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ABSTRACT

Recent work has shown that attention-based language models excel at recall, the
ability to ground generations in tokens previously seen in context. However, the
efficiency of attention-based models is bottle-necked during inference by the KV-
cache’s aggressive memory consumption. In this work, we explore whether we
can improve language model efficiency (e.g. by reducing memory consumption)
without compromising on recall. By applying experiments and theory to a broad
set of architectures, we identify a key tradeoff between a model’s state size and
recall ability. We show that efficient alternatives to attention (e.g. H3, Mamba,
RWKV) maintain a fixed-size recurrent state, but struggle at recall. We pro-
pose BASED a simple architecture combining linear and sliding window attention.
By varying BASED window size and linear attention feature dimension, we can
dial the state size and traverse the Pareto frontier of the recall-memory tradeoff
curve, recovering the full quality of attention on one end and the small state size
of attention-alternatives on the other. We train language models up to 1.3b pa-
rameters and show that BASED matches the strongest sub-quadratic models (e.g.
Mamba) in perplexity and outperforms them on real-world recall-intensive tasks
by 9.03 accuracy points. Implementations of linear attention are often less efficient
than optimized standard attention implementations. To make BASED competitive,
we develop IO-aware algorithms that enable 24× higher throughput on language
generation than FlashAttention-2, when generating 1024 tokens using 1.3b pa-
rameter models. Code: https://github.com/HazyResearch/based

1 INTRODUCTION

The choice of sequence mixer in a language model affects both its quality and efficiency (Vaswani
et al., 2017). Prior work shows that attention excels at recall, the ability to ground generations in
previously seen tokens in context (Arora et al., 2023a; Olsson et al., 2022). However, attention
throughput is bottlenecked by quadratic complexity in training and large memory consumption in
inference. Can we improve the real-world speed of language models without comprising quality?

We start by exploring the pareto frontier of the tradeoff between high-recall and high-throughput
models. We evaluate a diverse set of architectures on a difficult synthetic associative recall (AR) task
and demonstrate a fundamental recall-memory (throughput) tradeoff that holds across architecture
classes (Figure 2). Attention models perform AR perfectly, but a their recurrent state (i.e. the KV-
cache) grows linearly with the sequence length. Sliding window attention offers a way to cap the size
of the recurrent state at the cost of poorer long-range recall (Jiang et al., 2023). However, Mamba, a
recently proposed SSM architecture expands the Pareto frontier beyond sliding window. This begs
the question, what other models?

We study two simple techniques for improving attention efficiency: sliding window attention and
softmax-approximating linear attention. Our results (Table 1, Figure 1, center) suggest that neither
approach alone suffices to navigate the Pareto frontier. We find linear attention alone struggles to
solve AR (Figure 1, center). We hypothesize that linear attention lacks the precision to perform local
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Figure 1: BASED overview. Combining linear attention with tiny sliding window softmax attention
(up to 64 tokens in width) enables improved recall accuracy with limited efficiency overhead. (Left)
Time to execute Cutlass GEMMs (y) vs. sliding window attention size (x) on tensor cores. (Center)
Model recall accuracy (y) vs. sliding window attention size (x). We compare linear attention alone
(dark blue), sliding window attention alone (light blue), and their combination (BASED, orange).
(Right) Schematic diagram of BASED illustrating how the two components complement each other.

token shifts and comparisons (Fu et al., 2023a). In sliding window attention, AR range is limited
by the width of the windows (Figure 1, center). As we increase the window size, the recurrent state
grows linearly and has a non-linear affect on speed during training and inference (Figure 1, left).

We combine these two techniques into a single architecture, which we call BASED (Figure 1, right).
We find that sliding window attention and linear attention complement each other, enabling BASED
to expand the pareto frontier of the recall-memory tradeoff (Figure 2). We suspect that (1) the large
recurrent memory of linear attention could make up for the limited range of narrow sliding window
attention and (2) sliding window attention handles the precise local shifts needed to perform AR.

To make BASED competitive with SoTA attention (Dao, 2023) and recurrent (Gu & Dao, 2023)
models under wall-clock and throughput metrics, we introduce several IO-aware optimizations.

1. Matrix multiplications up to 64× 64, fit neatly into tensor core units of modern GPUs (Figure 1,
left). We thus compute local softmax attention using windows sized at dimension 64.

2. In linear attention, for quality we use the 2nd-order Taylor approximation of softmax. However,
with sequence length N and head dimension d, this naı̈vely requires O(Nd3) time and space
complexity (Zhang et al., 2024; Keles et al., 2023). Linear attention is also often slower than
modern attentions in practice (Dao, 2023). Thus we develop custom CUDA kernels to make our
attention competitive in real-world wall-clock time and memory usage. We reduce HBM IO cost
relative to the naı̈ve algorithm by O(Nd2 − Nd) bytes, and avoid O(Nd3) bytes in SRAM to
register data movement (Section 4).

We show that BASED competes in quality with strong Transformer++ (Touvron et al., 2023) and
SoTA sub-quadratic (e.g. Mamba (Gu & Dao, 2023)) baselines at 1.3Bn parameters across language
modeling on the Pile, DNA modeling, and the LM Eval Harness (Gao et al., 2023). BASED also
outperforms prior sub-quadratic architectures on the AR slice of the Pile and in downstream recall-
intensive tasks by 0.14 perplexity and 6.22 accuracy, respectively. In efficiency, BASED enables up
to 24× higher throughput than the strong FlashAttention-2 implementation on generation. Our code
is available at: https://github.com/HazyResearch/based.

2 PRELIMINARIES

We briefly describe the preliminaries for BASED. The extended related works is in Appendix A.

Attention Softmax attention incurs low-throughput for long sequences. Attention has quadratic
training complexity and for every new output yn requires nd operations over a growing KV-cache of
prior {ki,vi}n−1

i=1 during generation. Meanwhile, linear attentions replace the softmax exp(q⊤k) in
standard attention with feature map dot-products ϕ(q)⊤ϕ(k) (Katharopoulos et al., 2020b). These
methods use matrix product associativity to compute attention in O(Nd2) time and space in training,
and constant memory and O(1) time per-token in generation (Kasai et al., 2021; Schlag et al., 2021).
Present linear attentions struggle to perform recall and achieve fast wall-clock time vs. standard
attention (Dao et al., 2022; Zhang et al., 2024).
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Architecture Params
Efficiency Language Modeling (Pile) Info. Extraction QA Common

Prefill Generate All AR Other SWDE FDA SQUAD LM-Evals
Tok./ms ↑ Tok./ms ↑ Ppl. ↓ Ppl. ↓ Ppl. ↓ Acc ↑ Acc ↑ F1 ↑ Avg. Acc. ↑

Transformer++ 1.33b 103.50 0.99 7.26 1.74 8.10 71.92 73.23 36.19 47.64
BASED 1.35b 161.71 24.28 7.43 1.87 8.26 48.06 24.41 30.46 46.68
Mamba 1.32b 112.22 25.69 7.48 1.96 8.29 34.74 12.89 28.20 46.84
Transformer++ 360m 207.77 23.82 8.39 1.87 9.42 57.97 58.00 27.18 44.08
BASED 363m 514.57 47.23 8.65 2.07 9.64 29.16 11.71 25.07 43.03
Mamba 358m 267.09 39.95 8.64 2.21 9.59 23.67 6.53 24.06 43.51
GLA 362m — — 9.12 2.36 10.68 — — — —
RWKV v5 362m — — 9.79 2.40 10.90 — — — —
H3 362m — — 10.60 4.88 11.23 6.75 0.64 7.87 39.35

Table 1: Evaluation of pre-trained language models. All models were trained on the same 10
billion tokens from the Pile (Gao et al., 2020). We report perplexity on the Pile test set and on two
slices of the test set: AR tokens and other tokens (see Section 5, Arora et al. (2023a)). We report
zero-shot performance on three recall-intensive tasks: information retrieval (SWDE, FDA) and QA
(SQUAD). We also report average performance on the set of LM Eval Harness (Gao et al., 2023)
reasoning tasks used in Gu & Dao (2023) (details in Appendix B.3). These tasks do not require
significant recall capacity because the input text is typically very short. See Section 5. Architectures
(RWKV-v5 and GLA) that do not implement recurrent generation views are omitted ( — ).

Attention-free Various models use attention-free sequence mixers such as state-space models (Gu
et al., 2021; Sun et al., 2023), gated convolutions (Fu et al., 2023a; Poli et al., 2023) and input-
dependent recurrences (Peng et al., 2023; Gu & Dao, 2023). We compare to these architectures.

3 NO FREE LUNCH FOR EFFICIENT AND HIGH-QUALITY RECALL
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Figure 2: Memory - recall tradeoff. x-
axis shows the state size (bytes) during
generation; y-axis shows accuracy on
the MQAR task (Arora et al., 2023a).
For each architecture, we vary the hy-
perparameters that affect the state size.
State sizes are computed using the equa-
tions in Appendix D.2.

We use a synthetic recall task called MQAR (Arora et al.,
2023a) to empirically demonstrate the tradeoffs between
a model’s hidden state (i.e., the size of its recurrent state
or KV-cache) and its recall ability. In Appendix E.1, we
provide theoretical analysis to complement these exper-
iments. Appendix D.1 contains details on how the state
size is calculated for each evaluated architecture — atten-
tion, Mamba, H3, Hyena, and BASED. In MQAR, mod-
els see key-value mappings and at inference time, need
to recall the mappings to predict the next token (e.g.,
4, 6, 1, 2, 3 below):

A 4 B 3 C 6 F 1︸︷︷︸
Key-Value

E 2 → A ? C ? F ?︸︷︷︸
Query

E ? B ?

In Figure 2, we find that we can smoothly interpolate
between small hidden-states that permit high-throughput
generation at the cost of poor recall (H3, Sliding win-
dow), and large hidden-states with high recall per-
formance yet poor generation throughput (Attention).
Mamba (Gu & Dao, 2023) reduces the state size for ef-
ficiency, but sacrifices in recall score. Our proposed ar-
chitecture, BASED (Section 4), will explore a different
set of points on the Pareto-frontier as we vary the hyper-
parameters that determine its state size (e.g. feature di-
mension and model dimension).

We then find increased hidden state size alone may
not be sufficient for recall. Several subquadratic
models, such as gated convolutions (H3, Hyena,
RWKV) fall below the Pareto frontier (Fig. 3). We
also observe differences in the recall quality across
linear attention feature maps; Taylor series approximations to the exponential func-
tion (De Brebisson & Vincent, 2015; Keles et al., 2023; Zhang et al., 2024) main-
tain Pareto-optimality. Figures 2 and 3 can be reproduced or extended to new archi-
tectures using the scripts provided at https://github.com/HazyResearch/zoology.
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Figure 3: Linear attention feature
maps x: state size (bytes) during
generation or param. count; y: ac-
curacy. State sizes are computed us-
ing the equations in Appendix D.2.

Our theoretical analysis provides further insight into these
empirical observations. First, using results from communi-
cation complexity theory, we show that the recall capacity of
any causal model (e.g. Mamba, Attention) is bounded by the
size of its recurrent state (Theorem E.15 in Appendix E).

Theorem 3.1. Any recurrent model1 depending causally on
input u ∈ {0, 1}N×d requires Ω(N)-bits2 in state size to
solve MQAR.

This result suggests that the tradeoff observed in Figure 2 is
fundamental, not an artifact of architectural quirks. We pro-
vide additional theoretical results in Appendix E.1.

4 THE BASED ARCHITECTURE

We now present the BASED architecture. BASED combines
(1) exact softmax attention applied locally in small sliding
windows, and (2) softmax-approximating linear attention ap-
plied globally (Fig. 1, right). BASED recovers 90.8% of full
softmax attention’s recall accuracy at 1e-5× its latency.

4.1 TENSOR CORE WINDOW ATTENTION

To efficiently model fine-grained local interactions, BASED
uses sliding window attention with window sizes set to 64 to-
kens. Similar to past (causal) implementations (Child et al.,
2019; Beltagy et al., 2020), for window size w each query
qi only attends to past keys {ki−w+1, . . . ,ki}. This en-
ables O(Nw) time and space complexity for linear scaling
in sequence length N , with a w-sized KV-cache for constant-
memory generation.

Efficiency Unlike past sliding window attentions that keep
w at sizes 256 (Parmar et al., 2018) to 4096 (Jiang et al.,
2023). Large GEMMs are compute bound (e.g., for long-
context attention). But using small 16 × 16 GEMMs also
underutilizes the tensor cores since the launch code consumes clock cycles. To saturate the hardware
we would like to pipeline calls so BASED sets w to use 64× 64 tiles (Figure 1). To distinguish from
prior sliding windows, we term this approach TCWINDOW.

4.2 TAYLOR APPROXIMATION LINEAR ATTENTION

To model long range interactions — unsupported by pure small sliding window attention — BASED
combines exact sliding window attention with a softmax-approximating linear attention. With
ϕ(qi)

⊤ϕ(kj) ≈ exp(q⊤
i kj/

√
d), we compute attention for output yi as

∑i
j=1

ϕ(qi)
⊤ϕ(kj)vj

ϕ(qi)
∑i

j=1 ϕ(kj)
=

ϕ(qi)
∑i

j=1

(
ϕ(kj)

⊤vj

)
ϕ(qi)

∑i
j=1 ϕ(kj)

, which requires O(Nd2) time and space (Katharopoulos et al., 2020a).

Furthermore, we compute linear attention recurrently for efficient generation. Letting si =∑i
j=1 ϕ(kj)

⊤vj and zi =
∑i

j=1 ϕ(kj)
⊤ be a “KV-state” and “K-state” respectively, during gener-

ation we compute si = si−1 + ϕ(ki)
⊤vi, zi = zi−1 + ϕ(ki)

⊤, yi = ϕ(qi)si/ϕ(qi)zi. For ϕ, we
use the 2nd-order Taylor series feature map approximating exp(·) for its strong performance (Zhang
et al., 2024), i.e., ϕ(qi)⊤ϕ(kj) = 1 + q⊤

i kj + (q⊤
i kj)

2/2. While this naı̈vely results in O(Nd3)

complexity, we find smaller heads work without sacrificing quality, i.e., Wq,Wk ∈ Rd×d′
, d′ = 16.

