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Abstract

Adversarial attacks aim to change the predic-
tions of deep neural network models, while re-
maining unnoticed by the user. In this study, we
investigate the robustness of visually grounded
dialog models towards textual attacks. First,
to understand how different input components
can mitigate the attack. Our results show that
dialog history is important for model robust-
ness: models encoding history are more robust,
and when launching an attack on history, model
prediction becomes more uncertain. This is in
contrast to prior work which finds that dialog
history is negligible for model performance.
We also evaluate how to generate adversarial
examples which successfully attack the model
but remain undetected by the user. We find
that the textual, as well as the visual context
is important to generate attacks which appear
semantically coherent to humans.

1 Introduction

Neural networks have been shown to be vulnera-
ble to adversarial attacks, where applying small
perturbations on the original inputs results in the
model outputting incorrect predictions with high
confidence, e.g. (Goodfellow et al., 2014; Ku-
rakin et al., 2016a,b). In this paper, we evaluate the
robustness of state-of-the-art Visual Dialog (Vis-
Dial) models with the aim to understand how differ-
ent input components contribute to robustness. It
has previously been established that multiple input
modalities increase robustness of pre-neural conver-
sational interfaces, e.g. (Oviatt, 2002; Bangalore
and Johnston, 2009). Here, we want to know which
modalities can mitigate attacks on neural visual di-
alog systems, and to what extent. We also aim to
understand how to best generate adversarial exam-
ples which successfully attack the model while at
the same time remain unnoticed by the user.

To the best of our knowledge, we are the first to
explore adversarial attacks on VisDial, which was
introduced as a shared task by Das etal. (2017a). A
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Figure 1: A VisDial agent aims to answer a question
related to an image by ranking a list of candidate an-
swers, given the dialog history. The attacker attacks the
text (question or history) via replacing a word with its
synonym so that the predicted answer changes.

visual dialog system consists of three components:
an image (with a caption), a question and the dialog
history, i.e. previous user and system turns. The
latter distinguishes VisDial from other tasks such
as Visual Question Answering (VQA) (Antol et al.,
2015). In order to answer the question accurately,
the Al agent has to ground the question in the image
and infer the context from history, see Figure 1.
VisDial has attracted considerable interest over the
past years, e.g. (Das et al., 2017b; Kottur et al.,
2018; Jain et al., 2018; Zheng et al., 2019; Niu et al.,
2019; Yang et al., 2019; Qi et al., 2020; Murahari
et al., 2020; Agarwal et al., 2020). Most existing
research has focused on improving the modelling
performance on this task, whereas our aim is to
evaluate model robustness via adversarial attacks.

In addition, we use these attacks to improve our
understanding of how the model works (i.e. inter-
pretability). Previous work, such as Sankar et al.
(2019) uses random perturbations to investigate
whether text-based neural dialog systems make use



of dialog history. In a similar vein, we use adversar-
ial attacks on important words (rather than random
perturbations) on multi-modal systems to estimate
the impact of various input modalities on model ro-
bustness, including history. Our main contributions
are:

o We show that dialog history contributes to model
robustness: We attack ten VisDial models which
represent a snapshot of current methods, includ-
ing different encoding and attention mechanisms,
as well as recent graphical networks and knowl-
edge transfer using pretraining. We measure
the performance change before and after attack
and show that encoding history helps to increase
the robustness against adversarial questions. We
also show that models become more uncertain
when the history is attacked.

o We evaluate adversarial text-generation within
VisDial: We leverage recent Synonym Substitu-
tion methods for adversarial black-box attack
(Jin et al., 2020; Li et al., 2020) and show that
BERT-based models are able to generate more
contextually coherent perturbations. We also
conduct an ablation study to measure the trade-
off between the effectiveness of the attack versus
the overall text quality.

o We conduct a detailed human evaluation: We in-
vestigate the trade-off between successful attacks
and their ability to remain unnoticed by humans.
In particular, we evaluate semantic similarity, flu-
ency/grammaticality and label consistency. We
find that human evaluators are able to identify an
attack from the textual and multimodal context.

2 Related Work

Adversarial Attack for Text. Adversarial attacks
have been widely investigated within uni-modal
applications, foremost for computer vision (Nar-
odytska and Kasiviswanathan, 2016; Dong et al.,
2018; Xie et al., 2019). Adversarial attacks on
text are more challenging due to its discrete nature,
which makes it harder to stay undetected. Textual
attacks have been studied for tasks such as senti-
ment analysis (Jin et al., 2020), natural language
inference (Li et al., 2020), dialogue systems (Niu
and Bansal, 2018; Dinan et al., 2019).

Adversarial textual attack methods can be di-
vided into three levels of granularity (Zhang et al.,
2020; Wang et al., 2019): character-level, word-
level and sentence-level attacks. Character-level
attack (Eger et al., 2019; Gao et al., 2018) can of-

ten be detected by a spell checker. Sentence-level
attack (Ribeiro et al., 2018; Iyyer et al., 2018; Zhao
et al., 2018; Gan and Ng, 2019) permutes longer
phrases or paraphrases the whole sentence, which
makes it challenging to maintain the original se-
mantics. Recent word-level attack methods (Zang
et al., 2020; Jin et al., 2020; Li et al., 2020; Ren
et al., 2019), on the other hand, are more subtle
and harder to detect: they are targeted towards
‘vulnerable’ words, which are substituted via their
synonyms in order to preserve semantic meaning.
In our paper, we explore word-level attack methods
on VisDial.

Adversarial Attack for Multi-modal Systems.
There is less research on adversarial attacks for
multi-modal tasks. For example, Optical Character
Recognition (Song and Shmatikov, 2018), Scene
Text Recognition (Yuan et al., 2020), Image Cap-
tioning (Chen et al., 2017) and VQA (Xu et al.,
2018; Shi et al., 2018). Most of these works utilise
white box attack, where the parameters, gradient
and architecture of the model are available, e.g. by
attacking attention (Xu et al., 2018; Sharma et al.,
2018). Whereas we follow a more realistic black-
box setting which assumes that the attacker only
has access to the model’s prediction on test data.

