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Abstract

Implicit generative models, which do not return likelihood values, such as generative ad-
versarial networks and diffusion models, have become prevalent in recent years. While it’s
true that these models have shown remarkable results, evaluating their performance is chal-
lenging. This issue is of vital importance to push research forward and identify meaningful
gains from random noise. Currently, heuristic metrics such as the Inception score (IS) and
Fréchet Inception Distance (FID) are the most common evaluation metrics, but what they
measure is not entirely clear. Additionally, there are questions regarding how meaningful
their score actually is. In this work, we propose a novel evaluation protocol for likelihood-
based generative models, based on generating a high-quality synthetic dataset on which we
can estimate classical metrics for comparison. Our study shows that while FID and IS do
correlate to several f-divergences, their ranking of close models can vary considerably making
them problematic when used for fine-grained comparison. We further used this experimen-
tal setting to study which evaluation metric best correlates with our probabilistic metrics.
Lastly, we also address some of the issues with FID score by investigating the features used
for this metric.

1 Introduction

Implicit generative models such as Generative Adversarial Networks (GANs) Goodfellow et al. (2014) have
made significant progress in recent years, and are capable of generating high-quality images Karras et al.
(2020b); Ramesh et al. (2022) and audio Kong et al. (2020). Despite these successes, evaluation is still a major
challenge for implicit models that do not predict likelihood values. While significant improvement can easily
be observed visually, at least for images, an empirical measure is required as an objective criterion and for
comparison between relatively similar models. Moreover, devising objective criteria is vital for development,
where one must choose between several design choices, hyperparameters, etc. The most common practice is
to use metrics such as Inception score (IS) Salimans et al. (2016) and Fréchet Inception Distance (FID) Heusel
et al. (2018) that are based on features and scores computed using a network pre-trained on the ImageNet
Deng et al. (2009) dataset. While these proved to be valuable tools, they have some key limitations: (i) It
is unclear how they relate to any classical metrics on probabilistic spaces. (ii) These metrics are based on
features and classification scores trained on a certain dataset and image size, and it is not clear how well
they transfer to other image types, e.g. human faces, and image sizes, (iii) The scores can heavily depend
on particular implementation details Barratt & Sharma (2018b); Parmar et al. (2021).

Another evaluation tool is querying humans. One can ask multiple human annotators to classify an image
as real or fake or to state which of two images they prefer. While this metric directly measures what
we commonly care about in most applications, it requires a costly and time-consuming evaluation phase.
Another issue with this metric is that it does not measure diversity, as returning a single good output can
get a good score.

In this article we offer a new evaluation protocol for likelihood-based generative models such as Auto-
Regressive (AR) and Variational Auto-Encoders (VAE) Kingma & Welling (2014). We created a high-quality
synthetic dataset, using the powerful Image-GPT model Chen et al. (2020). This is a complex synthetic
data distribution that we can sample from and compute exact likelihood values. As this data distribution is
trained on natural images from the ImageNet dataset using a strong model, we expect the findings on it to
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be relevant to models trained on real images. The dataset provides a solid and useful test-bed for developing
and experimenting with generative models. We will make our dataset public for further research1.

Using this test-bed we train various likelihood models and evaluate their KL-divergence and reverse KL-
divergence. While our interest is implicit models, we experiment with likelihood models as they have alter-
native well-understood metrics for comparison. This allows us to compare the well-understood divergences
to empirical metrics such as FID and evaluate their capabilities. We expect our results to transfer to implicit
models as metrics such as FID and IS are not tailored to a specific kind of model. We observe that while
the empirical metrics correlate nicely to these divergences, they are much more volatile and thus might not
be well-suited for fine-grained comparison.

Finally, we investigated the use of the Inception network Szegedy et al. (2015) for feature extraction on
FID, specifically for image datasets that are different from the ImageNet on which it was trained. This
is important as FID is commonly used to compare models on datasets such as CelebA (human faces) Liu
et al. (2015) and LSUN Yu et al. (2015) bedrooms that are quite distinct from ImageNet. Specifically, we
investigate the Gaussianity assumption that lies in the base of the FID metric, compared to features returned
by CLIP Radford et al. (2021) which was trained on a wider variety of images. We show both quantitatively
and qualitatively that the CLIP features are better suited than the Inception features on non-ImageNet
datasets.