For positional dependence, we use short gated convolutions (filter size 3) and Rotary embeddings (Su
et al., 2023) in TCWINDOW.

How does the choice of feature map affect the memory-recall tradeoff? We evaluate a broad set of
feature maps (ϕReLU(x) = max(x, 0), ϕPosELU(x) = ELU(x) + 1, ϕSquare(x) = x2, ϕIdentity(x) = x,

1In particular, for Mamba Gu & Dao (2023), see Corollary E.16.
2Here, we need the entries of the state to be bounded.
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ϕCosFormer as defined in (Qin et al., 2022b), and ϕPerformer as defined in (Choromanski et al., 2020))
using the experimental setup described in Section 3. In Figure 3 (top), we plot the memory-recall
tradeoff curves for these feature maps. The Taylor series feature map, along with the simple ϕPosELU
and ϕReLU feature maps, sits at the pareto frontier. One advantage of the Taylor feature map over
these alternatives is that it expands the recurrent state size (improving recall capacity) without chang-
ing the number of parameters. As shown in Figure 3 (bottom), the Taylor series feature map requires
fewer parameters than alternatives to achieve high recall capacity. This analysis and the ablations in
Table 3 informed our decision to use the Taylor approximation, though other simple feature maps
may be effective as well.

IO-Aware Implementation for Real-world Effiency Despite theoretically improved complexity,
linear attention is often slower in practice than standard attention (Dao et al., 2022). For number
of heads H and effective feature dimension D = 1 + d′ + d′2/2, the baseline implementation
(Appendix C) materializes large hidden state KV ∈ RH×d×D in HBM. It further requires 2HND
bytes for writing featurized Q,K to HBM, 2HND + HNd bytes to read Q,K,V tiles for the
causal dot product, and HNd bytes to write the result. Our Algorithm 1 drastically reduces the
HBM to SRAM data movement, by O(2HND − 2HNd′) bytes, and also performs computation
in-register, avoiding O(Nd3) bytes in SRAM to register data movement. We provide an extended
section on our IO-aware algorithms in Appendix C.

5 RESULTS

We evaluate the efficiency and quality of BASED versus strong baselines: Transformer++ (Touvron
et al., 2023), Mamba (Gu & Dao, 2023), GLA (Yang et al., 2023), Hyena (Poli et al., 2023), RWKV
(Peng et al., 2023), and H3 (Fu et al., 2023a). Extended results are in Appendix B. We find:

1. Pretraining and downstream performance. On the Pile (10Bn tokens, same data order across
architectures), BASED matches or outperforms the strongest sub-quadratic models at 355M and
1.3Bn parameters. For downstream evaluation on LM Eval Harness (Gao et al., 2023) tasks in Gu
& Dao (2023); Yang et al. (2023), BASED likewise competes with strongest baselines (Table 1).

2. Language modeling recall. BASED closes the gap to Attention on the challenging associative
recall slice of the Pile (see Table 1), outperforming prior sub-quadratic architectures. We apply
our pretrained models zero-shot to a suite of recall-intensive tasks (e.g. information extraction,
QA), showing that BASED outperforms other efficient architectures with comparable throughput.

3. Efficiency. For 1.3Bn (360M) parameter models, our BASED IO-aware algorithm achieves 56%
(28%) faster prefill than FlashAttention-2 (Dao, 2023) and 44% (76%) faster than Mamba at
4k sequence length and 1.3Bn (360M) parameters. It achieves 24× (98%) higher generation
throughput (tokens/second) over FlashAttention-2 implementation and achieves 95% and (118%)
the throughput of the recurrent Mamba architecture at batch size 128 (Fig. 4, NVIDIA H100).

4. Architecture ablations In Table 3, we ablate the key design choices for BASED: (1) feature map,
(2) feature dimension, (3) use of sliding windows, and (4) use of short gated-convolutions.

Together, our results point to BASED’s promise as a language modeling architecture.
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Figure 4: (Left) Throughput numbers for the varied prefill sequence lengths at a fixed batch size of
2. (Right) Throughput at varied batch sizes for generating 1024 tokens. The y-axis shows the in
latency (ms). Lines are cutoff when the model runs out of memory. We show results for both 360M
and 1.3Bn params., and all numbers are computed on an NVIDIA H100 GPU.
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The appendix is organized as follows:

1. Appendix A includes an extended related works discussion.

2. Appendix E.1 includes a theoretical discussion to complement Section 3 in the main paper.

3. Appendix B includes extended results and ablations to complement Section 5.

4. Appendix C includes details on the IO-aware implementation and benchmarking for
BASED.

5. Appendix D provides experimental details.

6. Appendix E includes theoretical results and proofs.

A RELATED WORKS

Our work relates broadly to various developments in efficient sequence modeling. In this section,
we organize these related works into (1) model-based or algorithmic contributions (Appendix A.1)
and (2) implementation or systems-based contributions (Appendix A.2).

A.1 EFFICIENT LANGUAGE MODELING ARCHITECTURES

While Transformers often achieve state-of-the-art language modeling quality, their design motivates
various efficiency improvements when both processing input sequences and generating outputs. In
particular, various works try to retain their modeling quality, while improving on their quadratic
scaling (O(N2) in input sequence length N ) when processing inputs and O(NM) time and space
when decoding outputs for outputs of length M (when caching prior keys and values in the attention
mechanism).

We note that most related lines of work build on one of two primitives: attention approximations
(e.g., linear attentions, sparse attentions, sparse and low-rank attentions), or state-space models
(SSMs) (which have alternative parameterizations as either “long” convolutional models or recur-
rent neueral networks). Both model classes achieve subquadratic time and space complexity when
processing inputs, while linear attentions and SSMs also enable better than O(NM) decoding via
their ability to process inputs recurrently like a recurrent neural network (RNN).

We describe each of these model classes next.

A.1.1 EFFICIENT ATTENTIONS

We focus on two of the most related paradigms for efficiently computing attention here, structured
sparse attentions and linear attentions. We acknowledge a great deal of prior work to compute
attention more efficiently, such as via locality-sensitive hashing (Kitaev et al., 2020), random sparse
attentions (Zaheer et al., 2020), and sequence compression (Wang et al., 2020; Zhu et al., 2021;
Alberti et al., 2023). Please see Tay et al. (2022) for a comprehensive survey.

Structured sparse attentions Structured sparse attentions reduce attention’s time and memory
requirements by only attending over specific strided patterns or local sliding windows (Parmar et al.,
2018; Child et al., 2019; Beltagy et al., 2020). For example, Parmar et al. (2018) propose computing
attention only over a local window of the past w tokens, such that processing sequences N tokens
long only takes ONw time and space. Child et al. (2019) note that this window alone may not all
capture all desired dependencies (such as long-term interactions), and propose two strided patterns to
compute dot products between queries and keys further away. Beltagy et al. (2020) further propose
allowing specific tokens to attend to all other tokens in a dense manner.

While further popularized in recent large language models (Mistral, Jiang et al. (2023)), we note
that these implementations use large window sizes that still leave room for improving efficiency. In
Based, we introduce a hardware-guided design (using small windows) and sliding window imple-
mentation that allows us to capitalize on sparse attention’s efficiency.

Linear attentions Linear attentions preserve the same “sequence-mixing” operations as standard
attention, computing dot products between queries and keys to weight corresponding values. How-
ever, their key insight is to replace the softmax in standard attention with alternative kernel func-
tions Katharopoulos et al. (2020b). Mechanically, by removing the exp(q⊤k) in favor of feature
map dot-products ϕ(q)⊤ϕ(k), these methods use matrix product associativity to compute attention
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in O(Nd2) time and space (Katharopoulos et al., 2020a). Furthermore, they permit a recurrent view
for constant memory and O(1) time per-token generation Kasai et al. (2021); Schlag et al. (2021).

Prior works propose different feature maps ϕ to improve linear attention modeling quality.
Katharopoulos et al. (2020b) originally use the positive elu function 1+elu such that ϕ(q)⊤ϕ(k) re-
mains positive and attention weights remain affine. Qin et al. (2022b) instead use the ReLU function
combined with a cosine-based reweighting function to add a locality bias. Other approaches propose
feature maps that aim to approximate the Softmax, such as Random Fourier Features (Choromanski
et al., 2020; 2021) the Nystrom method (Xiong et al., 2021; Chen et al., 2021b), or deterministic
low-degree polynomial approximations (Zhang et al., 2024; De Brebisson & Vincent, 2015; Keles
et al., 2023). Finally, recent works treat the feature map as a learnable function (Kasai et al., 2021),
and optionally train the feature map explicitly to recover the softmax kernel (Zhang et al., 2024).

Combining sparse and linear attentions Finally, our work is closely related to a long line of
work on combining sparse and linear attention. Scatterbrain (Chen et al., 2021a), building on works
such as BigBird (Zaheer et al., 2020) and Longformer (Beltagy et al., 2020), shows how a sparse
and low-rank approximations can be combined into a single unbiased approximation. This approx-
imation is inspired by robust PCA Candes et al. (2009). As motivation, they show that any low
rank approximation of attention’s exp(QKT ) will have a much larger approximation error than a
sparse plus low rank approximation. Note that the Scatterbrain method is largely agnostic to the
details of any specific architecture or choice of hyperparameters used in the sparse and low-rank
approximations. The focus is on how to combine them so as to maintain an unbiased estimate. In
contrast, our work studies how the choice of architecture and hyperparameters affect the model’s
efficiency and quality (we’re agnostic to the specific approach for combining the attention). For ex-
ample, Scatterbrain uses a fixed low-rank approximation (i.e. d̃ << d) in experiments. In contrast,
we focus on the recall-memory tradeoff and study what happens when we increase the size of d.
A major takeaway from our study of this tradeoff is that we actually need dquery > dmodel to match
attention’s recall capacity. Our IO-aware implementation shows how to achieve large speedups even
when dquery > dmodel.

There are a number of other works which can also be viewed as combinations of sparse and linear
attention. Multi-resolution analysis attention (MRA-2) uses wavelets to approximate the attention
matrix (Zeng et al., 2022). A special form of MRA-2 can be viewed as a combination of sparse
and low rank attention for a specific wavelet decomposition. H-transformer-1D uses a hierarchy of
matrices including full dense attention on the diagonal and low-rank approximations elsewhere (Zhu
& Soricut, 2021). TransNormer (Qin et al., 2022a) apply normalizations such as LayerNorm (Ba
et al., 2016) or RMSNorm (Zhang & Sennrich, 2019) to linear attention outputs in certain layers,
and apply softmax attention in local chunks in other layers.

A.1.2 ATTENTION ALTERNATIVES

We now review other attention alternatives, which focus on improving upon the quadratic scaling
of attention. Initial work in this vein uses linear time invariant state space models (SSMs) or long
convolutions, which can efficiently process sequences of length N in O(N logN) time invoking the
FFT-convolution theorem (Cooley & Tukey, 1965), as the sequence mixer (Gu et al., 2021; Romero
et al., 2022; Gupta et al., 2022; Gu et al., 2022; Mehta et al., 2022; Ma et al., 2022; Wang et al.,
2022; Fu et al., 2023b). SSMs can also be rewritten as recurrences to permit fast O(1) inference.

Subsequent work identified that the long convolution alone is not expressive enough to perform
particular sub-tasks in language modeling. Prior work shows pure linear SSMs cannot perform as-
sociative recall, a skill that is correlated with a model’s in-context learning capability Elhage et al.
(2021); Olsson et al. (2022), and introduces multiplicative interactions (via gating or Hadamard
product (Dauphin et al., 2017)) between tokens to allow the model to compare tokens in the se-
quence (Fu et al., 2023a; Poli et al., 2023; Peng et al., 2023). However, Arora et al. (2023a) show
empirically and theoretically the class of gated convolution architectures, any architectures built
from the two gating and convolution primitives, struggles to learn associative recall (on synthetic
and real language data) as efficiently as attention. They show that while attention solves AR in
constant many layers / with model dimension that is independent of sequence length, any gated
convolution architecture uses dimensionality that scales with the sequence length — we build upon
their upper bound theoretical results with a lower bound argument in Appendix E.1. We also study
a broader set of architectures in this work beyond gated convolutions.
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Gu & Dao (2023); Arora et al. (2023a); Yang et al. (2023) identify that the use of input-dependent
sequence mixers is important for an architecture to perform AR as efficiently as attention. AR
requires shifting information that appears prior in a sequence to interact with the current (last) tokens
in the sequence, in order to predict the next token (Fu et al., 2023a). While gating is one way to
introduce data-dependence (Poli et al., 2023), allowing comparing tokens in two (e.g. a shifted and
unshifted) sequences, it is difficult to select which information from the prefix of the sequence to
shift forwards in the first place, using gating alone. Intuitively, the information to shift depends
on the input’s properties. Thus, several subquadratic architectures consider alternate strategies to
introduce input-dependence (Katharopoulos et al., 2020a; Gu & Dao, 2023; Ren et al., 2023; Ma
et al., 2022; Yang et al., 2023). We present another strategy for efficient input-dependent sequence
mixing in our work.

A.2 EFFICIENT IMPLEMENTATIONS

Beyond designing new model architectures, various works introduce systems-level innovations to
improve training and inference efficiency. These include alternative implementations of architecture
primitives such as attention (Dao, 2023; Liu et al., 2023; Kwon et al., 2023), long convolutions (Fu
et al., 2023c;b), and linear attention (Katharopoulos et al., 2020b; Yang et al., 2023). They frequently
achieve both reduced memory and increased computational speed on modern GPUs by “fusing”
operations such as matrix multiplications into a single CUDA kernel, and designing “IO-aware”
ways to distribute and compute the results of various read and write operations between different
levels of GPU memory.

