
Thought calibration:
Efficient and confident test-time scaling

Anonymous ACL submission

Abstract001

Reasoning large language models achieve im-002
pressive test-time scaling by thinking for longer,003
but this performance gain comes at significant004
compute cost. Directly limiting test-time bud-005
get hurts overall performance, but not all prob-006
lems are equally difficult. We propose thought007
calibration to decide dynamically when think-008
ing can be terminated. To calibrate our decision009
rule, we view a language model’s growing body010
of thoughts as a nested sequence of reasoning011
trees, where the goal is to identify the point012
at which novel reasoning plateaus. We realize013
this framework through lightweight probes that014
operate on top of the language model’s hidden015
representations, which are informative of both016
the reasoning structure and overall consistency017
of response. Based on three reasoning language018
models and four datasets, thought calibration019
preserves model performance with up to a 60%020
reduction in thinking tokens on in-distribution021
data, and up to 20% in out-of-distribution data.022

1 Introduction023

Test-time scaling presents a new paradigm for im-024

proving language model reasoning by expending025

large amounts of compute during inference (Ka-026

plan et al., 2020; Wei et al., 2022). Though the027

strategies for eliciting reasoning vary – from large-028

scale reinforcement learning (Guo et al., 2025a)029

to explicit tree search (Zhang et al., 2024b,a) – a030

common effect is that language models improve031

by sampling substantially more tokens. This may032

result in wasted compute on easy problems (Chen033

et al., 2024; Sui et al., 2025), but naively limiting034

the generation length leads to pronounced drops035

in accuracy (Muennighoff et al., 2025). This moti-036

vates early stopping strategies that reduce the infer-037

ence budget without significantly degrading perfor-038

mance, and control the extent of impact, if perfor-039

mance must be compromised.040

Numerous methods have been proposed for041

teaching language models to be economical with042

their token budgets (Han et al., 2024; Arora and 043

Zanette, 2025; Sui et al., 2025), or for identify- 044

ing opportune stopping points (Yang et al., 2025; 045

Zhang et al., 2025). While these methods demon- 046

strate strong empirical performance, they lack strict 047

statistical guarantees about when they could fail. In 048

an orthogonal direction, conformal prediction has 049

been adapted to equip language models with cali- 050

brated confidences about the quality or consistency 051

of their generations (Mohri and Hashimoto, 2024; 052

Quach et al., 2024; Rubin-Toles et al., 2025a,b; 053

Cherian et al., 2024). However, most of these al- 054

gorithms operate through post-hoc filtering and 055

require external LLM-based validation for scoring 056

intermediate steps – rendering them unsuitable for 057

actively terminating generation. 058

In this work, we jointly pursue an effective and 059

calibrated decision rule to determine when a lan- 060

guage model can stop “thinking.” To do so, we 061

introduce the notion of a reasoning tree, where at 062

each step of sampling, a language model either 063

adds a new leaf, walks along the tree, or backtracks 064

to a previous step. Notably, identifying when the 065

thoughts have converged is equivalent to detecting 066

when this reasoning tree stops growing. Inspired by 067

this concept, we approach early stopping as multi- 068

ple hypothesis testing problem. At each generation 069

step, we test whether the current tree is expected 070

to change, based on the predictions of lightweight 071

probes over the language model’s hidden represen- 072

tations. Our algorithm is based on the Learn then 073

Test framework (Angelopoulos et al., 2021), which 074

provides finite-sample, distribution-free guarantees 075

for controlling the risk of our decisions. 076

We evaluate this strategy, thought calibration, 077

based on its ability to guide efficient reasoning, 078

and whether its decisions are well-calibrated. Our 079

experiments consider two empirical settings: we 080

may or may not have access to training and cali- 081

bration data from the true test distribution. In the 082

first setting, we train variants of thought calibration 083

1



using three reasoning lanugage models (DeepSeek-084

R1 distilled Qwen 32B and Llama 70B (Guo et al.,085

2025a; Yang et al., 2024; Grattafiori et al., 2024),086

QwQ 32B (Team, 2025)), evaluated on a helf-out087

split of s1K-1.1 (Muennighoff et al., 2025). Here,088

we are able to halve the number of thinking tokens089

across accuracy levels, with a maximum reduc-090

tion of 60%. Then we evaluate Qwen 32B-based091

thought calibration on three test datasets: AIME092

24, GPQA Diamond (Rein et al., 2024), MATH-093

500 (Lightman et al., 2023)). Though these datasets094

vary in format and difficult, thought calibration is095

still able to reach up to a 20% reduction in think-096

ing tokens, and in the worst case, is always as ef-097

ficient as naive budget constraints. In summary,098

this work has three main contributions.099

1. We interpret LLM reasoning through the lens100

of an abstract reasoning tree, where the prob-101

lem of early exiting is equivalent to identify-102

ing when this tree stops growing.103

2. This view allows us to calibrate the decision104

rule for actively terminating generation.105

3. Based on multiple language models and rea-106

soning benchmarks, we provide empirical evi-107

dence that thought calibration is effective for108

efficient test-time scaling.109

2 Background110

2.1 Test-time scaling111

Efficient inference Since current reasoning mod-112

els are post-trained through reinforcement learn-113

ing (Guo et al., 2025a), a number of works address114

the overthinking problem (Sui et al., 2025) as part115

of the reinforcement learning process (Han et al.,116

2024; Arora and Zanette, 2025; Hou et al., 2025).117

Other works focus on the inference-time problem118

of predicting when a language model should stop119

generating (Yang et al., 2025; Zhang et al., 2025;120

Ma et al., 2025). This papers falls under the latter121

category, which on a whole, is compatible with122

methods that reduce a language model’s verbosity123

during post-training. Finally, another option is to124

achieve efficiency in terms of model architecture.125

Some works dynamically adapt compute cost (Lei,126

2021; Leviathan et al., 2023), while others employ127

only a subset of all modules during sampling (Kim128

and Cho, 2021; Liu et al., 2022; Schuster et al.,129

2022). While these strategies operate over the130

Transformer stack, rather than the generation se- 131

quence length, many high-level ideas are broadly 132

applicable to early exiting in our situation. 133

Self-consistency Self-consistency has been 134

widely used to provide a self-supervised form of 135

confidence during the sampling process (Wang 136

et al., 2022). These methods aim to improve the 137

quality of generated samples, often in situations 138

where multiple samples may be sequentially 139

generated (Mitchell et al., 2022; Madaan et al., 140

2023; Shi et al., 2023; Weng et al., 2023; Guo 141

et al., 2025b). Consistency can also provide 142

feedback for reasoning-focused reinforcement 143

learning (Wang et al., 2024b). Several recent 144

works have observed that confidence scores can be 145

probed and calibrated from internal representations, 146

to prioritize reasoning trajectories for subsequent 147

runs (Li et al., 2024; Huang et al., 2025; Xie 148

et al., 2024) or for early exiting, similar to this 149

work (Zhang et al., 2025). Our key departure is 150

that we calibrate the decision rule to terminate 151

