 𝑖 = 1, 2, ..., 𝑛. The commu-
nication structure among these agents can be represented
by an undirected graph G = (V,E), which is conveniently
represented by the adjacency matrix 𝐴 = (𝑎𝑖𝑗)𝑛×𝑛, where
𝑎𝑖𝑗 = 1 if node 𝑖 is connected to node 𝑗, and 𝑎𝑖𝑗 = 0 oth-
erwise. Notably, each node can only transmit its model x𝑖

to its neighbors. The objective of DFL is to leverage this
decentralized nodes to collectively train a shared model x
based on the joint dataset. Specifically, we typically optimize
the objective function 𝐹 (x) to compute x:

𝐹 (x) =
1

𝑛

𝑛∑︁
𝑖=1

𝐹𝑖(x) =
1

𝑛

𝑛∑︁
𝑖=1

1

|𝒟𝑖|
∑︁
𝑠∈𝒟𝑖

𝑙(x; 𝑠), (1)

where 𝐹𝑖(x) is the local objective function associated with
node 𝑖 and 𝑙(x; 𝑠) is the loss function for a data sample 𝑠.

The most common algorithm to minimize 𝐹 (x) is the
stochastic gradient descent (SGD). In DFL, we usually use
vanilla decentralized SGD (DecenSGD) to optimize 𝐹 (x). Let

x
(𝑡)
𝑖 denote the machine learning model on node 𝑖 at time 𝑡.

DecenSGD updates x
(𝑡)
𝑖 as follows:

(1) Initially, all nodes have identical model parameters

x
(0)
𝑖 = x(0), 𝑖 = 1, 2, ..𝑛.

(2) Parallel local SGD : Node 𝑖 computes the stochastic

gradient with respect to its local model parameters x
(𝑡)
𝑖 :

𝑔𝑖(x
(𝑡)
𝑖) = 1

|ℬ|
∑︀

𝑠∈ℬ ∇𝑙(x
(𝑡)
𝑖 ; 𝑠), where ℬ is a min-batch

of randomly samples from the local dataset 𝒟𝑖. Node 𝑖

updates the local model as: x
(𝑡+ 1

2
)

𝑖 = x
(𝑡)
𝑖 − 𝜂𝑔𝑖(x

(𝑡)
𝑖),

where 𝜂 is the learning rate.
(3) Communication with neighbors: Node 𝑖 sends its local

parameter x
(𝑡+ 1

2
)

𝑖 to its neighbors, denoted as 𝑁𝑖, and

receives parameters from its neighbors {x(𝑡+ 1
2
)

𝑗 }𝑗∈𝑁𝑖 .

(4) Model fusion: Node 𝑖 mixes the local model parameter
with these of its neighbors using a weighted average

scheme: x
(𝑡+1)
𝑖 =

∑︀
𝑗∈𝑁𝑖

⋃︀
{𝑖} 𝑤𝑗𝑖x

(𝑡+ 1
2
)

𝑗 , where 𝑤𝑗𝑖 is

the (𝑗, 𝑖)−𝑡ℎ entry of the mixing matrix 𝑊 = (𝑤𝑗𝑖)𝑛×𝑛.

(5) Iteration: Iteratively run the steps 2–4 until the x
(𝑡)
𝑖

converges to a predefined error.

The overall update rule of DecenSGD follows as:

x
(𝑡+1)
𝑖 =

𝑛∑︁
𝑗=1

𝑤𝑗𝑖[x
(𝑡)
𝑗 − 𝜂𝑔𝑗(x

(𝑡)
𝑗)]. (2)

The convergence of DecenSGD has been extensively explored
in the field of decentralized learning. When analyzing the
convergence property, we usually assume that the objective
function is convex and the gradient norm is bounded (al-
though specific assumptions may differ across studies). Based

on these common assumptions, we ususally have the following
convergence lemma:

Lemma 1 (Convergence property of DecenSGD [43,
44]). Let x̄ denote the averaged model of all x𝑖. After 𝐾
iterations, we have:

1

𝐾

𝐾∑︁
𝑡=1

E||∇𝐹 (x̄(𝑡))||2 = 𝑂(
𝑛

𝐾

𝜌

(1 −√
𝜌)2

+
1√
𝑛𝐾

), (3)

where 𝜌 represents the largest singular value of matrix 𝑊 −
11𝑇 /𝑛, 1 = [1, 1, ..., 1]𝑇𝑛×1.

Based on Lemma 1, the convergence rate of the DecenSGD
algorithm depends on three key factors: the number 𝑛 of n-
odes, iterations 𝐾, and the largest eigenvalue of 𝑊 − 11𝑇 /𝑛.
It is worth noting that a smaller 𝜌 leads to a reduced conver-
gence error bound and a higher convergence rate. Thus, our
investigation focuses on the manipulation of 𝑊 to achieve a
decrease in 𝜌.

In order to guarantee the consensus among the nodes,
we set 𝑊 as a symmetric and doubly stochastic mixing
matrix (i.e., the sum of each column/row is 1) [4, 31]. In the
model aggregation, a common choice is equal weight for each
neighboring nodes, defined as follows:

𝑊 = 𝐼 − 𝛼𝐿, (4)

where 𝛼 is a small positive number and 𝐿 = 𝐷 − 𝐴 is the
Laplacian matrix, 𝐷 = 𝑑𝑖𝑎𝑔{𝑑1, 𝑑2, ..., 𝑑𝑛} with 𝑑𝑖 being the
degree of node 𝑖. 𝑊 satisfies symmetric and doubly-stochastic
properties and is widely used in previous works [4, 31]. 𝜌 is
simplified as

𝜌 = 𝑚𝑎𝑥{(1 − 𝛼𝜆𝑛))2, (1 − 𝛼𝜆2)2}, (5)

where 𝜆1 = 0 < 𝜆2 < ... < 𝜆𝑛 is the eigenvalues of matrix
𝐿 and the corresponding eigenvector is v𝑖, |v𝑖| = 1. Given a
connected graph, there exists a trival eigenvalue 𝜆1 = 0 and
the corresponding eigenvector v1 = [1, 1, ..., 1]𝑇 . In practical
scenarios, 𝜌 is usually small and 𝜌 is usually characterized by
(1 − 𝛼𝜆2)2 [4, 31]. Hence, a larger 𝜆2 will result in a smaller
𝜌 and better convergence rate. Our concern is how to choose
a set of edges(denoted as 𝒮) that could maximize 𝜆2(𝐿(𝒮)),
where 𝐿(𝒮) is the laplacian matrix after we add the set 𝒮 of
edges to the graph, abbreviated as 𝜆2(𝒮).