2 Background

Given the popularity of GANs and other implicit generative models, many heuristic evaluation metrics have
been proposed in recent years. We give a quick overview of the most common metrics and probabilistic
KL-divergences.

2.1 KL-Divergence

One common measure of the difference between probability distributions is the Kullback–Leibler (KL) di-
vergence KL(p||q) = Ex∼p

[
log

(
p(x)
q(x)

)]
, noting that it is not symmetric. We refer to KL(pdata||pmodel)

as the KL divergence and KL(pmodel||pdata) as the Reverse KL (RKL) divergence, where pdata denote the
real data distribution, and pmodel denote the approximated distribution, learned by the generative model.
Minimizing the log-likelihood is the same as minimizing the KL divergence between pdata and pmodel up to a
constant, hence it can be done even when pdata is unknown. It is important to note that the KL divergence is
biased towards “inclusive" models where the model "covers" all high-likelihood areas of the data distribution
and punishes harder when pdata(x) ≫ pmodel(x) (figure 1, left). The RKL has a bias toward "exclusive"
models, where the model does not cover low likelihood areas of the data distribution and punishes harder
when pdata(x) ≪ pmodel(x) (figure 1, right). While an exclusive bias might be more appropriate in some
applications, such as out-of-distribution detection, we cannot optimize it directly without access to pdata. As
these divergences measure complementary aspects, we believe that examining both of them simultaneously
gives us a well-rounded view of the generative model behavior. A limitation of KL divergence is that it does
not consider the metric properties of the sample space, as opposed to Wasserstein distance, therefore it is
less suitable for GAN training since it uses samples directly in the training process Arjovsky et al. (2017).

1Link will be added to the final version for anonymity
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p∗
model(x) = argminpmodel(x)DKL(pdata||pmodel) p∗

model(x) = argminpmodel(x)DKL(pmodel||pdata)

Figure 1: Optimizing pmodel with KL criteria pushes the model to cover all aspects of pdata, hence it is
more exclusive while optimizing it with reverse KL criteria encourages the model to cover the area with the

largest probability, hence it is more inclusive.

2.2 Inception Score

Inception Score (IS) is a metric for evaluating the quality of image generative models based on InceptionV3
Network pre-trained on ImageNet. It calculates:

IS = exp (Ex∼pmodel
[KL(pθ(y|x)||pθ(y)])

where x ∼ pmodel is a generated image, pθ(y|x) is the conditional class distribution computed via the inception
network, and pθ(y) =

∫
x

pθ(y|x)pmodel(x)dx is the marginal class distribution.
The two desired qualities that this metric aims to capture are: (i) The generative model should output a
diverse set of images from all the different classes in ImageNet, i.e pθ(y) should be uniform (ii) The images
generated should contain clear objects so the predicted probabilities pθ(y|x) should be close to a one-hot
vector and have low entropy. When both of this qualities are satisfied then the KL distance between pθ(y)
and pθ(y|x) is maximized. Therefore the higher the IS is, the better.

2.3 Fréchet Inception Distance

The FID metric is based on the assumption that the features computed by a pre-trained Inception network, for
both real and generated images, have a Gaussian distribution. We can then use known metrics for Gaussians
as our distance metric. Specifically, FID uses the Fréchet distance between two multivariate Gaussians which
has a closed-form formula. For both real and generated images we fit Gaussian distributions to the features
extracted by the inception network at the pool3 layer and compute

FID = ||µr − µg||2 + Tr(Σr + Σg − 2(ΣrΣg)1/2)

where N (µr, Σr) and N (µg, Σg) are the Gaussian fitted to the real and generated data respectively. The
quality of this metric depends on the features returned by the inception net, how informative are they about
the image quality, and how reasonable is the Gaussian assumption about them.