generation, rather than the probabilistic outputs of 152

a probe. This reflects the online setting, where a 153

probe is used to actively guide generation, rather 154

than to filter trajectories post-hoc. 155

2.2 Conformal prediction and risk control 156

Conformal prediction quantifies the uncertainty in 157

machine learning models by generating set-valued 158

predictions (Shafer and Vovk, 2008; Angelopoulos 159

and Bates, 2021). These methods are distribution- 160

free and valid under finite samples, which makes 161

them particularly attractive in real-world applica- 162

tions. Specifically, for an input x, a candidate out- 163

put space Y , and a predetermined error level ϵ, 164

conformal prediction tests each potential outcome 165

y ∈ Y by evaluating the null hypothesis: “output 166

y corresponds to input x.” The final prediction set 167

consists of the outputs y for which this null hypoth- 168

esis fails to be rejected, where the test statistic is 169

known as a nonconformity score. Split conformal 170

prediction leverages a separate training set to learn 171

this nonconformity score (Vovk et al., 2005; Pa- 172

padopoulos, 2008). The true outcome is included 173

with probability at least 1− ϵ, with guarantees that 174

are typically marginal over draws of the test set and 175

an exchangeable calibration set. 176

In the context of language modeling, conformal 177

prediction has been adapted to calibrate the factu- 178

ality (Mohri and Hashimoto, 2024; Cherian et al., 179

2024), reasoning consistency (Rubin-Toles et al., 180

2



2025a), and quality of generations (Quach et al.,181

2024; Qiu and Miikkulainen, 2024). Here, x may182

represent an input sequence of text, while y may be183

a language model output. Of these works, Rubin-184

Toles et al. (2025a) also introduces the idea of rea-185

soning as coherency over a graph structure, based186

on logical deducibility. However, this and other187

methods are primarily designed for post-processing188

text that has already been generated, and they rely189

on external language models as scoring functions.190

As a result, these approaches are not calibrated191

to be used as decision rules for iterative testing,192

and the latency required to compute nonconformity193

scores renders them unsuitable for early exiting.194

More recently, the Learn then Test (LTT) frame-195

work (Angelopoulos et al., 2021) extends the ideas196

in conformal prediction to control the risk of arbi-197

trary loss functions, with guarantees over draws198

of the calibration set. One application of LTT199

is to convert model outputs into a calibrated de-200

cision rule, by viewing hyperparameter selection201

(e.g. discretization thresholds) as multiple hypothe-202

sis testing. Our method and several works in early203

exiting are built atop the LTT framework. Quach204

et al. (2024) calibrates a language model’s sam-205

pling of output sets, similar to this work. Their206

goal is to generate sufficient outputs y until cer-207

tain admissibility criteria have been fulfilled, e.g.208

correctness and diversity of information. However,209

the sampling process in Quach et al. (2024) is in-210

teractive, in the sense that each step requires an211

external verifier, and text may be added or removed212

at any point. As a result, this strategy is unsuit-213

able for providing online decisions about when to214

stop. Schuster et al. (2022) also leverages LTT215

to calibrate a stopping rule to exit from a Trans-216

former stack. Their method operates on individual217

tokens, similar in spirit to applications like specu-218

lative decoding (Leviathan et al., 2023). Our focus219

is on large, coherent thoughts for reasoning, where220

token-level uncertainties are less informative.221

3 Thought Calibration222

Given an input x ∈ X , a reasoning language model223

generates a series of thoughts y ∈ Y , before syn-224

thesizing the final output z ∈ Z . For example, x225

may represent a math question; y is a sequence of226

reasoning steps; and z is the model’s attempt at227

solving the question (Figure 1A). Manipulating the228

budget allocated to generating y directly impacts229

the quality of z (Muennighoff et al., 2025), but as230

the length of y increases, so too does the cost of 231

inference. Our goal is to identify the point at which 232

growing y no longer improves z. 233

To formalize these ideas, we introduce the no- 234

tion of an abstract reasoning graph G, where nodes 235

represent thoughts and directed edges represent en- 236

tailment relationships (MacCartney and Manning, 237

2014). This graph is rooted at x, the input question. 238

Nodes can be serialized into textual descriptions, 239

and different paraphrases of the same idea repre- 240

sent a single node. Where it is clear, we refer to 241

the abstract node and its textual representation in- 242

terchangeably. 243

Definition 3.1. A reasoning trajectory z is a root- 244

to-leaf walk in the reasoning graph G. 245

An arbitrary z need not be “complete” or “cor- 246

rect” with respect to the original question x. We 247

use z∗ to denote a walk that starts at x and ends 248

at the right answer, which we assume to be incon- 249

trovertible. G uniquely determines the set of all 250

root-to-leaf walks {z}, and thus, whether a lan- 251

guage model has any chance of being correct in its 252

final attempt. 253

Definition 3.2. A set of thoughts y is a walk, rooted 254

at x, on the augmented graph G′ in which every 255

node is connected to each of its ancestors. 256

At each stage of sampling, a large language 257

model either adds a leaf to G (novel thought), or 258

takes one step in G′ (backtracking or redundant 259

generation). Let Gt be the reasoning graph at time 260

t. If a language model terminates thinking at this 261

point, it is expected to answer correctly if there 262

exists a path in Gt that yields z∗. Thus, it would be 263

ideal we could calibrate the language model such 264

that with high probability, 265

P (E [1[z∗ ̸∈ Gt] ≤ δ]) ≥ 1− ϵ (1) 266

for some risk tolerance δ and error level ϵ ∈ (0, 1). 267

In principle, a language model could enumerate the 268

space of graphs in a combinatorial search. How- 269

ever, it is far from guaranteed that this graph can 270

be tractably found. Instead, we focus on the consis- 271

tency between reasoning graphs. 272

Definition 3.3. Thoughts y and y′ are consistent if 273

they can be represented by the reasoning graph G. 274

In particular, if a language model repeatedly 275

revisits a step to arrive at the same conclusion, 276

or traverses the same ideas in a different order, 277

the resultant graph does not change (Figure 1C). 278

Let yt := [y(i) . . . y(t)] and Gt be the in-progress 279

3



Input x 
Given a rational number, write it as a fraction in lowest 
terms and calculate the product of the resulting 
numerator and denominator. For how many rational 
numbers between 0 and 1 will 20! be the result?

Thoughts y 

First, a rational number between 0 and 1 can be 
written as a fraction a / b where 0 < a < b and a and b 
are coprime positive integers.

Reasoning step y(1)

The number with a < b is half of the total pairs, so 
256/2 =128. Hence 128 such numbers. Therefore, The 
answer is 128, corresponding to 128.

Reasoning step y(T)

…

Output z
The prime factors of 20! are 2, 3, 5, 7, 11, 13, 17, and 19. These 
are 8 distinct primes. For ab = 20! and gcd(a, b) = 1, each 
prime factor of 20! must be entirely to either a or b. This 
results in 2^8 = 256 coprime pairs (a, b). Each pair (a, b) 
and (b, a) are distinct. To find pairs where a < b, we divide 
the total number of pairs by 2s. The number of coprime 
pairs (a, b) with a < b is 256/2 = 128.

x

y(1)

y(2)

Reasoning tree GT where T=4

a and b are coprime

20! has 8 distinct 
prime factors.