Problem 1. Computing the optimal set 𝒮 of edges.

Given: The adjacency matrix of a connected graph and a
budget number 𝑘.

Find: A budget number 𝑘 of edges 𝒮 (|𝒮| = 𝑘) that, when
added, could maximize the second smallest eigenvalue
𝜆2(𝒮) of the Laplacian matrix 𝐿(𝒮).

Remark 1. Maximizing 𝜆2(𝒮) could increase 𝜌, thereby
improving the convergence rate. A parallel challenge arises
when determining the optimal set of redundancy edges to be
removed that don’t influence 𝜆2(𝒮). The key issue of Problem
1 is to characterize the importance of edges, which could also
be used to identifying the insignificant edges (i.e., edges to
be removed) with minor modification. Hence, in the method,
we focus on the analysis of adding edges. In the experiment,
we also present the results of removing edges.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

4 THE PROPOSED ACCELERATING
ALGORITHM

4.1 Complexity of 𝜆2(𝒮) optimization

we first consider five types of graphs in Fig. 1: star, line, circle,
sparse graph, and fully connected graph. Fully connected
graph has the same performance with the central-based FL,
because every node has the same updating scheme with
the parameter server in central-based FL. We observe that
certain graphs may possess varying numbers of edges while
sharing the same 𝜆2, implying that certain edges contribute
insignificantly to the convergence rate of DFL.

𝝀𝟐 = 1 𝝀𝟐 = 0.268 𝝀𝟐 = 1 𝝀𝟐 = 1 𝝀𝟐 = 6

Figure 1: An example of 𝜆2 in different types of
graphs. Notice that some graphs may have different
number of edges but have the same 𝜆2.

We consider the variation of 𝜆2 (eigen-var), ∆(𝒮) = 𝜆2(𝒮)−
𝜆2, where 𝜆2(𝒮) denotes the second smallest eigenvalue of the
Laplacian matrix after adding edges 𝒮 to the graph. Problem
1 is rephrased of finding the optimal set 𝒮 that maximizes
∆(𝒮). We have the following theorem:

Theorem 1. Finding the best set 𝒮 of added edges to
maximize ∆(𝒮) is NP-Complete.

Proof : We transfer the problem into the eigenvalue op-
timization of adjacency matrix. Let 𝑄 = 𝐼 − 𝛿𝐿, where 𝛿
is a small positive number, 𝛿 < 1

𝑑𝑚𝑎𝑥
with 𝑑𝑚𝑎𝑥 being the

largest degree of the graph. We have 𝑄𝑖𝑗 = 𝛿𝑎𝑖𝑗 , 𝑖 ̸= 𝑗, and
otherwise 𝑄𝑖𝑗 = 1 − 𝛿𝑑𝑖, 𝑖 = 𝑗. Hence, we could treat 𝑄
an adjacency matrix of a graph that contain selfloops. 𝑄
has a trival (largest) eigenvalue 1. 𝜆2 could be calculated as
𝜆2 = (1 − 𝜆𝑛−1(𝑄))/𝛿, where 𝜆𝑛−1(𝑄) is the second largest
eigenvalue of 𝑄. Hence, maximizing ∆(𝒮) is equivalent to
minimizing 𝜆𝑛−1(𝑄). Based on refs. [9, 38, 45], the eigenvalue
minimization based on edge manipulation has been proved
to be NP-Complete. Hence, we arrive at Theorem 1.�

For NP-Complete problem, it is impossible to calculate
the optimal solution in polynomial time. Thus, we propose
an approximation solution to solve the problem.

4.2 Approximation of 𝜆2(𝒮)
After adding the set of edges 𝒮 to the graph, we assess the
eigenvalue of 𝜆2(𝒮) as̃︀𝜆2(𝒮) = 𝜆2 +

∑︁
(𝑖,𝑗)∈𝒮

(v2,𝑖 − v2,𝑗)
2, (6)

where v2,𝑖 is the 𝑖−th entry of the eigenvector v2 and ̃︀𝜆2(𝒮)
means the estimation of 𝜆2(𝒮). Intuitively, based on Eq, 6,
the addition of an edge has high ‘eigen-var’ if the endpoints
of the edge are dissimilar with either. Adding edges to the

graph increases ̃︀𝜆2(𝒮) and removing existing edges might

decrease ̃︀𝜆2(𝒮).
Lemma 2. Let 𝜎 = 𝜆3 −𝜆2 denote the eigen-gap between

the second and third smallest eigenvalues of 𝐿. If 𝜎 >=
2
√

2𝑘2 + 2𝑘, then

∆(𝒮) =
∑︁

(𝑖,𝑗)∈𝒮

(v2,𝑖 − v2,𝑗)
2 + 𝑂(2𝑘2 + 2𝑘), (7)

where ∆(𝒮) = 𝜆2(𝒮) − 𝜆2.
Proof : We first construct a perturbed matrix 𝐸 ∈ R𝑛×𝑛

after adding edges set 𝒮. For the off-diagonal elements, 𝐸𝑖𝑗 =
−1 if (𝑖, 𝑗) ∈ 𝒮; 𝐸𝑖𝑗 = 0 otherwise. For the diagonal elements,
𝐸𝑖𝑖 = −

∑︀
𝑗=1:𝑛,𝑗 ̸=𝑖 𝐸𝑖𝑗 . 𝐸 could be decomposed of 𝑘 sub-

matrices, 𝐸 = 𝐸1 + 𝐸2 + ... + 𝐸𝑘, where each 𝐸𝑖 represents
the corresponding perturbed matrix of one edge in 𝒮. Let
the 𝑖−th edge in 𝒮 has two endpoints (𝑎, 𝑏), we have

v𝑇
2 𝐸𝑖v2 = v2

2,𝑎 + v2
2,𝑏 − 2v2,𝑎v2,𝑏 = (v2,𝑎 − v2,𝑏)

2. (8)

According to the matrix perturbation theory [46], we have

𝜆2(𝒮) = 𝜆2 + v𝑇
2 𝐸v2 + 𝑂(||𝐸||2𝐹)

= 𝜆2 +
∑︁
𝑖=1:𝑘

v𝑇
2 𝐸𝑖v2 + 𝑂(||𝐸||2𝐹)

= 𝜆2 +
∑︁

(𝑎,𝑏)∈𝒮

(v2,𝑎 − v2,𝑏)
2 + 𝑂(||𝐸||2𝐹), (9)

where ||𝐸||𝐹 is the Frobenious norm of 𝐸, ||𝐸||𝐹 =
√︁∑︀

𝑖

∑︀
𝑗 𝐸

2
𝑖𝑗 .