Shi et al. (2018) is the closest related to our
work: they generate adversarial textual attacks for
the VQA task using contrastive examples and thus
don’t pay attention to semantic similarity. In con-
trast, we are interested in generating adversarial at-
tacks which follow three desiderata, as outlined by
Morris et al. (2020): An adversarial text should (1)
keep the same semantic meaning (semantic similar-
ity); (2) guarantee fluency and grammar (grammat-
icality); (3) stay unnoticed by humans, i.e. the hu-
man still assigns the correct label, while the model
prediction changes (label consistency).

3 Method

3.1 Problem Formulation

VisDial is formulated as a discriminative learn-
ing task, where the model is given an image I,
the dialog history (including the image caption

C) H = (‘ C ) (QlaAl)v seny (QtfbAtfl))’ the
Ho Hy Hi
question ()¢, and N = 100 candidate answers

A = (A} A2, .., A9) to rank, including the
ground truth (GT), which is labelled Y;, where ¢
indicates the round ID.

In the following, we focus on generating textual



adversarial examples for the question and history
(including the caption). That is, for a sentence X &€
{Q,H}, and F(X) =Y, a successful adversarial
attack sentence X4, should result in F'(X4,) #
Y, while meeting the following requirements:

e Semantic Similarity: Sim(X, X.4,) > e,
where Sim(-) is a semantic and syntactic simi-
larity function. The semantic similarity between
the original sentence X and the adversarial at-
tack sentence X,4, should above a similarity
threshold ¢; Following Jin et al. (2020), we use
Universal Sentence Encoder (Cer et al., 2018) to
encode the two sentences into high dimensional
vectors and use their cosine similarity score as
an approximation of semantic similarity.

o Grammaticality: The adversarial attack sen-
tence X4, should be fluent and grammatical.

e Label Consistency: Human annotators still as-
signs the correct GT label Y after the original
sentence X changes to X ,.

3.2 Visual Dialog Models

We adopt ten state-of-the-art VisDial models
from (Agarwal et al., 2020; Niu et al., 2019; Qi
et al., 2020; Kang et al., 2021) as the target mod-
els to attack — representing a snapshot of current
techniques popular for VisDial.! Agarwal et al.
(2020) experiment with several multi-modal en-
codings based on Modular Co-Attention (MCA)
networks (Yu et al., 2019b): MCA-I encodes the
image and question representation using late fu-
sion; MCA-H only encodes the textual history with
late fusion; MCA-I-H encodes image and history
with late fusion; MCA-I-HGQ encodes all three in-
put modalities using early fusion between question
and history; MCA-I-VGH is another early fusion
variant which first grounds the image and history.

We also consider Recursive Visual Attention
(RvA) (Niu et al., 2019) as an alternative to MCA,
encoding history and image information.

In addition, we test two variants of causal graphs
from (Qi et al., 2020) by adding to causal princi-
ples P1/P2: P1 removes the history input to the
model to avoid a harmful shortcut bias; P2 adds
one new (unobserved) node U and three new links
to history, question and answer respectively.

Finally, we test a Knowledge Transfer (KT)
method based on a Sparse Graph Learning

"Details on model architecture can be found in the original
papers.

(SGL) (Kang et al., 2021) framework using pre-
training model P1/P2.

3.3 Synonym-based Methods

For generating attacks, we explore two state-of-the-
art synonym-based methods, which first find the
vulnerable words of the sentence, and then replace
them with a semantically similar word.> These
two methods differ in the way they generate the
synonyms:

e TextFooler (Jin et al., 2020) finds the synonym
by using specialised word embeddings from
(Mrksic et al., 2016). Candidates are selected
according to the cosine similarity between the
word and every other word.

o BertAttack (Li et al., 2020) generates the syn-
onym via BERT’s masked language model using
contextually embedded perturbations.

In following these previous works, we first detect
vulnerable words by calculating prediction change
before and after deleting a word. We then impose
additional constraints to improve the quality (and in
particular the grammaticality) of our attacks, which
we will further analyse in an ablation study: We
apply a stop word list before synonym substitu-
tion, extending the list by (Jin et al., 2020; Li et al.,
2020) for our domain. We also apply additional
quality checks for selecting synonym candidates:
We filter by part-of-speech (POS)? to maintain the
grammar of the sentence. We then experiment with
a semantic similarity threshold ¢ to choose the top
k synonyms. Finally, we iteratively select the word
with the highest similarity until the attack is suc-
cessful.

3.4 Adversarial Attack on Visual Dialog
Models

3.4.1 Question Attack

Attacking the question in VisDial differs from other
common textual attacks, such as sentiment classifi-
cation, image captioning or news classification, in
the following ways:

(1) Question: The question in VisDial is gen-
erally much shorter than a typical declarative sen-
tence in the above tasks. The average length of
the question in the VisDial dataset is 6.2 words,

*Note that previous work refers to these methods as
“synonym-based”, e.g. (Morris et al., 2020), but not all of
the substitutions are synonyms. They can also include differ-
ent lemmatas of the same lexeme, such as singular and plural,
as well as different spellings, etc. Also see Table 8.

3Using SpaCy https://spacy.io/api/tagger.
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which makes it harder to find a word to attack. For
instance, “Is it sunny?”, “What color?”, “How
many?”, there is only one word left to attack after
filtering out the stop words, i.e. {is, it, what, how}.

