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Abstract
Adversarial attacks aim to change the predic-001
tions of deep neural network models, while re-002
maining unnoticed by the user. In this study, we003
investigate the robustness of visually grounded004
dialog models towards textual attacks. First,005
to understand how different input components006
can mitigate the attack. Our results show that007
dialog history is important for model robust-008
ness: models encoding history are more robust,009
and when launching an attack on history, model010
prediction becomes more uncertain. This is in011
contrast to prior work which finds that dialog012
history is negligible for model performance.013
We also evaluate how to generate adversarial014
examples which successfully attack the model015
but remain undetected by the user. We find016
that the textual, as well as the visual context017
is important to generate attacks which appear018
semantically coherent to humans.019

1 Introduction020

Neural networks have been shown to be vulnera-021

ble to adversarial attacks, where applying small022

perturbations on the original inputs results in the023

model outputting incorrect predictions with high024

confidence, e.g. (Goodfellow et al., 2014; Ku-025

rakin et al., 2016a,b). In this paper, we evaluate the026

robustness of state-of-the-art Visual Dialog (Vis-027

Dial) models with the aim to understand how differ-028

ent input components contribute to robustness. It029

has previously been established that multiple input030

modalities increase robustness of pre-neural conver-031

sational interfaces, e.g. (Oviatt, 2002; Bangalore032

and Johnston, 2009). Here, we want to know which033

modalities can mitigate attacks on neural visual di-034

alog systems, and to what extent. We also aim to035

understand how to best generate adversarial exam-036

ples which successfully attack the model while at037

the same time remain unnoticed by the user.038

To the best of our knowledge, we are the first to039

explore adversarial attacks on VisDial, which was040

introduced as a shared task by Das et al. (2017a). A041
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Figure 1: A VisDial agent aims to answer a question
related to an image by ranking a list of candidate an-
swers, given the dialog history. The attacker attacks the
text (question or history) via replacing a word with its
synonym so that the predicted answer changes.

visual dialog system consists of three components: 042

an image (with a caption), a question and the dialog 043

history, i.e. previous user and system turns. The 044

latter distinguishes VisDial from other tasks such 045

as Visual Question Answering (VQA) (Antol et al., 046

2015). In order to answer the question accurately, 047

the AI agent has to ground the question in the image 048

and infer the context from history, see Figure 1. 049

VisDial has attracted considerable interest over the 050

past years, e.g. (Das et al., 2017b; Kottur et al., 051

2018; Jain et al., 2018; Zheng et al., 2019; Niu et al., 052

2019; Yang et al., 2019; Qi et al., 2020; Murahari 053

et al., 2020; Agarwal et al., 2020). Most existing 054

research has focused on improving the modelling 055

performance on this task, whereas our aim is to 056

evaluate model robustness via adversarial attacks. 057

In addition, we use these attacks to improve our 058

understanding of how the model works (i.e. inter- 059

pretability). Previous work, such as Sankar et al. 060

(2019) uses random perturbations to investigate 061

whether text-based neural dialog systems make use 062
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of dialog history. In a similar vein, we use adversar-063