Recalling the property of 𝐸 that there are 2𝑘 off-diagonal ele-
ments with value −1, and the sum of the diagonal elements of
𝐸 is 2k, hence we have 4𝑘 ≤ ||𝐸||2𝐹 , ||𝐸||22 ≤ 2𝑘2 + 2𝑘, where
||𝐸||2 is the 𝑙2 norm of 𝐸. Moreover, based on the matrix
perturbation theory [46], we also havẽ︀𝜆2(𝒮) ≤ 𝜆2 + ||𝐸||2 ≤ 𝜆2 +

√︀
2𝑘2 + 2𝑘, (10)̃︀𝜆𝑖(𝒮) ≥ 𝜆𝑖 − ||𝐸||2 ≥ 𝜆𝑖 −

√︀
2𝑘2 + 2𝑘, 𝑖 = 3, 4, ..., 𝑛. (11)

Since 𝜎 >= 2
√

2𝑘2 + 2𝑘, we have ̃︀𝜆2(𝒮) < ̃︀𝜆𝑖(𝒮), 𝑖 = 3, 4, ..., 𝑛.

Hence ̃︀𝜆2(𝒮) is the estimation of 𝜆2(𝒮) and we arrive at

∆(𝒮) =
∑︁

(𝑖,𝑗)∈𝒮

(v2,𝑖 − v2,𝑗)
2 + 𝑂(2𝑘2 + 2𝑘), (12)

which completes the proof.�
Lemma 2 provides a convenient and efficient approach for

the rapid evaluation of the eigen-var, instead of recalculat-
ing the corresponding eigenvalue. In the subsequent section,
we leverage Lemma 2 to devise a fast algorithm aimed at
maximizing 𝜆2(𝒮).

4.3 Proposed algorithm SSEO

The propose Second Smallest Eigenvalue Optimization (SSEO)
algorithm is shown in Alg. 1. The central issue of Alg. 1 is

to choose the best set of edges to maximize ̃︀𝜆2(𝒮) in Eq. 6.
In Algorithm 1, the Laplacian matrix 𝐿 (line 1) and the

second smallest eigen-pair (𝜆2,v2) (line 2) are computed. We
initialize the set 𝒮 as empty (line 3) and use a temporary
array 𝑈 to store the values of each potential edge (line 4).
The values of each nonexisting edge are calculated in lines

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Accelerating the decentralized federated learning via manipulating edges in complex graph Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

5-14. The top-𝑘 edges in 𝑈 are determined in lines 14-15
using a sorting algorithm and the selected edges are then
stored in 𝒮.

Algorithm 1: Algorithm to optimize 𝜆2(𝒮) (SSEO)

Input: The adjacency matrix 𝐴, and a budget number 𝑘.
Output: Edge set 𝒮 with 𝑘 elements.

1 Compute the Laplacian matrix 𝐿 = 𝐷 −𝐴;

2 Compute the second smallest eigenvalue 𝜆2 and the
corresponding eigenvector v2;

3 Initialize 𝒮 to be empty;

4 initialize an array 𝑈 [𝑛][𝑛]; //Each element corresponds
to one potential edge.

5 for 𝑖 = 1 : 𝑛 do
6 for 𝑗 = 𝑖 + 1 : 𝑛 do
7 if 𝐴[𝑖][𝑗] == 1 then
8 𝑈 [𝑖][𝑗] = 0;

9 else
10 𝑈 [𝑖][𝑗] = (v2,𝑖 − v2,𝑗)

2;

11 end

12 end

13 end

14 Get the top-𝑘 elements from the uppertriangular part of
𝑈 by the descending order and save the values and
corresponding edges to array 𝑅;

15 Add edges in 𝑅 to 𝒮.

16 return 𝒮;

Next, we analyze the accuracy and efficiency of SSEO.

Theorem 2 Effectiveness of SSEO: Let ̃︀∆(𝒮) =
∑︀

(𝑖,𝑗)∈𝒮

(v2,𝑖 − v2,𝑗)
2. Alg. 1 could maximize the ̃︀∆(𝒮).

Proof : Let 𝒮 and 𝒮* denote the sets detemined by Alg. 1
and the theoretical best set, respectively, and the correspond-

ing eigenvalue variances are ̃︀∆(𝒮) and ̃︀∆(𝒮*).
We consider two cases:
Case 1: 𝒮

⋂︀
𝒮* = ∅. In lines 14–15, we chosen edges with

top-𝑘 values, and hence ∀(𝑎, 𝑏) ∈ 𝑆 and ∀(𝑐, 𝑑) ∈ 𝑆*, (v2,𝑎 −
v2,𝑏)

2 ≥ (v2,𝑐 − v2,𝑑)2. Consequently, ̃︀∆(𝒮) ≥ ̃︀∆(𝒮*). Since

𝒮* is the best set, we also have ̃︀∆(𝒮) ≤ ̃︀∆(𝒮*). As a result,̃︀∆(𝒮) = ̃︀∆(𝒮*).

Case 2: 𝐻 = 𝒮
⋂︀

𝒮* ̸= ∅. ̃︀∆(𝒮) and ̃︀∆(𝒮*) could be de-

composed as ̃︀∆(𝒮) = ̃︀∆(ℋ) + ̃︀∆(𝒮 ∖ ℋ). ̃︀∆(𝒮*) = ̃︀∆(ℋ) +̃︀∆(𝒮* ∖ ℋ). Based on case 1, we also have ̃︀∆(𝒮 ∖ ℋ) = ̃︀∆(𝒮* ∖ ℋ).

Hence, ̃︀∆(𝒮) = ̃︀∆(𝒮*).