(2) Answer: For the VisDial task, the model
ranks NV possible candidate answers according to
its log-likelihood scores. The attack is consid-
ered successful once the top ranked answer dif-
fers from the GT. However, there can be several
candidate answers which are semantically simi-
lar or equivalent, such as “yes/yep/yeah”. This is
different from other labelling tasks, such as “posi-
tive/neutral/negative” sentiment. We account for
this fact by considering several common retrieval
metrics before and after the attack, including R@k
(k=1,5,10), Mean Reciprocal Rank (MRR), and
Normalized Discounted Cumulative Gain (NDCG)
— a measure of ranking quality according to man-
ually annotated semantic relevance scores in a 2k
subset of VisDial.

(3) Model: In contrast to other common textual
attacks applications, our model has several input
modalities, which it can leverage to answer the
question. These input modalities can be combined
in different ways as explained above. One of the
goals of this paper is to understand how multiple in-
put encodings can contribute to model robustness.

3.4.2 History Attack

We also attack the textual history using the same
procedure. The use of history is the main dis-
tinguishing feature between the VisDial and the
VQA task, and thus of central interest in this work.
History is mainly used for contextual question un-
derstanding, including co-reference resolution, e.g.
“What color are they?”, and ellipsis, e.g. “Any oth-
ers?” (Yu et al., 2019a; Li and Moens, 2021).

Our preliminary results indicate that attacking
history is hardly ever successful, i.e. does not result
in label change. This is in line with previous work,
which suggests that history only plays a negligi-
ble role for improving model performance on the
VisDial task, e.g. (Massiceti et al., 2018; Agarwal
et al., 2020). However, there is also some evidence
that history helps, but to a smaller extent. For exam-
ple, Yang et al. (2019) show that accuracy can be
improved when forcing the model to pay attention
to history. Similarly, Agarwal et al. (2020) show
that history matters for a sub-section of the data.

In a similar vein, we investigate how history
contributes to the model’s robustness and, in partic-
ular, can increase the model’s certainty in making a

prediction. We adopt the perplexity metric, follow-
ing Sankar et al. (2019), to measure the change of
prediction distribution after (unsuccessfully) attack-
ing the history, i.e. after adding the perturbation to
the history while the top-1 prediction is unchanged.
The difference between the perplexity before and
after the attack reflects the uncertainty change of
the model. The perplexity with the original history
input is calculated with the following equation:

PPL(F(X),Y) ==Y F(X)logY (1)
X
And the perplexity after attack is:

PPL(F(Xaa),Y) == Y F(Xaaw)logY  (2)
X

4 Experimental Setup
4.1 Dataset

We use the VisDial v1.0 dataset, which contains
123,287 dialogs for training and 2,064 dialogs for
validation. The ten target models are trained on the
training set and the adversarial attacks are gener-
ated for validation set (as the test set is only avail-
able to challenge participants).

4.2 Automatic Evaluation Metrics

In order to assess the impact of an attack, we use the
automatic evaluation metrics from Jin et al. (2020):
The accuracy of the model tested on the original
validation data is indicated as original accuracy
and after accuracy on the adversarial samples — the
larger gap between these two accuracy means the
more successful of our attack (cf. relative perfor-
mance drop [A]). The perturbed word percentage
is the ratio of the perturbed words and the length
of the text. The semantic similarity measures the
similarity between the original text and the adver-
sarial text by cosine similarity score. The number
of queries shows the efficiency of the attack (lower
better). In addition, we use retrieval based metrics
to account for the fact that VisDial is a ranking
task: original/after R@{5, 10} measures the perfor-
mance of top 5/10 results before and after attack
(where R@1 corresponds to accuracy); we also
report original/after mean reciprocal rank (MRR)
and original/after Normalized Discounted Cumula-
tive Gain (NDCG) which measure the quality of the
ranking. Further implementation details are given
in Appendix A. Detailed results with R@k (k=10)
are shown in Appendix B and C due to space limi-
tations. All our code will be made available.



Question Attack

Inputs  Methods OrigR@1 AftR@1[A] OrigR@5 AftR@5([A] OrigNDCG AftNDCG [A] OrigMRR AftMRR [A] Pert. S.S. Quer.
BertAttack
T-only MCA-I 46.6 38.2 [-18.0] 76.3 62.7 [-17.8] 61.5 54.9 [-10.7] 60.0 47.7 [-20.5] 167 744 52
H-only MCA-H 459 40.0 [-12.9] 76.8 67.3[-12.4] 522 48.4[-7.3] 60.0 51.1[-14.8] 16.7 754 52
MCA-I-HGQ 50.8 45.61-10.2) 81.7 71.4[-12.6] 60.0 55.21-8.0] 64.3 55.6 [-13.5] 17.1 741 52
I+H MCA-I-VGH 48.6 43.31-109) 78.7 68.0 [-13.6] 62.6 57.3 -85 62.2 53.3 -14.3] 167 743 52
MCA-I-H 50.0 45.2 [-9.6] 81.4 69.5 [-14.6] 59.6 54.6 [-8.4] 63.8 54.6 [-14.4] 167 748 52
I+H RvA 49.9 43.9-12.0] 822 7221122 56.3 50.9 [-9.6] 64.2 54.5[-15.1] 170 744 52
T-only Pl 48.8 43.51-109] 80.2 69.2 [-13.7] 60.0 54.2[-9.7] 62.9 54.1[-14.0] 174 742 52
I+H P1+P2 41.9 37.1[-115] 66.9 57.8 [-13.6] 734 67.9 [-7.5] 54.0 46.2 [-14.4] 170 737 52
+H SLG 49.1 43.9 [-10.6] 81.1 72.1 [-11.1] 63.4 58.4-79] 63.4 55.0 [-13.2] 175 734 52
SLG+KT 48.7 42.6[-12.5)] 71.3 60.8 [-14.7] 74.5 68.2 [-8.5] 59.9 50.3 [-16.0] 173 746 52
TextFooler
I-only MCA-I 46.6 36.1 [-22.5) 76.3 63.9 [-16.3] 61.5 53.9 [-12.4] 60.0 47.1 [-20.5] 168 744 19.7
H-only MCA-H 459 39.1 [-14.8] 76.8 68.5 [-10.8] 522 48.0 [-8.0] 60.0 51.1[-14.8] 17.1 746 19.7
MCA-I-HGQ 50.8 44.2 [-13.0] 81.7 T71.6 [-12.4] 60.0 54.4 1-9.3] 64.3 54.8 [-14.8] 170 744 199
I+H MCA-I-VGH 48.6 41.5 [-14.6] 78.7 68.2 [-13.3] 62.6 56.51-9.7] 62.2 52.3-15.9] 165 744 198
MCA-I-H 50.0 43.1 138 81.4 71.2 [-12.5] 59.6 53.7 9.9 63.8 54.0 [-15.4] 169 747 19.8
I+H RvVA 49.9 43.6 126 822 73.2 [-10.9] 56.3 50.2 [-10.8] 64.2 55.3[-13.9] 169 749 199
I-only Pl 48.8 42.6 1127 80.2 711 [-11.3) 60.0 53.5[-108] 62.9 54.4-135] 17.3 743 20.1
I+H P1+P2 41.9 35.8 [-14.6] 66.9 56.9 [-14.9] 73.4 66.9 [-8.9] 54.0 45.1 [-16.5] 17.1 73.7 19.8
LeH SLG 49.1 43.1 [-12.2] 81.1 73.4[-9.5] 63.4 57.8-8.8] 63.4 55.3 [-12.8] 173 742 199
SLG+KT 48.7 41.6 [-14.6] 71.3 59.7 [-16.3] 74.5 67.6 9.3 59.9 49.8 [-16.9] 17.1 746 199