A.2.1 EFFICIENT ATTENTION IMPLEMENTATIONS

Dao et al. (2022) introduce FlashAttention, an alternative yet exact implementation of softmax at-
tention that improves memory and speed by both fusing attention operations into a single CUDA
kernel and distributing the attention operations to better exploit High Bandwidth Memory (HBM)
and Static Random Access Memory (SRAM). They first compute attention’s query-key-value dot-
products, masking, and softmax, together as a single kernel. By doing so after a single load to
SRAM before moving the output back to HRAM, they exploit SRAM’s fast compute and reduce the
total number of read-write operations. To get around SRAM’s small memory size and avoid atten-
tion’s quadratic memory size over input sequence length, they use tiling to split up the query, key,
and value inputs into smaller “blocks”, compute the attention operations for each block, and adjust
the outputs after computing all blocks to properly normalize the softmax (Rabe & Staats, 2021; Jang
et al., 2019). To perform backpropagation fast on SRAM, they get around SRAM’s limited storage
by recomputing the gradients rather than storing them. Despite the extra operations, this IO-aware
implementation still significantly improves wall-clock time during training.

Similarly making use of block-wise computation, Liu et al. (2023) instead compute attention blocks
across different devices in RingAttention, enabling training and inference over much larger con-
text lengths that scale with device count. They distribute and compute the attention operations in
each block across multiple hosts in parallel, likewise keeping track of summary statistics to gather
results correctly into exact attention. However, they introduce an “overlapping” mechanism to coor-
dinate communication of blocks to reduce overhead. They further make use of Blockwise Parallel
Transformers (Liu & Abbeel, 2023) to reduce memory, which similar to FlashAttention removes
the quadratic in memory scaling of attention by dividing the attention operation into separate blocks
before gathering back the adjusted softmax output with block-wise normalization statistics.

As a complement to attention training and inference, Kwon et al. (2023) improve attention genera-
tion with PagedAttention. PagedAttention similarly uses block-wise computation to address mem-
ory utilization issues during generation, where the KV cache can grow an undetermined amount.
Existing systems may naı̈vely handle this by pre-allocating large amounts of contiguous memory.
However, this can result in low utilization and computational bottlenecks. Accordingly, PagedAtten-
tion divides attention’s growing KV cache into KV blocks that can be stored separately on physical
memory. This enables more flexible memory management, where smaller chunks can be allocated
in different locations when needed to reduce memory-based bottlenecks.

In Based, we use similar blocking strategies to more efficiently compute both the second-order
Taylor series linear attention and the sliding window softmax attention, and for both training and
inference.
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A.2.2 EFFICIENT ATTENTION-ALTERNATIVE IMPLEMENTATIONS

Beyond optimizations for attention, various works also introduce similar “IO-aware” implementa-
tions to improve memory usage and speed for convolutional and recurrent operations. We overview
the most relevant works to Based, which make use of similar techniques such as fusing operations
and blocking (tiling) to compute results in SRAM.

Long convolutions Fu et al. (2023c) improve the efficiency of long convolutions on modern GPUs.
They build on using the Fast Fourier Transform (FFT), which enables computing convolutions with
filter sizes equal to input sequence length from O(N2) (if N is filter size and sequence length) to
O(N logN). However, to compute this algorithm efficiently on GPUs, they break down the con-
volution into separate matrix multiply operations via a Monarch decomposition of the FFT, which
allows both (1) fusing multiple steps of the FFT together (for reduced read-write operations) and
(2) scheduling these operations for fast computation in SRAM while remaining under the smaller
SRAM memory constraints.

Recurrence Gu & Dao (2023) improve the efficiency of recent neural state-space models
(SSMs) (Gu et al., 2021) using several similar techniques to FlashAttention, specifically with re-
gard the recurrent view. They load the SSM parameters into SRAM for computation before saving
results back in HBM, and also use recomputation where during backpropagation the intermediate
states are not saved but rather recomputed when inputs are loaded from HBM to SRAM. They finally
improve wall-clock time by parallelizing the recurrent view of the SSM as a parallel scan.

Linear Attention Finally, several works propose techniques to improve the real-world wall-clock
time and memory-usage of linear attention. Katharopoulos et al. (2020b) fuse several operations
in the causal dot product of linear attention. (Yang et al., 2023) use blocking to divide the linear
attention matrices into SRAM-computable chunks in FlashLinearAttention. As a trade-off between
the slow yet memory-efficient RNN view of linear attention and faster but memory-intensive par-
allel “standard attention” view, they further optimize a “chunk-wise” implementation of linear at-
tention (Hua et al., 2022). When processing input sequences, the input is first divided into several
non-overlapping chunks, where we save memory by computing “kv states” at the end of each chunk,
and save time by computing the tokens in a given chunk in parallel.
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Model Params
HG38 PPL ↓

N =1024 N =4096 N =8192

Transformer++ 46.2 2.52 2.50 2.51
Mamba 46.1 2.51 2.49 2.49
Based 48.8 2.51 2.50 2.49

Table 2: DNA modeling performance on the HG38 dataset. All models are pretrained from
scratch for 10Bn tokens at N = 1k, 4k, and 8k sequence lengths respectively. We report results after
hyperparameter sweeping the learning rate for each architecture.

B EXTENDED RESULTS

Here we provide additional discussion of the quality results to complement Section 5.

B.1 EXTENDED QUALITY RESULTS

In Section 5, we compared to the following baselines: Transformer++ (Llama architecture (Touvron
et al., 2023)), which adds rotary encodings (Su et al., 2023) and gated linear units to the standard
Transformer architecture (Brown et al., 2020). We compare an early class of efficient architectures
built from gating and long-convolution primitives including Hyena (Poli et al., 2023), RWKV (Peng
et al., 2023), and H3 (Fu et al., 2023a). We finally compare to recent state-of-the-art architectures,
that use input-dependent sequence aggregation to improve in quality upon the long-convolution
models, including Mamba (Gu & Dao, 2023) and Gated Linear Attention (Yang et al., 2023).

DNA modeling We evaluate each architecture on its ability to perform DNA next token prediction
(Table 2), as in prior work (Nguyen et al., 2023; Gu & Dao, 2023). The DNA tasks uses a byte-
level tokenizer wherin the vocabulary consists of characters corresponding to the nucleotide bases.
Intuitively, models need to aggregate information across multiple tokens to predict accurately. We
evaluate the competitive architectures from Table 2 on the HG38 (human genome) benchmark at 1k,
4k, and 8k sequence lengths (Nguyen et al., 2023; Gu & Dao, 2023). We find BASED is competitive
with SoTA architectures across sequence lengths, generalizing beyond natural language. For all
architectures, we hyperparameter search the learning rate {2e − 4, 4e − 4, 8e − 4} and select the
best. Higher learning rates performed better, so additional hyperparameter tuning could lead to
further improvements.

B.2 ABLATIONS OF BASED CHOICES

In Table 3, we ablate the key design choices in BASED. We find each design decision leads to
meaningful improvements in performance.

B.3 LM EVAL HARNESS DOWNSTREAM EVALUATIONS

In order to ensure that our models perform comparable on downstream evaluations, we evaluate on
the same protocol as Gu & Dao (2023), utilizing the LM evaluation harness by EleutherAI Gao et al.
(2023). In particular, we use the following set of metrics and tasks:

• LAMBADA (perplexity and accuracy) Paperno et al. (2016)

• HellaSwag (normalized accuracy) Zellers et al. (2019)

• PIQA (accuracy) Bisk et al. (2019)

• ARC-challenge (normalized accuracy) and, separately, the easy subset ARC-easy (accu-
racy) Clark et al. (2018)

• WinoGrande (accuracy) Sakaguchi et al. (2019)

Normalized accuracy refers to accuracy normalized by sequence length and is used to maintain the
equivalent setting to Gu & Dao (2023). The results can be found in Table 4.
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Hyperparameters Language Modeling (Pile) Info. Extraction QA

Feat. Map Feat. Dim. Sliding Convs. All AR Other FDA SQUAD
Ppl. ↓ Ppl. ↓ Ppl. ↓ Acc. ↑ Acc. ↑

Taylor Exp. (2) 16 (153) ✓ ✓ 8.65 2.07 9.64 11.71 25.07
Performer 16 (16) ✓ ✓ 9.08 8.53 11.62 0.36 7.47
CosFormer 16 (32) ✓ ✓ 9.03 2.42 9.98 7.71 24.63
CosFormer 64 (128) ✓ ✓ 8.82 2.18 9.80 9.07 27.85
Taylor Exp. (2) 8 (45) ✓ ✓ 8.77 2.18 9.75 12.79 22.35
Taylor Exp. (2) 16 (153) ✓ ✓ 8.65 2.07 9.64 11.71 25.07
Taylor Exp. (2) 24 (325) ✓ ✓ 8.58 2.02 9.58 20.87 24.77
Taylor Exp. (2) 32 (561) ✓ ✓ 8.56 2.00 9.57 12.89 26.74
Taylor Exp. (2) 16 (153) ✓ ✓ 8.65 2.07 9.64 11.71 25.07
Taylor Exp. (2) 16 (153) ✗ ✓ 8.91 2.11 9.94 10.16 24.5
Taylor Exp. (2) 16 (153) ✓ ✗ 8.74 2.09 9.74 2.36 18.87
Taylor Exp. (2) 24 (325) ✗ ✗ 9.49 2.29 10.58 8.71 11.33

Table 3: Ablations of design choices and hyperparameters in BASED. All models are 362M
param variants of the BASED architecture described in Section 4, trained to 10 billion tokens on
the Pile. We ablate four hyperparameters central to the design of BASED: (1) the choice of feature
map ϕ (see Section 4.2), (2) the size of the feature dim d′ (we show the effective size of the feature
after applying the feature map in parantheses, see Section 4.2), (3) the use of local sequence mixers
(sliding window attention and short convolutions).

Architecture Params. LAMBADA HellaSwag PIQA Arc-E Arc-C WinoGrande Average
Ppl. ↓ Acc. ↑ Acc. Norm. ↑ Acc ↑ Acc ↑ Acc. Norm. ↑ Acc. ↑ Acc. ↑

Transformer (LLaMa) 360m 18.39 42.52 33.48 63.98 46.04 24.49 53.99 44.08
Transformer (Pythia) 356m 25.17 37.16 31.32 63.76 44.82 23.8 51.54 42.08
BASED 363m 21.80 38.66 33.43 64.42 45.79 24.66 51.22 43.03
Mamba 358m 20.23 39.65 33.63 65.02 47.01 25.00 50.75 43.51
H3 362m 57.59 23.58 30.62 63.11 45.20 23.29 50.28 39.35
Transformer (LLaMa) 1.33b 11.12 49.10 39.29 66.16 51.68 26.19 53.43 47.64
BASED 1.35b 12.35 46.96 39.11 66.32 50.72 26.54 50.43 46.68
Mamba 1.32b 13.11 46.13 39.41 66.38 52.36 25.94 50.83 46.84

Table 4: Downstream evaluation of pre-trained language models. The same set of models as
in Table 1, all were trained on the same 10 billion tokens drawn from the Pile (Gao et al., 2020),
evaluated using the LM eval harness by EleutherAI Gao et al. (2023)

.
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C IO AWARE IMPLEMENTATIONS

In this section, we provide additional details pertaining to the benchmarking experiments and we
provide micro-benchmarking results for the individual kernels we contribute, to complement the
end-to-end benchmarking results in Section 5.

C.1 FORWARD / GENERATION PREFILL

Baselines In Figure 4, we implement BASED using our IO-aware Taylor linear attention Algorithm
1. The baseline approach presented in Zhang et al. (2024), prior to our kernel, uses the popular linear
attention CUDA kernel from Fast Transformers for computing the causal dot product Katharopoulos
et al. (2020b); Vyas et al. (2020). 3. The listing below shows the baseline implementation for
reference (where line 76-77 can be computed using pure PyTorch or the Fast Transformers kernel).

Micro Benchmark To complement the end-to-end architecture benchmarks in Section 5, we pro-
vide micro benchmark results for only the linear attention forward pass in Figure 5.
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Figure 5: Time (ms) for different ways of computing the Taylor linear attention forward pass —
using Pure PyTorch (shown in the Listing and introduced in Zhang et al. (2024)), Fast Transformers
kernel (as indicated in the listing) Vyas et al. (2020); Katharopoulos et al. (2020a), or our BASED
kernel (Algorithm 1). (Left) Varying the batch size at fixed sequence length 1024. (Right) Varying
the sequence length at fixed batch size 4. (All) Benchmarking uses 16 feature dimension, 16 heads,
64 head dimension, and focuses on the numerator of the linear attention. Each point represents the
median across 10 iterations is measured on a single NVIDIA H100 GPU. Lines terminate on out-of-
memory errors.