Combing the two cases, we have ̃︀∆(𝒮) = ̃︀∆(𝒮*). �
Lemma 3 Time complexity of SSEO. The computa-

tional complexity of Alg. 1 is 𝑂(𝑛2 + 𝑘 ln(𝑛)).
Proof : Line 1 costs time 𝑂(𝑛). Computing the eigen-pair

(𝜆2,v2) (line 2) costs 𝑂(|𝐸|). Lines 3–4 cost 𝑂(1). Lines 5–13
cost 𝑂(𝑛2). Lines 14–15 could be executed by heap sort that
has time complexity 𝑂(𝑘 ln(𝑛2)). Hence, the overall time
complexity is 𝑂(𝑛2 + 𝑘 ln(𝑛)).�

Lemma 4 Space cost of SSEO. The space cost of Alg.
1 is 𝑂(𝑛2).

Proof : The space of 𝐿 is 𝑂(𝑛2) in line 1. In line 4, 𝑈 costs
space 𝑂(𝑛2). In line 14, we could use a temporary array to
save the sorted top-𝑘 values, which costs 𝑂(𝑛2). Hence the
overall space cost is 𝑂(𝑛2).�

Algorithm 2: Algorithm to optimize 𝜆2(𝒮) (SSEO+)

Input: The adjacency matrix 𝐴, an integer 𝑟, and a
budget number 𝑘.

Output: Edge set 𝒮 with 𝑘 elements.
1 𝒮 = 𝑆𝑆𝐸𝑂(𝐴, 𝑘);

2 Compute the Laplacian matrix 𝐿 = 𝐷 −𝐴;

3 Compute the smallest-𝑟 eigenvalue 𝜆𝑖 and the
corresponding eigenvector v𝑖 (𝑖 = 1, 2, ..., 𝑟);

4 Calculate ̃︀𝜆𝑖(𝒮) based on Eq. 13;

5 initialize an array 𝑈 [𝑛][𝑛];

6 for i=1:k do
7 Let (𝑎, 𝑏) be the 𝑖−th edge in 𝒮 and compute

𝜁({(𝑎, 𝑏)}) based on Eq. 15;
8 Remove (𝑎, 𝑏) from 𝒮;

9 for 𝑖 = 1 : 𝑛 do
10 for 𝑗 = 𝑖 + 1 : 𝑛 do
11 if 𝐴[𝑖][𝑗] == 1 then
12 𝑈 [𝑖][𝑗] = 0;

13 else

14 𝜁({(𝑖, 𝑗)}) = ̃︀𝜆2(𝒮
⋃︀
{(𝑖, 𝑗)}) − ̃︀𝜆2(𝒮);

15 𝑈 [𝑖][𝑗] = 𝜁({(𝑖, 𝑗)});

16 end

17 end

18 end

19 Compute the largest elements from 𝑈 , denoted as
𝜁𝑚𝑎𝑥 and the corresponding edge is (𝑐, 𝑑);

20 if 𝜁({(𝑎, 𝑏)}) ≥ 𝜁𝑚𝑎𝑥 then
21 Add (𝑎, 𝑏) to 𝒮;

22 else
23 Add (𝑐, 𝑑) to 𝒮;

24 end

25 end

26 return 𝒮;

4.4 A Variant: SSEO+ Algorithm

In Lemma 2, it is required that the eigen-gap and the budget
number 𝑘 satisfy 𝜎 ≥ 2

√
2𝑘2 + 2𝑘. Consequently, we have

𝑘 ≤ 𝑘𝑚𝑎𝑥 =
√︁

𝜎
8

+ 1
4
− 1

2
. This constraint implies that in

order to obtain a high approximation of 𝜆2(𝒮), the number
of candidate edges should be less than 𝑘𝑚𝑎𝑥. However, this
constraint cannot be met when we aim to add more edges.
It is worth noting that 𝜎 is typically small in real graphs.
Previous research in the field of graph community detection
has shown that the Laplacian matrix of a graph has 𝑟 − 1
eigenvalues close to zero, where 𝑟 is the number of communi-
ties. Real-world graphs such as Internet AS graphs, online

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

social graphs, and infrastructure graphs often exhibit com-
munity structure. Consequently, 𝜎 is usually small, rendering
Algorithm 1 inappropriate for large 𝑘.

To address the problem, we propose SSEO+ algorithm in

Alg. 2. In Alg. 2, we estimate the ̃︀𝜆2(𝒮) as̃︀𝜆2(𝒮) = 𝑚𝑖𝑛{𝜆𝑖 +
∑︁

(𝑎,𝑏)∈𝒮

(v𝑖,𝑎 − v𝑖,𝑏)
2, 𝑖 = 2, 3, ..., 𝑟}, (13)

where 𝑟 is the number of communities in the graph. In fact,
Eq. 6 is a particular case of Eq. 13 when 𝑟 = 2. The objective

is to choose the best 𝒮 that maximizes ̃︀𝜆2(𝒮) in Eq. 13, which
is a combinational optimization problem, defined as

𝑚𝑎𝑥𝒮{𝑚𝑖𝑛{𝜆𝑖 +
∑︁

(𝑎,𝑏)∈𝒮

(v𝑖,𝑎 − v𝑖,𝑏)
2, 𝑖 = 2, 3, ..., 𝑟}}, (14)

𝑠.𝑡.|𝒮| = 𝑘.

Optimizing the aboved combinational optimization problem
is NP-hard. In Alg. 2, SSEO+ optimizes Eq. 14 by improving
SSEO. After computing a candidate set 𝒮 based on SSEO
(line 1) in Alg. 2, we compute the contribution of each edge
in 𝒮 (line 7), where the contribution of edge (𝑖, 𝑗) ∈ 𝒮 is
evaluated as

𝜁({(𝑖, 𝑗)}) = ̃︀𝜆2(𝒮) − ̃︀𝜆2(𝒮 ∖ {(𝑖, 𝑗)}), (15)

where ̃︀𝜆2(𝒮) is computed by Eq. 13. If the contribution of an
edge (𝑖, 𝑗) in 𝒮 is less than the ones (𝑖′, 𝑗′) in the remaining
edge set, we remove (𝑖, 𝑗) from 𝒮 and add (𝑖′, 𝑗′) to 𝒮 (lines
6–25), where the contribution of (𝑖′, 𝑗′) is computed in lines
9–18.

By a similar procedure for SSEO, we can show that the
time complexity of SSEO+ is 𝑂(𝑘𝑛2𝑟); and its space cost is
the same as that of SSEO.