Table 1: VisDial model performance before attacking question (Orig.) and after (Aft.). In addition to standard
metrics, we measure the perturbed word percentage (Pert.), semantic similarity (S.S) and the number of queries
(Quer.) to assess BertAttack vs. TextFooler. The relative performance drop is listed as [/ ]. Highlights indicate the

least robust and most robust model.

5 Results

5.1 Question Attack

Table 1 summarises the results. We first compare
the results of input encodings and fusion mech-
anisms. We find that MCA-I (with image input
only) is the least robust model with a relative perfor-
mance drop of over 22% on R@1 using TextFooler.
MCA-H (with no image input) is vulnerable with
respect to R@1, but does well on NDCG, suggest-
ing that history helps to produce a semantically
similar response despite the attack and lack of in-
put image. One possible explanation of these re-
sults is given by previous research claiming that
VisDial models mainly pay attention to text, e.g.
(Massiceti et al., 2018). However, in contrast to
claims by Massiceti et al., we find that history is im-
portant for robustness: In general, models encoding
history are more robust with the MCA-I-H model
being the least vulnerable model. Note that this is
also the best performing model in (Agarwal et al.,
2020). Recursive visual Attention (RvA) in general
shows lower robustness than MCA-based methods.
Causal encodings using graphs lead to compara-
ble robustness results for P1. Adding P2 results
in a slight drop in robustness. This is interesting,
because P2 adds an unobserved node to represent
history while avoiding spurious correlations from
training data. This drop thus might suggest that

Question R@1 Answer
Orig.: Is the mannequin a woman? Orig.: No.
Aft.: Is the mannequin a girl? Aft.: Yes.
Orig.: Are there any pets in the photo? Orig.: No pets or people.
Aft.: Are there any animals in the photo? | Aft.: No
Orig.: What color is the plane? Orig.: White
Aft.. What colour is the plane? Aft.. Not sure.

Figure 2: Examples of answer change after question
attack on MCA-I-H model with BertAttack.

previous robustness is due to the very same bias.
Additionally, we observe that knowledge transfer
(KT) via pre-training for the SLG method helps to
boost the performance of NDCG, however not the
robustness.

We further perform an example based analysis
of the top-1 predicted answer changes after a suc-
cessful question attack, see Figure 2. We observe
answer changes to the opposite meaning (e.g. from

“no” to “yes”), which can be considered as a maxi-
mum successful attack. Some answers change to
a similar meaning in context (e.g. from “No pets
or people” to “No”), which is reflected in fewer
NDCG changes. In some cases, the answer changes
from certain / definite to uncertain / noncommittal
and the other way round (e.g. from “white” to
“Not sure”).

Next, we compare the two attack methods. We
find that TextFooler is more effective: It achieves



BertAttack TextFooler

NIA Orig.: Is it a flat screen?
Aft.. Isita loft screen?

Orig.: Is it a close up of their faces or their bodies? Orig.: Is it a close up of their faces or their bodies?
Aft. Is it a close up of their face or their bodies? Aft.: Is it a close up of their confront or their bodies?

Orig.: What color is the house?
Aft.. What color is the residence?

Orig.: What color is the house?
Aft.. What color is the home?

Orig.: Are there trees no the mountain?
Aft.. Are there woods on the mountain?

Orig.: Are there trees no the mountain?
Aft.: Are there sapling on the mountain?

Figure 3: Example attacks on the MCA-I-H target model
generated by BertAttack and TextFooler.

History Attack
Orig.PPL  Aft.PPL [A]

MCA-I - -
MCA-H 53.2 60.0 [+6.8]
MCA-I-HGQ 494 52.2 [+2.8]
MCA-I-VGH 523 52.3 (0]
MCA-I-H 49.5 51.9 [+2.4]
RvA 53.4 56.4 [+3.0]
P1 - -
P1+P2 77.0 77.0 (0]
SLG 52.7 53.4 [+0.7]
SLG+KT 65.0 65.3 [+0.3]

Table 2: Comparison of perplexity increase [A] when
attacking the history of different VisDial models with
BertAttack.

up to 4.5% higher drop than BertAttack. However,
BertAttack is more efficient: It reduces the number
of queries (Quer.) about four times compared to
TextFooler. Efficiency is important in attack set-
tings, as attackers always run into danger of being
discovered. Furthermore, the perturbed word per-
centage (Pert.) for both methods is around 17%,
which means the average perturbation is about one
word for each question (since the average length of
the question is 6.2). Similarly, the semantic simi-
larity (S.S.) is over 70% which is about the same
across all models.