2^8 = 256 y(4)

x

y(1)

y(2)

y(t)

…
y(3)

(A) Reasoning language models scale at test 
time through longer chains of thought, at 
significant compute cost.

(B) Terminating too early hurts model 
performance due to under exploration.

20! is a fixed 
number, but 
how is a 
related to b?

The answer is 256.

Potential reasoning trajectories:
z1 = [y(1), y(2), y(3)]
z2 = [y(1), y(2), y(4)]

<think>

</think>

Thoughts
y = [y(1), y(2), y(3), y(4)]

y(3)

y(t-1)

When is E(risk of stopping now) < ẟ)?

256 / 2 = 128

P(stop at t) = 0.8

2^8 = 256

P(stop at t-1) = 0.4 Wait…

P(stop at t+1) = 0.85

Yes, 128.

P(stop at T) = 0.9

(C) Our goal is to confidently decide when 
yt will be consistent with yT , based on when 
the reasoning graph stops changing. 

…

20! has 8 
distinct …

P(stop at 2) = 0.2

Reasoning tree GT

(Up to max budget)

Figure 1: Overview of the problem and our goal. Illustrated example based on s1K-1.1 (Muennighoff et al., 2025).

thoughts and reasoning graph after t steps, and280

let T be the maximum inference budget (token or281

model limit). Instead of enforcing that Gt contains282

z∗, it is more reasonable to guarantee that283

P (E [1[Gt ̸= GT ] ≤ δ]) ≥ 1− ϵ. (2)284

Due to the sequential nature of generation, Gt is285

always a (not necessarily strict) subset of GT .286

We now describe how we calibrate the decision287

rule for terminating language model generation288

(Section 3.1), and then introduces three strategies289

for practically estimating the quantities described290

by Equations 1 and 2 (Section 3.2).291

3.1 Calibrating the stopping rule292

Suppose we have a calibration dataset Dcal, which293

contains exchangeable points {(xi, yi)}ni=1. Given294

a new example x, let yt denote the language295

model’s thoughts after t sampling steps, and let296

yT denote the maximum set of thoughts. Our goal297

is to find the smallest t that fulfills Equations 1 or298

2, based on the distribution of Dcal. During the299

sampling process, however, we do not know z∗300

or GT , so we must estimate the quantities inside301

the expectation using a surrogate function f . Here,302

Dcal serves to calibrate f such that303

P (E [R(yt) ≤ δ | Dcal]) ≥ 1− ϵ (3)304

where R is a bounded risk function associated with305

f . For example, f may be a linear probe on the306

hidden representations of thought steps y(i), and307

its output may be a binary prediction. A potential 308

decision rule could take the form of a threshold λ, 309

where if f(y(t)) ≥ λ, we terminate thinking. 310

Similar to Schuster et al. (2022) and Quach et al. 311

(2024), we follow the Learn then Test framework to 312

select a valid set of λs that provide our desired guar- 313

antees (Angelopoulos et al., 2021). On a high level, 314

hyperparameter selection is viewed as a multiple 315

hypothesis testing problem. Let Λ be a finite set 316

of configurations, where each λj ∈ Λ is associated 317

with the null hypothesis, 318

Hj : E[R(yt) > δ]. (4) 319

The set of valid Λvalid ⊆ Λ is the set of λj for which 320

we fail to reject Hj . In particular, selecting the 321

earliest stopping time is equivalent to identifying 322

the smallest λ ∈ Λvalid. 323

Theorem 3.4 (Adapted from theorem 1 in (An- 324

gelopoulos et al., 2021)). Suppose pj is super- 325

uniform under Hj for all j. Let A be a family-wise 326

error rate (FWER) controlling algorithm at level ϵ. 327

Then Λvalid = A(p1, . . . , pm) satisfies Equation 3. 328

Theorem 3.4 specifies that any FWER- 329

controlling algorithm A can be used with an 330

appropriate p-value to identify Λvalid. While 331

Angelopoulos et al. (2021) proposes several 332

algorithms to search over Λ, we follow the fixed 333

sequence testing method, since in principle, our 334

risks are expected to be monotonic (Gt ⊆ GT ). 335

Specifically, let Λ = {λ1, . . . , λm} be a de- 336

scending grid of parameters. Intuitively, larger λ 337

4



correspond to more permissive thresholds, e.g. al-338

lowing a language model to generate for longer.339

1. For each j, we compute a valid p-value pj ,340

e.g. the binomial tail bound p-value, follow-341

ing (Quach et al., 2024):342

pBT
λ := P(Binom(n, ϵ) ≤ nR̂n(λ)). (5)343

2. If pj ≤ ϵ, we reject Hj and continue. Oth-344

erwise, we return λj−1 as the smallest valid345

threshold for error rate ϵ.346

This process yields the binarization threshold for347

f , where we stop generating when f(yt) ≥ λj−1.348

3.2 Estimating empirical risk349

On a high level, the surrogate function f should350

reflect the consistency of yt with expected future351

generations. Ideally, we would be able to access the352

graphical structure of Gt, as any repetitions or re-353

dundant walks in yt would be immediately evident.354

However, since autoregressive language models355

generate left-to-right, without explicitly conform-356

ing to any higher-level structure, we cannot operate357

directly over G. Instead, we introduce three ap-358

proaches for designing f in practice.359

We first briefly consider the simple case sug-360

gested by Equation 1: if we terminate thinking361

now, is the language model able to answer cor-362

rectly? That is, we could define363

fcorrect(yt) := P(LLM is correct based on yt) (6)364

Rcorrect(yt) := 1{LLM is correct} · (1− fcorrect(yt))365

+ 1{LLM is wrong} · fcorrect(yt). (7)366

However, there are several drawbacks of this imple-367

mentation. By construction, the calibration dataset368

only contain questions that can eventually be an-369

swered, which is not true in general. Though the370

space of graphs is countable, it is unlikely that a371

language model can efficiently explore the entire372

space. In other words, the language model may373

realistically never answer correctly. Thus, setting374

λ = 1 is not guaranteed to be risk controlling. With375

this definition of Rcorrect(y), calibrating based on376

correctness also requires supervised labels. While377

this is not an issue on standard benchmarks, it is378

harder to obtain labels (user feedback) in practice.379

To address these challenges, we introduce two380

additional strategies for estimating graph consis-381

tency. First, a language model’s final attempt z can382

be viewed as a distillation of its overall reasoning383

structure. Thus, we compare the language model’s 384

attempt zt after t steps, to the eventual attempt zT 385

at the maximum reasoning budget. This yields 386

fconsistent(yt) := P(zt is the same as zT ) (8) 387

Rconsistent(yt) := 1{consistent} · (1− fconsistent(yt)) 388

+ 1{inconsistent} · fconsistent(yt) (9) 389

These values can be determined even for intractable 390

problems, as long as the extended reasoning pro- 391

duces no new insights, and does not require labels 392

of correctness. 393

Finally, any particular z only represents a single 394

walk through G. Due to stochasticity, two differing 395

attempts could be sampled from the same graph, 396

which is no longer changing. Towards this end, 397

we observed that language models often reiterate 398

redundant information, after having reached the 399

correct answer or the extent of its abilities. Prob- 400

ing for novelty should suffice to capture this phe- 401

nomena. In practice, however, we found that the 402

following formulation was easier for our verifier to 403

implement, as checking for novelty involves long 404

context reasoning over all previous thoughts, which 405

can be challenging (Wang et al., 2024a). 406

fnovel leaf(yt) := P(y(t)is leaf) · (1− P(y(t)is novel))
(10)