2.4 Kernel Inception Distance

The Kernel Inception Distance (KID) Bińkowski et al. (2018) aims to improve on FID by relaxing the Gaus-
sian assumption. KID measures the squared Maximum Mean Discrepancy (MMD) between the Inception
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representations of the real and generated samples using a polynomial kernel. This is a non-parametric test so
it does not have the strict Gaussian assumption, only assuming that the kernel is a good similarity measure.
It also requires fewer samples as we do not need to fit the quadratic covariance matrix. The motivation for
this is the bias of the FID and IS.

2.5 FID∞ & IS∞

In Chong & Forsyth (2020) the authors show that the FID and IS metrics are biased when they are estimated
from samples and that this bias depends on the model. As the bias is model-dependent, it can skew the
comparison between different models. The authors then propose unbiased version of FID and IS named
FID∞ / IS∞.

2.6 Clean FID

As the input to the Inception network is fix-sized, generated images of different sizes need to be resized
to fit the network’s desired input dimension. The work in Parmar et al. (2022) investigates the effect of
this resizing on the FID score, as the resizing can cause aliasing artifacts. The lack of consistency in the
processing method can lead to different FID scores, regardless of the generative model capabilities. They
introduce a unified process that has the best performance in terms of image processing quality and provide
a public framework for evaluation.

2.7 Ranking Correlation Methods

To compare the different scoring methods, we will evaluate how they differ in ranking different models.
This allows us to focus on their main purpose of ranking different models. To do that we will use ranking
correlation metrics.

2.7.1 Spearman Correlation

The Spearman correlation coefficient (Spearman, 1904) is defined as the Pearson correlation coefficient
between the rank variables. For n elements being ranked, the raw scores Xi, Yi are converted to ranks
R(Xi), R(Yi). The Spearman correlation coefficient rs is defined as:

rs = ρR(X),R(Y ) = cov(R(X), R(Y ))
σR(X)σR(Y )

ρ denotes the usual Pearson correlation coefficient, but applied to the rank variables, cov(R(X), R(Y )) is
the covariance of the rank variables, σR(X) and σR(Y ) are the standard deviations of the rank variables.

2.7.2 Kendall’s τ

Kendall’s KENDALL (1938) correlation coefficient assesses the strength of association between pairs of
observations based on the patterns of concordance and discordance between them. A consistent order
(concordance) is when x2 − x1 and y2 − y1 have the same sign.
Inconsistently ordered (discordant) occurs when a pair of observations is concordant if x2 − x1 and y2 − y1
have opposite signs. Kendall’s τ is defined as τ = C−DC

(n
2) ,

where C is the number of concordance pairs in the list and DC is the number of discordant.

2.8 Related Works

In addition to previously mentioned works that defined empirical metrics, other works looked into the
evaluation of generative models. Bond-Taylor et al. (2021) performed a comparative review of deep generative
models. Borji (2021) presents a comprehensive survey of generative model estimation methods. In Theis et al.
(2016) investigae likehood based models and show on a toy examples how independent different evaluation
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methods are. We support this thesis and perform a thorough empirical study on actual datasets and compare
the latest generative models evaluation methods. Barratt & Sharma (2018a) first pointed out issues in IS.
Lee & Lee (2021) inspect the distribution of the Inception latent feature and suggest a more accurate model
for evaluation purposes. Xu et al. (2018) perform an empirical study on an older class of evaluation metrics
of GANs and mention that KID outperforms FID and IS. Fedus et al. (2018) shows IS high sensitivity to the
dataset trained by the backbone network (in this example, ImageNet and CIFAR-10). Lucic et al. (2018)
shows FID sensitivity to layers and features of the backbone network and for mode dropping.

Another line of works by Shmelkov et al. (2018); Lesort et al. (2019); Santurkar et al. (2018); Ravuri &
Vinyals (2019) utilize the classification score of generated data to evaluate models performances. Despite
its usefulness, a classification score is not foolproof. During adversarial attacks, for example, the image may
appear perfect, but its classification score will be poor.

The latest works propose precision and recall as a way to disentangle the quality of generated samples from
the coverage of the target distribution Sajjadi et al. (2018); Kynkäänniemi et al. (2019).