Determination of 𝑟: There is a free parameter 𝑟 in Al-
g. 2. It is important to note that increasing the value of
𝑟 has the potential to enhance the performance, with the
cost of more time consumption. Specifically, 𝑟 denotes the
number of communities in the graph. We could first perform
community detection to determine 𝑟. Numerous community
detection techniques can be employed for this purpose. In the
experiment, the Louvain method is utilized to determine the
value of 𝑟, where Louvain is a well known modularity-based
method to detect communities in graphs [47, 48].

Remark 2. SSEO and SSEO+ exclusively address the
scenario of adding new edges, failing to consider the removal
of redundant edges. However, it is possible to extend both
methods to account for removing redundant edges. Specifical-
ly, in Alg. 1, we adapt line 14 to select the least-𝑘 elements.
In Alg. 2, we modify line 19 to compute the smallest element
from set 𝑈 . These modifications are relatively minor in na-
ture. It is noteworthy that we also include the experimental
results pertaining to the removal of edges based on the minor
modifications.

5 EXPERIMENT

Here, we are interested in the performance of theoretical
analysis on real data. Our experiments run on a cluster

of four computers with 1 2.4GHz Intel(R) i7 CPU, 32GB
memory and 64bit Ubuntu 20.04.

5.1 Experimental setup

Datasets. We conduct experiments on four real datasets.
The four real datasets 1 include: (a) RealityMining: This is
an undirected graph containing human contact data among
students of the Massachusetts Institute of Technology (MIT),
collected by the Reality Mining experiment performed in
2004 as part of the Reality Commons project. The graph has
96 nodes and 2539 edges. (b) NetScience: This is a graphs
of co-authorships in the area of network science. The graph
has 379 nodes and 914 edges. (c) AS: This is an undirected
graph of autonomous systems of the Internet. Nodes are
autonomous systems (AS), and edges denote communication.
The graph has 487 nodes and 1078 edges. (d) Facebookego:
The is the friendship of an ego graph on Facebook. The graph
has 2888 nodes and 2981 edges.

Environment of DFL. On the computer cluster, we sim-
ulate the decentralized federated learning, where each node
is represented by a deep learning model and the connections
between nodes follow the structure introduced in the datasets.
We evaluate the performance in the image classification on
CIFAR-10 [49]. CIFAR-10 consists of 60000 color images in 10
classes. We use the classical ResNet-50 as the deep learning
model to be trained. All images are evenly partitioned over
all nodes. The initial learning rate is set as 0.8 and it decays
by 10 after 100 epochs (The learning rate is fine-tuned for
vanilla DecenSGD and used for all other algorithms). The
mini-batch size is 64 and the model is trained at most 1500
epochs.

Benchmark Methods. We compare our methods SSEO
and SSEO+ with four state-of-the-art methods.

∙ RW𝐶ℎ𝑎𝑜𝑠2008 [39]: This method increases the synchro-
nization in complex network by rewiring edges based
on the graph Laplacian eigenvectors. .

∙ RatioW𝑇𝑁𝑆𝐸2016 [6]: This method optimizes the syn-
chronization in complex graphs based on the perturba-
tion of the ratio of the second smallest eigenvalue and
the largest eigenvalue of the Laplacian matrix.

∙ MATCHA𝑇𝑆𝑃2022 [5]: This method allows nodes to
communicate more frequently over connectivity-critical
edges to increase the synchronization speed to solve
the bottleneck of communication delay.

∙ CoCo𝑇𝑀𝐶2023 [50]: This method accelerates DFL by
optimize the weight of the existing edges and model
compression. In the method, we allow the method to
optimize a budget 𝑘 of edges as well as our methods.

Evaluation metrics. The central metric to evaluate the
effectiveness of different methods is the second smallest eigen-
value 𝜆2(𝒮). Larger 𝜆2(𝒮) means more effectiveness of the
methods and is better. Besides, we also compare the conver-
gence rate of different methods and higher convergence rate
is better. At last, we compare the time consumption under
different graphs to evaluate the efficiency.

1Konect Network Collection. http://konect.cc/networks/

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Accelerating the decentralized federated learning via manipulating edges in complex graph Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

5.2 Experiment results

0 2 0 4 0 6 0
3

4

5

2 0 4 0 6 0
0 . 0 2

0 . 0 4

0 . 0 6

2 0 4 0 6 0
0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 2 0 4 0 6 04 . 0 x 1 0 - 3

6 . 0 x 1 0 - 3

λ 2(S
)

k

(a) (b)

λ 2(S
)

k

 R W R a t i o M M A T C H A C o C o S S E O S S E O +

(c)

λ 2(S
)

k

(d)

λ 2(S
)

k

Figure 2: 𝜆2(𝒮) as a function of the number of
added edges. Larger 𝜆2(𝒮) is better. (a) RealityMin-
ing graph. (b) NetScience graph. (c) AS graph. (d)
Facebookego graph.

5.2.1 Effectiveness of SSEO and SSEO+. We compare the
𝜆2(𝒮) with respect to the number of added edges in Fig. 2. In
Fig. 2, our proposed method SSEO+ outperforms the existing
methods across all graph instances. We notice that MATCHA
exhibits poor performance in Fig. 2, because MATCHA aims
to optimize the communication frequencies on different edges
to mitigate communication delays. The underlying graph
structure remains unchanged by MATCHA, and hence, the
variation in 𝜆2(𝒮) is relatively minimal. On the other hand,
SSEO fluctuates largely in different graphs, SSEO performs
well in Fig. 2(a)(c), but not so good in (b)(d). Because we
assume that the eigen-gap between the second and third
largest eigenvalues of 𝐿 is large in Lemma 2. However, some
real graphs have small eigen-gaps that don’t satisfy the as-
sumption. Hence, SSEO exhibits poorer performance in such
graph instances. Conversely, SSEO+ considers the case of
small eigen-gaps, which greatly increases 𝜆2(𝒮).

Besides, we show the performance of SSEO and SSEO+ on
removing redundancy edges in Fig. 3. We modify SSEO and
SSEO+ by consider the least decrease of 𝜆2(𝒮) as discussed
in remark 2. Figure 3 shows that removing the redundancy
edges rarely influences the 𝜆2(𝒮) and the convergence rate,
validating the effectiveness of our methods.