407

Rnovel leaf(yt) := 1{LLM inconsistent} · fnovel leaf(yt) 408

+ 1{LLM consistent} · (1− fnovel leaf(yt)). (11) 409

We reuse the labels for consistency due to ease of 410

verification compared to novelty. 411

3.3 Implementation details 412

To separate a reasoning trajectory y into individual 413

steps {y(i)}, we use sections delimited by \n\n, 414

which also contain either wait or but. We ob- 415

served that individual tokens representations can 416

vary significantly. Thus, each step uses the mean 417

last-layer representation of its tokens, followed by 418

dimensionality reduction via PCA to d = 256. 419

To estimate each of quantities in Equations (6) 420

to (11), we train linear probes on these step-level 421

representations. The final probabilities are av- 422

eraged over a window of 10 steps for smooth- 423

ness, before calibration. For evaluation, we use 424

a grid of ϵ ranging from 0.05 to 0.5, with pre- 425

cise thresholds selected to roughly match the token 426

range of baselines. During development, we ex- 427

perimented with more complex architectures, e.g. 428

5



Transformer to predict leaves as a sequence la-429

beling task (Appendix B.1). However, to avoid430

overfitting on our limited training set, we chose to431

focus on simple and efficient linear probes. Con-432

current work (Zhang et al., 2025) also finds that433

model confidence can often be extracted linearly.434

In our experiments, we use three reasoning models:435

DeepSeek-R1 distilled Qwen 2.5 32B and Llama436

3.3 70B (Guo et al., 2025a; Grattafiori et al., 2024;437

Yang et al., 2024), and QwQ 32B (Team, 2025).438

The ground truth labels for these probes are ob-439

tained by prompting a separate language model440

(Qwen 3 32B). Correct: We truncate thinking tra-441

jectories to desired lengths, append the <\think>442

token, and prompt the language model for the443

final answer, which is compared to the ground444

truth (Muennighoff et al., 2025). Consistent: The445

same outputs can be used to check whether Gt is446

consistent with GT , by comparing intermediate at-447

tempts zt to maximum budget attempt zT . Leaf:448

We annotate whether each step y(i) is a leaf in G449

by asking a separate language model to identify450

whether it makes an attempt to answer the origi-451

nal question x, regardless of correctness. Novel:452

We provide a separate language model with all pre-453

vious thoughts y(1) . . . y(i−1) and ask whether the454

new step y(i) provides additional information. All455

prompts can be found in Appendix A and were run456

on 4 A6000 GPUs using vLLM (Kwon et al., 2023)457

and lmdeploy (Contributors, 2023).458

We evaluate the correctness of all final attempts459

using the GPT 4.1 API, between April 15, 2025 and460

May 15, 2025. For datasets that have no ambiguity461

(multiple choice, numeric answers), we trimmed462

the final attempts to 200 characters, to prevent the463

LLM from “cheating” by using additional thinking464

budget after the </think> token.465

4 Experiments466

4.1 Settings467

Datasets. Our experiments focus on efficient lan-468

guage model reasoning across tasks which vary in469

content, format, and difficulty. In particular, we470

leverage the following datasets.471

s1K-1.1 (Muennighoff et al., 2025) is a curated472

training set for distilling reasoning abilities through473

data. This dataset contains 1000 difficult math and474

science questions, along with thought trajectories475

generated by DeepSeek-R1 (Guo et al., 2025a). As476

a proof of concept, we split the s1K-1.1 dataset into477

training, testing, and calibration (500, 50, 450, in478

dataset order). We use the training set to develop 479

our probes, which are calibrated on the calibration 480

set and evaluated on the testing set. 481

We also consider three common reasoning 482

benchmarks solely for testing. AIME-24 is the 483

2024 iteration of the American Invitational Mathe- 484

matics Examination.1 This dataset contains math 485

questions whose answers take on integers be- 486

tween 0 and 999. GPQA Diamond (Rein et al., 487

2024) is a PhD-level math and science reasoning 488

benchmark with multiple choice answers. MATH 489

500 (Hendrycks et al., 2021; Lightman et al., 2023) 490

is a curated subset of the MATH dataset, which 491

competition math questions of various levels. Note 492

that while s1K-1.1 contains examples of both math- 493

ematical and scientific questions, the format and 494

subsequent reasoning patterns may vary. For ex- 495

ample, while s1K-1.1 is open-ended, the various 496

choices in GPQA must be compared. Thus, we 497

view these three datasets as “out of distribution” 498

from s1K-1.1, which is itself diverse. 499

Models. We evaluate the three variants of thought 500

calibration: the supervised probe for correctness 501

(Equation 6, Supervised); the consistency probe 502

(Equation 8, Consistent); and the lack of novelty 503

probe (Equation 10, Novel Leaf). To contextualize 504

our experimental results, we also consider a naive 505

budget-forcing baseline (Crop). Specifically, we 506

set a fixed token budget for thinking (ranging from 507

1024 to the full trajectory). Once the language 508

model reaches this budget, thinking is immediately 509

terminated and the model is prompted for a final 510

answer. This reflects both the practical use case 511

of setting a limit on maximum generation tokens, 512

and the strategy employed by Muennighoff et al. 513

(2025). Finally, concurrent work has also observed 514

that probes for correctness (Zhang et al., 2025) 515

are effective for early exiting. While this design 516

may not be valid for risk control in practice (LLMs 517

are not guaranteed to ever answer correctly), the 518

Supervised baseline is similar to this work. 519

4.2 In-distribution setting 520

We start with the case where we have access to sam- 521

ples x that are drawn from the same distribution 522

as our eventual application. For example, a model 523

provider may possess typical examples of user data. 524

Our goals are to lower the overall test-time bud- 525

get while maintaining accuracy, and to control any 526

necessary drops in performance based on our pre- 527

1https://maa.org/maa-invitational-competitions/

6



200000 400000
Tokens

0.3

0.5

0.7
A

cc
ur

ac
y

DeepSeek Distilled Qwen 32B

200000 400000
Tokens

0.3

0.5

0.7
DeepSeek Distilled Llama 70B

200000 400000
Tokens

0.3

0.5

0.7
QwQ 32B

0.5 1.0
1-

0.2

0.4

0.6

0.8

1.0

%
 o

f F
ul

l A
cc

ur
ac

y

Calibration

Full
Crop
Supervised
Consistent
Leaf Novelty

Figure 2: On in-distribution data (held-out test split on s1K), variants of thought calibration achieve up to a 60%
reduction in thinking tokens while maintaining full performance. Top right point: Complete DeepSeek-R1 thought
trajectory from (Muennighoff et al., 2025). Crop: Fix thinking budget at 512, 1024, 2048, 4096, and 8192 tokens.
Supervised: exit based on predicted likelihood of correctness. Consistent, and Leaf Novelty: exit based on predicted
consistency of answer or graph. Supervised is over confident, since the test set contains unsolvable problems.