ial attacks on important words (rather than random064

perturbations) on multi-modal systems to estimate065

the impact of various input modalities on model ro-066

bustness, including history. Our main contributions067

are:068

• We show that dialog history contributes to model069

robustness: We attack ten VisDial models which070

represent a snapshot of current methods, includ-071

ing different encoding and attention mechanisms,072

as well as recent graphical networks and knowl-073

edge transfer using pretraining. We measure074

the performance change before and after attack075

and show that encoding history helps to increase076

the robustness against adversarial questions. We077

also show that models become more uncertain078

when the history is attacked.079

• We evaluate adversarial text-generation within080

VisDial: We leverage recent Synonym Substitu-081

tion methods for adversarial black-box attack082

(Jin et al., 2020; Li et al., 2020) and show that083

BERT-based models are able to generate more084

contextually coherent perturbations. We also085

conduct an ablation study to measure the trade-086

off between the effectiveness of the attack versus087

the overall text quality.088

• We conduct a detailed human evaluation: We in-089

vestigate the trade-off between successful attacks090

and their ability to remain unnoticed by humans.091

In particular, we evaluate semantic similarity, flu-092

ency/grammaticality and label consistency. We093

find that human evaluators are able to identify an094

attack from the textual and multimodal context.095

2 Related Work096

Adversarial Attack for Text. Adversarial attacks097

have been widely investigated within uni-modal098

applications, foremost for computer vision (Nar-099

odytska and Kasiviswanathan, 2016; Dong et al.,100

2018; Xie et al., 2019). Adversarial attacks on101

text are more challenging due to its discrete nature,102

which makes it harder to stay undetected. Textual103

attacks have been studied for tasks such as senti-104

ment analysis (Jin et al., 2020), natural language105

inference (Li et al., 2020), dialogue systems (Niu106

and Bansal, 2018; Dinan et al., 2019).107

Adversarial textual attack methods can be di-108

vided into three levels of granularity (Zhang et al.,109

2020; Wang et al., 2019): character-level, word-110

level and sentence-level attacks. Character-level111

attack (Eger et al., 2019; Gao et al., 2018) can of-112

ten be detected by a spell checker. Sentence-level 113

attack (Ribeiro et al., 2018; Iyyer et al., 2018; Zhao 114

et al., 2018; Gan and Ng, 2019) permutes longer 115

phrases or paraphrases the whole sentence, which 116

makes it challenging to maintain the original se- 117

mantics. Recent word-level attack methods (Zang 118

et al., 2020; Jin et al., 2020; Li et al., 2020; Ren 119

et al., 2019), on the other hand, are more subtle 120

and harder to detect: they are targeted towards 121

‘vulnerable’ words, which are substituted via their 122

synonyms in order to preserve semantic meaning. 123

In our paper, we explore word-level attack methods 124

on VisDial. 125

Adversarial Attack for Multi-modal Systems. 126

There is less research on adversarial attacks for 127

multi-modal tasks. For example, Optical Character 128

Recognition (Song and Shmatikov, 2018), Scene 129

Text Recognition (Yuan et al., 2020), Image Cap- 130

tioning (Chen et al., 2017) and VQA (Xu et al., 131

2018; Shi et al., 2018). Most of these works utilise 132

white box attack, where the parameters, gradient 133

and architecture of the model are available, e.g. by 134

attacking attention (Xu et al., 2018; Sharma et al., 135

2018). Whereas we follow a more realistic black- 136

box setting which assumes that the attacker only 137

has access to the model’s prediction on test data. 138

Shi et al. (2018) is the closest related to our 139

work: they generate adversarial textual attacks for 140

the VQA task using contrastive examples and thus 141

don’t pay attention to semantic similarity. In con- 142

trast, we are interested in generating adversarial at- 143

tacks which follow three desiderata, as outlined by 144

Morris et al. (2020): An adversarial text should (1) 145

keep the same semantic meaning (semantic similar- 146

ity); (2) guarantee fluency and grammar (grammat- 147

icality); (3) stay unnoticed by humans, i.e. the hu- 148

man still assigns the correct label, while the model 149

prediction changes (label consistency). 150

3 Method 151

3.1 Problem Formulation 152

VisDial is formulated as a discriminative learn- 153

ing task, where the model is given an image I , 154

the dialog history (including the image caption 155

C) H = ( C︸︷︷︸
H0

, (Q1, A1)︸ ︷︷ ︸
H1

, ..., (Qt−1, At−1)︸ ︷︷ ︸
Ht−1

), the 156

question Qt, and N = 100 candidate answers 157

At = (A1
t , A

2
t , ..., A

100
t ) to rank, including the 158

ground truth (GT), which is labelled Yt, where t 159

indicates the round ID. 160

In the following, we focus on generating textual 161
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adversarial examples for the question and history162

(including the caption). That is, for a sentence X ∈163

{Q,H}, and F (X) = Y , a successful adversarial164

attack sentence Xadv should result in F (Xadv) ̸=165

Y , while meeting the following requirements:166

• Semantic Similarity: Sim(X,Xadv) ≥ ε,167

where Sim(·) is a semantic and syntactic simi-168

larity function. The semantic similarity between169

the original sentence X and the adversarial at-170

tack sentence Xadv should above a similarity171

threshold ε; Following Jin et al. (2020), we use172

Universal Sentence Encoder (Cer et al., 2018) to173

encode the two sentences into high dimensional174

vectors and use their cosine similarity score as175

an approximation of semantic similarity.176

• Grammaticality: The adversarial attack sen-177

tence Xadv should be fluent and grammatical.178

• Label Consistency: Human annotators still as-179

signs the correct GT label Y after the original180

sentence X changes to Xadv.181

3.2 Visual Dialog Models182

We adopt ten state-of-the-art VisDial models183

from (Agarwal et al., 2020; Niu et al., 2019; Qi184

et al., 2020; Kang et al., 2021) as the target mod-185

els to attack – representing a snapshot of current186

techniques popular for VisDial.1 Agarwal et al.187

(2020) experiment with several multi-modal en-188

codings based on Modular Co-Attention (MCA)189

networks (Yu et al., 2019b): MCA-I encodes the190

image and question representation using late fu-191

sion; MCA-H only encodes the textual history with192

late fusion; MCA-I-H encodes image and history193

with late fusion; MCA-I-HGQ encodes all three in-194

put modalities using early fusion between question195

and history; MCA-I-VGH is another early fusion196

variant which first grounds the image and history.197

We also consider Recursive Visual Attention198

(RvA) (Niu et al., 2019) as an alternative to MCA,199

encoding history and image information.200

In addition, we test two variants of causal graphs201

from (Qi et al., 2020) by adding to causal princi-202

ples P1/P2: P1 removes the history input to the203

model to avoid a harmful shortcut bias; P2 adds204

one new (unobserved) node U and three new links205

to history, question and answer respectively.206

Finally, we test a Knowledge Transfer (KT)207

method based on a Sparse Graph Learning208

1Details on model architecture can be found in the original
papers.

(SGL) (Kang et al., 2021) framework using pre- 209

training model P1/P2. 210

3.3 Synonym-based Methods 211

For generating attacks, we explore two state-of-the- 212

art synonym-based methods, which first find the 213

vulnerable words of the sentence, and then replace 214

them with a semantically similar word.2 These 215

two methods differ in the way they generate the 216

synonyms: 217

• TextFooler (Jin et al., 2020) finds the synonym 218

by using specialised word embeddings from 219

(Mrkšic et al., 2016). Candidates are selected 220

according to the cosine similarity between the 221

word and every other word. 222

• BertAttack (Li et al., 2020) generates the syn- 223

onym via BERT’s masked language model using 224

contextually embedded perturbations. 225

In following these previous works, we first detect 226

vulnerable words by calculating prediction change 227

before and after deleting a word. We then impose 228

additional constraints to improve the quality (and in 229

particular the grammaticality) of our attacks, which 230

we will further analyse in an ablation study: We 231

apply a stop word list before synonym substitu- 232

tion, extending the list by (Jin et al., 2020; Li et al., 233

2020) for our domain. We also apply additional 234

quality checks for selecting synonym candidates: 235

We filter by part-of-speech (POS)3 to maintain the 236

grammar of the sentence. We then experiment with 237

a semantic similarity threshold ε to choose the top 238

k synonyms. Finally, we iteratively select the word 239

with the highest similarity until the attack is suc- 240

cessful. 241

3.4 Adversarial Attack on Visual Dialog 242

Models 243

3.4.1 Question Attack 244

Attacking the question in VisDial differs from other 245

common textual attacks, such as sentiment classifi- 246

cation, image captioning or news classification, in 247

the following ways: 248

(1) Question: The question in VisDial is gen- 249

erally much shorter than a typical declarative sen- 250

tence in the above tasks. The average length of 251

the question in the VisDial dataset is 6.2 words, 252

2Note that previous work refers to these methods as
“synonym-based”, e.g. (Morris et al., 2020), but not all of
the substitutions are synonyms. They can also include differ-
ent lemmatas of the same lexeme, such as singular and plural,
as well as different spellings, etc. Also see Table 8.