We then perform DFL using vanilla decentralized SGD on
different graphs. Here, we perform vanilla decentralized SGD
on two graphs (RealityMining and NetScience) and use the
classical cross entropy as the loss function. Figure 4 shows
the training loss evolution over epochs for the aforementioned
graphs. We see that the training loss of SSEO+ decays (de-
creases) faster than the other methods, which agrees well
with Fig. 2. To better capture the convergence rate, Table
1 displays the minimum number of epochs required for the
training loss to drop below 0.1 for Fig. 4. We see that SSEO+

2 . 0
2 . 5

0 . 0 1 5 2
0 . 0 1 5 3

0 . 1
0 . 2

5 1 0 1 5 2 0 2 5 3 0

0 . 0 0 2
0 . 0 0 4

λ 2(S)

(a) R e a l i t y M i n i n g

(d) F a c e b o o k e g o

(c) A S

(b) N e t S c i e n c e

k

Figure 3: 𝜆2(𝒮) as a function of the number of re-
moved (redundancy) edges. Stable 𝜆2(𝒮) is better.

Table 1: The minimum epoches that the training
loss is less than 0.1. We train a ResNet-50 model on
CIFAR-10 dataset. We count the epoches that the
training loss first decreases to 0.1. Smaller is better.

graph RW RatioW CoCo SSEO SSEO+

RealityMining 255 254 255 232 232 ↓
NetScience 1490 1489 1055 1060 957 ↓

exhibits the lowest number of epochs, indicating a higher
convergence rate. In Table 1, we don’t show the minimum
epochs for MATCH method, because MATCH requires much
larger epochs to reach 0.1 in Fig. 4, which is omitted for space
limitation. Besides, the performance of vanilla decentralized
SGD in the other two graphs are similar to Fig. 4 and Table
1, which isn’t show to save space.

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0
0 . 0

0 . 2

0 . 4

0 . 6

0 . 8

1 . 0 (b)

tra
inin

g l
os

s

E p o c h s

 R W
 R a t i o M
 M A T C H A
 C o C o
 S S E O
 S S E O +

(a)
tra

inin
g l

os
s

E p o c h s

 R W
 R a t i o M
 M A T C H A
 C o C o
 S S E O
 S S E O +

Figure 4: The training loss as a function of epochs
in different graphs. We train a ResNet-50 model on
CIFAR-10 dataset. Each subfigure represents a re-
sult using different graphs as the structure of DFL.
(a) RealityMining graph. (b) NetScience graph.

5.2.2 Efficiency of SSEO and SSEO+. Since SSEO is actually
a specific case that focuses only on perturbing the second
smallest eigenvalue, we primarily investigates the time com-
plexity of SSEO+ in graphs with varying numbers of nodes
and edges. We first use the configuration model [7] to gener-
ate random graphs with different numbers of nodes. Figure 5
illustrates the time consumption as a function of the number

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: The pearson correlation between estimated

eigenvalue ̃︀𝜆2(𝒮) and real eigenvalue 𝜆2(𝒮) for differ-
ent budget 𝑘 of added edges.

k ‘RealityMining’ ‘NetScience’ ‘AS’ ‘Facebookego’

2 0.9995 0.9993 0.9997 0.9991
5 0.9991 0.9952 0.9991 0.9982
10 0.9972 0.9902 0.9634 0.9908
20 0.9945 0.9150 0.9837 0.9639
40 0.9989 0.7591 0.9805 0.8694

of nodes and edges. Figure 5(a) demonstrates that graphs
with the same number of edges and varying numbers of nodes
exhibit a quadratic increase in time consumption. Conversely,
Figure 5(b) shows that graphs with the same number of nodes
but different numbers of edges have negligible changes in time
consumption, as the time complexity is solely dependent on
the number of nodes.

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0
0

5 0

1 0 0

1 5 0

2 0 0

0 4 0 0 8 0 0 1 2 0 0 1 6 0 0 2 0 0 0
0 . 0

0 . 5

(b)

Wa
ll-c

loc
k t

im
e (

se
co

nd
s)

o f n o d e s

 k = 1
 k = 5
 k = 1 0
 k = 2 0

(a)

Wa
ll-c

loc
k t

im
e (

se
co

nd
s)

o f e d g e s

 k = 1
 k = 5
 k = 1 0
 k = 2 0

Figure 5: (a) Time consumption as a function of the
number of nodes in the graph. All graphs have 5000
edges, but different numbers of nodes. (b) Time con-
sumption as a function of the number of edges in
the graph. All graphs have 100 nodes, but different
numbers of edges.

5.2.3 Validation of our assumption. In Eq. 6, we evaluate the

eigenvalue ̃︀𝜆2(𝒮) based on the first-order perturbation of 𝜆2.

Table 2 presents the Pearson correlation between ̃︀𝜆2(𝒮) and
𝜆2(𝒮) for different budget 𝑘 of added edges. When 𝑘 is small,̃︀𝜆2(𝒮) approximates 𝜆2(𝒮) quite well; with the increase of
𝑘, the Pearson correlation is still high (≥ 0.8). Note that
when 𝑘 = 40, the Pearson correlation is less than 0.8 in the
NetScience graph, because the 𝜆2(𝒮) is determined by the
perturbation of other eigenvalues under the scenario, which
is also reflected in Fig. 2. If we use Eq. 13 to evaluate 𝜆2(𝒮),
the Pearson correlation is still larger than 0.8.

5.2.4 A case study in real graph. Our methods SSEO and
SSEO+ offer a solution for selecting influential edges to
enhance 𝜆2(𝒮), as well as identifying redundant edges that
can be removed without decreasing 𝜆2(𝒮).

We present a graphical representation (see Fig. 6) depicting
the addition of edges (highlighted in red) and the removal
of edges (highlighted in green) in the RealityMining graph

based on the SSEO+. In Fig. 6, the added edges tend to
connect nodes with distinct entry values in the eigenvector,
whereas the removed edges are inclined to connect nodes
with similar entry values. These findings are consistent with
the analysis of Eq. 6 that the contribution of each edge is
(v2,𝑖 − v2,𝑖)

2.

2

1

34

5 6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

23

25

27

28

29

30

31
33

35

38

41

42

43

44

46

57

58

60

61

62

65
66

67

68

69

70

71

72

73

74

75

77

78

7981

83

87

91

93

95

21

32

39

40

47

48

51
64

82

84

85

86

8894

24

26

49

52

56

59

63

76

80

89

96

34

45

22

50

53

54

55

36

90

92

37

Added edges

Removed edges

Figure 6: A schematic illustration of added edges
(red) and removed edges (green) in RealityMining
graph. The color depth of nodes represents the en-
try value in the eigenvector v2. The added edges are
inclined to connect nodes with quite different color
depth; while the removed edges are inclined to con-
nect nodes with similar color depth.