3 Method

As the first step of our method, we train an auto-regressive model to approximate the information distri-
bution. Using the model, whose distribution we know, we create a high-quality synthetic dataset and then
examine the performance of other likelihood-based models against the synthetic data. The following are the
steps involved in the method:

Algorithm 1 Creating Synthetic Dataset With Known Likelihood
1: Train likelihood-based generative model1 on dataset X
2: Generate X̂, N samples from pdata(x) with known likelihood
3: Split X̂ to train set and test set
4: Train likelihood-based generative model2 with the train set
5: Evaluate pmodel(X̂) on test set from model2
6: Measure KL(pdata(X̂)||pmodel(X̂)) and KL(pmodel(X̂)||pdata(X̂)) on test set

Figure 2: Illustration: X are ImageNet images, X̂ are synthetic images that sampled from image-GPT,
pdata(X̂) is ground truth likelihood from image-GPT for synthetic images and pmodel(X̂) is likelihood

estimation of pdata(X̂), calculated by the evaluated model, in this case, PixelSnail.

In this article, we created an auxiliary, realistic, dataset by sampling images from the Image-GPT model that
has been trained on ImageNet32, the ImageNet dataset that was resized to 32 × 32. ImageGPT was chosen
as a reference for being a powerful AR model with 1M epochs training checkpoints available 2. We split the
data set into a training set (70K images) and a test set (30K images), similar in size to CIFAR10, a common

2https://github.com/openai/image-gpt
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benchmark. ImageGPT’s ability to generate quality and realistic samples is demonstrated qualitatively in
Fig. 3 and quantitatively by the high results in linear probability scores. As this is a synthetic version of
ImageNet32 we name our dataset NotImageNet32 .

We note that Image-GPT clusters the RGB values of each pixel into 512 clusters and predicts these cluster
indexes. This means that instead of each pixel corresponding to an element of {0, ..., 255}3 it belongs to
{0, ..., 511}. We can map these cluster values back to RGB, as was done in Image-GPT, for visualization.

This scheme is not restricted to NotImageNet32, Which is brought as an example for a single use case. In
general, we advocate for using high-quality synthetic datasets to bridge the gap between real data on which
performance is hard to evaluate and toy problems that do not necessarily represent real challenges. This can
be utilized for ranking State of The Art (SOTA) generative models and finding hyperparameters of the data
generation process such that they produce the least amount of inconsistencies across measurements.

To evaluate and understand current heuristic generative model metrics we train a set of models on NotIm-
ageNet32. One set of models is based on the PixelSnail model Chen et al. (2017). We use PixelSnail as it
is a strong Autoregressive model, but not as powerful as the pixel-GPT that generated the data. From this
we expect it to be able to fit the data well, but not perfectly. For diversity, we also measure a VAE model,
based on VD-VAE Child (2021) (we used IWAE Burda et al. (2016) to reduce the gap between the ELBO
and the actual likelihood). We note that all models were adjusted to our dataset and output the clustered
index instead of RGB values. Supplementary details on the models architecture in this experiment can be
found in the appendix section.

Figure 3: Examples of photos that are generated by image-GPT. Each photo’s explicit likelihood can be
measured.

To produce a diverse set of models with varying degrees of quality, each set was trained several times with
different model sizes. We save a model for comparison after every five epochs of training. As a result, the
models we compare are a mix of strong and weak models. After the training procedure, we can compute for
each image in the test set its likelihood score (or the IWAE bound) for each model.

We then measure the difference between pdata(x) and pmodel(x) by using Monte-Carlo approximation of two
divergence function: Kullback–Leibler (KL) KL(pdata||pmodel) and Reverse KL (RKL) KL(pmodel||pdata).
As these divergences measure complementary aspects, one inclusive and one exclusive, we believe that this,
although unable to capture all the complexities of a generative model, gives us a well-rounded view of the
generative model behavior. KL-Divergence has been thoroughly investigated in the fields of probability and
information theory, and their properties along with what they measure are well known. Thus, comparing
them to heuristic methods such as FID will shed light on these empirical methods.