100000 150000 200000
Tokens

0.4

0.5

0.6

0.7

A
cc

ur
ac

y

AIME 24

250000 500000 750000
Tokens

0.50

0.55

0.60

0.65

GPQA Diamond

0.5 1.0
Tokens 1e6

0.75

0.80

0.85

0.90

0.95
MATH 500

0.5 1.0
1-

0.2

0.4

0.6

0.8

1.0

%
 o

f F
ul

l A
cc

ur
ac

y

Calibration

Full
Crop
Supervised
Consistent

Figure 3: We applied thought calibration probes for DeepSeek-distilled Qwen-2.5 32B on standard math and science
benchmarks, which may be out-of-distribution compared to the training and calibration sets, drawn from s1K. We
achieve up to a 20% reduction in thinking tokens. While Consistent generally remains below the predetermined
error rates, Supervised is overconfident (as expected).

determined error levels. In Figure 2, we observe528

that these probes are able to reduce the number of529

thinking tokens by over half for all three mod-530

els, with minimal impact to overall performance.531

With respect to calibration, the Supervised probe532

is quite poorly calibrated, especially at lower val-533

ues of ϵ. All other probes are well calibrated at534

ϵ < 0.1, though variance is higher outside of this535

range. This may be due to distribution shift, result-536

ing from the small test split (to maximize training537

and calibration data for subsequent evaluations).538

4.3 Generalization setting539

Next, we consider the case in which the data we540

have is related, but not drawn from the same dis-541

tribution as our eventual application. To emulate542

this setting, we apply the supervised and consis-543

tent Qwen 32B probes, developed on the s1K-1.1544

dataset, to common reasoning benchmarks (Rein545

et al., 2024; Lightman et al., 2023). Overall, we546

are able to improve (AIME 24, GPQA) or match547

(MATH 500) the efficiency of the budget forcing548

baseline – even achieving slight gains in perfor-549

mance on AIME 24, perhaps by trimming dis-550

tracting thoughts (Figure 4). Notably, even though551

the Supervised probe had access to more informa-552

tion (ground truth answers), the Consistent probe553

consistently generalizes better, both in terms of 554

efficiency and calibration. Here, the Consistent 555

probe fulfills the theoretical guarantees, while the 556

Supervised probe remains over-confident. 557

4.4 Additional analysis 558

Figure 4 illustrates that thought calibration probes 559

prioritizes the termination of problems which can- 560

not be solved, even at full budget – perhaps hint- 561

ing that the language model may have been stuck 562

in a cycle of reasoning, without novel progress. 563

Compared to the naive cropping strategy, thought 564

calibration’s input-dependent decision also demon- 565

strate significant variance in the amount of tokens 566

across different problems. 567

We also examine a specific instance from our 568

s1K-1.1 testing split in Figure 5 (s1K is a distil- 569

lation dataset, so this diagram does not leak real 570

test examples). The language model reaches the 571

correct answer after 38 steps (out of 48 steps). As 572

the model backtracks, the predicted consistency 573

(with the expected final answer) drops; and as 574

the model returns to the answer, confidence in- 575

creases, higher than before. This reaffirms that 576

self-consistency is indeed a powerful indication of 577

correctness, both distilled into a predictive model, 578

and over the course of sampling. 579

7



2048 4096 6144 8192
Max Original Tokens

0

50

100

Pe
rc

en
t C

ro
pp

ed

Budget=6144

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=4096

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=2048

2048 4096 6144 8192
Max Original Tokens

0

50

100
Budget=1024

Original Score
0
1

Strategy: Crop

2048 4096 6144 8192
Max Original Tokens

0

50

100

Pe
rc

en
t C

ro
pp

ed

=0.05

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.1

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.2

2048 4096 6144 8192
Max Original Tokens

0

50

100
=0.3

Original Score
0
1

Strategy: Consistent

Figure 4: Proportion of prompt tokens removed, for different thresholds, stratified by full thought length and
whether the original model was able to solve the problem. Top: Naive max token thresholding. Bottom: Consistency
calibration, DeepSeek-R1 distilled Qwen 32B, over GPQA Diamond. Cropping reduces token lengths uniformly,
regardless of the input characteristics. Thought calibration has a preference for first trimming longer thoughts and
cases where the language model tries but fails to make progress.

Okay, so I need to solve this problem: We have an increasing sequence: 3, 15, 24, 48, ... which
are positive multiples of 3 that are one less than a perfect square. I need to find the remainder
when the 1994th term of this sequence is divided by 1000.

Step 1 (0.104)

Hmm. Let me parse this. The terms are multiples of 3, and each term is one less than a perfect
square [...] n must be either 1 or 2 mod 3. That means terms in the sequence correspond to n
where n ≡ 1 or 2 mod 3.

Step 2 (0.067)

But computing 29922 mod 1000 is equivalent to [...] but since
2992 = 2000 + 992 = 2000 + 992, but modulo 1000, 2992 ≡ 992 mod 1000, so 9922 − 1
mod 1000.

Step 37 (0.342)

Wait, first compute 9922 mod 1000, then subtract 1, then take mod 1000 again. [...]
subtract 1: 64− 1 = 63. Therefore, 9922− 1 mod 1000 = 63. Therefore the remainder is 63.
So answer is 63.

Step 38 (0.717)

But let me confirm because that seems straightforward. Wait: [...] Step 39 (0.646)

Wait: n(k) = (3k)/2 + 1 for even k. For even k = 1994, [...] Then term = 29922− 1. Then
mod 1000 is (29922− 1) mod 1000.

Step 40 (0.479)

But 2992 mod 1000 = 992, so 2992 ≡ −8 mod 1000. Then (−8)2 = 64, then
64− 1 = 63. Therefore mod 1000: 63. [...] Then (−8)2 = 64, then 64− 1 = 63. Therefore
mod 1000: 63. Hence remainder is 63.

Step 41 (0.985)

Figure 5: DeepSeek-R1 distilled Llama 70B Consistency probe on s1K-1.1 example from our test split, where
color intensity is proportional to P(consistent). The language model first reaches the correct answer in Step 38,
backtracks with lower confidence, and returns to the answer in Step 41.