1 from einops import rearrange
2 import torch
3 from torch import nn
4

5 class TaylorExp(nn.Module):
6 """
7 Feature map to compute 2nd-order Taylor approx. of exp(qˆT k / sqrt(d

))
8 """
9

10 def __init__(self, input_dim, head_dim_idx, temp=None, eps=1e-12):
11 super().__init__()
12

13 self.input_dim = input_dim
14 self.head_dim_idx = head_dim_idx
15 self.temp = 1.0 if temp is None else temp
16 self.eps = eps
17

18 self.r2 = math.sqrt(2)
19 self.rd = math.sqrt(self.input_dim)

3https://github.com/idiap/fast-transformers/blob/master/fast_
transformers/attention/causal_linear_attention.py
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20 self.rrd = math.sqrt(self.rd)
21

22 def forward(self, x: torch.Tensor):
23 # Get 2nd-order terms (rearrange(x * x), ’... m n -> ... (m n)’)
24 x2 = (x.unsqueeze(-1) * x.unsqueeze(-2)).flatten(start_dim=-2) /

self.r2
25 term1 = torch.ones(x[..., :1].shape).to(x.device)
26 term2 = x / self.rrd
27 term3 = x2 / self.rd
28 terms = [term1, term2, term3]
29 return torch.cat(t for t in terms), dim=self.head_dim_idx)
30

31

32 class TaylorLinAttn(nn.Module):
33 def __init__(self):
34 super().__init__()
35 self.d_model = d_model
36 self.feature_dim = 16
37 self.num_heads = 16
38 self.num_key_value_heads = 16
39 self.head_dim = self.d_model // self.num_key_value_heads
40 self.eps = 1e-12
41

42 feature_map_kwargs = {
43 "input_dim": self.feature_dim,
44 "head_dim_idx": -1,
45 "eps": 1e-12,
46 }
47 self.feature_map = TaylorExp(**feature_map_kwargs)
48 self.proj_q = nn.Linear(
49 self.d_model, self.feature_dim * self.num_heads, bias=False
50 )
51 self.proj_k = nn.Linear(
52 self.d_model, self.feature_dim * self.num_heads, bias=False
53 )
54 self.proj_v = nn.Linear(
55 self.d_model, self.num_key_value_heads * self.head_dim, bias=

False
56 )
57 self.proj_o = nn.Linear(
58 self.num_heads * self.head_dim, self.d_model, bias=False
59 )
60

61 def forward(self, hidden_states: torch.Tensor, *args, **kwargs):
62 b, l, _ = hidden_states.size()
63 q = self.proj_q(hidden_states)
64 k = self.proj_k(hidden_states)
65 v = self.proj_v(hidden_states)
66 q = q.view(b, l, self.num_heads, self.feature_dim).transpose(1,

2)
67 k = k.view(b, l, self.num_key_value_heads, self.feature_dim).

transpose(1, 2)
68 v = v.view(b, l, self.num_key_value_heads, self.head_dim).

transpose(1, 2)
69

70 # Linear attention
71 q, k = self.feature_map(q), self.feature_map(k)
72 q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
73

74 # Compute attention causal (alternatively use the Fast
Transformers kernel)

75 num = (q * (k * v).cumsum(dim=2)).sum(dim=-1)
76 denom = (q * k.cumsum(dim=2)).sum(dim=-1) + self.eps
77 y = (num / denom)
78
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79 y = rearrange(y, "b h l d -> b l (h d)")
80 y = self.proj_o(y)
81 return y

Listing 1: PyTorch implementation of Taylor linear attention.

Algorithm Here we revisit the key equations we aim to compute and then describe Algorithm 1
in detail.

Objective First recall from Section 4:

oi =

i∑
j=1

ϕ(qi)
⊤ϕ(kj)vj

ϕ(qi)
∑i

j=1 ϕ(kj)
=

ϕ(qi)
∑i

j=1

(
ϕ(kj)

⊤vj

)
ϕ(qi)

∑i
j=1 ϕ(kj)

(1)

where qi reflects the ith of N total tokens in the sequence and every query attends to every past key
in O(Nd2) time and space complexity for embedding dimension d.

To approximate exp(q⊤
i kj/

√
d), we use the 2nd-order Taylor series feature map, picking ϕ : Rd →

Rd2

such that

ϕ(qi)
⊤ϕ(kj) = 1 + q⊤

i kj +
(q⊤

i kj)
2

2
(2)

In this section, we will refer to qi as a tile of data (e.g. of 16 tokens) instead of as a single token
since the hardware operates on chunks of data in parallel.

Algorithm description In Algorithm 1, we allow each thread block to compute the result for a partic-
ular (batch,head) input. Within the thread block, we use 8 warps / workers to produce the result.
We initialize data structures Bq, Bk, Bv in SRAM and qa, qb, ka, kb, qfrag, kfrag, vfrag in register
to hold chunks or tiles of the q, k, v inputs. We initialize data structures A0, A1, A2 in SRAM
and a0frag, a1accum, qA2accum in register to hold computation for the running KV state for the
0th, 1st, 2nd order Taylor polynomial terms.

We partition the computation along the sequence dimension into nblocks, where in each loop from 1
to nblocks, the warps load the next 8 chunks into fast memory. Note that for 2048 sequence length
and 8 warps, 16 tile size, we end up with ntiles = 128 and nblocks = 16. In each iteration, each warp
loads in 16 × 16 tiles of q, k and 16 × 64 tiles of v, where 16 indicates a chunk of 16 tokens along
the sequence dimension and 16, 64 are the feature and head dimensions respectively. Once tiles are
streamed in, we do not need to reuse them, which is key to the efficiency of linear attention.

Zeroeth order Taylor terms: During the computation, for the 0th term in the Taylor polynomial,
q, k are 1 after we apply the feature map (Equation (2)). Therefore, computing a cumulative sum
over q(kT v) reduces to maintaining a cumulative sum of v as we iterate across the sequence.

First order Taylor terms: Next we consider the 1st order terms. On-diagonal: First consider the
on-diagonal blocks, e.g. with respect to tiles qi, ki, vi. For these, we simply multiply qT k, mask-
ing (making it causal), and then multiplying with v, following the order of operations in standard
attention. This makes it easy to apply the masking (0 out non-causal elements). Now each warp
contains a local result for its set of on-diagonal tiles of qi, ki, vi. Off-diagonal: However, we need
to obtain a global cumulative sum where (qTi kj)vj depends on all j ∈ [1..i] (Equation (1)). Each
warp is therefore missing values for tiles j ∈ [1..i − 1]. To incorporate this computation, we will
now compute the cumulative KV hidden state for the warp up until i− 1 and multiply this with the
local tile of q (i.e. qfrag). To accomplish this, note in Algorithm 1, we multiply kfrag

T and vfrag to
compute local tiles of the hidden state, local to each warp, in thread register. To perform the global
cumulative sum across the 8 warps’ local results, we write from registers (thread specific) to A1 in
SRAM (shared across warp threads). After computing the global cumulative sum in shared memory,
each warp loads back the KV state (in A1) into its registers such that it contains all the preceeding
KV (history) for tiles [1..i − 1]. We then multiply the local qfrag in register with this KV state to
update the final output for the 1st up until the current nblocks. Note that we maintain the running KV
state corresponding to the 1st order term in A1 shared memory for the next iteration along nblocks.
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Algorithm 1 Computing the 0th (T0), 1st (T1), 2nd (T2) Order Taylor Linear Attention Terms

Input: Input projected hidden states q, k, v ∈ RN×d.
Output: Output y = T0 + T1 + T2 ∈ RN×d

Parallelize into batch× heads parallel computations, with nwarps = 8 warps per block.
Within a block:
Define tile size T ▷ T = 16 in BASED
Define ntiles =

N
T

▷ Block along the sequence dimension
Define nblocks = ntiles/nwarps ▷ Block along the number of warps
Define tic = 0, toc = 1 ▷ Flags for asynchronous data loading

Create SRAM buffers Bq , Bk (Size 2× nwarps × T × T ) and Bv (Size 2× nwarps × T × 4T )
Create SRAM buffers A0,A1,A2 (Size nwarps × T × 4T ) for storing interim. results for T0, T1, T2 as
warps process the sequence
Create SRAM buffers totalA0 and totalA1 to hold cumulative (“KV”) state corresponding to T0, T1
Create SRAM buffers y of (Size nwarps × T × 4T ) for storing the final output

Create register fragments qa, qb, ka, kb, qfrag, kfrag, qkaccum of size 16× 16. We create register fragments
vfrag, a0frag, a1accum, A20, A21, qA2accum, oaccum of size 16× 64. These fragments are for holding data
during in-register computation. Initialize the fragments to 0.
Each warp loads initial tiles Bq[tic][warpid]← Qt, Bk[tic][warpid]← Kt and Bv[tic][warpid]← Vt ▷
HBM into SRAM

for curblock ∈ [0..nblocks − 1]; tic = 0⊕ = 1, toc⊕ 1 do ▷ XORs tic and toc to toggle.
Warp loads Bq[toc][warpid]← Qt for curblock + 1 ▷ HBM to SRAM
Warp loads Bk[toc][warpid]← Kt for curblock + 1
Warp loads Bv[toc][warpid]← Vt for curblock + 1

Warp loads qfrag ← q[tic][warpid] ▷ SRAM into register
Warp loads kfrag ← k[tic][warpid]
Warp loads vfrag ← v[tic][warpid]

Compute the warp-local cumulative sum on vfrag → a0frag. ▷ T0 computation
Add the running A0 to the current a0frag

Compute qfragkfrag
T (attention) and make it causal and store in a qkaccum ▷ T1 computation

Compute qkaccumvfrag → oaccum ▷ Store causal qkT v
Warps store kT

fragvfrag → a1accum and write a1accum → A1[warpid] ▷ Register to SRAM
Compute cumulative sum over A1 in SRAM, updating A1 entries
Warps read A1 tiles back to registers ▷ Each warp now contains its preceeding A1
Warps multiply the values in register with qfrag to update→ oaccum ▷ Add in T1 to the running result
Update a0frag → oaccum ▷ Add in T0 to the running result
Square qkaccum, multiply with vfrag and add→ oaccum ▷ Add in diagonal T2 to the running result
Sum the values of oaccum into y[warpid]

for block in nwarps iterations do ▷ Remaining T2 computation; Assumes feature dimension 16
Each of 8 warps copies the same slice of q[tic][warpid] to 2 registers qa, qb
Each thread j in the warp computes qa[:, 2j]qa for dimension 2j, and for 2j+1 (and for qb). Together

the threads compute the 256 elements resulting from the second order outer product in the feature map.
Each warp stores two slices of A2: A20 and A21 ▷ Partitioning the large A2 across warp registers
Accumulate both qaA20 and qbA21→ qA2accum
Warp writes qA2accum → A2[warpid] ▷ Register to SRAM
Sum results across all in A2[warpid] and store the sum in y[block] ▷ Add in T2

Each of 8 warps copies the same slice of k[tic][block] to 2 registers ka, kb ▷ KV state update
Square ka and kb
Each of the 8 warps loads v[tic][block] to vfrag in register
Multiply ka and vfrag, kb and vfrag and accumulate the results into A20 and A21, the two in-register

slices of A2 for the warp, respectively
End. Store y. Optionally store A0, A1, A2 (comprising the “KV state”) for generation. ▷ SRAM to HBM
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Second order Taylor terms: We finally need to compute the 2nd order term. Similar to the 1st

order term, we’ll consider On-diagonal: We can leverage the computation from above. We’ll square
the causal (qkT )2 from above and multiply with vfrag to obtain the portion of the 2nd order term
corresponding to the on-diagonal tiles qi, ki, vi. Off-diagonal: Again, we also need to compute the
result with respect to tiles [1..i− 1].

• Partitioning KV hidden state for 2nd order Because the hidden state for the second
order term is large (O(d2D) in feature dimension d and head dimension D) and warps
have a limited number of registers, we slice its storage across the registers of the 8 warps.
Considering the the 162×64 (d2×D) hidden state (stored in A2 SRAM in Algorithm 1), we
divide this into 16 slices along the sequence dimension and let each of the 8 warps handle
2 of the 16 × 64 slices (stored in A20, A21 fragments in thread registers in Algorithm 1).
Warp i will maintain slices 2i and 2i+ 1 in two registers per thread.

• Computing output for 2nd order Each warp i loads in one tile of qi into 2 registers. We
will use the 32 threads in the warp to compute the 256 outer product terms for each token
computed by the Taylor 2nd order term (for feature dimension 16).

Next, the threads multiply these 256 terms with the running A20 and A21 slices. The
results for the two slices are summed in register and then stored in SRAM (A2[warpid]).
Since oi is ultimately the sum of qi terms multiplied with all slices of A2 (Equation (1)),
we then sum the results from all the warps together (which hold the remaining slices of A2)
and store the result in y[block]. We can think of y[block] as holding the result up until the
(8 × curblock + block) tile of tokens (note 8 is because in each increment of curblock, the
8 warps handle 8 different tiles of the sequence).

• Updating the KV state: For block = i, we load in k[i], v[i] tiles of size 16 × 16 and
16× 64 respectively to registers ka, kb, vfrag. We compute the 256 outer product terms on
k[i] using the 32 threads, multiply with vfrag, and store the result in the A20, A21 running
state.

The final result in y is summed into the output to complete the 2nd order computation.
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C.2 NEXT TOKEN PREDICTION

During next token prediction in generation, we use IO-aware algorithms for the expensive KV state
update in Taylor linear attention and for the sliding window attention computation.

C.2.1 TAYLOR LINEAR ATTENTION

The KV update in PyTorch is provided in the following listing. In Figure 6 we benchmark the speed
of the PyTorch implementation against our kernel.
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Figure 6: Time (ms) for computing the Taylor linear attention recurrent update using Pure PyTorch
(shown in the Listing and introduced in Zhang et al. (2024)) vs. our BASED kernel. Benchmarking
uses 16 feature dimension, 16 heads, 64 head dimension, and focuses on the numerator of the
linear attention, the more expensive term. Each point represents the median across 10 iterations is
measured on a single NVIDIA H100 GPU.

1 from einops import rearrange
2 import torch
3 from torch import nn
4

5 def step(self, kv_state: torch.Tensor, k_state: torch.Tensor, q: torch.
Tensor, k: torch.Tensor, v: torch.Tensor):

6 """
7 Compute linear attention with recurrent view
8 -> Assume q.shape is (b, h, 1, D); k and v.shape are (b, h, l, d)

, where D is the dimension after applying the feature map and d is
the head dimension.

9 """
10 b, h, l, d = q.shape
11 assert l == 1, f’q.shape is {q.shape} but should be ({b}, {h}, 1,

{d})’
12 # Expand dims for broadcasting to compute linear attention
13 q, k, v = q.unsqueeze(-2), k.unsqueeze(-2), v.unsqueeze(-1)
14

15 kv_state += k[:, :, -1:] * v[:, :, -1:]
16 k_state += k[:, :, -1:]
17

18 # Compute linear attention
19 num = (q * kv_state).sum(dim=-1)
20 y = num / ((q * k_state).sum(dim=-1) + self.eps)
21

22 y = rearrange(y, ’b h l d -> b l (h d)’).to(q.dtype)
23 return self.dropout(self.out_proj(y))

Listing 2: PyTorch implementation of Taylor linear attention KV update

22



Published at the ICLR 2024 Workshop on Understanding of Foundation Models (ME-FoMo)

Algorithm 2 Computing KV State Updates

Input: KVt−1 state ∈ RHd′2d, at time t. Featurized q, k ∈ RB×H×1×D and V ∈ RB×H×1×d, for d as the
head dimension (e.g. 64) and D as the expanded feature map dimension (e.g. 273 = 1+16+162 for feature
dim 16). To be hardware-friendly, we let D = 320 (s.t. 320 mod 64 = 0) via padding.