We further compare TextFooler and BertAt-
tack using an example-based analysis, see Fig-
ure 3. We find that TextFooler is not able to distin-
guish words with multiple meanings (homonyms),
whereas BertAttack is able to use BERT context-
embeddings to disambiguate. Consider the exam-
ples where TextFooler replaces “flat” (adverb) with
“loft” (noun) and “faces” (noun) with “confront”
(verb), which POS tagger failed to catch. Based on
the above results, we use BertAttack to attack the
MCA-I-H model in the following experiments.

5.2 History Attack

We followed the same procedure to attack the his-
tory, which includes the caption, as well as the user
questions and the system answers. As explained
in Section 3.4.2, we consider an attack ‘successful’
once the probability of the corresponding GT de-

Caption
44.9%

User (question)

30.8%

System (answer)

24.3%

Attack

Table 3: Comparing which part of History was chosen
for an attack on MCA-I-H model with BertAttack.

AR@1 ANDCG AMRR
Random -7.6 -6.0 -12.4
Ours -9.6 -8.4 -14.4

Table 4: Effect of vulnerable word attack on MCA-I-H
model with BertAttack.

creases and we use perplexity to measure the uncer-
tainty of the prediction. The results in Table 2 show
that attacking history increases the uncertainty of
almost all the models, especially when the history
is the unique input component (MCA-H model).*
This confirms our previous results that encoding
history increases robustness.

When analysing which part of history was at-
tacked the most (see Table 3), we find that 44.9%
of the time the image caption was attacked, fol-
lowed by system answer 30.8% and user question
24.3%. We thus conclude that the image caption is
the most vulnerable part (and ergo the most infor-
mative) compared to the rest of history.

6 Ablation Study

We perform several ablation studies to analyze the
impact of the quality constraints . We are interested
in the trade-off between using these constraints
to produce high quality text (which increases the
chance of the attack to remain unnoticed by hu-
mans) versus an effective attack (which increases
the chance of the model changing its prediction).
More detailed results on ablation study can be
found in Appendix C.

Effect of Selecting Vulnerable Words. First,
we compare the results of choosing a random word
in text to attack and our vulnerable word attack.
The results in Table 4 show that attacking the vul-
nerable word achieves a 2.0% higher relative drop
for R@1, NDCG and MRR.

Effect of Stop Words Set. Next, we compare
the results with/without stop words. The results in
Table 5 show that attacking all words leads to more
successful attack in terms of R@1 and NDCG,
while attacking with stopwords leads more suc-
cessful attacks for MRR. We use stop words list for

*Attacking the history of MCA-I-VGH model doesn’t
change the prediction distribution because its encoder only
uses a single round of history following (Agarwal et al., 2020).



AR@1 ANDCG AMRR

All  -12.6 -9.2 -10.3
Ours -9.6 -8.4 -14.4

Table 5: Effect of stop words set on MCA-I-H model
with BertAttack.

¢ Num/(%) AR@1 ANDCG AMRR
0.1 219 (10.6%) -10.8 -9.6 -14.1
0.3 215104%) -10.8 9.2 -14.1
0.5 198 (9.6%) -9.6 -84 -14.4
0.7 13565%) -6.0 -6.7 -15.2

Table 6: Comparison of number of successful attacks
(total val set n=2064) with different semantic similarity
thresholds € on MCA-I-H model with BertAttack.

all the experiments since attacking question words,
preposition or pronouns result in highly ungram-
matical sentences.

Effect of Semantic Similarity. The semantic
similarity threshold between the original text and
adversarial text is used to guarantee the similar
meaning of the attack. In the previous experiments,
we set 0.5 as default threshold. Table 6 shows re-
sults with different semantic similarity thresholds
(0.1, 0.3, 0.5 and 0.7) respectively. The results
show that when increasing the threshold ¢ from 0.1
to 0.7, the number of successful attack decreases
4.1%, while R@1 and NDCG drop around 3% after
attack, which means there are more successful at-
tacks if we soften the semantic similarity constraint.
In addition, the examples in Figure 4 illustrate that
a lower semantic similarity threshold comes at the
cost of lower fluency and grammaticality, i.e. at the
price of being more easily detectable by humans.
We will explore this in more detail in human study.

We analyze the combined effect of adding POS,
semantic similarity constraint and grammar check
modules (We used the same grammar tool as
by Morris et al. (2020).). From Table 7, we can see
that in general it results in less successful attack
when the number of constraints increases. The suc-
cess from raw attack to ‘disguised’ attack decreases
2.4% on R@1, 3.7% on NDCG, but there is little ef-
fect on MRR. In addition, the examples in Figure 5
show that adding constraints improves the textual
quality of the adversarial attack and its likelihood
to be undetected by humans, which we investigate
further in the following evaluation study.

7 Human Evaluation Study

We evaluate the quality of our generated adver-
sarial question attack by asking human judges on

Constraints Examples

Orig.: Is it a large church?
Aft.: Isita big church?

Orig.: What color is the wine?
Aft.. What colour is the wine?

€(07)

Orig.: Is her hair pulled back?
Aft.: Is her wig pulled back?

Orig.: Is the fireplace lit?
Aft.: Is the furnace lit?

€ (0.5)

Orig.: What is the adult doing?
Aft.: What is the adult done?

Orig.: Is there buildings?
Aft.: Is there houses?