3Using SpaCy https://spacy.io/api/tagger.
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which makes it harder to find a word to attack. For253

instance, “Is it sunny?”, “What color?”, “How254

many?”, there is only one word left to attack after255

filtering out the stop words, i.e. {is, it, what, how}.256

(2) Answer: For the VisDial task, the model257

ranks N possible candidate answers according to258

its log-likelihood scores. The attack is consid-259

ered successful once the top ranked answer dif-260

fers from the GT. However, there can be several261

candidate answers which are semantically simi-262

lar or equivalent, such as “yes/yep/yeah”. This is263

different from other labelling tasks, such as “posi-264

tive/neutral/negative” sentiment. We account for265

this fact by considering several common retrieval266

metrics before and after the attack, including R@k267

(k=1,5,10), Mean Reciprocal Rank (MRR), and268

Normalized Discounted Cumulative Gain (NDCG)269

– a measure of ranking quality according to man-270

ually annotated semantic relevance scores in a 2k271

subset of VisDial.272

(3) Model: In contrast to other common textual273

attacks applications, our model has several input274

modalities, which it can leverage to answer the275

question. These input modalities can be combined276

in different ways as explained above. One of the277

goals of this paper is to understand how multiple in-278

put encodings can contribute to model robustness.279

3.4.2 History Attack280

We also attack the textual history using the same281

procedure. The use of history is the main dis-282

tinguishing feature between the VisDial and the283

VQA task, and thus of central interest in this work.284

History is mainly used for contextual question un-285

derstanding, including co-reference resolution, e.g.286

“What color are they?”, and ellipsis, e.g. “Any oth-287

ers?” (Yu et al., 2019a; Li and Moens, 2021).288

Our preliminary results indicate that attacking289

history is hardly ever successful, i.e. does not result290

in label change. This is in line with previous work,291

which suggests that history only plays a negligi-292

ble role for improving model performance on the293

VisDial task, e.g. (Massiceti et al., 2018; Agarwal294

et al., 2020). However, there is also some evidence295

that history helps, but to a smaller extent. For exam-296

ple, Yang et al. (2019) show that accuracy can be297

improved when forcing the model to pay attention298

to history. Similarly, Agarwal et al. (2020) show299

that history matters for a sub-section of the data.300

In a similar vein, we investigate how history301

contributes to the model’s robustness and, in partic-302

ular, can increase the model’s certainty in making a303

prediction. We adopt the perplexity metric, follow- 304

ing Sankar et al. (2019), to measure the change of 305

prediction distribution after (unsuccessfully) attack- 306

ing the history, i.e. after adding the perturbation to 307

the history while the top-1 prediction is unchanged. 308

The difference between the perplexity before and 309

after the attack reflects the uncertainty change of 310

the model. The perplexity with the original history 311

input is calculated with the following equation: 312

PPL(F (X), Y ) = −
∑
X

F (X)log2Y (1) 313

And the perplexity after attack is: 314

PPL(F (Xadv), Y ) = −
∑
Xadv

F (Xadv)log2Y (2) 315

4 Experimental Setup 316

4.1 Dataset 317

We use the VisDial v1.0 dataset, which contains 318

123,287 dialogs for training and 2,064 dialogs for 319

validation. The ten target models are trained on the 320

training set and the adversarial attacks are gener- 321

ated for validation set (as the test set is only avail- 322

able to challenge participants). 323

4.2 Automatic Evaluation Metrics 324

In order to assess the impact of an attack, we use the 325

automatic evaluation metrics from Jin et al. (2020): 326

The accuracy of the model tested on the original 327

validation data is indicated as original accuracy 328

and after accuracy on the adversarial samples – the 329

larger gap between these two accuracy means the 330

more successful of our attack (cf. relative perfor- 331

mance drop [∆]). The perturbed word percentage 332

is the ratio of the perturbed words and the length 333

of the text. The semantic similarity measures the 334

similarity between the original text and the adver- 335

sarial text by cosine similarity score. The number 336

of queries shows the efficiency of the attack (lower 337

better). In addition, we use retrieval based metrics 338

to account for the fact that VisDial is a ranking 339

task: original/after R@{5, 10} measures the perfor- 340

mance of top 5/10 results before and after attack 341

(where R@1 corresponds to accuracy); we also 342

report original/after mean reciprocal rank (MRR) 343

and original/after Normalized Discounted Cumula- 344

tive Gain (NDCG) which measure the quality of the 345

ranking. Further implementation details are given 346

in Appendix A. Detailed results with R@k (k=10) 347

are shown in Appendix B and C due to space limi- 348

tations. All our code will be made available. 349
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Question Attack

Inputs Methods Orig.R@1 Aft.R@1 [∆] Orig.R@5 Aft.R@5 [∆] Orig.NDCG Aft.NDCG [∆] Orig.MRR Aft.MRR [∆] Pert. S.S. Quer.

BertAttack

I-only MCA-I 46.6 38.2 [-18.0] 76.3 62.7 [-17.8] 61.5 54.9 [-10.7] 60.0 47.7 [-20.5] 16.7 74.4 5.2
H-only MCA-H 45.9 40.0 [-12.9] 76.8 67.3 [-12.4] 52.2 48.4 [-7.3] 60.0 51.1 [-14.8] 16.7 75.4 5.2

I+H
MCA-I-HGQ 50.8 45.6 [-10.2] 81.7 71.4 [-12.6] 60.0 55.2 [-8.0] 64.3 55.6 [-13.5] 17.1 74.1 5.2
MCA-I-VGH 48.6 43.3 [-10.9] 78.7 68.0 [-13.6] 62.6 57.3 [-8.5] 62.2 53.3 [-14.3] 16.7 74.3 5.2
MCA-I-H 50.0 45.2 [-9.6] 81.4 69.5 [-14.6] 59.6 54.6 [-8.4] 63.8 54.6 [-14.4] 16.7 74.8 5.2

I+H RvA 49.9 43.9 [-12.0] 82.2 72.2 [-12.2] 56.3 50.9 [-9.6] 64.2 54.5 [-15.1] 17.0 74.4 5.2