6 CONCLUSION

In this paper, we address the issue of accelerating the Dis-
tributed Federated Learning by augmenting the communica-
tion graph with additional edges. Firstly, we formally define
the convergence rate of DFL and demonstrate that increas-
ing the second smallest eigenvalue of the Laplacian matrix
associated with the communication graph can enhance the
convergence rate. Subsequently, we investigate the problem
of how to choose edges that maximize the second smallest
eigenvalue. Through our analysis, we quantify the pertur-
bation in eigenvalues caused by the addition of new edges.
Furthermore, we develop effective algorithms to select the
optimal edges for maximizing the second smallest eigenvalue.
The experimental results clearly indicate that our algorithm
surpasses existing methods by a substantial margin.

Our method could be easily combined with existing accel-
erating methods, such as parameter compression and com-
munication scheduling. Besides, it is worth mentioning that
our approach can be extended to address the removal of such
insignificant edges. Within the communication framework
of DFL, certain edges may have negligible impact on the
convergence rate, but consume communication bandwidth.
Further investigation is still required to uncover the underly-
ing mechanisms governing redundant edges.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Accelerating the decentralized federated learning via manipulating edges in complex graph Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Lun Wang, Yang Xu, Hongli Xu, Min Chen, and Liusheng Huang.

Accelerating decentralized federated learning in heterogeneous
edge computing. IEEE Transactions on Mobile Computing,
22(9):5001–5016, 2023.

[2] Liangqi Yuan, Lichao Sun, Philip S Yu, and Ziran Wang. De-
centralized federated learning: A survey and perspective. arXiv
preprint arXiv:2306.01603, 2023.

[3] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. Communication-efficient learning of
deep networks from decentralized data. In Artificial intelligence
and statistics, pages 1273–1282. PMLR, 2017.

[4] Angelia Nedić, Alex Olshevsky, and Michael G Rabbat. Network
topology and communication-computation tradeoffs in decentral-
ized optimization. Proceedings of the IEEE, 106(5):953–976,
2018.

[5] Jianyu Wang, Anit Kumar Sahu, Gauri Joshi, and Soummya Kar.
Matcha: A matching-based link scheduling strategy to speed up
distributed optimization. IEEE Transactions on Signal Process-
ing, 70:5208–5221, 2022.

[6] Mahdi Jalili and Xinghuo Yu. Enhancement of synchronizability
in networks with community structure through adding efficient
inter-community links. IEEE Transactions on Network Science
and Engineering, 3(2):106–116, 2016.

[7] Mark Newman. Networks: An Introduction. Oxford University
Press, 03 2010.

[8] Chaoyang He, Conghui Tan, Hanlin Tang, Shuang Qiu, and Ji Liu.
Central server free federated learning over single-sided trust social
networks. arXiv preprint arXiv:1910.04956, 2019.

[9] Chen Chen, Hanghang Tong, B Aditya Prakash, Tina Eliassi-Rad,
Michalis Faloutsos, and Christos Faloutsos. Eigen-optimization
on large graphs by edge manipulation. ACM Transactions on
Knowledge Discovery from Data (TKDD), 10(4):1–30, 2016.

[10] Ziran Wang, Rohit Gupta, Kyungtae Han, Haoxin Wang, Akila
Ganlath, Nejib Ammar, and Prashant Tiwari. Mobility digital
twin: Concept, architecture, case study, and future challenges.
IEEE Internet of Things Journal, 9(18):17452–17467, 2022.

[11] Sarthak Pati, Ujjwal Baid, Brandon Edwards, Micah Sheller, Shih-
Han Wang, G Anthony Reina, Patrick Foley, Alexey Gruzdev,
Deepthi Karkada, Christos Davatzikos, et al. Federated learning
enables big data for rare cancer boundary detection. Nature
communications, 13(1):7346, 2022.

[12] Anusha Lalitha, Osman Cihan Kilinc, Tara Javidi, and Farinaz
Koushanfar. Peer-to-peer federated learning on graphs. arXiv
preprint arXiv:1901.11173, 2019.

[13] Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali
Annavaram, and Salman Avestimehr. Spreadgnn: Serverless multi-
task federated learning for graph neural networks. arXiv preprint
arXiv:2106.02743, 2021.

[14] Hong Xing, Osvaldo Simeone, and Suzhi Bi. Federated learning
over wireless device-to-device networks: Algorithms and conver-
gence analysis. IEEE Journal on Selected Areas in Communica-
tions, 39(12):3723–3741, 2021.

[15] Stefanie Warnat-Herresthal, Hartmut Schultze, Krishnaprasad Lin-
gadahalli Shastry, Sathyanarayanan Manamohan, Saikat Mukher-
jee, Vishesh Garg, Ravi Sarveswara, Kristian Händler, Peter Pick-
kers, N Ahmad Aziz, et al. Swarm learning for decentralized and
confidential clinical machine learning. Nature, 594(7862):265–270,
2021.

[16] Tuncer Can Aysal, Mehmet Ercan Yildiz, Anand D Sarwate, and
Anna Scaglione. Broadcast gossip algorithms for consensus. IEEE
Transactions on Signal processing, 57(7):2748–2761, 2009.

[17] Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tom-
masi. Personalized and private peer-to-peer machine learning. In
International Conference on Artificial Intelligence and Statis-
tics, pages 473–481. PMLR, 2018.

[18] John N Tsitsiklis. Problems in decentralized decision making and
computation. PhD thesis, Massachusetts Institute of Technology,
1984.

[19] Ali Jadbabaie, Jie Lin, and A Stephen Morse. Coordination of
groups of mobile autonomous agents using nearest neighbor rules.
IEEE Transactions on automatic control, 48(6):988–1001, 2003.

[20] Alex Olshevsky. Linear time average consensus and distributed
optimization on fixed graphs. SIAM Journal on Control and
Optimization, 55(6):3990–4014, 2017.

[21] Lin Xiao and Stephen Boyd. Fast linear iterations for distributed
averaging. Systems & Control Letters, 53(1):65–78, 2004.

[22] Angelia Nedic and Asuman Ozdaglar. Distributed subgradient
methods for multi-agent optimization. IEEE Transactions on
Automatic Control, 54(1):48–61, 2009.