£(0.3)

Orig.: Is the picture outside?
Aft.: Is the picture beyond?

Orig.: Are they titled?
Aft.: Are they untitled?

€(0.1)

Figure 4: Attack examples with different semantic simi-
larity thresholds € on MCA-I-H model with BertAttack.

Num./(%) AR@1 ANDCG AMRR
Raw Attack 224 (10.9%) -11.6 -9.9 -13.9
+POS 221 (10.7%) -11.0 -9.7 -14.1
+POS+¢(0.5) 198 9.6%) -9.6 -8.4 -14.4
+POS+¢(0.5)+Gram. 190 9.2%) -9.2 -6.2 -13.6

Table 7: Effect of different quality constraints on MCA-
I-H model with BertAttack.

Amazon Mechanical Turk (AMT) to rate three as-
pects: if the generated question preserve the se-
mantic similarity (semantic similarity with/without
given image); if the generated question is natural
and grammatical (grammaticality); if the human’s
prediction is unchanged for the generated question
(label consistency). We evaluate a total of 198
generated attacks, randomly sampled from the de-
velopment set, where three users are asked to rate
each instance. Further details on the experimental
setup can be found in Appendix D.

Constraints Examples

Orig.: Is it a large church?

Aft.. Isita big church?
Raw + POS + £(0.5) + Gram f----=-=cnmmmmmmmm e
Orig.: Can you see the sun?

Aft.: Can you see the sunlight?

Orig.: What color is the tennis court?
Aft.: What colour is the tennis court?

Orig.: Does the snow appear fresh?
Aft.. Does the snow appears fresh?

Raw + POS + € (0.5)

Orig.: Are they indoors?
Aft.: Are they outdoors?

Raw + POS O RC LR
. Orig.: Is this inside?
Aft.: s this interior?
. Orig.: Is it red?
Aft.: Isitreds?
Raw ~ prmmommmesmssseesoocoooooooooooies

Orig.: How tall is the man?
Aft.: How big is the man?

Figure 5: Generated adversarial examples under differ-
ent constraints on MCA-I-H model with BertAttack.



Rate w/o image:
2.33

Rate w/ image:
1.67

Orig.: Is the fireplace lit ?
Aft.: Is the furnace lit ?

Figure 6: The visual context changes the perceived
similarity rating by humans: ‘furnace’ becomes more
dissimilar to ‘fireplace’ in a living room context.

Attack Types Percentage Gram. Score
British vs. American English 34.9% 4.923
Synonyms/near synonyms 34.3% 4.417
Singular vs. Plural 19.7% 3.974
Comparatives and Superlatives  4.0% 4.208
Others 7.1% 3.452

Table 8: Percentage and grammaticality score of differ-
ent types of attack on MCA-I-H model with BertAttack.

Evaluation of Semantics. We first ask crowd
workers to evaluate whether the original and the
adversarial question still have the same meaning
on a scale from 1 to 4, where 1 is “One text means
something completely different” and 4 is “They
have exactly the same meaning”. We repeat the
setup with and without showing the original im-
age. Our results show that the semantic similarity
is rated slightly lower when shown together with
the original image (average score 3.518 / 4) than
without image (average score 3.564 / 4). The ex-
ample in Figure 6 demonstrates how the visual
context can change the semantic similarity ratings.
Therefore, one future avenue is to use visually
grounded word embeddings for generating syn-
onyms for V+L tasks.

Evaluation of Grammaticality. We evaluated
whether the utterance is fluent and grammatical
(as defined in Appendix D) on a scale from 1-5,
where 1 is “Not understandable” and 5 is “Every-
thing is perfect; could have been produced by a
native speaker”. Overall, our attacks are rated as
highly grammatical (average score 4.429 / 5). We
furthermore investigate the effect of different at-
tacks. In particular we manually identify five com-
mon types of successful attacks. Table 8 lists
their frequencies and average grammaticality rat-
ing. Synonyms/near synonyms is the main type
of attack, closely followed by British vs. Ameri-
can English (e.g. “color” vs. “colour”, “bath-
room” vs. “restroom”), others include Singular
vs. Plural, Comparatives and Superlatives (e.g.
“great/greater/greatest’”) and Others mainly include

grammar operations like uncaught POS change (e.g.
“sunny” vs. “sun”) and tense change (e.g. “eat” vs.
“ate”). Looking at the grammar ratings, we conclude

that substituting British vs. American English has
the least impact on grammaticality, whereas gram-
matical operations, such as replacing singular with
plural, as well as changes classified under Others
have the worst impact.

Evaluation of Label Consistency. Finally, we

evaluate label consistency by asking users to judge

whether the answer remains unchanged for the ad-
versarial question by selecting among “1 - Yes,
answer is correct”, “2 - No, answer is incorrect”
and “3 - Unsure”. We ask three judges to rate each
instance and describe results by averaging and by

(a more conservative) majority vote to assign a

gold label. The results show that most crowdwork-

ers (82.0% by averaging and 86.4% by majority
vote) think the answer is unchanged, few (9.6% and

8.1%) think the answer changes, and the rest (8.4%

and 5.5%) are not sure about the change. We con-

clude that synonym-based attacks are successful in
remaining undetected by humans.

8 Conclusion

We evaluate the robustness of ten visual dialog
models by attacking question and history with two
state-of-the-art synonym based textural adversar-
ial attack methods. We find that dialog history
substantially contributes to model robustness, de-
spite previous results which suggest that history has
negligible effect on model performance, e.g. (Mas-
siceti et al., 2018; Agarwal et al., 2020). We also
show limitations of current synonym-based textual
attack models, and stress the importance of context
(both textual as well as multi-modal) to generate
semantically coherent and grammatically fluent ad-
versarial attacks, in order to remain undetected by
the user. While the observed effects of visually-
grounded interpretations in our human evaluation
were relatively small, we do believe that it is an
important future direction. For example, we expect
improved results by using synonym substitution
methods based on visually-grounded word embed-
dings, e.g. using VisualWord2Vec (Kottur et al.,
2016). We also believe that a more focused evalua-
tion on this issue would show stronger results, e.g.
using targeted contrast sets (Gardner et al., 2020).
We will also include results from transformer-based
models (Wang et al., 2020; Chen et al., 2021) in
the future work.