A limitation of this test bed is that it can be applied only to likelihood-based models, so implicit models like
GAN are not able to take advantage of it.

4 Comparison Between Evaluation Metrics

4.1 Volatility

We first train four PixelSnail variants on our NotImageNet32 dataset and plot the KL, RKL, FID, and IS
(we plot the negative IS so lower is better for all metrics) along with the training for test set in Fig. 4 and
5. It can easily be seen that after 15-20 epochs both KL and RKL change slowly, but the FID and IS are
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Figure 4: Test KL and RKL of PixelSnail models along training.

Figure 5: Test FID and negative IS of PixelSnail models along training. We plot the negative Inception
Score so lower is better for all metrics. Details on the hyperparameters summerized in the legend are in the

appendix.

much more volatile. Each dot in the graph represents a score that has been measured on a different epoch
on a different model. To assess the variance of the results we used the Jack-Knife resampling method Tukey
(1958). The error bar was small (10−3 scale in most cases), hence it was unnoticeable. One can see from
this figure that as we increase the model capacity, the KL score improves. Model-generated samples are
included in appendix E. models Interestingly, the KL and RKL have a high agreement even if they penalize
very different mistakes in the model. In stark contrast, we see that the FID, and especially IS, are much
more volatile and can give very different scores to models that have very similar KL and RKL scores.

To get another perspective, we plot in Fig. 6 the FID and negative IS vs. KL and RKL. We observe a
high correlation between FID/IS and KL and a weaker correlation between these metrics and the RKL. IS
and FID are also seem ill-suited for fine-grained comparisons between models. For high-quality models, e.g.,
light-blue dots in Fig. 6, one can get a significant change in FID/IS without a significant change to KL/RKL.
This can be very problematic, as when comparing similar models, e.g. testing various design choices, these
metrics can imply significant improvement even when it is not seen in our probabilistic metrics. We add
zoomed-in versions of this plot to appendix A for greater clarity.
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.

Figure 6: Evaluation metrics along the training of four pixelsnail and two VD-VAE models of varying sizes.
We plot the negative Inception Score so lower is better for all metrics.

4.2 Ranking Correlation

To better quantitatively assess our previous observations, we compare how the metrics differ in their ranking
of the various trained models. This is of great importance, as comparing different models is the primary goal
of these metrics. To compare the ranking we compute Kendall’s τ ranking correlation (Tab. 1). We perform
the correlation analysis for models that were trained for 15 - 45 epochs and ignore the first iterations of the
training procedure. This is done to focus more on the fine-grained comparisons.

Table 1: Kendall’s τ correlation between different metrics. A correlation score indicates the degree of
agreement between two scoring methods.

KL RKL FID IS IS∞ KID FID∞ Clean FID
KL 1 0.8895 0.7027 0.5889 0.4681 0.7770 0.8095 0.7909

RKL 0.8895 1 0.6337 0.5244 0.4314 0.7105 0.7267 0.7198
FID 0.7027 0.6337 1 0.7979 0.7189 0.8513 0.8002 0.8699
IS 0.5889 0.5244 0.7979 1 0.8281 0.7329 0.6818 0.7236

IS∞ 0.4681 0.4314 0.7189 0.8281 1 0.6167 0.5749 0.6074
KID 0.7770 0.7105 0.8513 0.7329 0.6167 1 0.8606 0.9675

FID∞ 0.8095 0.7267 0.8002 0.6818 0.5749 0.8606 1 0.8746
Clean FID 0.7909 0.7198 0.8699 0.7236 0.6074 0.9675 0.8746 1
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The highest score in both ranking correlation methods is between KL and Reverse KL with 0.889 Kendall’s
τ . This may be surprising since these two methods measure different characteristics of the data. Confirming
our previous observation, the FID and IS ranking scores are low, with FID outperforming IS. However, the
extensions of FID do achieve better scores.

Another observation is the relatively low correlation between many of the different rankings. All of the
Inception ranking correlation, except one (KID and Clean FID), indicates that one can get significantly
different rankings by using a different metric.