[23] Angelia Nedić and Alex Olshevsky. Distributed optimization over
time-varying directed graphs. IEEE Transactions on Automatic
Control, 60(3):601–615, 2014.

[24] S Sundhar Ram, A Nedić, and Venugopal V Veeravalli. A new class
of distributed optimization algorithms: Application to regression
of distributed data. Optimization Methods and Software, 27(1):71–
88, 2012.

[25] David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based
computation of aggregate information. In 44th Annual IEEE
Symposium on Foundations of Computer Science, 2003. Pro-
ceedings., pages 482–491. IEEE, 2003.

[26] Florence Bénézit, Vincent Blondel, Patrick Thiran, John Tsitsiklis,
and Martin Vetterli. Weighted gossip: Distributed averaging
using non-doubly stochastic matrices. In 2010 ieee international
symposium on information theory, pages 1753–1757. IEEE, 2010.

[27] Alejandro D Domı́nguez-Garćıa and Christoforos N Hadjicostis.
Distributed strategies for average consensus in directed graphs.
In 2011 50th IEEE Conference on Decision and Control and
European Control Conference, pages 2124–2129. IEEE, 2011.

[28] S Sundhar Ram, Angelia Nedić, and Venugopal V Veeravalli. Dis-
tributed stochastic subgradient projection algorithms for convex
optimization. Journal of optimization theory and applications,
147:516–545, 2010.

[29] Soomin Lee, Angelia Nedić, and Maxim Raginsky. Stochastic
dual averaging for decentralized online optimization on time-
varying communication graphs. IEEE Transactions on Automatic
Control, 62(12):6407–6414, 2017.

[30] Konstantinos I Tsianos and Michael G Rabbat. Efficient distribut-
ed online prediction and stochastic optimization with approximate
distributed averaging. IEEE Transactions on Signal and Infor-
mation Processing over Networks, 2(4):489–506, 2016.

[31] Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and
Soummya Kar. Matcha: Speeding up decentralized sgd via match-
ing decomposition sampling. In 2019 Sixth Indian Control Con-
ference (ICC), pages 299–300. IEEE, 2019.

[32] Pan Zhou, Qian Lin, Dumitrel Loghin, Beng Chin Ooi, Yuncheng
Wu, and Hongfang Yu. Communication-efficient decentralized
machine learning over heterogeneous networks. In 2021 IEEE
37th International Conference on Data Engineering (ICDE),
pages 384–395. IEEE, 2021.

[33] Alex Arenas, Albert Dı́az-Guilera, Jurgen Kurths, Yamir Moreno,
and Changsong Zhou. Synchronization in complex networks.
Physics reports, 469(3):93–153, 2008.

[34] Stefano Boccaletti, Alexander N Pisarchik, Charo I Del Genio,
and Andreas Amann. Synchronization: from coupled systems to
complex networks. Cambridge University Press, 2018.

[35] Louis M Pecora and Thomas L Carroll. Master stability func-
tions for synchronized coupled systems. Physical review letters,
80(10):2109, 1998.

[36] JF Heagy, TL Carroll, and LM Pecora. Synchronous chaos in
coupled oscillator systems. Physical Review E, 50(3):1874, 1994.

[37] Scott Freitas, Diyi Yang, Srijan Kumar, Hanghang Tong, and
Duen Horng Chau. Graph vulnerability and robustness: A sur-
vey. IEEE Transactions on Knowledge and Data Engineering,
35(6):5915–5934, 2022.

[38] Zuobai Zhang, Zhongzhi Zhang, and Guanrong Chen. Minimiz-
ing spectral radius of non-backtracking matrix by edge removal.
In Proceedings of the 30th ACM International Conference on
Information & Knowledge Management, pages 2657–2667, 2021.

[39] Aric Hagberg and Daniel A Schult. Rewiring networks for syn-
chronization. Chaos: An interdisciplinary journal of nonlinear
science, 18(3), 2008.

[40] Qingyun Wang, Matjaž Perc, Zhisheng Duan, and Guanrong
Chen. Impact of delays and rewiring on the dynamics of small-
world neuronal networks with two types of coupling. Physica A:
Statistical Mechanics and its Applications, 389(16):3299–3306,
2010.

[41] Stefan Hellrigel, Nicholas Jarman, and Cees van Leeuwen. Adap-
tive rewiring in weighted networks. Cognitive Systems Research,
55:205–218, 2019.

[42] Mahdi Jalili and Xinghuo Yu. Enhancing pinning controllability
of complex networks through link rewiring. IEEE Transactions
on Circuits and Systems II: Express Briefs, 64(6):690–694, 2017.

[43] Jianyu Wang and Gauri Joshi. Cooperative sgd: A unified frame-
work for the design and analysis of local-update sgd algorithms.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

J. Mach. Learn. Res., 22(1), jan 2021.
[44] Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang,

and Ji Liu. Can decentralized algorithms outperform centralized
algorithms? a case study for decentralized parallel stochastic gradi-
ent descent. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 30, pages
1–11. Curran Associates, Inc., 2017.

[45] Chen Chen, Ruiyue Peng, Lei Ying, and Hanghang Tong. Net-
work connectivity optimization: Fundamental limits and effective
algorithms. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery & Data Mining,
pages 1167–1176, 2018.

[46] Gilbert W Stewart. Matrix perturbation theory. 1990.

[47] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte,
and Etienne Lefebvre. Fast unfolding of communities in large net-
works. Journal of statistical mechanics: theory and experiment,
2008(10):P10008, 2008.

[48] Mark EJ Newman. Fast algorithm for detecting community struc-
ture in networks. Physical review E, 69(6):066133, 2004.

[49] A. Krizhevsky and G. Hinton. Learning multiple layers of features
from tiny images. Handbook of Systemic Autoimmune Diseases,
1(4), 2009.

[50] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and
W Philip Kegelmeyer. Smote: synthetic minority over-sampling
technique. Journal of artificial intelligence research, 16:321–357,
2002.

Received 20 February 2007; revised 12 March 2009; accepted 5

June 2009

10

	Abstract
	1 Introduction
	2 Related work
	3 Notations and Problem definitions
	4 The proposed accelerating algorithm
	4.1 Complexity of 2(S) optimization
	4.2 Approximation of 2(S)
	4.3 Proposed algorithm SSEO
	4.4 A Variant: SSEO+ Algorithm

	5 Experiment
	5.1 Experimental setup
	5.2 Experiment results

	6 Conclusion
	References