Ethical Considerations

We use adversarial attack as a tool to evaluate the
robustness of visual dialog models. However, the
same techniques can also be used to maliciously
attack the system. Our experiments demonstrate
that most synonym-based attacks are successful in
remaining undetected by humans. However, our
results also show that the most effective attacks are
also the ones which are easiest for humans to detect.
Further work is thus needed to automatically detect
malicious attacks, e.g. using our proposed gram-
maticality and contextual multimodal methods.
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A Implementation Details

All models are implemented with Pytorch. We em-
bedded BertAttack and TextFooler to our VisDial
system’. We initially set the semantic similarity
threshold 0.5 for attacking both question and his-
tory (but see ablation study of different threshold
in Table 6).

B Full Table of Question Attack

We show the full table of question attack results
including R@10 in Table 9 as supplement of Table
1.

C Detailed Results for Ablation Study

We list the full tables of ablation study in Table 10,
Table 11, Table 12 and Table 13, as supplement
Table 4, Table 5, Table 6, Table 7 respectively.

D Details of Human Study

Here, we provide more details on the human study.
We show the interface of semantic similarity ex-
periment for AMT task in Figure 7, including the
instruction (top). Two versions of this interface
are conducted, where one is provided with im-
age, one is without image. The interface of flu-
ency/grammaticality experiment for AMT task is
shown in Figure 8. Two versions of this inter-
face are done as well, where one is with grammar
checker and one is without. Finally, the interface of
label consistency experiment is shown in Figure 9.

E Licence

Visual Dialog annotations and this website are li-
censed under a Creative Commons Attribution 4.0
International License.

SBertAttack code from https://github.com/
LinyangLee/BERT-Attack and TextFooler code
from https://github.com/jindll/TextFooler.
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Question Attack
OrigR@1 AftR@1[A] OrigR@5 AftR@5[A] OrigR@10 AftR@10[A] Orig NDCG AftNDCG [A] OrigMRR [A] AftMRR  Pert. S.S. Quer.

BertAttack
MCA-I 46.6 38.2 [-18.0] 76.3 62.7 [-17.8] 86.6 74.1 [-14.4] 61.5 54.9 [-10.7] 60.0 47712051 167 744 52
MCA-H 459 40.0 [-12.9] 76.8 67.3[-12.4] 86.8 76.6 [-11.8] 522 48.4[-7.3] 60.0 S511[-148] 167 754 52
MCA-I-HGQ 50.8 45.6 -10.2] 81.7 71.4 126 90.2 80.3 -11.0] 60.0 55.21-8.0] 64.3 55.6(-135 17.1 741 52
MCA-I-VGH 48.6 43.3[-109] 8.7 68.0 [-13.6] 88.6 784 [-115] 62.6 57.31-85] 62.2 533[-143] 167 743 52
MCA-I-H 50.0 45.2 1-9.6] 81.4 69.5 [-14.6] 90.8 80.0 [-11.9] 59.6 54.6 [-8.4] 63.8 54.6(-144] 167 748 52
RVA 49.9 439 -12.0] 82.2 72.20-12.2] 91.1 82.6 [-9.3] 56.3 50.9 [-9.6] 64.2 545151 170 744 52
Pl 48.8 43.5-109] 80.2 69.2-13.7] 89.7 80.7 [-10.0] 60.0 54.2 9.7 62.9 54.1-140] 174 742 52
P1+P2 419 37.1-115] 66.9 57.8 -13.6] 80.2 T1.1[-11.3] 734 67.9 75 54.0 46.2-144) 17.0 737 52
SLG 49.1 43.9 [-10.0) 81.1 72.1 [-11.1]) 90.4 81.2[-102] 63.4 58.4(-7.9] 63.4 55.0[-132) 175 734 52
SLG+KT 48.7 42.6 -125] 71.3 60.8 [-14.7] 83.4 T4.4 -108] 74.5 68.2-8.5) 59.9 503 -160] 173 746 5.2
TextFooler
MCA-I 46.6 36.1[-22.5] 76.3 63.9 [-16.3] 86.6 74.9 [-13.5) 61.5 53.9[-12.4] 60.0 47.11-2051 168 744 19.7
MCA-H 459 39.1 [-14.8] 76.8 68.5 [-10.8] 86.8 78.3 [-9.8] 522 48.0 [-8.01 60.0 511148 17.1 746 19.7
MCA-I-HGQ 50.8 44.2-13.0] 81.7 71.6 [-12.4] 90.2 81.2 [-10.0] 60.0 54.4 193] 64.3 548148 17.0 744 199
MCA-I-VGH 48.6 41.5 [-14.6] 8.7 68.2 [-13.3] 88.6 78.9 [-10.9] 62.6 56.5-9.7] 62.2 523 (-159] 165 744 19.8
MCA-I-H 50.0 43.1[-138] 81.4 71.2[-125] 90.8 81.3[-105] 59.6 53.71-9.9] 63.8 54.0-154) 169 747 198
RvA 49.9 43.6 [-12.6] 82.2 73.2-10.9] 91.1 84.2[-7.6] 56.3 50.2 [-10.8] 64.2 553139 169 749 199
P1 48.8 42.6 [-12.7] 80.2 T1.1[-11.3] 89.7 82.2[-84] 60.0 53.5-10.8] 62.9 544135 173 743 20.1
P1+P2 419 35.8 [-14.6] 66.9 56.9 [-14.9] 80.2 71.8[-10.5] 73.4 66.9 [-8.9] 54.0 451165 17.1  73.7 19.8
SLG 49.1 43.1[-12.2] 81.1 73.49.5] 90.4 82.7 [-8.5] 63.4 57.8 [-8.8] 63.4 553128 173 742 199
SLG+KT 48.7 41.6 [-14.6] 71.3 59.7 [-16.3] 834 74.9 [-10.2] 74.5 67.6 -9.3] 59.9 49.8 [-169] 17.1 746 199