I-only P1 48.8 43.5 [-10.9] 80.2 69.2 [-13.7] 60.0 54.2 [-9.7] 62.9 54.1 [-14.0] 17.4 74.2 5.2
I+H P1+P2 41.9 37.1 [-11.5] 66.9 57.8 [-13.6] 73.4 67.9 [-7.5] 54.0 46.2 [-14.4] 17.0 73.7 5.2

I+H
SLG 49.1 43.9 [-10.6] 81.1 72.1 [-11.1] 63.4 58.4 [-7.9] 63.4 55.0 [-13.2] 17.5 73.4 5.2
SLG+KT 48.7 42.6 [-12.5] 71.3 60.8 [-14.7] 74.5 68.2 [-8.5] 59.9 50.3 [-16.0] 17.3 74.6 5.2

TextFooler

I-only MCA-I 46.6 36.1 [-22.5] 76.3 63.9 [-16.3] 61.5 53.9 [-12.4] 60.0 47.1 [-20.5] 16.8 74.4 19.7
H-only MCA-H 45.9 39.1 [-14.8] 76.8 68.5 [-10.8] 52.2 48.0 [-8.0] 60.0 51.1 [-14.8] 17.1 74.6 19.7

I+H
MCA-I-HGQ 50.8 44.2 [-13.0] 81.7 71.6 [-12.4] 60.0 54.4 [-9.3] 64.3 54.8 [-14.8] 17.0 74.4 19.9
MCA-I-VGH 48.6 41.5 [-14.6] 78.7 68.2 [-13.3] 62.6 56.5 [-9.7] 62.2 52.3 [-15.9] 16.5 74.4 19.8
MCA-I-H 50.0 43.1 [-13.8] 81.4 71.2 [-12.5] 59.6 53.7 [-9.9] 63.8 54.0 [-15.4] 16.9 74.7 19.8

I+H RvA 49.9 43.6 [-12.6] 82.2 73.2 [-10.9] 56.3 50.2 [-10.8] 64.2 55.3 [-13.9] 16.9 74.9 19.9

I-only P1 48.8 42.6 [-12.7] 80.2 71.1 [-11.3] 60.0 53.5 [-10.8] 62.9 54.4 [-13.5] 17.3 74.3 20.1
I+H P1+P2 41.9 35.8 [-14.6] 66.9 56.9 [-14.9] 73.4 66.9 [-8.9] 54.0 45.1 [-16.5] 17.1 73.7 19.8

I+H
SLG 49.1 43.1 [-12.2] 81.1 73.4 [-9.5] 63.4 57.8 [-8.8] 63.4 55.3 [-12.8] 17.3 74.2 19.9
SLG+KT 48.7 41.6 [-14.6] 71.3 59.7 [-16.3] 74.5 67.6 [-9.3] 59.9 49.8 [-16.9] 17.1 74.6 19.9

Table 1: VisDial model performance before attacking question (Orig.) and after (Aft.). In addition to standard
metrics, we measure the perturbed word percentage (Pert.), semantic similarity (S.S) and the number of queries
(Quer.) to assess BertAttack vs. TextFooler. The relative performance drop is listed as [∆]. Highlights indicate the
least robust and most robust model.

5 Results350

5.1 Question Attack351

Table 1 summarises the results. We first compare352

the results of input encodings and fusion mech-353

anisms. We find that MCA-I (with image input354

only) is the least robust model with a relative perfor-355

mance drop of over 22% on R@1 using TextFooler.356

MCA-H (with no image input) is vulnerable with357

respect to R@1, but does well on NDCG, suggest-358

ing that history helps to produce a semantically359

similar response despite the attack and lack of in-360

put image. One possible explanation of these re-361

sults is given by previous research claiming that362

VisDial models mainly pay attention to text, e.g.363

(Massiceti et al., 2018). However, in contrast to364

claims by Massiceti et al., we find that history is im-365

portant for robustness: In general, models encoding366

history are more robust with the MCA-I-H model367

being the least vulnerable model. Note that this is368

also the best performing model in (Agarwal et al.,369

2020). Recursive visual Attention (RvA) in general370

shows lower robustness than MCA-based methods.371

Causal encodings using graphs lead to compara-372

ble robustness results for P1. Adding P2 results373

in a slight drop in robustness. This is interesting,374

because P2 adds an unobserved node to represent375

history while avoiding spurious correlations from376

training data. This drop thus might suggest that377

R@1 AnswerQuestion
Orig.: Is the mannequin a woman?
Aft.:   Is the mannequin a girl?

Orig.: No.
Aft.:   Yes.

Orig.: Are there any pets in the photo?
Aft.:   Are there any animals in the photo?

Orig.: No pets or people.
Aft.:   No.

Orig.: What color is the plane?
Aft.:   What colour is the plane?

Orig.: White.
Aft.:   Not sure.

Figure 2: Examples of answer change after question
attack on MCA-I-H model with BertAttack.

previous robustness is due to the very same bias. 378

Additionally, we observe that knowledge transfer 379

(KT) via pre-training for the SLG method helps to 380

boost the performance of NDCG, however not the 381

robustness. 382

We further perform an example based analysis 383

of the top-1 predicted answer changes after a suc- 384

cessful question attack, see Figure 2. We observe 385

answer changes to the opposite meaning (e.g. from 386

“no” to “yes”), which can be considered as a maxi- 387

mum successful attack. Some answers change to 388

a similar meaning in context (e.g. from “No pets 389

or people” to “No”), which is reflected in fewer 390

NDCG changes. In some cases, the answer changes 391

from certain / definite to uncertain / noncommittal 392

and the other way round (e.g. from “white” to 393

“Not sure”). 394

Next, we compare the two attack methods. We 395

find that TextFooler is more effective: It achieves 396
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TextFoolerBertAttack

N/A
Orig.: Is it a flat screen?
Aft.:   Is it a loft screen?

Orig.: Is it a close up of their faces or their bodies?
Aft.: Is it a close up of their confront or their bodies?

Orig.: Is it a close up of their faces or their bodies?
Aft.: Is it a close up of their face or their bodies?

Orig.: What color is the house?
Aft.:   What color is the home?

Orig.: What color is the house?
Aft.:   What color is the residence?

Orig.: Are there trees no the mountain?
Aft.:   Are there woods on the mountain?