Among the Inception-based metrics, FID∞ has the highest correlation with KL and RKL which indicates
that it is a more reliable metric than the other. IS/IS∞ has the lowest ranking correlation between all other
models.

5 Is Inception All We Need?

In the previous section, we evaluated the performance of FID and IS and found issues with them. We will now
investigate one potential issue with these metrics, the backbone Inception network. Most common metrics
are based on features computed by a pre-trained Inception network trained on the ImageNet classification
task. The underlying assumption behind FID and its extensions is that these features are representative of
the quality of the image and that they follow a Gaussian distribution.

As these metrics are used to evaluate generative models on various domains, e.g., faces, pets, bedrooms,
etc., that are distinct from the ImageNet dataset on which the Inception network was trained, it raises
the question: Are the features returned by the Inception network the right choice for comparing generative
models in general?

In the next section, we evaluate the Inception features qualitatively and compare them to the features
computed by the CLIP (Contrastive Language-Image Pre-Training) network. Additional quantitative exper-
iments are in the supplementary material. CLIP is a neural network trained on the task of matching images
to captions. It was trained on 400M images from a wide variety of domains, and was shown in multiple
works to give strong representations that are useful for generating images Gal et al. (2022); Galatolo et al.
(2021); Zhou et al. (2021). We hypothesize that since CLIP was trained on multiple domains and using full
image captions, its features would be better suited for comparing generative models.

5.1 Qualitative Analysis

FID and its extensions are based on the assumption that the distribution over the latent representation is
Gaussian. Here we evaluate how this Gaussian assumption holds. To do this we fit a Gaussian to the real
data using each representation and look at the generated images that get the best/worst likelihood according
to this Gaussian. In detail we:

1. Sample 10K images from a generative model.

2. Randomly select 20K images from the original data set used to train the generative model and
compute their feature vectors with the Inception network and the CLIP network.

3. For each of these representations, fit a Gaussian model.

4. Calculate the probability of each of the synthetic samples belonging to the corresponded Gaussian
model and rank them by their score.

In Fig. 7 we show the images that got the lowest probability rank on the AFHQ dataset Choi et al. (2019)
with the wild class. We used a pre-trained StyleGAN2-ADA Karras et al. (2020a) as our generative model.

Since those images got the lowest probability rank among 10K images, our Gaussian model classifies them
as outliers. If matching the Gaussian on these features is a good metric, then these low-probability images
should correspond to low-quality generated images. As one can see, many of the CLIP low-probability images
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Inception - low probability (Wild). CLIP - low probability (Wild).

Figure 7: Samples that were classified as outliers while modeling the latent variables as Gaussian model.
Inception samples do not look like outliers, unlike CLIP samples, which are distorted.

look indeed like anomalies while most of the Inception anomalies look like valid images from Wild dataset.
While this is only a small number of images, we see similar behavior across various non-ImageNet datasets
and generative models. These results indicate that CLIP features are better suited for comparison between
generative models. More results on different datasets are available in appendix D.

5.2 Normality Test

We augment our previous qualitative assessment by testing how well our samples follow a Gaussian distribu-
tion on our features. To utilize the readily available normality tests on 1D data, we linearly project our data
randomly to one dimension and use these tests on multiple projections. This is valid, as a linear mapping
of a multivariate normal also follows a normal distribution. We point out that we chose to analyze the nor-
mality test in a single dimension, rather than in a multi-dimension, for numerical stability considerations.
Specifically, we:

1. Propagate dataset with N pictures via Inception and CLIP and save the latent vectors of the images.
A ∈ RN×d is the result matrix, where d is the latent representation dimension (2048 for Inception
and 512 for CLIP).

2. Generate x ∈ Rd unit vector in a uniformly random direction.

3. Calculate z = Ax ∈ RN , The projection of A on random direction x.

4. Run the D’Agostino’s K-squared normality test D’Agostino & Pearson (1973) and calculate p value
under the null hypothesis that the data were drawn from a Gaussian distribution.