8



5 Limitations580

There are several limitations of our work. Since581

our method is built atop the Learn then Test frame-582

work (Angelopoulos et al., 2021), our theoretical583

guarantees are only valid over draws of the calibra-584

tion set. In practice, this means that the calibration585

data must be sufficiently similar to the actual appli-586

cation. Furthermore, due to our small training and587

calibration datasets, we implement our framework588

primarily through linear probes. In Appendix B.1,589

we found that more complex architectures may lead590

to slightly better performance in some cases, and591

the gap is expected to be larger if more training data592

can be gathered. We leave further investigations593

regarding the probe architecture to future work.594

Finally, this paper only addresses the problem of595

exiting early from reasoning. The broader question596

of how to calibrate the steering of reasoning mod-597

els remains unanswered, and is an interesting area598

for further research.599

References 600

Anastasios N Angelopoulos and Stephen Bates. 2021. 601
A gentle introduction to conformal prediction and 602
distribution-free uncertainty quantification. arXiv 603
preprint arXiv:2107.07511. 604

Anastasios N Angelopoulos, Stephen Bates, Em- 605
manuel J Candès, Michael I Jordan, and Lihua Lei. 606
2021. Learn then Test: Calibrating predictive al- 607
gorithms to achieve risk control. arXiv preprint 608
arXiv:2110.01052. 609

Daman Arora and Andrea Zanette. 2025. Training lan- 610
guage models to reason efficiently. arXiv preprint 611
arXiv:2502.04463. 612

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, 613
Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu, 614
Mengfei Zhou, Zhuosheng Zhang, and 1 others. 615
2024. Do not think that much for 2+ 3=? on 616
the overthinking of o1-like LLMs. arXiv preprint 617
arXiv:2412.21187. 618

John Cherian, Isaac Gibbs, and Emmanuel Candes. 619
2024. Large language model validity via enhanced 620
conformal prediction methods. Advances in Neural 621
Information Processing Systems, 37:114812–114842. 622

LMDeploy Contributors. 2023. Lmdeploy: A toolkit 623
for compressing, deploying, and serving llm. https: 624
//github.com/InternLM/lmdeploy. 625

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, 626
Abhinav Pandey, Abhishek Kadian, Ahmad Al- 627
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, 628
Alex Vaughan, and 1 others. 2024. The llama 3 herd 629
of models. arXiv preprint arXiv:2407.21783. 630

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, 631
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong 632
Ma, Peiyi Wang, Xiao Bi, and 1 others. 2025a. 633
DeepSeek-R1: Incentivizing reasoning capability in 634
LLMs via reinforcement learning. arXiv preprint 635
arXiv:2501.12948. 636

Jiacheng Guo, Yue Wu, Jiahao Qiu, Kaixuan Huang, 637
Xinzhe Juan, Ling Yang, and Mengdi Wang. 2025b. 638
Temporal consistency for llm reasoning process error 639
identification. arXiv preprint arXiv:2503.14495. 640

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu 641
Zhao, Shiqing Ma, and Zhenyu Chen. 2024. Token- 642
budget-aware LLM reasoning. arXiv preprint 643
arXiv:2412.18547. 644

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul 645
Arora, Steven Basart, Eric Tang, Dawn Song, and 646
Jacob Steinhardt. 2021. Measuring mathematical 647
problem solving with the math dataset. In Thirty- 648
fifth Conference on Neural Information Processing 649
Systems Datasets and Benchmarks Track (Round 2). 650

Bairu Hou, Yang Zhang, Jiabao Ji, Yujian Liu, Kaizhi 651
Qian, Jacob Andreas, and Shiyu Chang. 2025. 652
ThinkPrune: Pruning long chain-of-thought of 653
LLMs via reinforcement learning. arXiv preprint 654
arXiv:2504.01296. 655

9

https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy


Chengsong Huang, Langlin Huang, Jixuan Leng, Ji-656
acheng Liu, and Jiaxin Huang. 2025. Efficient test-657
time scaling via self-calibration. arXiv preprint658
arXiv:2503.00031.659

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B660
Brown, Benjamin Chess, Rewon Child, Scott Gray,661
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.662
Scaling laws for neural language models. arXiv663
preprint arXiv:2001.08361.664

Gyuwan Kim and Kyunghyun Cho. 2021. Length-665
adaptive transformer: Train once with length drop,666
use anytime with search. In Joint Conference of the667
59th Annual Meeting of the Association for Compu-668
tational Linguistics and the 11th International Joint669
Conference on Natural Language Processing, ACL-670
IJCNLP 2021, pages 6501–6511. Association for671
Computational Linguistics (ACL).672

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying673
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.674
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi-675
cient memory management for large language model676
serving with pagedattention. In Proceedings of the677
ACM SIGOPS 29th Symposium on Operating Systems678
Principles.679

Tao Lei. 2021. When attention meets fast recurrence:680
Training language models with reduced compute. In681
Proceedings of the 2021 Conference on Empirical682
Methods in Natural Language Processing. Associa-683
tion for Computational Linguistics.684

Yaniv Leviathan, Matan Kalman, and Yossi Matias.685
2023. Fast inference from transformers via spec-686
ulative decoding. In International Conference on687
Machine Learning, pages 19274–19286. PMLR.688

Yiwei Li, Peiwen Yuan, Shaoxiong Feng, Boyuan Pan,689
Xinglin Wang, Bin Sun, Heda Wang, and Kan Li.690
2024. Escape sky-high cost: Early-stopping self-691
consistency for multi-step reasoning. In The Twelfth692
International Conference on Learning Representa-693
tions.694

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri-695
son Edwards, Bowen Baker, Teddy Lee, Jan Leike,696
John Schulman, Ilya Sutskever, and Karl Cobbe.697
2023. Let’s verify step by step. In The Twelfth Inter-698
national Conference on Learning Representations.699

Zhuang Liu, Zhiqiu Xu, Hung-Ju Wang, Trevor Dar-700
rell, and Evan Shelhamer. 2022. Anytime dense pre-701
diction with confidence adaptivity. In International702
Conference on Learning Representations.703

Wenjie Ma, Jingxuan He, Charlie Snell, Tyler Griggs,704
Sewon Min, and Matei Zaharia. 2025. Reasoning705
models can be effective without thinking. arXiv706
preprint arXiv:2504.09858.707

Bill MacCartney and Christopher D Manning. 2014.708
Natural logic and natural language inference. In Com-709
puting Meaning: Volume 4, pages 129–147. Springer.710

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler 711
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon, 712
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, 713
and 1 others. 2023. Self-refine: Iterative refinement 714
with self-feedback. Advances in Neural Information 715
Processing Systems, 36:46534–46594. 716

Eric Mitchell, Joseph Noh, Siyan Li, Will Armstrong, 717
Ananth Agarwal, Patrick Liu, Chelsea Finn, and 718
Christopher D Manning. 2022. Enhancing self- 719
consistency and performance of pre-trained language 720
models through natural language inference. In Pro- 721
ceedings of the 2022 Conference on Empirical Meth- 722
ods in Natural Language Processing, pages 1754– 723
1768. 724

Christopher Mohri and Tatsunori Hashimoto. 2024. 725
Language models with conformal factuality guaran- 726
tees. In Proceedings of the 41st International Con- 727
ference on Machine Learning, ICML’24. JMLR.org. 728

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi- 729
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke 730
Zettlemoyer, Percy Liang, Emmanuel Candès, and 731
Tatsunori Hashimoto. 2025. s1: Simple test-time 732
scaling. arXiv preprint arXiv:2501.19393. 733

Harris Papadopoulos. 2008. Inductive conformal pre- 734
diction: Theory and application to neural networks. 735
In Tools in artificial intelligence. Citeseer. 736