Output: Updated KVt state.
Parallelize into batch× heads parallel computations, with nwarps = 8 warps per block.
Within a block:
Define nthreads = nwarps × 32 ▷ Assuming 32 threads per warp
Define buffersize = nwarps × 8× d
Define totalbatches =

D
nwarps×8

▷ E.g. totalbatches = 5 if D = 320; For k, 320
5

= 64 values per batch
Define tic = 0, toc = 1

Create SRAM buffer Bq (Size D) for q
Create SRAM buffer Bk (Size D) for k
Create SRAM buffer Bv (Size d) for V
Create SRAM buffer Bkvs (Size 2× buffersize) for storing blocks of kvstate

Create SRAM buffer o (Size d) for output.
Create SRAM buffer A (Size nwarps × d) for intermediate computation

Create register buffer vreg (Size 2) to store V data
Create register Areg (Size 2) for intermediate computation

Warps load Bq ← q ▷ HBM to SRAM; Load all D = 320 elements of q
Warps load Bk ← k
Warps load Bv ← V
Warps load chunk Bkvs[tic]← kvstate ▷ Load (1× 64)× 64 of the (totalbatches × 64)× 64 elements in
KVt−1

Initialize m = 0
for Threads j ∈ [0..31]; j < d; j+ = 32,m+ = 1 do ▷ Each thread holds 2 values (d = 64; 32 threads)

Load vreg[m]← v[j] ▷ SRAM to Register; Now v[j] is stored in thread j mod 32

for i ∈ [0..totalbatches]; i = i+ 1, tic⊕ 1, toc⊕ 1 do
Loads Bkvs[toc]← next batch of kvstate ▷ Asynchronous loads of next batch

for j = warpid; j < d; j+ = nwarps do ▷ Each of the 8 warps loads 8 of the 64 rows of k, q in the
batch

kval ← Bk[i ∗ d+ j] ▷ Grab single rows q[i] and k[i], Broadcast to all threads
qval ← Bq[i ∗ d+ j]

p = Bkvs[tic] + j ∗ d ▷ Point to output rows of KVt; We write d× D
totalbatches

sub-matrix for this
batch

Initialize m = 0
for Thread k ∈ [0..31]; k < d; k+ = 32,m+ = 1 do

p[k]+ = kval ∗ vreg[m] ▷ Update running state by multiplying broadcasted kval with the full
vreg

▷ This updates a 1× d strip of the d×D full KVt outer product
Areg[m]+ = qval ∗ p[k] ▷ Multiply qval with the running state, updating all values in the 1× d

output

Write out new KVt state for this batch: Bkvs[tic][k] ▷ SRAM to HBM

Initialize m = 0
for Threads j ∈ [0..31]; j < d; j+ = 32,m+ = 1 do ▷ Each thread holds info for 2 of the 64 output values

Store A[warpid][j]← Areg[m] ▷ Register to SRAM

for Thread j; j < d; j+ = nthreads do ▷ d = 64 threads put values from first warp in nj

nj = A[0][j] ▷ Each warp had only computed output values for a subset of (e.g. 8) rows of k and q
for w ∈ [0..nwarps] do

Sum the nj+ = A[w][j] across ▷ Need to combine results across warps
Store o[j]← nj

Write output o ▷ SRAM to HBM
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Figure 7: Time (ms) for different ways of computing sliding window attention next token prediction
— using PyTorch, Flash Attention (which supports a sliding window function), or our inference
kernel. Each point represents the median across query tokens at different token positions in the
generation ∈ {100, 250, 500, 750}.

C.2.2 SLIDING WINDOW ATTENTION

Baselines During training / prefill, we use the Flash Attention sliding window implementation
(Dao, 2023).

Our IO-aware implementation focuses on next token prediction. In the listing below, we include a
Torch reference. Our IO-aware sliding window attention algorithm is provided in 3. The key insight
is to fuse operations in thread registers to minimize slower SRAM to register data movement.

Micro Benchmark We benchmark key baselines (Torch, Flash Attention-2 Dao (2023), and the
BASED kernel on an NVIDIA H100 GPU in Figure 7. The benchmark uses window size 64, head
dimension 64, and number of heads 16. We vary the batch size on the x axis and repeat the median
timing across iterations on the y axis. Note that these timings include only the attention computation
and not the time for updating the KV -cache state. These timings also do not include any processing
for Rotary encodings (as shown below).

1 import torch
2 from torch import nn
3

4 """
5 b: batch size
6 h: number of heads
7 n: sequence length
8 d: head dimension
9

10 w: window size
11

12 qw: b x h x 1 x d
13 kw: b x h x w x d
14 vw: b x h x w x d
15 """
16

17 w = torch.einsum("bhod, bhnd-> bhn",qw, kw)
18 a = torch.nn.functional.softmax(w, dim=-1)
19 result = torch.einsum("bhn,bhnd->bhd", a, vw)

Listing 3: PyTorch implementation of Sliding Window
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Algorithm 3 Sliding window generation

Input: KVt−1 state ∈ RHwd, at time t and projected hidden states q, k, v ∈ RB×H×1×d, for H heads, head
dimension d, sliding window size w, and batch size B.

Output: Updated KVt state.
Parallelize into batch× heads parallel computations, with nwarps = 4 warps per block.
Within a block:
Define tile size T ▷ T = 16 in BASED
Define nthreads = nwarps × 32 ▷ Assuming 32 threads per warp

Create SRAM buffers Bk and Bv (Each of size 4T × 4T ) to hold k, v. ▷ Assumes 4T = 64 is the w, d
Create SRAM vector Bq (Size 1× 4T ) to hold q during the kernel execution. ▷ Single query, assume
d = 64
Create SRAM vector Bw (Size 1× 4T ) of type float for intermediate attention computation.
Create SRAM vector Bo (Size 1× 4T ) to hold the output. ▷ Single output, assume d = 64
Create SRAM buffers max and sum (Each of workers by float size).

Create register fragments qreg, kreg, vreg to hold data during fused computation in-register.
Create register fragments wreg (size 1 × 4T ) and wvreg (size 4T × 1) to store intermediate computation
in-register.
Create register fragment oreg (size 4T × 1) to store output in-register.

Loads Bk ← k using nthreads; Bv ← v using nthreads; Bq ← q using one warp. ▷ HBM to SRAM
Loads qreg ← Bq . q gets broadcasted to all warps. ▷ SRAM to Register
Loads kreg ← Bk[warpid]. Each warp gets T × 4T of the 4T × 4T in Bk (i.e. a column).
Loads vreg ← Bv[warpid]. Each warp gets T × 4T of the 4T × 4T in Bv (i.e. a column).

Initialize wreg to zero
wreg ← qregkreg ▷ Matrix-vector (GEMV) multiplication

Initialize float m = −∞ for the max ▷ Obtain the max across tiles for Softmax
Update m← max(wreg) with the max from the local data
max[warpid]← m for all warps to access
Iterate over nwarps entries in max buffer to compute the global max of wreg

Put global max back into each warp’s m float

Initialize float s = 0 for the sum ▷ Obtain the sum across tiles for Softmax
Update s← sum(wreg) with the sum from the local data
sum[warpid]← s for all warps to access
Iterate over nwarps entries in sum buffer to compute the global sum of wreg

Put global sum back into each warp’s s float

wreg ← wreg −m ▷ Start attention computation in register
wreg ← exp(wreg)
wreg ← wreg

s
Bw[warpid]← wreg ▷ Register to SRAM; storing for the slice of k
wvreg ← Bw ▷ SRAM to Register. Warp loads entirety of Bw; all slices
Initialize oreg to zero.
oreg ← wvregvreg ▷ Matrix-vector (GEMV) multiplication

Write oreg to global memory ▷ Register to SRAM, SRAM to HBM
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D EXPERIMENTAL DETAILS

D.1 LANGUAGE MODEL PRETRAINING

We use A100 80GB Nvidia GPUs to run all experiments. We use training infrastructure
closely adapted from the FlashAttention code base: https://github.com/Dao-AILab/
flash-attention/tree/main for all pretraining runs Dao (2023). The Pile data is tokenized
using the GPT2BPETokenizer and all models see the data in the same order. Here we provide de-
tails on the hyperaparamters and configurations used for training each architecture. We also provide
details on the FLOPs computation.

• BASED We train using the specifications in Table 5. Our implementation is provided here:
https://github.com/HazyResearch/based. The initial models were trained
and evaluated using the Fast Transformer CUDA kernels discussed in Appendix C (Vyas
et al., 2020; Katharopoulos et al., 2020a).

• Transformer++ (Touvron et al., 2023) We refer to the modern Llama architecture with
Rotary encodings, RMSNorm and SwiGLU as Transformer++, following prior work Gu &
Dao (2023); Yang et al. (2023). We train using the the specifications in Table 6 using the
Flash Attention training code provided here: https://github.com/Dao-AILab/
flash-attention/tree/main Dao (2023).

• Mamba (Gu & Dao, 2023) We train using the specifications in Table 7, where the param-
eters are sourced from the Appendix of Gu & Dao (2023). The implementation is sourced
from the provided reference at https://github.com/state-spaces/mamba.

• Hyena (Poli et al., 2023) We train using the specifications in Table 8, where the parameters
are sourced from the Appendix of Poli et al. (2023). The implementation is sourced from
the provided reference at https://github.com/HazyResearch/safari.

• H3 (Fu et al., 2023a) We train using the specifications in Table 9. The implementation
is sourced from the provided reference at https://github.com/HazyResearch/
safari.

• RWKV (Peng et al., 2023) We train using the specifications in Table 10 and use the ref-
erence implementation at https://github.com/BlinkDL/RWKV-LM. We specifi-
cally evaluate RWKV-V5.

• Gated Linear Attention (GLA) We train using the specifications in Table 11. We train fol-
lowing the reference implementation at https://github.com/berlino/gated_
linear_attention.

We give all models the improved Transformer++ recipe (e.g., SwiGLU) as relevant.

D.2 COMPUTING RECURRENT STATE SIZE

In this section, we provide details on how we compute the size of the recurrent hidden state for
the results described in Section 3. We train and evaluate six sequence mixers on a synthetic asso-
ciative recall task: attention Vaswani et al. (2017), sliding window attention Beltagy et al. (2020),
Mamba Gu & Dao (2023), H3 Fu et al. (2023a), Hyena Poli et al. (2023), and BASED. For each,
we vary hyperparameters that affect the memory consumption during inference. We compare how
MQAR accuracy varies with the size of the recurrent hidden state.

BASED. The recurrent state size in BASED is determined by the model dimension d and the size
of the hidden dimension after applying the feature map d̃. The +1 accounts for the K-state required
for computing the denominator. For more details on the recurrent view of BASED, see 4.

sizeof(si) = (d+ 1)× d̃ (3)

In Based, we use the Taylor Exponential feature map after projecting d down to a smaller dimension
d′. With this approach, recurrent state size is given by:

sizeof(si) = (d+ 1)× (1 +
3d′

2
+

d′2

2
) (4)

In our synthetic experiments, we run BASED with d ∈ {48, 64, 128} and d′ ∈ {8, 16, 24}.
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Attention. The recurrent state size (i.e. KV-cache size) in attention depends on two parameters:
the model dimension d and the sequence length N . The 2 in the expression below accounts for the
separate storage for keys and values in the KV-cache.

sizeof(si) = 2× d×N (5)

In our synthetic experiments we run attention with d ∈ {64, 128}. The sequence length N is
determined by the task, not the model architecture.

Sliding window attention. The recurrent state size in sliding window attention is given by the
model dimension d and the width of the sliding window ksliding. The 2 in the expression below
accounts for the separate storage for keys and values in the KV-cache.

sizeof(si) = 2× d×min(N, ksliding) (6)

In our synthetic experiment we run sliding window attention with d ∈ {128} and ksliding ∈
{8, 16, 32, 64, 128, 256, 512, 1024}.

Mamba. The recurrent state size in Mamba is determined by the model dimension d and the
number of heads h. The 2 in the expression below accounts for the expansion in the Mamba block.

sizeof(si) = 2× d× dstate (7)

In our synthetic experiments, we run Mamba with d ∈ {64, 128, 256} and dstate ∈ {8, 16, 24}.

H3. The recurrent state size in H3 is determined by the model dimension d and the number of
heads dstate.

sizeof(si) = d× dstate (8)

In our synthetic experiments, we run H3 with d ∈ {64, 128, 256} and dstate =
d
4 .

Hyena. The recurrent state size in Hyena is determined by the model dimension d and the number
of heads h. The 2 in the expression below accounts for the separate storage for keys and values in
the KV-cache.

sizeof(si) = d×N (9)

In our synthetic experiments, we run Hyena with d ∈ {64, 128, 256}.

D.3 LANGUAGE MODEL EVALUATION

In this section, we provide details on each of the evaluations (columns) reported in Tables 1 and 3.

Pile (Language Modeling). First, we report overall perplexity on the Pile test set Gao et al. (2020).
Then , to understand how much of the perplexity gap is due to recall capacity, we also evaluate
perplexity on two slices (i.e. subsets) of the test set:

1. Associative recall(AR) tokens. Tokens in the final position of a bigram which previously
occured in context, but ≤ 1250 times in the training data.

2. Other tokens. All other tokens.

To construct these slices, we exactly follow the protocol in Arora et al. (2023a) and refer the reader
to that work for more details. We compute these slices on the first 16 million tokens in the test set.