Orig.: Are there trees no the mountain?
Aft.:   Are there sapling on the mountain?

Figure 3: Example attacks on the MCA-I-H target model
generated by BertAttack and TextFooler.

History Attack

Orig.PPL Aft.PPL [∆]

MCA-I - -
MCA-H 53.2 60.0 [+6.8]
MCA-I-HGQ 49.4 52.2 [+2.8]

MCA-I-VGH 52.3 52.3 [0]

MCA-I-H 49.5 51.9 [+2.4]

RvA 53.4 56.4 [+3.0]

P1 - -
P1+P2 77.0 77.0 [0]

SLG 52.7 53.4 [+0.7]

SLG+KT 65.0 65.3 [+0.3]

Table 2: Comparison of perplexity increase [∆] when
attacking the history of different VisDial models with
BertAttack.

up to 4.5% higher drop than BertAttack. However,397

BertAttack is more efficient: It reduces the number398

of queries (Quer.) about four times compared to399

TextFooler. Efficiency is important in attack set-400

tings, as attackers always run into danger of being401

discovered. Furthermore, the perturbed word per-402

centage (Pert.) for both methods is around 17%,403

which means the average perturbation is about one404

word for each question (since the average length of405

the question is 6.2). Similarly, the semantic simi-406

larity (S.S.) is over 70% which is about the same407

across all models.408

We further compare TextFooler and BertAt-409

tack using an example-based analysis, see Fig-410

ure 3. We find that TextFooler is not able to distin-411

guish words with multiple meanings (homonyms),412

whereas BertAttack is able to use BERT context-413

embeddings to disambiguate. Consider the exam-414

ples where TextFooler replaces “flat” (adverb) with415

“loft” (noun) and “faces” (noun) with “confront”416

(verb), which POS tagger failed to catch. Based on417

the above results, we use BertAttack to attack the418

MCA-I-H model in the following experiments.419

5.2 History Attack420

We followed the same procedure to attack the his-421

tory, which includes the caption, as well as the user422

questions and the system answers. As explained423

in Section 3.4.2, we consider an attack ‘successful’424

once the probability of the corresponding GT de-425

Caption User (question) System (answer)

Attack 44.9% 30.8% 24.3%

Table 3: Comparing which part of History was chosen
for an attack on MCA-I-H model with BertAttack.

∆R@1 ∆NDCG ∆MRR

Random -7.6 -6.0 -12.4
Ours -9.6 -8.4 -14.4

Table 4: Effect of vulnerable word attack on MCA-I-H
model with BertAttack.

creases and we use perplexity to measure the uncer- 426

tainty of the prediction. The results in Table 2 show 427

that attacking history increases the uncertainty of 428

almost all the models, especially when the history 429

is the unique input component (MCA-H model).4 430

This confirms our previous results that encoding 431

history increases robustness. 432

When analysing which part of history was at- 433

tacked the most (see Table 3), we find that 44.9% 434

of the time the image caption was attacked, fol- 435

lowed by system answer 30.8% and user question 436

24.3%. We thus conclude that the image caption is 437

the most vulnerable part (and ergo the most infor- 438

mative) compared to the rest of history. 439

6 Ablation Study 440

We perform several ablation studies to analyze the 441

impact of the quality constraints . We are interested 442

in the trade-off between using these constraints 443

to produce high quality text (which increases the 444

chance of the attack to remain unnoticed by hu- 445

mans) versus an effective attack (which increases 446

the chance of the model changing its prediction). 447

More detailed results on ablation study can be 448

found in Appendix C. 449

Effect of Selecting Vulnerable Words. First, 450

we compare the results of choosing a random word 451

in text to attack and our vulnerable word attack. 452

The results in Table 4 show that attacking the vul- 453

nerable word achieves a 2.0% higher relative drop 454

for R@1, NDCG and MRR. 455

Effect of Stop Words Set. Next, we compare 456

the results with/without stop words. The results in 457

Table 5 show that attacking all words leads to more 458

successful attack in terms of R@1 and NDCG, 459

while attacking with stopwords leads more suc- 460

cessful attacks for MRR. We use stop words list for 461

4Attacking the history of MCA-I-VGH model doesn’t
change the prediction distribution because its encoder only
uses a single round of history following (Agarwal et al., 2020).
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∆R@1 ∆NDCG ∆MRR

All -12.6 -9.2 -10.3
Ours -9.6 -8.4 -14.4

Table 5: Effect of stop words set on MCA-I-H model
with BertAttack.

ε Num./(%) ∆R@1 ∆NDCG ∆MRR

0.1 219 (10.6%) -10.8 -9.6 -14.1
0.3 215 (10.4%) -10.8 -9.2 -14.1
0.5 198 (9.6%) -9.6 -8.4 -14.4
0.7 135 (6.5%) -6.0 -6.7 -15.2

Table 6: Comparison of number of successful attacks
(total val set n=2064) with different semantic similarity
thresholds ε on MCA-I-H model with BertAttack.

all the experiments since attacking question words,462

preposition or pronouns result in highly ungram-463

matical sentences.464

Effect of Semantic Similarity. The semantic465

similarity threshold between the original text and466

adversarial text is used to guarantee the similar467

meaning of the attack. In the previous experiments,468

we set 0.5 as default threshold. Table 6 shows re-469

sults with different semantic similarity thresholds470

(0.1, 0.3, 0.5 and 0.7) respectively. The results471

show that when increasing the threshold ε from 0.1472

to 0.7, the number of successful attack decreases473

4.1%, while R@1 and NDCG drop around 3% after474

attack, which means there are more successful at-475

tacks if we soften the semantic similarity constraint.476

In addition, the examples in Figure 4 illustrate that477

a lower semantic similarity threshold comes at the478

cost of lower fluency and grammaticality, i.e. at the479

price of being more easily detectable by humans.480

We will explore this in more detail in human study.481

We analyze the combined effect of adding POS,482

semantic similarity constraint and grammar check483

modules (We used the same grammar tool as484

by Morris et al. (2020).). From Table 7, we can see485

that in general it results in less successful attack486

when the number of constraints increases. The suc-487

cess from raw attack to ‘disguised’ attack decreases488

2.4% on R@1, 3.7% on NDCG, but there is little ef-489

fect on MRR. In addition, the examples in Figure 5490

show that adding constraints improves the textual491

quality of the adversarial attack and its likelihood492

to be undetected by humans, which we investigate493

further in the following evaluation study.494

7 Human Evaluation Study495

We evaluate the quality of our generated adver-496

sarial question attack by asking human judges on497

ExamplesConstraints

   (0.7)

Orig.: Is it a large church?
Aft.:   Is it a big church?