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, 737
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, 738
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, 739
D. Cournapeau, M. Brucher, M. Perrot, and E. Duch- 740
esnay. 2011. Scikit-learn: Machine learning in 741
Python. Journal of Machine Learning Research, 742
12:2825–2830. 743

Xin Qiu and Risto Miikkulainen. 2024. Semantic den- 744
sity: Uncertainty quantification for large language 745
models through confidence measurement in semantic 746
space. In Advances in Neural Information Processing 747
Systems, volume 37, pages 134507–134533. 748

Victor Quach, Adam Fisch, Tal Schuster, Adam Yala, 749
Jae Ho Sohn, Tommi S Jaakkola, and Regina Barzi- 750
lay. 2024. Conformal language modeling. In The 751
Twelfth International Conference on Learning Repre- 752
sentations. 753

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack- 754
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju- 755
lian Michael, and Samuel R Bowman. 2024. GPQA: 756
A graduate-level Google-proof Q&A benchmark. In 757
First Conference on Language Modeling. 758

Maxon Rubin-Toles, Maya Gambhir, Keshav Ramji, 759
Aaron Roth, and Surbhi Goel. 2025a. Conformal lan- 760
guage model reasoning with coherent factuality. In 761
The Thirteenth International Conference on Learning 762
Representations. 763

Maxon Rubin-Toles, Maya Gambhir, Keshav Ramji, 764
Aaron Roth, and Surbhi Goel. 2025b. Conformal lan- 765
guage model reasoning with coherent factuality. In 766

10

https://openreview.net/forum?id=AJpUZd8Clb
https://openreview.net/forum?id=AJpUZd8Clb
https://openreview.net/forum?id=AJpUZd8Clb


The Thirteenth International Conference on Learning767
Representations.768

Tal Schuster, Adam Fisch, Jai Gupta, Mostafa Dehghani,769
Dara Bahri, Vinh Tran, Yi Tay, and Donald Metzler.770
2022. Confident adaptive language modeling. Ad-771
vances in Neural Information Processing Systems,772
35:17456–17472.773

Glenn Shafer and Vladimir Vovk. 2008. A tutorial on774
conformal prediction. Journal of Machine Learning775
Research, 9(3).776

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan777
Scales, David Dohan, Ed H Chi, Nathanael Schärli,778
and Denny Zhou. 2023. Large language models can779
be easily distracted by irrelevant context. In Inter-780
national Conference on Machine Learning, pages781
31210–31227. PMLR.782

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu783
Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu, An-784
drew Wen, Shaochen Zhong, Hanjie Chen, and 1785
others. 2025. Stop overthinking: A survey on ef-786
ficient reasoning for large language models. arXiv787
preprint arXiv:2503.16419.788

Qwen Team. 2025. QwQ-32B: Embracing the power of789
reinforcement learning.790

Vladimir Vovk, Alexander Gammerman, and Glenn791
Shafer. 2005. Algorithmic learning in a random792
world, volume 29. Springer.793

Minzheng Wang, Longze Chen, Cheng Fu, Shengyi794
Liao, Xinghua Zhang, Bingli Wu, Haiyang Yu, Nan795
Xu, Lei Zhang, Run Luo, and 1 others. 2024a. Leave796
no document behind: Benchmarking long-context797
LLMs with extended multi-doc QA. CoRR.798

Peiyi Wang, Lei Li, Zhihong Shao, Runxin Xu, Damai799
Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang Sui.800
2024b. Math-shepherd: Verify and reinforce llms801
step-by-step without human annotations. In Proceed-802
ings of the 62nd Annual Meeting of the Association803
for Computational Linguistics (Volume 1: Long Pa-804
pers), pages 9426–9439.805

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le,806
Ed Chi, Sharan Narang, Aakanksha Chowdhery, and807
Denny Zhou. 2022. Self-consistency improves chain808
of thought reasoning in language models. arXiv809
preprint arXiv:2203.11171.810

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten811
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,812
and 1 others. 2022. Chain-of-thought prompting elic-813
its reasoning in large language models. Advances814
in neural information processing systems, 35:24824–815
24837.816

Yixuan Weng, Minjun Zhu, Fei Xia, Bin Li, Shizhu He,817
Shengping Liu, Bin Sun, Kang Liu, and Jun Zhao.818
2023. Large language models are better reasoners819
with self-verification. In Findings of the Association820
for Computational Linguistics: EMNLP 2023, pages821
2550–2575.822

Zhihui Xie, Jizhou Guo, Tong Yu, and Shuai Li. 2024. 823
Calibrating reasoning in language models with inter- 824
nal consistency. arXiv preprint arXiv:2405.18711. 825

An Yang, Baosong Yang, Beichen Zhang, Binyuan 826
Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Day- 827
iheng Liu, Fei Huang, Haoran Wei, and 1 others. 828
2024. Qwen2.5 technical report. arXiv preprint 829
arXiv:2412.15115. 830

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, 831
Chenyu Zhu, Zheng Lin, Li Cao, and Weiping Wang. 832
2025. Dynamic early exit in reasoning models. arXiv 833
preprint arXiv:2504.15895. 834

Anqi Zhang, Yulin Chen, Jane Pan, Chen Zhao, Au- 835
rojit Panda, Jinyang Li, and He He. 2025. Rea- 836
soning models know when they’re right: Probing 837
hidden states for self-verification. arXiv preprint 838
arXiv:2504.05419. 839

Dan Zhang, Sining Zhoubian, Ziniu Hu, Yisong Yue, 840
Yuxiao Dong, and Jie Tang. 2024a. Rest-mcts*: Llm 841
self-training via process reward guided tree search. 842
Advances in Neural Information Processing Systems, 843
37:64735–64772. 844

Di Zhang, Xiaoshui Huang, Dongzhan Zhou, Yuqiang 845
Li, and Wanli Ouyang. 2024b. Accessing gpt-4 846
level mathematical olympiad solutions via monte 847
carlo tree self-refine with llama-3 8b. arXiv preprint 848
arXiv:2406.07394. 849

11

https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/


A Prompts850

The following prompt was used to force the model (DeepSeek-R1 distilled Qwen 32B and Llama 70B,851

QwQ 32B) to produce an answer after a fixed number of thinking steps. Following the recommendation852

of Guo et al. (2025a) and Team (2025), we do not include a system prompt. We apply the chat template to853

user prompt before concatenating the “in-progress” thoughts. Adapted from (Muennighoff et al., 2025).854

<bos><User>
{question}
Please reason step by step, and put your final answer within \\boxed{{}}.
<Assistant>
<think>
{thoughts}
</think>
Final Answer:

The following prompt was used to obtain labels for P(correct) (Equation 6) using Qwen 3 32B. This855

prompt was also used to evaluate answers using GPT 4.1. Adapted from (Muennighoff et al., 2025).856

You are an AI assistant for grading a science problem. The user will provide you with the question itself, the correct answer, and the
student’s attempt. Your job is to judge whether the attempt is correct by comparing it with the correct answer. If the correct answer
is a number or choice, there should be no ambiguity, and you should directly compare the answer and the final result. If the attempt is
incomplete, you should mark it as wrong. If the correct answer involves going through the entire reasoning process, you should judge the
result based on whether the reasoning process is correct, compared to correct answer.