SWDE (Information Extraction). The task in the SWDE benchmark is to extract semi-structured
relations from raw HTML websites. For example, given an IMBD page for a movie (e.g. Harry
Potter and the Sorcerer’s Stone) and a relation key (e.g. release date), the model must extract the
correct relation value (e.g. 2001). The SWDE benchmark was originally curated by Lockard et al.
(2019) for the task of open information extraction from the semi-structured web. Because we are
evaluating the zero-shot capabilities of relatively small language models, we adapt the task to make
it slightly easier. Our task setup is similar after to that used in Arora et al. (2023b).
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FDA (Information Extraction). The task is to extract key-value pairs from a set of PDFs scraped
from the FDA website. We use the dataset and labels collected in Arora et al. (2023b). We break

apart the documents into chunks of 1,920 tokens. For every key-value pair that appears in the
chunk, we create a zero-shot prompt using the simple prompt template:

{chunk} \n {key}:
We allow the model to generate a fixed number of tokens after the prompt and check (with case
insensitivity) if the value is contained within the generation. We report accuracy, the fraction of
prompts for which the generation contains the value.

Below we include one example of a zero-shot prompt for the key-value pair “Type of Test: Quan-
titative, colorometric, pyranose oxidase (PROD)”. The actual chunk is substantially longer in the
dataset (note the ellipsis).

510(k) SUBSTANTIAL EQUIVALENCE DETERMINATION DECISION SUMMARY AS-
SAY ONLY TEMPLATE A. 510(k) Number: k180209 B. Purpose for Submission: New De-
vice C. Measurand: 1,5-Anhydroglucitol (1,5-AG) D. Type of Test: Quantitative, coloromet-
ric, pyranose oxidase (PROD) E. Applicant: Diazyme Laboratories Inc. F. Proprietary and
Established Names: Diazyme 1,5-AG Assay G. Regulatory Information: 1. Regulation sec-
tion: 21 CFR 864.7470; Glycosylated hemoglobin assay 2. Classification: Class II ... [1,920
tokens of context from the PDF] ... Diazyme’s 1,5-AG assay uses the enzyme pyranose oxi-
dase (PROD) to oxidize the 2nd position hydroxyl group of 1,5-AG and to detect the generated
hydrogen peroxide by colorimetry using peroxidase (POD). Type of Test:

SQUAD (Question Answering). The Stanford Question Answering Dataset (SQUAD) can be
used to evaluate the reading comprehension of language models. The model is given a passage of
text and a question whose answer is contained in the passage.

Because the models trained in this work are relatively small-scale (up to 1.3 billion parameters
trained on 10 billion tokens) and not instruction fine-tuned, they struggle to answer questions when
asked directly. To make the task more amenable to these raw language models, we first use GPT-4
to reformat the questions to more closely resemble the next-token-prediction task the models were
trained on:

Can you rewrite this question and answer as a statement.
Ensure that the answer is the last part of the statement. \n \n
Question: {question} \n\n Answer: {answer} \n\n Rewrite:

For example, the question and answer “Question: Which NFL team represented the AFC at Super
Bowl 50? Answer: Denver Broncos” was rewritten by GPT-4 as “The NFL team that represented the
AFC at Super Bowl 50 was the Denver Broncos.” We verify that the rewritten sentence does indeed
end with the answer, discarding any sentences where it does not (40% of questions).

We run the reformatting on 5,000 squad questions from the validation set, yielding a final dataset of
2,984 questions formatted as next token predictions.

Below we include one example of a zero-shot prompt. The reformatted question is in bold.
For the third straight season, the number one seeds from both conferences met in the Super
Bowl. The Carolina Panthers became one of only ten teams to have completed a regular season
with only one loss, and one of only six teams to have acquired a 15–1 record, while the Denver
Broncos became one of four teams to have made eight appearances in the Super Bowl. The
Broncos made their second Super Bowl appearance in three years, having reached Super Bowl
XLVIII, while the Panthers made their second Super Bowl appearance in franchise history,
their other appearance being Super Bowl XXXVIII. Coincidentally, both teams were coached
by John Fox in their last Super Bowl appearance prior to Super Bowl 50. The team in Super
Bowl 50 that had a 15-1 record was the
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E THEORETICAL RESULTS

E.1 KEY RESULTS

To complement the empirical results on the throughput-recall tradeoffs in Section 3, here we the-
oretically show lower bounds on attention-free alternativess’ abilities to perform recall. We prove
that existing gated convolutions and recurrent models require scaling in size to solve recall over in-
creasing vocabularies. This analysis reinforces our empirical observations on the throughput-recall
tradeoff.

Prior work formally shows how different architecture classes solve the MQAR problem Arora et al.
(2023a). They show that different sequence mixers need asymptotically different parameter scal-
ing to solve MQAR. The broader implication is that even though a sequence mixer might process
long-context in sub-quadratic time, we must also understand how efficiently the model can learn
important language modeling skills. We extend the prior analysis in (Arora et al., 2023a) with two
lower-bound arguments. First, we show that a minimal gated-convolutional model — i.e. a model
that can provably simulate any architecture built from gating and standard input-independent con-
volutions — identified as in (Arora et al., 2023a) cannot solve MQAR in constant many layers.
Input-independence refers to the convolution being parameterized by model weights, and thus does
not change depending on the particular input being processed. (Theorem E.20 and Theorem E.30
in Appendix E).

Theorem E.1. Given an input sequence u ∈ {0, 1}3N×, where N and denote the sequence length
and head dimension, respectively, a data-independent model needs log(2d)-layers to solve MQAR
for d = log2(c), where c denotes the vocabulary size4.

Remark E.2. Further, for a class of input encodings that generalizes one-hot encodings termed as
p-hot encodings (Definition E.23), input-dependent needs at least ⌊log(2p)⌋-layers to solve MQAR
where d = p · p

√
c.

In contrast, recall that attention solves MQAR in constant-many layers Arora et al. (2023a). While
recent recurrent models Gu & Dao (2023); Yang et al. (2023) use asymptotically smaller state sizes
than attention, we next show a lower bound on the state size of any such model that depends causally
on the input (Theorem E.15 in Appendix E).

Theorem E.3. Any recurrent model5 depending causally on input u ∈ {0, 1}N×d requires Ω(N)-
bits6 in state size to solve AR.

Finally, we show that we can simulate linear attention (Katharopoulos et al., 2020b), the foun-
dation of BASED, using (Arora et al., 2023a) with a poly-log blowup in the number of lay-
ers (Proposition E.11 in Appendix E), pointing to the relative efficiency of linear attention over
gated-convolution architectures.

E.2 PROOFS SETUP

Our focus in this section will be on the theoretical results of the paper. Specifically, we will show the
equivalence of models and (Gu & Dao, 2023) with , a minimal gated-convolution operator (Arora
et al., 2023a, Definition 4.1), and prove lower bounds for the MQAR problem (Arora et al., 2023a,
Section H.7.1) in various settings. We begin by setting notation and introducing the theoretical
formulations of the models.

Notation. We will be denoting the all 1 row vector of size k, given by [1 1 . . . 1 1], and
the all 0 row vector of size k, given by [0 0 . . . 0 0], as 1k and 0k, respectively. We will also
construe the standard basis vector ei as a column vector in these notes, and adhere to the following
matrix indexing convention: M[i, j] is the entry in the ith row and the jth column, M[i, :] ∈ F1×n

denotes the ith row, and M[:, j] ∈ Fm×1 denotes the jth column of M ∈ Fm×n, where F is a field
and the reader can substitute F for R for convenience. For a matrix M ∈ Rn×m, we define the

4That is, each token from the vocabulary has the natural binary encoding in {0, 1}log2(c)
5In particular, for Mamba Gu & Dao (2023), see Corollary E.16.
6Here, we need the entries of the state to be bounded.
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pair-wise Hadamard product of columns of M as M ∈ Rn×m2

, where

(M)[:, i] := M[:, j]⊙M[:, k] for i ∈ [m2],

j =

⌊
i− 1

m

⌋
+ 1, k = (i− 1) mod m+ 1.

(10)

Moreover, we define the element-wise exponentiation of a matrix M as exp[M] where exp[M]ij =
exp(Mij). Next, we denote the Hadamard product of vectors u,v ∈ Fn as u⊙v; the operation can
be extended to matrices accordingly, and for vectors u,v ∈ Fn, we denote their linear (or acyclic)
convolution as u ∗ v .

Arithmetic Circuit Notation. We briefly introduce the notation of arithmetic circuits (Bürgisser
et al., 2013). An arithmetic circuit C with variables X ≜ {x1, x2, . . . , xn} over a field F is inter-
preted as a directed acyclic graph, where the input nodes are labelled by either the variables from
X or constants from F and the internal nodes are labelled by + or × with the output being the
polynomial computed at the output node.

We shall also refer to the size of the circuit as the number of nodes, the depth of the circuit as the
length of the longest path between an input node and the output node, and the width of the circuit as
the number of parallel operations in the circuit, or ‘wires’ which will be intersected by a horizontal
‘cut’ through the circuit. Moreover, the degree of a circuit is defined as the degree of the polynomial
computed by the circuit. We summarize this with the following definition:

Definition E.4. An arithmetic circuit C is an (n, s,∆, w)-circuit if C is an n-variate arithmetic circuit
of size s and of depth at most ∆, and width w.

E.3 THE MODELS

We now introduce the definitions of the models and for the reader’s convenience. Note that we
have redefined these models to ensure consistency with the notation presented above.

E.3.1 BASED

The model combines two layer types: and defined below.

Definition E.5 ( (Arora et al., 2023a)). Given an input sequence u ∈ RN×, where N is the sequence
length and is the model dimension, a learned weight matrix WB ∈ R× and biases BB ,BK ∈
R

N× and a matrix of convolution filters K ∈ RN×, a layer computes the following:

z := (uWB +BB)⊙
(
K ∗ u+BK

)
∈ RN×, (11)

where the convolutions are applied across the input length N .

Definition E.6 ( (Katharopoulos et al., 2020a)). Given an input sequence u ∈ R
N×,

where N is the sequence length and is the model dimension, a set of linear projections7

Projectionq,Projectionk ∈ R×,Projectionv ∈ R×, where is the feature dimension,
the layer computes the following:

z :=
(
QK⊤)V ∈ RN×, (12)

where Q := Projectionq(u),K := Projectionk(u),V := Projectionv(u), and we
have

Q = [1,Q,Q] ∈ RN×(1++2),

K = [1,Q,K] ∈ RN×(1++2).

E.3.2 MAMBA

We now introduce the model from (Gu & Dao, 2023).

Definition E.7 ( (Gu & Dao, 2023)). Given an input sequence u ∈ RN×, where N is the sequence
length and is the model dimension, the layer computes the following:

z := (A,B,C)(u) ∈ RN×, (13)

7By linear projections of a matrix u ∈ Rm×n, we mean uW + B for some weight matrix W ∈ Rn×n

and bias B ∈ Rm×n.
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with the parameters, A ∈ R×,B ∈ R, defined as

A := exp (∆A) ,

B := (∆A)
−1

(exp (∆A)− I) ·∆B,

= A−1(exp (∆A)− I) ·B,

(14)

where , the state dimension, and A ∈ R× are parameters of the model and do not depend on the
input u, along with the following input-dependent parameters B,C ∈ RN×,∆ ∈ RN× defined as

B := Lineard,d′ (N×) (u) ∈ R,

C := Lineard,d′ (N×) (u) ∈ R,

∆ := Lineard,d′ (N×) (u) ∈ R
(15)

for i ∈ [N ]. It is important to note here that the parameters B,C,∆ are causal8 and we denote
the dependence on upto the ith row of the input u for i ∈ [N ] by adding a subscript i where the
dependence for Ai ∈ R× is inherited from ∆i in equation 14 and we denote B[i, :] =: Bi,C[i, :
] =: Ci.

Finally, the in equation 13 is realized as a linear recurrence. That is, for every (i, j) ∈ [N ]× [], we
have

h[i, j] = Aih[i− 1, j] +Biu[i, j]

z[i, j] = C⊤
i h[i, j]

(16)

where h[i, j] ∈ R, z[i, j] ∈ R denote the latent state and the output of the in Eq. (13), respectively.

E.4 EQUIVALENCY TO

For a polynomial with variables X over a field F, there exists a corresponding arithmetic circuit C
over X that computes the output of the polynomial at its terminating node when interpreted as a
directed acyclic graph. For any such arithmetic circuit C of size s and depth ∆, (Arora et al., 2023a,
Theorem 4.2) showed the existence of an equivalent operator that uses Õ(s∆) parameters and Õ(∆)
layers. In the sequel, we use this result by expressing the model outputs computed in equation 12
and equation 13 as polynomials in u and exp (u) to show the equivalency between these disparate
models. We would now like to recall (Arora et al., 2023a, Theorem 4.2). Before doing so, we first
establish the following definitions from (Arora et al., 2023a).

Definition E.8. An (N, , d,N ′, d′) − Gated Convolution Model is a stacked sequence to sequence
model with L layers such that:

1. input and output are N × d matrices,

2. each layer’s operations consist of element-wise gating, convolution, linear projection, and

3. all the individual gated convolution layers take in N ′ × d′ matrices and output N ′ × d′

matrices. We refer to the tuple (N ′, d′) as the inner dimension of the model.

We also assume that the input ∈ RN×d is embedded into ′ ∈ RN ′×d′
such that

′[n, t] =

{
[n, t] if n < N, t < d

0 otherwise.

The output from the last layer z ∈ RN ′×d′
is transformed into output y ∈ RN×d by extracting the

top left N × d entries in z.

Theorem E.9 (Arora et al. (2023a), Theorem 4.2). For any (nd, s,∆, w)-arithmetic circuit C,
there exists an equivalent (N,∆′, d,N ′, d′) − BASECONV with N = n,∆′ = O(∆ logw),
N ′ = O(w), d′ = d that simulates C.

Remark E.10. For notational simplicity, we will use ui,j as the symbol for the variable in the
polynomial in u representing the entry u[i, j].

8That is, B[i, :], C[i, :] and ∆[i, :] depend only on u[0 · · · i− 1].
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We now present the results showing equivalency between the models in Appendix E.3 and the layer
in equation 11 using Theorem E.9.