5. Repeat the process for T = 1000 times for different randomized unit vectors and calculate the mean
of p value.

The results, reported in Table 2, indicate that the Inception features are non-Gaussian and that across the
board CLIP achieves better scores. Surprisingly, Inception features achieved the best score, by far, on our
synthetic dataset and not on the original ImageNet dataset on which they were trained. We hypothesize
that this is because our images were also generated by a deep neural network, albeit with a much different
structure than the Inception network, and thus share certain characteristics as a result.
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Table 2: Mean p value results of normality test. The lines represent the normality scores for CLIP and
Inception latent variables across datasets.

CLIP Inception
AFHQ -Wild 0.0162 4.07E-192
AFHQ -Dogs 0.1893 1.40E-31

CelebA 0.0674 2.10E-20
NotImageNet32 0.1328 0.0049

ImageNet 0.093 6.34E-59

6 Conclusions

To summarise, we generated a high-quality synthetic dataset and compared the standard empirical metrics
such as FID and IS to probabilistic f-divergences such as KL and RKL. We first observe that the empirical
metrics show good correlation, so they do capture important trends. However, they are much more volatile
and not all significant gains in one of the metrics correspond to observable gains in one of the KL divergences.
We also observed that IS and its IS∞ extensions performed significantly worse compared to all other metrics.
Finally, we investigated the standard use of the Inception features and show that, especially on benchmarks
that are not ImageNet, they are outperformed by the more general-purpose CLIP features.

Given these observations we recommend:

• Drop the use of Inception Score, and used FID∞ instead of FID.

• Use multiple metrics (e.g. FID∞, KID and Clear FID) to try and control the volatility in scores.

• Replace the inception network with CLIP in FID. We made the code for FID based on CLIP available.
Link will be added to final version for anonymity.

• Advocate NotImageNet32 as test-bed for generative models.
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A Volatility Analysis of High-Quality Models

Figure 8: Evaluation metrics along the training of four PixelSnail and two VD-VAE models of varying
sizes. Zoom in on high-quality models.

In Fig 8 one can see that FID score dramatically changes although there is not much change in the KL or
in the RKL metrics. This may indicate on the volatility of this method.

B Technical details on experiment’s generative models architecture

As mentioned in section 4, we create different models by setting different hyper-parameters in order to
compare performances between them. In order to enable accurate reproduction capability, we describe the
set of parameters we used.

B.1 PixelSnail

The PixelSNAIL architecture is primarily composed of two main components: residual block, which applies
several 2D-convolutions to its input, each with residual connections. The other is the attention block, which
performs a single key-value lookup. It projects the input to a lower dimensionality to produce the keys
and values and then uses softmax-attention. The model is built from serval PixelSnail blocks concat to
one another, each interleaves the residual blocks and attention blocks mentioned earlier. We used Adam
optimizer with LR 0.0001 and MultiplicativeLR scheduler with lambada LR 0.999977. The loss function
changed to the mean cross-entropy over 512 discrete clusters. All the other parameters that make up a
model are described in table 3.

Table 3: PixelSnail hyper-parameters

Size Channels PixelSnail blocks Residual blocks Attention values Attention keys
S 128 2 4 64 8
M 128 4 4 64 8
L 128 8 4 64 8

XL 256 8 4 128 16
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Figure 9: NLL score on the training set for different PixelSnail models on NotImageNet32
.

B.2 VD-VAE

VD-VAE network is built from an encoder and decoder. In the encoder, there are regular blocks, which get
an input and outputs output with the same dimension, and down-rate blocks that get input and output an
output with a lower dimension. The difference between these two blocks is an avg_pool2d at the end of the
down-rate block. In the decoder, there are regular blocks and mixin blocks. the regular blocks get an input
and outputs output with the same dimension. The input is fed from the previous layer and the parallel layer
in the encoder. The mixin block performs interpolation to a higher dimension.