Do NOT try to solve the problem yourself. Only grade the attempt based on the correct answer.
The user will provide the attempt and the correct answer in the following format:
# Problem
{problem}
## Correct answer
{solution}
## Student attempt
{attempt}
Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(consistent) (Equation 8) using Qwen 3 32B.857

You are an AI assistant for grading a science problem. The user will provide you with the question itself and two student attempts. Your
job is to judge whether the two students arrive at the same answer. If question asks for a single numerical answer, there should be no
ambiguity, and you should directly compare the two answers. If the question asks for multiple parts, the two attempts are identical if only
if all of the parts arrive at the same conclusion.

Do NOT try to solve the problem yourself. Only grade whether the two attempts are the same.
The user will provide the problem and two attempts in the following format:
# Problem
{problem}
## Attempt 1
{attempt1}
## Attempt 2
{attempt2}
Explain your reasoning concisely, and end your response on a new line with only "Yes" or "No" (without quotes).

The following prompt was used to obtain labels for P(leaf) (Equation 10) using Qwen 3 32B.858

You are an AI assistant for parsing LLM outputs. The user will provide you with the question and an intermediate reasoning step. Your
job is to judge whether the given step contains an attempt at a final answer.

Do NOT attempt to solve the problem yourself. It does not matter if the answer is correct. Only comment on whether an attempt has
been made.

The user will provide the problem and reasoning steps in the following format:
# Problem
{problem}
# Reasoning step
{reasoning step}
Explain your reasoning, and end your response on a new line with only "Yes" or "No" indicating whether or the given step makes an

attempt at providing the final answer.

The following prompt was used to obtain labels for P(novel) (Equation 10) using Qwen 3 32B.859

You are an AI assistant for assessing the quality of logical reasoning. The user will provide you with the question and an incomplete860

12



attempt, consisting of a series of reasoning steps. Your job is to judge whether current step appears to provide additional information,
compared to the previous steps. If the current step is correct and novel, it is useful. If the current step is wrong or redundant, then it is
not useful.

Do NOT try to solve the problem yourself. It does not matter if the attempt is not complete. Only comment on whether the current
step is useful.

The user will provide the problem and reasoning steps in the following format:
# Problem
{problem}
# Reasoning
## step 1
{reasoning step 1}
## step 2
{reasoning step 2}
...
## step k
{reasoning step k}
...
## current step
{current reasoning step}
Explain your reasoning, and end your response on a new line with only "Yes" if the current step provides new information or "No"

otherwise (without quotes). 861

B Implementation details 862

B.1 Design and implementation of model probes 863

We tried several architectures, before deciding upon linear probes for simplicity and to avoid overfitting. 864

The differences in performance are not always consistent and the generalization gap is quite large (Table 1). 865

Since our main focus is on calibration, and it requires significant compute to produce and evaluate scaling 866

curves, we consider more exhaustive exploration of alternate architectures as future work. 867

MLP The input is a single representation h(t) corresponding to single reasoning step y(t), and the output 868

is a binary label ∈ {0, 1}. We train until AUC fails to improve for 10 epochs on 10% of the training set 869

(randomly sampled). We report the best calibration set performance of the following hyperparameters. 870

We use the sklearn defaults otherwise (Pedregosa et al., 2011). 871

• Layers: 1, 2 872

• FFN dimension: 32, 64, 128 873

Transformer The input is a sequence of representations, h(1) . . . h(t) corresponding to thoughts yt = 874

y(1) . . . y(t). The output is either a binary label ∈ {0, 1} for P(correct) and P(consistent), or a sequence 875

of labels ∈ {0, 1}t for P(novel) and P(leaf). For the former, we treat the embeddings as a set (i.e. if any 876

representation is sufficient to answer correctly, or be consistent). For the latter, we apply a left-to-right 877

causal attention mask during training, and we use sinusoidal positional encodings to encode the index of 878

each reasoning step. We report the best calibration set performance of the following hyperparameters. In 879

contrast to the linear and MLP models, we find that the Transformer performs best if we do not apply 880

PCA and instead operate over the original model dimension. 881

• Layers: 1, 2 882

• Model dimension: 16, 32, 64 883

• FFN dimension: 64, 128 884

• Number of heads: 4, 8 885

• Epochs: 5, 10 886

13



Table 1: Probe architecture performance on s1K-1.1 train and calibration splits. Metric: Binary AUROC.

Linear MLP Transformer

Model Quantity Train Cal Train Cal Train Cal

DeepSeek-R1
distilled Qwen
2.5 32B

P(correct) 0.936 0.788 0.990 0.779 0.994 0.760
P(consistent) 0.919 0.788 0.994 0.747 0.991 0.773
P(leaf) 0.868 0.839 0.936 0.815 0.933 0.852
P(novel) 0.874 0.686 0.980 0.692 0.896 0.774

DeepSeek-R1
distilled Llama
3.3 70B

P(correct) 0.937 0.765 0.987 0.746 0.991 0.803
P(consistent) 0.921 0.745 0.994 0.743 0.993 0.748
P(leaf) 0.864 0.819 0.970 0.802 0.923 0.848
P(novel) 0.872 0.686 0.981 0.702 0.915 0.774

QwQ 32B

P(correct) 0.943 0.848 0.986 0.838 0.948 0.848
P(consistent) 0.950 0.699 0.988 0.704 0.939 0.756
P(leaf) 0.869 0.840 0.942 0.822 0.913 0.857
P(novel) 0.876 0.677 0.952 0.690 0.895 0.792

B.2 LLM experiments887

We ran DeepSeek-R1 distilled Qwen 2.5 32B and Llama 70B, and QwQ 32B using lmdeploy (Contributors,888

2023) with recommended defaults for each model. lmdeploy natively supports the saving of last layer889

representations, so it was used for almost all experiments. We ran Qwen 3 32B using vLLM (Kwon et al.,890

2023) due to early support. Due to computational constraints, we report the mean over a single run.891

We downloaded all model weights from transformers between April 1, 2025 and May 1, 2025.892

C Additional analysis893

Figure 6 illustrates the early exit probabilities for each of the three probes. The supervised (“correct”)894

probe reaches high exit probabilities the fastest, but it is also the most overconfident (Figure 2D).895

0 50 100 150
Reasoning steps

0.0

0.5

1.0
P(correct)

0 50 100 150
Reasoning steps

0.5

1.0
P(consistent)

0 50 100 150
Reasoning steps

0.00

0.01

0.02

0.03

P(no novel leaves)

Figure 6: Likelihoods of thought calibration probes over s1K-1.1 test set (10 examples). The “No Leaf” variant is
the least monotonic. This could potentially indicate that after reaching the answer, the language model explores new
knowledge that is irrelevant to the task.

14


	Introduction
	Background
	Test-time scaling
	Conformal prediction and risk control

	Thought Calibration
	Calibrating the stopping rule
	Estimating empirical risk
	Implementation details

	Experiments
	Settings
	In-distribution setting
	Generalization setting
	Additional analysis

	Limitations
	Prompts
	Implementation details
	Design and implementation of model probes
	LLM experiments

	Additional analysis