Proposition E.11. Given an input u ∈ R
N×, there exists an equivalent(

N,O(log2(Nd)), , O(N(+2), O(max(d,2 ))
)
− BASECONV that computes the output of the

layer with feature dimension , cf. Eq. (12).

Proof. For the matrices Q,K ∈ R
N×,V ∈ R

N× with the corresponding projection matrices
WQ,W k ∈ R

×,W V ∈ R
×, a single layer that computes each of these matrices by simply

taking identical projection and hs,hl,Bs ≡ 0 and Bℓ ≡N×, the all 1 matrix. Using the remem-
bering primitive (Arora et al., 2023a, Proposition H.10), we can compute each of these in turn while
remembering others using O(1) layers and Nd parameters.

Next, we derive an expression for each entry (i, j) ∈ [N ]× [2] of Q,K ∈ RN×2

. From equation 10,
observe that each entry of M can be written as the product of entries from M . Hence we have

(Q)[i, j] ≡ Q[i, k] ·Q[i, ℓ]

(K)[i, j] ≡ K[i, k] ·K[i, ℓ]
(17)

for k =
⌊
j−1

⌋
+ 1, ℓ = (j − 1) mod + 1. Note, however, that we can simulate the above

by first increasing the inner dimension and copying over columns of Q to get Q1,Q2 ∈ R
N×d

defined as Q1[i, j] := Q[i, k] and Q2[i, j] := Q[i, ℓ] for k =
⌊
j−1

⌋
+ 1, ℓ = (j − 1) mod + 1

so that (Q) = Q1 ⊙ Q2, which, mutatis mutandis, also applies to (K) We can achieve the copy-
ing of the columns by simply using the projection matrix WB and another permutation matrix
P . Apart from the multiplication by P , we only need to use O(1) layers, and moreover, since
the circuit that computes Pu simply rearranges the input, there exists a single layer that com-
putes Pu (Arora et al., 2023a, Corollary H.20). By the stacking lemma (Arora et al., 2023a,
Lemma H.11), we can stack these layers to get a composition of the outputs so far to get a(
N,O(1), , O(N(+2), O(max(d,2 ))

)
− BASECONV model. Moreover, the concatenated matrices

Q,K ∈ RN×(1++2) then take the addition of the computed components so far which again takes
O(1) layers of .

Finally, we can express each entry (i, j) ∈ [N ]× [] of the output of as a polynomial as follows:

zi,j(u) ≡
∑

m∈[1++2],n∈[N ]

Q[i,m] ·K[n,m] · V [n, j]. (18)

Thus, we can derive the arithmetic circuit that computes zi,j(u) by taking in the outputs of the
layers so far as input and compute each of the terms inside the sum by multiplying the outputs from
all three and compute the sum using additional log ⌈N⌉ depth. Each term inside the sum requires two
multiplication gates with depth 2, each of which serve as inputs to the circuit with size N computing
the sum. Moreover, there are N · such output gates each of which is computed in parallel resulting
in a circuit of size O(N ·), depth O(log(N)) and width O(N). O Overall, applying Theorem E.9
then results in an equivalent

(
N,O(log2(Nd)), , O(N(+2), O(max(d,2 ))

)
− BASECONV model

that computes z.

E.5 THE LOWER BOUNDS

In the sequel, we consider the multiple-query associative recall problem (MQAR) as defined in
(Arora et al., 2023a, Section H.7.1). We briefly recall the definition here.

Suppose we are given an input sequence u[0 · · · 3N − 1] ≜
{(k0,v0, q0) , . . . , (k−1,v−1, q−1)} with each ki,vi, qi ∈ C is a token
drawn from a vocabulary of size c = |C|. Our goal is then to check, for each
1 ≤ i ≤ −1, whether there exists 0 ≤ j < i such that qi ≡ kj , and if so, output
vj .

E.6 THE SPACE COMPLEXITY OF AR
We will start by providing a lower bound on the space complexity of solving the standard associative
recall (AR) problem. As AR is a subclass of MQAR, this naturally provides a lower bound on the
space complexity of MQAR as well. Here, we formally recall the associative recall problem.
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The AR problem takes key-value pairs {ki,vi}n−1
i=0 along with a query q appended

at the end as input and the goal is to output vi if q = ki for some i ∈ [0, N − 1].

We now require a randomized communication complexity lower bound result for the index problem:

The index problem has two agents, Alice and Bob, where Alice has a string x ∈
{0, 1}n and Bob has an index i ∈ [n], and the goal for the players is to output
the i-th entry xi. Moreover, we also require the communication to be one-way:
only Alice is allowed to send a single message to Bob and Bob needs to output the
answer.

We will make use of the following lower-bound result.

Theorem E.12 (Jayram et al. (2008)). The one-way randomized communication complexity9 of the
index problem for sending an n-length bit string is Ω(n).

We now use Theorem E.12 to provide a lower bound on the number of bits required by the following
class of models to solve AR.

Definition E.13 (Recurrent Models). A model taking an input u ∈ RN×, where N is the input
length and d is the model dimension, is termed a recurrent model if its i-th state, representing
the output at location i, Zi ∈ Rd′

, with d′ denoting the state size, is determined exclusively by the
preceding elements of the input u[0 . . . i−1]. The state Zi

M represents the accumulated information
of the model depending on the inputs up to the i-th element, and is distinct from learned parameters
that are static with respect to the input sequence.

Specifically, Zi(u) = ϕ(u[0 . . . i−1]), indicating that the state is a function of the input history but
not of the entire input sequence simultaneously. Moreover, we can express this as:

Zi(u) = f i(Zi−1,u[i]), (19)

for a sequence of functions {f i}i∈[N ], where each function is tailored to evolve the state based on
the immediate past state and the current input.

Remark E.14. Note that Definition E.13 excludes models that inherently require the entire input
sequence for computation at any state, such as those based on non-causal convolutional operations
over the full input.

Theorem E.15. Any recurrent model (Definition E.13) that solves AR requires maxi
∣∣Zi

∣∣ to be at
leastΩ(N)-bits.

Proof. Consider an instance (x, i) of the index problem with x ∈ {0, 1}N . We now describe the
corresponding instance of the AR problem:

{j,xj}N−1
j=0 , i. (20)

Next, consider the following one-way protocol for solving the index problem using the regressive
model . Alice with their access of x ∈ {0, 1}N generate an input for AR (without the query) as in
equation 20. Alice then runs the model on {i,xj}N−1

j=0 and sends the memory content of running
the model to Bob. This should include the state ZN−1 of size d′ as we can reasonably assume that
both have access to the set of functions {f j}j∈[N ]. Since we assume that this model solves AR, the
output Out[N, :] = xi should contain the associated value of i. Here, Bob can compute Out[N, :]
by using the memory content sent by Alice and applying the function fN as follows.

xi = Out[N, :] = fN (ZN−1,u[N ]).

That is, the total number of bits that are communicated in this protocol is
∣∣ZN−1

∣∣. Now, if
maxj

∣∣Zj
∣∣ is o(N) bits, we have shown that a one-way communication protocol exists for solving

the index problem exists that uses o(N) communication complexity. This contradicts Theorem E.12
and hence, we conclude that the model solving AR also needs Ω(N) bits.

9The randomized communication complexity of function f is defined as minπ ∥π∥, where π ranges over all
randomized protocols that can solve f with probability of success at least 2/3.
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Corollary E.16. Given an input u ∈ RN× to the AR problem, a causal model with all entries in
its computation taking O(1) bits needs + ≥ Ω(N) bits to solve AR.

Proof. We will first show that causal is a recurrent model. To see this, first observe equation 16
and note the fact that the input-dependent parameters A,B,C,∆ are causal as mentioned in Defi-
nition E.7.

Next, due to equation 16, in order to compute zN,: ∈ R, we need CN ∈ R,BN ∈ R and ∆N ∈ R
along with h[N − 1, :] ∈ R. Here, we have the (N − 1)-st state ZN−1 ∈ R3+ given by

ZN−1 := {h[i− 1, :],∆1
N ,B

1

N ,C1
N},

where ∆1
N ,B

1

N ,C1
N are all linear functions of u[0 · · ·N − 1] that we receive from the (N − 1)-st

state and we compute ∆2
N ,B

2

N ,C2
N as linear functions of u[N ] so that we have ∆N = ∆1

N +

∆1
N ,BN = B

1

N +B
2

N ,CN = C1
N +C2

N . We can then define the function fN as follows:

ZN [j] = exp(∆N [j]A)h[N − 1, j] +BNu[N, j]

= ANh[N − 1, j] +BNu[N, j],

Out[N, j] = fN (ZN−1)[j] = C⊤
NZN [j].

Thus, due to Theorem E.15, we can conclude that
∣∣ZN−1

∣∣ does require Ω(N)-bits to solve AR.
Finally, assuming each entry of ZN−1 needs O(1) bits to represent, the overall state ZN−1 needs
O(+) to represent, which completes the proof of the claim.

E.6.1 LOWER BOUND ON THE NUMBER OF LAYERS FOR MQAR WITH d = log2 c

Setup. We take d = log2 c to encode all c possible tokens from C. That is, all the 2d possible d-bit
vectors can appear as a token in the input for MQAR. We will show that data-independent needs
Ω(log d) = Ω(log log c)-layers to solve this setting of MQAR, while Attention (+ReLU) can solve
this in O(1) layers.

We first provide the trivial solution using Attention (+ReLU).

Proposition E.17. Attention (with linear biases and ReLU) followed by two layers of MLPs can
solve MQAR for an input sequence u ∈ {0, 1}3N×d such that d = log2(c) in O(1) layers.

Proof. Given a row u[i, :] ∈ {0, 1}d, we express each row as w[i, :] ∈ {−1, 1}d by applying the
projection uW +B, where W := diag(2, . . . , 2) ∈ Rd×d and the bias matrix B is the matrix of
all −1’s so that w[i, j] = 2u[i, j] − 1. Then, we can specify the query and key projection matrices
Q,K,V ∈ R3N×d as follows:

K[i, :] ≡
{
w[i, :] = k⌊i/3⌋ if i ≡ 0 mod 3

0 otherwise

Q[i, :] ≡
{
w[i, :] = q⌊i/3⌋ if i ≡ 2 mod 3

0 otherwise

V[i, :] ≡
{
w[i+ 1, :] = v⌊i/3⌋ if i ≡ 0 mod 3

0 otherwise

,

where the values are shifted to the corresponding key index. Computing the pair-wise inner products
then yields

QK⊤[i, j] ≡
{
⟨q⌊i/3⌋,k⌊j/3⌋⟩ if i ≡ 2 mod 3 and j ≡ 0 mod 3

0 otherwise

However, since both q⌊i/3⌋,k⌊j/3⌋ ∈ {−1, 1}d, we have ⟨q⌊i/3⌋,k⌊j/3⌋⟩ ≤ d with equality iff
q⌊i/3⌋ ≡ k⌊j/3⌋. We then subtract off d − 1 from each of the 3N × 3N entries by taking the bias
B ∈ R3N×3N as the matrix with each entry −d+ 1. Let Z := RELU(QK⊤ +B) so that we have

Z[i, j] = {q⌊i/3⌋ ≡ k⌊j/3⌋}.
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Next, as we may have multiple matches and we only need to return 1, we modify Z by multiplying
with the matrices W1,W2 ∈ Rd×d and adding the bias B ∈ Rd×d defined as follows:

W1[k, j] :=

{
1 if k ≥ j

0 otherwise
, W2[ℓ, k] :=


−1 if k = 0

1 if k = ℓ, ℓ ̸= 0

0 otherwise
, B[i, j] = 1.

For Z1 := ZW1 and Z2 := ZW1W2, we have:

Z1[i, j] =
∑
k

Z[i, k]W1[k, j] =
∑
k≥j

Z[i, k],

Z2[i, j] =
∑
k

Z1[i, k]W2[k, j] = Z1[i, j]−Z1[i, 0].

That is, each entry in Z1 sums the entries in the row that are at the same or higher column index
while each column in Z2 subtracts the first entry—the sum of all entries in the row—from each
entry in the row. Semantically, for each row in Z1, the entries from 0 to the index of the first match
must have the same value, and thus, are the only non-negative entries in Z2. Next, we add the bias
and activate under RELU to get Z ′ ∈ R3N×d:

Z ′[i, k] := RELU(Z2 +B)[i, k] =

{
1 if k ≤ min{j| q⌊i/3⌋ ≡ k⌊j/3⌋}
0 otherwise.

Now, we multiply by the weight matrix W3 ∈ R3N×d defined as

W3[k, j] :=


−1 if k = j + 1

1 if k = j

0 otherwise

This yields the retriever Z = Z ′W3 ∈ R3N×d given by

Z[i, k] :=
∑
ℓ

Z ′[i, ℓ]W3[ℓ, k] = Z ′[i, k]−Z ′[i, k + 1] = {k = min{j| q⌊i/3⌋ ≡ k⌊j/3⌋}}.

Finally, we multiply with the values V to get

(ZV)[i, :] ≡ Z[i, :]V ≡ Z[i, j∗]·V[j∗, :] ≡
{
vj∗ if q⌊i/3⌋ ≡ k⌊j∗/3⌋, j

∗ = min{j| q⌊i/3⌋ ≡ k⌊j/3⌋}.
0 if no such j∗ exists.

That is, the row corresponding to the query returns the value associated to the first matching key.
Thus, the model with Attention (computing Z) followed by two MLPs computing Z ′ and Z, re-
spectively, solves the MQAR problem.

Next, we relate the output of L layers of to the degree of the polynomial that it computes.

Lemma E.18. For any input sequence u, there exists a multilinear polynomial equivalent (over
Boolean inputs) to the polynomial computed by L layers of with degree at most 2L.

Proof. Let P (u) be the polynomial computed by L layers of . Since the output of a single layer
of is equivalent to a polynomial over the input variables with degree at most 2, composing L such
layers yields a polynomial of degree at most 2L. However, P (u) need not be multi linear, but the
polynomial defined as

Q(u) := (· · · ((P (u) mod (u2
1 − u1)) mod (u2

2 − u2)) · · · ) mod (u2
3Nd − u3Nd)

is equivalent to P (u) as (u2
i − ui) evaluates to 0 for each input var ui ∈ {0, 1}. However,

deg(Q(u)) ≤ deg(P (u)), and thus, the claim holds.