Table 4: VD-VAE hyper-parameters

Size Encoder Decoder
S 32x5, 32d2, 16x4, 16d2, 8x4, 8d2, 4x4, 4d4, 1x2 1x2, 4m1, 4x4, 8m4, 8x3, 16m8, 16x8, 32m16, 32x20
M 32x10, 32d2, 16x5, 16d2, 8x8, 8d2, 4x6, 4d4, 1x4 1x2, 4m1, 4x4, 8m4, 8x8, 16m8, 16x10, 32m16, 32x30

In table 4 x means how many regular blocks are concatenated in a row. For example, 32x10 means 10
blocks in a row with a 32-channel input. d means a down-rate block. the number after tells the factor of
the pooling. m means a unpool (mixin) block, for example, 32m16 means 32 is the output dimensionality
with 16 layers in the mixin block.
Other hyper-parameters that were changed are EMA rate to 0.999, warm-up iterations to 1, learning rate to
0.00005, grad clip to 200, and skip threshold to 300. We used Adam optimizer with β1 = 0.9 and β2 = 0.9.
Other hyper-parameters configure as mentioned in VD-VAE article.
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C Supplementary models correlation measurements

In table 5 one can see that Pearson correlation is high for most of evaluation methods. This fact is consistent
with the conclusion presented in the article on the ability of current evaluation methods to capture trends.

Table 5: Pearson’s ρ Correlation

KL RKL FID IS IS∞ KID FID∞ Clean FID
KL 1 0.976 0.8217 0.7088 0.5656 0.9011 0.911 0.8962

RKL 0.976 1 0.7839 0.6559 0.5279 0.8552 0.8585 0.8493
FID 0.8217 0.7839 1 0.9441 0.9053 0.9771 0.9583 0.9829
IS 0.7088 0.6559 0.9441 1 0.9657 0.9047 0.8858 0.9139

IS ∞ 0.5656 0.5279 0.9053 0.9657 1 0.8301 0.799 0.8407
KID 0.9011 0.8552 0.9771 0.9047 0.8301 1 0.9825 0.998

FID ∞ 0.911 0.8585 0.9583 0.8858 0.799 0.9825 1 0.9863
Clean FID 0.8962 0.8493 0.9829 0.9139 0.8407 0.998 0.9863 1

In table 6 we present Spearman ranking correlation, other ranking correlation method that is similar to
Kandell’s τ and presented similar results.

Table 6: Spearman’s ρ Ranking Correlation

KL RKL FID IS IS∞ KID FID∞ Clean FID
KL 1 0.9779 0.8449 0.7394 0.6064 0.9201 0.9353 0.9242

RKL 0.9779 1 0.8118 0.6921 0.5693 0.8828 0.8883 0.8865
FID 0.8449 0.8118 1 0.9238 0.8934 0.9587 0.9165 0.9627
IS 0.7394 0.6921 0.9238 1 0.9548 0.8904 0.847 0.8799

IS∞ 0.6064 0.5693 0.8934 0.9548 1 0.799 0.7422 0.7922
KID 0.9201 0.8828 0.9587 0.8904 0.799 1 0.9656 0.9964

FID∞ 0.9353 0.8883 0.9165 0.847 0.7422 0.9656 1 0.9715
Clean FID 0.9242 0.8865 0.9627 0.8799 0.7922 0.9964 0.9715 1
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D Extensive Results for Qualitative Analysis

More results regarding section 5. The datasets that are under test are CelebA and AFHQ - Dogs. In the
CelebA case CLIP locates anomalies better than Inception, In AFHQ dogs dataset the performance seems
more balanced.

Figure 10: Inception - low probability (CelebA). Figure 11: CLIP - low probability (CelebA).

Figure 12: Inception - low probability (Dogs). Figure 13: CLIP - low probability (Dogs).
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E Samples Examples

These samples were generated from the different models under test in section 4, each subfigure generated on
a different epoch while training the models on the NotImageNet32 dataset. Figures 14 and 15 are samples
from the large PixelSnail model and the medium VD-VAE model, respectively. More details on the models
are in appendix B.

Epoch 1 Epoch 10

Epoch 50

Figure 14: PixelSnail model samples

Epoch 1 Epoch 10

Epoch 50

Figure 15: VD-VAE model samples
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