Orig.: Is her hair pulled back?
Aft.:   Is her wig pulled back?

+

Orig.: Is the fireplace lit?
Aft.:   Is the furnace lit?

+

Orig.: What color is the wine?
Aft.:   What colour is the wine?

+
Orig.: What is the adult doing?
Aft.:   What is the adult done?

Orig.: Is there buildings?
Aft.:   Is there houses?

+

Orig.: Is the picture outside?
Aft.:   Is the picture beyond?

+

Orig.: Are they titled?
Aft.:   Are they untitled?

+

   (0.5)

   (0.3)

   (0.1)

Figure 4: Attack examples with different semantic simi-
larity thresholds ε on MCA-I-H model with BertAttack.

Num./(%) ∆R@1 ∆NDCG ∆MRR

Raw Attack 224 (10.9%) -11.6 -9.9 -13.9
+POS 221 (10.7%) -11.0 -9.7 -14.1
+POS+ε(0.5) 198 (9.6%) -9.6 -8.4 -14.4
+POS+ε(0.5)+Gram. 190 (9.2%) -9.2 -6.2 -13.6

Table 7: Effect of different quality constraints on MCA-
I-H model with BertAttack.

Amazon Mechanical Turk (AMT) to rate three as- 498

pects: if the generated question preserve the se- 499

mantic similarity (semantic similarity with/without 500

given image); if the generated question is natural 501

and grammatical (grammaticality); if the human’s 502

prediction is unchanged for the generated question 503

(label consistency). We evaluate a total of 198 504

generated attacks, randomly sampled from the de- 505

velopment set, where three users are asked to rate 506

each instance. Further details on the experimental 507

setup can be found in Appendix D. 508

ExamplesConstraints

Raw

Raw + POS

Orig.: Is it a large church?
Aft.:   Is it a big church?

Orig.: What color is the tennis court?
Aft.:   What colour is the tennis court?

+

Orig.: Does the snow appear fresh?
Aft.:   Does the snow appears fresh?

+

Orig.: Can you see the sun?
Aft.:   Can you see the sunlight?

+
Orig.: Are they indoors?
Aft.:   Are they outdoors?

Orig.: Is this inside?
Aft.:   Is this interior?

+

Orig.: Is it red?
Aft.:   Is it reds?

+

Orig.: How tall is the man?
Aft.:   How big is the man?

+

Raw + POS +    (0.5)

Raw + POS +    (0.5) + Gram

Figure 5: Generated adversarial examples under differ-
ent constraints on MCA-I-H model with BertAttack.
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Orig.: Is the fireplace lit ? 
Aft.:  Is the furnace lit ? 

Rate w/o image:
2.33

Rate w/ image:
1.67

Figure 6: The visual context changes the perceived
similarity rating by humans: ‘furnace’ becomes more
dissimilar to ‘fireplace’ in a living room context.

Attack Types Percentage Gram. Score

British vs. American English 34.9% 4.923
Synonyms/near synonyms 34.3% 4.417
Singular vs. Plural 19.7% 3.974
Comparatives and Superlatives 4.0% 4.208
Others 7.1% 3.452

Table 8: Percentage and grammaticality score of differ-
ent types of attack on MCA-I-H model with BertAttack.