We now relate the MQAR (in the above setting) to the degree of the polynomial that it computes.

Lemma E.19. The MQAR problem with d = log2(c) is represented by a multi-linear polynomial of
degree 2d+ 1.
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Proof. We will start by specifying the obvious Boolean circuit that solves MQAR. First, we take the
XNOR of keys and queries bitwise as follows.

xij = qi xnor kj := (qi ∧ kj) ∨ (¬qi ∧ ¬kj) for i > j, (21)

where, for x,y ∈ {0, 1}d, we have

[x xnor y][k] :=

{
1 if x[k] = y[k]

0 othwerise

That is, each bit from xij is set to 1 iff the corresponding bits from qi and kj match. Next, we take
the AND of the d-bits to get

yij :=
∧

k∈[d]

xij
k , i > j. (22)

Thus, yij is set to 1 iff the query qi matches with the key kj . Finally, we AND with each bit of the
values to get the output zij with the kth bit for k ∈ [d] given by

zij
k := yij ∧ [vj ]k. (23)

Thus, the output of the circuit can be represented as

zij =

{
vi if qi ≡ kj , i > j

0 otherwise.

We can now directly translate the above circuit into a multi-linear polynomial. With slight abuse of
notation, we have the following correspondence for equation 22, where ui ≡ qi,uj ≡ kj , i > j
and we use uij to represent the variable corresponding to the entry u[i, j].

xij
k (u) := uikujk + (1− uik)(1− ujk) for each k ∈ [d], i > j.

Next, we translate equation 22 as follows.

yij(u) :=
∏
k∈[d]

(uikujk + (1− uik)(1− ujk)) .

Finally, we can write the polynomial that computes MQAR as follows.

zij(u) :=

 ∏
k∈[d]

uikujk + (1− uik)(1− ujk)

u(i+1)k for each k ∈ [d], i > j, (24)

where u[i + 1, :] ≡ vj . It is then easy to observe that equation 24 is multi-linear and has degree
2d+ 1.

We are now ready to provide the lower bound.

Theorem E.20. A data-independent model needs log(2d)-layers to solve MQAR for an input se-
quence u ∈ {0, 1}3N×d with d = log2(c).

Proof. Due to Lemma E.19, we know there exists a multi-linear polynomial that solves MQAR, and
due to (Kopparty, 2020, Lecture 3, Proposition 4), it is unique. Specifically we cannot solve MQAR
with a multi-linear polynomial of degree ≤ 2d. Now, assume that there is a model with L layers
that exactly solves MQAR. Then, due to Lemma E.18, this yields a multilinear polynomial P (u) of
degree at most 2L. Here, if L ≤ log(2d), then the resulting with L layers results in a multilinear
polynomial of degree ≤ 2d. This contradicts the above claim that we cannot have a multi linear
polynomial of degree < 2d + 1 that exactly represents MQAR. Consequently, a data-independent
model needs ≥ log(2d)-layers to solve MQAR.
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E.7 LOWER BOUND ON THE NUMBER OF LAYERS FOR d ≥ log2 c WITH SPECIFIC
ENCODINGS

E.7.1 THE EQUALITY PROBLEM

For an input pair u1,u2 where each ui is a token drawn from a vocabulary of size c = |C| and
embedded in {0, 1}d, we define the equality problem (EQ) as checking whether the two encodings
are equal: u1 ≡ u2.

We first note that any model that solves MQAR also solves EQ via the following proposition.

Proposition E.21. Any model MMQAR that solves MQAR also solves EQ using the same number of
layers.

Proof. If there exists a model MMQAR that solves MQAR using L layers, then for an arbitrary input
instance for EQ given by u1,u2 ∈ R2×d, we can produce the following input instance for MQAR:
u := {(u1, ,u1), (u2, ,u2)} and solve EQ using L layers with MMQAR returning iff there is a
match.

Due to Proposition E.21, we obtain the following corollary.

Corollary E.22. Any lower bound L on the number of layers L of to solving EQ is also a lower
bound on the number of layers required for solving MQAR.

We now try to prove a lower bound for the case of d ≥ log2 c. First, note that there are embeddings
here where the lower bound from E.20 holds: consider the embedding where the first log2 c has the
compact binary embedding as before but the last d− log2 c bits are the same for all the tokens. We
will instead prove a lower bound for a more interesting set of embeddings.

E.7.2 THE p-HOT ENCODING FOR p ≥ 1

Definition E.23 ((Almost) p-Hot Encoding). We define the p-hot encoding to be the collection of
embeddings for a token xt with 0 ≤ t < c such that we express t in base p

√
c : (t0, .., tp−1) ∈

[0, p
√
c)p and represent each ti as one hot encoding in {0, 1} p

√
c. That is, we take d = p · p

√
c.

Moreover, we define the almost p-hot encoding to be the collection of embeddings where each ti is
mapped in {0, 1} p

√
c−1 obtained by dropping the last bit of its one-hot encoding in {0, 1} p

√
c.

Note that both of the encodings have p-many blocks derived from each of the one-hot encodings.

Definition E.24 (Block-Exclusive). We say that a polynomial P with variables in u :=
(u0, . . . ,up−1) is block-exclusive if each non-zero monomial in P given by the product∏

i∈[p], j∈[ p
√
c]

ui,j

does not contain any product of the form ui,jui,j′ for i ∈ [p], j, j′ ∈ [ p
√
c].

Remark E.25. The condition specified in Definition E.24 ensures that a block-exclusive polynomial
is necessarily multilinear, as it disallows the term ui,jui,j′ for j = j′ in any non-zero monomial.

Lemma E.26. For any Boolean function f : {0, 1} → {0, 1} with inputs from the almost p-hot
encoding or the p-hot encoding setting, there exists a block-exclusive polynomial equivalent to f .

Proof. Given an input u to f from the almost p-hot encoding or the p-hot encoding such that u :=
(u0, . . . ,up−1), we first observe that the polynomial P (u) representing f(u) cannot have a non-
zero monomial with variables from the same block. Specifically, for 0 ≤ j < p, any non-zero
monomial in P cannot have a product of the form uj,kuj,k′ for k ̸= k′. To see this, assume that
there exists a non-zero monomial in P with at least two terms uj,kuj,k′ from the same jth block
in u, then monomial always evaluates to 0 as the jth block is derived from the one-hot encoding in
{0, 1} p

√
c or the almost one-hot encoding in {0, 1} p

√
c−1, and hence, cannot have more than one bit

set to 1.
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Next, if a non-zero monomial in P does contain a product of the form uj,kuj,k′ for k, k′ ∈ [ p
√
c],

we can define the polynomial

Q(u) := (· · · ((P (u) mod (u2
0,0−u0,0)) mod (u2

0,1−u0,1)) · · · ) mod (u2
p−1, p

√
c−1−up−1, p

√
c−1).

Since each entry is Boolean, Q is equivalent to P over Boolean inputs, and thus, Q is the block-
exclusive polynomial equivalent to f .

Proposition E.27. Any Boolean function f : {0, 1} → {0, 1} with inputs from the almost p-hot
encoding setting has a unique representation as a block-exclusive polynomial.

Proof. Due to (Kopparty, 2020, Proposition 4), we know that every Boolean function f is repre-
sented by a multilinear polynomial. Moreover, from Lemma E.26, we know that the polynomial
P (u) representing f(u) is block-exclusive for u with the almost p-hot encoding.

To show uniqueness, we replicate the argument from (Kopparty, 2020, Lecture 3, Proposition 4):
Given two block-exclusive polynomials P and P ′ equivalent to f with inputs from the almost p-hot
encoding, we have (P − P ′)(u) ≡ 0. Now, assume, for the sake of contradiction, that P − P ′ ̸≡ 0.
Here, note that as P − P ′ is not identically zero and we have a non-zero monomial, and since the
inputs are from the almost p-hot encoding, we know that this monomial cannot contain any product
of the form uj,kuj,k′ . Let S ⊆ [p] × [ p

√
c − 1] be a minimal set of indices such that the monomial∏

(j,k)∈S uj,k appears in P −P ′ with non-zero coefficient. Note that χS forms a valid input to f as
each block in S can be assigned at most one non-zero entry. Then, since (P −P ′)(χS) ̸= 0 as every
other monomial will get at least one variable that is assigned to 0 for χS , we achieve a contradiction,
and thus, P − P ′ must be identically zero on inputs from the almost p-hot encoding.

Lemma E.28. The EQ problem in the almost p-hot encoding setting is represented by a block-
exclusive polynomial of degree 2p.

Proof. Each input pair u1,u2 to the EQ problem can be represented as ui := (ui
0, . . . ,u

i
p−1) for

i ∈ {1, 2}, where for each 0 < j < p such that we have

ui
j := (ui

j,0, . . . ,u
i
j, p

√
c−2) ∈ {0, 1} p

√
c−1.

The following polynomial takes the inner product of each of these one-hot encodings:

P j(u) :=

p
√
c−2∑

k=0

u1
j,k · u2

j,k + (1−
p
√
c−2∑

k=0

u1
j,k)(1−

p
√
c−2∑

k=0

u2
j,k)

for 0 < j < p. Here, note that there can be only be at most 1 in both u1
j and u2

j , and thus, P j(u) = 1
iff the jth block agree.

Next, the following polynomial is equivalent to the Boolean function that solves the EQ problem:

P (u) :=

p−1∏
j=0

P j(u),

and we have P (u) = {u1 ≡ u2}. Here, note that P is multi-linear and has degree 2p as each P j is
a degree-2 polynomial. Moreover, P is block-exclusive as each P j is block-exclusive and we only
multiply monomials from different blocks in P .

Proposition E.29. Let P be the block-exclusive polynomial that solves the EQ problem in the p-hot
encoding. Then, deg(P ) ≥ 2p.

Proof. For the sake of contradiction, assume that there exists a block-exclusive polynomial P
that solves EQ in the p-hot encoding setting with degree ≤ 2p − 1. Then, given an input
u := (u0, . . . ,up−1) from the almost p-hot encoding, where each block ui corresponds to the
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truncated bit string from the one-hot encoding in {0, 1} p
√
c−1, we can convert this input to the p-hot

encoding v := (v0, . . . ,vp−1) as follows:

vi :=

ui,0, . . . ,ui, p
√
c−2, 1−

p
√
c−2∑

j=0

ui,j


Then, the block-wise multilinear polynomial Q(u) = P (v) solves the EQ problem in the almost
one-hot encoding setting and has deg(Q) ≤ deg(P ) ≤ 2p − 1 which contradicts the combination
of Proposition E.27 and Lemma E.28.

Theorem E.30. A data-independent model needs at least ⌊log(2p)⌋-layers to solve MQAR for an
input sequence u ∈ {0, 1}3N×d in the p-hot encoding setting, where d = p · p

√
c.

Proof. We know from Corollary E.22 that it suffices to show a lower bound for the EQ problem.
Moreover, we know from Proposition E.29 that we cannot solve the EQ problem in the p-hot en-
coding setting with a block-exclusive polynomial of degree ≤ 2p − 1. Now, assume that there is a
model with L layers that exactly solves EQ in the p-hot encoding setting. Then, due to Lemma E.18
and Proposition E.27, this yields a block-exclusive polynomial P (u) of degree at most 2L. Here,
if L < ⌊log(2p)⌋ which , then the resulting with L layers results in a block-exclusive polynomial
of degree ≤ 2p − 1. This contradicts the above claim that we cannot have a block-exclusive poly-
nomial of degree < 2p that exactly represents EQ. Consequently, a data-independent model needs
≥ ⌊log(2p)⌋-layers to solve EQ.
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Table 5: BASED Training Settings

355M 1.4B

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 27 36
Hidden Size 1024 1792

MLP Activation SwiGLU
MLP Width 2

Num. Linear Attn Layers 5 7
Num. Linear Attn Heads 16

Taylor Feature Dimension 16
Linear Attn Positional Encodings None

Num. Sliding Window Layers 5 7
Sliding Window Size 64 16

Sliding Window Heads 16
Sliding Window Positional Encodings Rotary

Num. Layers 17 22
Projection Expansion Factor 4

Filter Size 3
Activation SiLU

Table 6: Attention Training Settings

355M 1.4B

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 24 36
Hidden Size 1024 1680
Num Heads 16 24
RMSNorm True
MLP Bias False
Flash Attn True

Rotary Emb. Fraction 0.5
MLP Activation SwiGLU

MLP Width 4
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Table 7: Mamba Training Settings

355M 1.4B

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 46
Hidden Size 1024 2048
RMSNorm True

Norm Epsilon 1e− 5
Dt State 16

Dt (Min, Max) (0.001, 0.1)
Dt Init. Strategy Random

Dt Init. Floor 1e− 4
Dt Scale 1.0

Dt Softplus True
Projection Expansion Factor 2

Short Conv Filter Size 4

Table 8: Hyena Training Settings

355M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 29
Hidden Size 1024
Num Heads 1
MLP Width 2

Short Conv. Filter Size 3
Exp. Mod. Decay (Fast, Slow) 0.3, 1.2

Filter Sine Freq. (w) 14
Filter Order 64

Filter Inner MLP 2
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Table 9: Hyena Training Settings

355M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.99

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 24 (No Attention Layers)
Hidden Size 1024
Num Heads 16
MLP Width 4

Table 10: Hyena Training Settings

355M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.99

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 19
Hidden Size 1024
MLP Width 3.5

Table 11: Gated Linear Attention (GLA) Training Settings

355M

Optimizer Adam
Optimizer momentum β1, β2 = 0.9, 0.95

Optimizer eps 1e− 8
Precision BFloat16

Warmup 1%
Learning rate decay Cosine

Learning rate (min, base) 8e-5, 8e-4
Global batch size 256

Weight decay 0.1

Num Layers 24
Hidden Size 1024
Num Heads 4
MLP Width 2
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