Table 9: Comparison of performance before attacking question (Orig.) and after (Aft.) on different VisDial models.
In addition to standard metrics, we measure the perturbed word percentage (Pert.), semantic similarity (S.S) and
the number of queries (Quer.) to assess BertAttack vs. TextFooler. The relative performance drop is listed as [A].
Highlights indicate the least robust and most robust model.

OrigR@1 AftR@1 OrigR@5 AftR@5 OrigR@10 AftR@10 OrigNDCG AftNDCG OrigMRR AftMRR Pert. S.S. Quer.

Random 46.2 71.7 81.4 56.0 55.9 170 734 52
Ours 0.0 452 814 69.5 %08 80.0 39:6 54.6 638 54.6 167 748 52

Table 10: Effect of vulnerable word attack (full table) on MCA-I-H model with BertAttack, supplement of Table 4.

OrigR@1 AftR@1 OrigR@5 AftR@5 OrigR@10 AftR@10 OrigNDCG AftNDCG OrigMRR AftMRR Pert. S.S. Quer.

All 437 733 84.3 54.1 57.2 16.7 744 6.1
Ours 50.0 452 814 69.5 908 80.0 39:6 54.6 63.8 54.6 167 748 52

Table 11: Effect of stop words set (full table) on MCA-I-H model with BertAttack, supplement of Table 5.

€ OrigR@1 AftR@1 OrigR@5 AftR@5 OrigR@10 AftR@10 OrigNDCG AftNDCG OrigMRR AftMRR Pert. S.S. Quer

0.7 47.0 69.2 79.4 55.6 54.1 16.1 82.0 5.8
0.5 452 69.5 80.0 54.6 54.6 167 748 52
0.3 30.0 44.6 814 69.5 %08 79.9 39:6 54.1 638 54.8 169 718 5.1
0.1 44.6 69.5 80.0 539 54.8 17.1 709 5.1

Table 12: Effect of semantic similarity threshold ¢ (full table) on MCA-I-H model with BertAttack, supplement of
Table 6.

OrigR@1 AftR@1 OrigR@5 AftR@5 OrigR@10 AftR@10 OrigNDCG AftNDCG OrigMRR AftMRR Pert. S.S. Quer.

Raw Attack 44.2 69.8 80.2 53.7 54.9 174 703 49
+POS 44.5 69.5 80.0 53.8 54.8 17.1 703 5.1
+P0OS+S.5.(0.5) 300 452 814 69.5 9038 80.0 396 54.6 638 54.6 167 748 52
+POS+S.S.(0.5)+Gram. 454 70.9 81.2 559 55.1 13.0 714 52

Table 13: Effect of different constraints for adversarial attack (full table) on MCA-I-H model with BertAttack,
supplement of Table 7.
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Instructions

We give some examples for the different options.

A - One text means something completely different

e.g. "Can you see big ben"/ Can you see huge ben? (Entity changes - independent of picture)

e.g. "Are the planes close to each other" / "Are the planes close to any other?" (Question scope changes)
B - One text means something different

e.g. "Is the dog/ dogs a Cocker Spaniel?" depends on whether there is more than 1 dog.

C - The meaning is somehow similar but one of texts means something slightly different.

e.g. "Is the fireplace lit ?"/"Is the furnace lit ?" (Similar meaning)

D - They have exactly the same meaning

e.g. "Does it have color?"/ "Does it have colour?" (Pretty much only applies to BE/ AE spelling?)

Text (and image)
Text 1: Is it night ?

Question

How similar is the meaning of these two pieces of text ?

Text 2: Is it evening ?

Select an option

1 - One text means something completely 1
different.

2 - One text means something different, 2
dependent on the context.

3 - The meaning is somehow similar but one 3
of texts means something slightly different.

4 - They have exactly the same meaning 4

Figure 7: Interface of *Evaluation of Semantics’ for AMT task (image is optional).

Instructions

'Fluent - could this have been produced by a native speaker?'
'Grammatical - are there any grammar errors, such as verb agreement?"'

Question

How fluent/grammatical is the text?

Text Select an option

Is the blanket cleaned ? 1 - Not understandable 1

2- hard to understand because of grammar 2
and fluency issues

3 - Somewhat hard to understand because 2
of grammar and fluency issues

4 - One or two minor errors but still easy to 4
understand

5 - Everything is perfect; could have been 5
produced by a native speaker

Figure 8: Interface of *Evaluation of Grammaticality’ for AMT task.
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Instructions

We give some examples for 'unsure' option.

"Unsure - the question doesn't make sense given the picture.” (e.g. question asking
about "a man" when there is only a child in the picture.)

"Unsure - | can't verify the answer given the picture.” (e.g. question asking whether
someone smiles, but it's hard to see.)

"Unsure - the question is difficult to understand because it's ungrammatical” (e.g. the
question is highly ungrammatical and disfluent)

"Unsure - the question is ambiguous given the picture.” (e.g. the question has more
than one answer)

Text (and image) Question

Question: What colour s the train 7 Is it a correct/resonable answer for the question given

Answer: Black and red. the image?
Select an option
1 - Yes, answer is correct !

2 - No, answer is incorrect 2

3 - Unsure 3

Figure 9: Interface of *Evaluation of Label Consistency’ for AMT task.
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