Evaluation of Semantics. We first ask crowd509

workers to evaluate whether the original and the510

adversarial question still have the same meaning511

on a scale from 1 to 4, where 1 is “One text means512

something completely different” and 4 is “They513

have exactly the same meaning”. We repeat the514

setup with and without showing the original im-515

age. Our results show that the semantic similarity516

is rated slightly lower when shown together with517

the original image (average score 3.518 / 4) than518

without image (average score 3.564 / 4). The ex-519

ample in Figure 6 demonstrates how the visual520

context can change the semantic similarity ratings.521

Therefore, one future avenue is to use visually522

grounded word embeddings for generating syn-523

onyms for V+L tasks.524

Evaluation of Grammaticality. We evaluated525

whether the utterance is fluent and grammatical526

(as defined in Appendix D) on a scale from 1-5,527

where 1 is “Not understandable” and 5 is “Every-528

thing is perfect; could have been produced by a529

native speaker”. Overall, our attacks are rated as530

highly grammatical (average score 4.429 / 5). We531

furthermore investigate the effect of different at-532

tacks. In particular we manually identify five com-533

mon types of successful attacks. Table 8 lists534

their frequencies and average grammaticality rat-535

ing. Synonyms/near synonyms is the main type536

of attack, closely followed by British vs. Ameri-537

can English (e.g. “color” vs. “colour”, “bath-538

room” vs. “restroom”), others include Singular539

vs. Plural, Comparatives and Superlatives (e.g.540

“great/greater/greatest”) and Others mainly include541

grammar operations like uncaught POS change (e.g. 542

“sunny” vs. “sun”) and tense change (e.g. “eat” vs. 543

“ate”). Looking at the grammar ratings, we conclude 544

that substituting British vs. American English has 545

the least impact on grammaticality, whereas gram- 546

matical operations, such as replacing singular with 547

plural, as well as changes classified under Others 548

have the worst impact. 549
Evaluation of Label Consistency. Finally, we 550

evaluate label consistency by asking users to judge 551

whether the answer remains unchanged for the ad- 552

versarial question by selecting among “1 - Yes, 553

answer is correct”, “2 - No, answer is incorrect” 554

and “3 - Unsure”. We ask three judges to rate each 555

instance and describe results by averaging and by 556

(a more conservative) majority vote to assign a 557

gold label. The results show that most crowdwork- 558

ers (82.0% by averaging and 86.4% by majority 559

vote) think the answer is unchanged, few (9.6% and 560

8.1%) think the answer changes, and the rest (8.4% 561

and 5.5%) are not sure about the change. We con- 562

clude that synonym-based attacks are successful in 563

remaining undetected by humans. 564

8 Conclusion 565

We evaluate the robustness of ten visual dialog 566

models by attacking question and history with two 567

state-of-the-art synonym based textural adversar- 568

ial attack methods. We find that dialog history 569

substantially contributes to model robustness, de- 570

spite previous results which suggest that history has 571

negligible effect on model performance, e.g. (Mas- 572

siceti et al., 2018; Agarwal et al., 2020). We also 573

show limitations of current synonym-based textual 574

attack models, and stress the importance of context 575

(both textual as well as multi-modal) to generate 576

semantically coherent and grammatically fluent ad- 577

versarial attacks, in order to remain undetected by 578

the user. While the observed effects of visually- 579

grounded interpretations in our human evaluation 580

were relatively small, we do believe that it is an 581

important future direction. For example, we expect 582

improved results by using synonym substitution 583

methods based on visually-grounded word embed- 584

dings, e.g. using VisualWord2Vec (Kottur et al., 585

2016). We also believe that a more focused evalua- 586

tion on this issue would show stronger results, e.g. 587

using targeted contrast sets (Gardner et al., 2020). 588

We will also include results from transformer-based 589

models (Wang et al., 2020; Chen et al., 2021) in 590

the future work. 591
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Ethical Considerations592

We use adversarial attack as a tool to evaluate the593

robustness of visual dialog models. However, the594

same techniques can also be used to maliciously595

attack the system. Our experiments demonstrate596

that most synonym-based attacks are successful in597

remaining undetected by humans. However, our598

results also show that the most effective attacks are599

also the ones which are easiest for humans to detect.600

Further work is thus needed to automatically detect601

malicious attacks, e.g. using our proposed gram-602

maticality and contextual multimodal methods.603
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A Implementation Details874

All models are implemented with Pytorch. We em-875

bedded BertAttack and TextFooler to our VisDial876

system5. We initially set the semantic similarity877

threshold 0.5 for attacking both question and his-878

tory (but see ablation study of different threshold879

in Table 6).880

B Full Table of Question Attack881

We show the full table of question attack results882

including R@10 in Table 9 as supplement of Table883

1.884

C Detailed Results for Ablation Study885

We list the full tables of ablation study in Table 10,886

Table 11, Table 12 and Table 13, as supplement887

Table 4, Table 5, Table 6, Table 7 respectively.888

D Details of Human Study889

Here, we provide more details on the human study.890

We show the interface of semantic similarity ex-891

periment for AMT task in Figure 7, including the892

instruction (top). Two versions of this interface893

are conducted, where one is provided with im-894

age, one is without image. The interface of flu-895

ency/grammaticality experiment for AMT task is896

shown in Figure 8. Two versions of this inter-897

face are done as well, where one is with grammar898

checker and one is without. Finally, the interface of899

label consistency experiment is shown in Figure 9.900

E Licence901

Visual Dialog annotations and this website are li-902

censed under a Creative Commons Attribution 4.0903

International License.904

5BertAttack code from https://github.com/
LinyangLee/BERT-Attack and TextFooler code
from https://github.com/jind11/TextFooler.
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Question Attack

Orig.R@1 Aft.R@1 [∆] Orig.R@5 Aft.R@5 [∆] Orig.R@10 Aft.R@10 [∆] Orig.NDCG Aft.NDCG [∆] Orig.MRR [∆] Aft.MRR Pert. S.S. Quer.

BertAttack

MCA-I 46.6 38.2 [-18.0] 76.3 62.7 [-17.8] 86.6 74.1 [-14.4] 61.5 54.9 [-10.7] 60.0 47.7 [-20.5] 16.7 74.4 5.2
MCA-H 45.9 40.0 [-12.9] 76.8 67.3 [-12.4] 86.8 76.6 [-11.8] 52.2 48.4 [-7.3] 60.0 51.1 [-14.8] 16.7 75.4 5.2
MCA-I-HGQ 50.8 45.6 [-10.2] 81.7 71.4 [-12.6] 90.2 80.3 [-11.0] 60.0 55.2 [-8.0] 64.3 55.6 [-13.5] 17.1 74.1 5.2
MCA-I-VGH 48.6 43.3 [-10.9] 78.7 68.0 [-13.6] 88.6 78.4 [-11.5] 62.6 57.3 [-8.5] 62.2 53.3 [-14.3] 16.7 74.3 5.2
MCA-I-H 50.0 45.2 [-9.6] 81.4 69.5 [-14.6] 90.8 80.0 [-11.9] 59.6 54.6 [-8.4] 63.8 54.6 [-14.4] 16.7 74.8 5.2

RvA 49.9 43.9 [-12.0] 82.2 72.2 [-12.2] 91.1 82.6 [-9.3] 56.3 50.9 [-9.6] 64.2 54.5 [-15.1] 17.0 74.4 5.2

P1 48.8 43.5 [-10.9] 80.2 69.2 [-13.7] 89.7 80.7 [-10.0] 60.0 54.2 [-9.7] 62.9 54.1 [-14.0] 17.4 74.2 5.2
P1+P2 41.9 37.1 [-11.5] 66.9 57.8 [-13.6] 80.2 71.1 [-11.3] 73.4 67.9 [-7.5] 54.0 46.2 [-14.4] 17.0 73.7 5.2

SLG 49.1 43.9 [-10.6] 81.1 72.1 [-11.1] 90.4 81.2 [-10.2] 63.4 58.4 [-7.9] 63.4 55.0 [-13.2] 17.5 73.4 5.2
SLG+KT 48.7 42.6 [-12.5] 71.3 60.8 [-14.7] 83.4 74.4 [-10.8] 74.5 68.2 [-8.5] 59.9 50.3 [-16.0] 17.3 74.6 5.2

TextFooler

MCA-I 46.6 36.1 [-22.5] 76.3 63.9 [-16.3] 86.6 74.9 [-13.5] 61.5 53.9 [-12.4] 60.0 47.1 [-20.5] 16.8 74.4 19.7
MCA-H 45.9 39.1 [-14.8] 76.8 68.5 [-10.8] 86.8 78.3 [-9.8] 52.2 48.0 [-8.0] 60.0 51.1 [-14.8] 17.1 74.6 19.7
MCA-I-HGQ 50.8 44.2 [-13.0] 81.7 71.6 [-12.4] 90.2 81.2 [-10.0] 60.0 54.4 [-9.3] 64.3 54.8 [-14.8] 17.0 74.4 19.9
MCA-I-VGH 48.6 41.5 [-14.6] 78.7 68.2 [-13.3] 88.6 78.9 [-10.9] 62.6 56.5 [-9.7] 62.2 52.3 [-15.9] 16.5 74.4 19.8
MCA-I-H 50.0 43.1 [-13.8] 81.4 71.2 [-12.5] 90.8 81.3 [-10.5] 59.6 53.7 [-9.9] 63.8 54.0 [-15.4] 16.9 74.7 19.8

RvA 49.9 43.6 [-12.6] 82.2 73.2 [-10.9] 91.1 84.2 [-7.6] 56.3 50.2 [-10.8] 64.2 55.3 [-13.9] 16.9 74.9 19.9

P1 48.8 42.6 [-12.7] 80.2 71.1 [-11.3] 89.7 82.2 [-8.4] 60.0 53.5 [-10.8] 62.9 54.4 [-13.5] 17.3 74.3 20.1
P1+P2 41.9 35.8 [-14.6] 66.9 56.9 [-14.9] 80.2 71.8 [-10.5] 73.4 66.9 [-8.9] 54.0 45.1 [-16.5] 17.1 73.7 19.8

SLG 49.1 43.1 [-12.2] 81.1 73.4 [-9.5] 90.4 82.7 [-8.5] 63.4 57.8 [-8.8] 63.4 55.3 [-12.8] 17.3 74.2 19.9
SLG+KT 48.7 41.6 [-14.6] 71.3 59.7 [-16.3] 83.4 74.9 [-10.2] 74.5 67.6 [-9.3] 59.9 49.8 [-16.9] 17.1 74.6 19.9

Table 9: Comparison of performance before attacking question (Orig.) and after (Aft.) on different VisDial models.
In addition to standard metrics, we measure the perturbed word percentage (Pert.), semantic similarity (S.S) and
the number of queries (Quer.) to assess BertAttack vs. TextFooler. The relative performance drop is listed as [∆].
Highlights indicate the least robust and most robust model.

Orig.R@1 Aft.R@1 Orig.R@5 Aft.R@5 Orig.R@10 Aft.R@10 Orig.NDCG Aft.NDCG Orig.MRR Aft.MRR Pert. S.S. Quer.

Random
50.0

46.2
81.4

71.7
90.8

81.4
59.6

56.0
63.8

55.9 17.0 73.4 5.2
Ours 45.2 69.5 80.0 54.6 54.6 16.7 74.8 5.2

Table 10: Effect of vulnerable word attack (full table) on MCA-I-H model with BertAttack, supplement of Table 4.

Orig.R@1 Aft.R@1 Orig.R@5 Aft.R@5 Orig.R@10 Aft.R@10 Orig.NDCG Aft.NDCG Orig.MRR Aft.MRR Pert. S.S. Quer.

All
50.0

43.7
81.4

73.3
90.8

84.3
59.6

54.1
63.8

57.2 16.7 74.4 6.1
Ours 45.2 69.5 80.0 54.6 54.6 16.7 74.8 5.2

Table 11: Effect of stop words set (full table) on MCA-I-H model with BertAttack, supplement of Table 5.

ε Orig.R@1 Aft.R@1 Orig.R@5 Aft.R@5 Orig.R@10 Aft.R@10 Orig.NDCG Aft.NDCG Orig.MRR Aft.MRR Pert. S.S. Quer.

0.7

50.0

47.0

81.4

69.2

90.8

79.4

59.6

55.6

63.8

54.1 16.1 82.0 5.8
0.5 45.2 69.5 80.0 54.6 54.6 16.7 74.8 5.2
0.3 44.6 69.5 79.9 54.1 54.8 16.9 71.8 5.1
0.1 44.6 69.5 80.0 53.9 54.8 17.1 70.9 5.1

Table 12: Effect of semantic similarity threshold ε (full table) on MCA-I-H model with BertAttack, supplement of
Table 6.

Orig.R@1 Aft.R@1 Orig.R@5 Aft.R@5 Orig.R@10 Aft.R@10 Orig.NDCG Aft.NDCG Orig.MRR Aft.MRR Pert. S.S. Quer.

Raw Attack

50.0

44.2

81.4

69.8

90.8

80.2

59.6

53.7

63.8

54.9 17.4 70.3 4.9
+POS 44.5 69.5 80.0 53.8 54.8 17.1 70.3 5.1
+POS+S.S.(0.5) 45.2 69.5 80.0 54.6 54.6 16.7 74.8 5.2
+POS+S.S.(0.5)+Gram. 45.4 70.9 81.2 55.9 55.1 13.0 71.4 5.2

Table 13: Effect of different constraints for adversarial attack (full table) on MCA-I-H model with BertAttack,
supplement of Table 7.
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Instructions
We give some examples for the different options.
A - One text means something completely different
e.g. "Can you see big ben"/ Can you see huge ben? (Entity changes - independent of picture)
e.g. "Are the planes close to each other" / "Are the planes close to any other?" (Question scope changes)
B - One text means something different
e.g. "Is the dog/ dogs a Cocker Spaniel?" depends on whether there is more than 1 dog.
C - The meaning is somehow similar but one of texts means something slightly different.
e.g. "Is the fireplace lit ?"/"Is the furnace lit ?" (Similar meaning)
D - They have exactly the same meaning
e.g. "Does it have color?"/ "Does it have colour?" (Pretty much only applies to BE/ AE spelling?)

 How similar is the meaning of these two pieces of text ? 

QuestionText  (and image)

Figure 7: Interface of ’Evaluation of Semantics’ for AMT task (image is optional).

Instructions

'Fluent - could this have been produced by a native speaker?'
'Grammatical - are there any grammar errors, such as verb agreement?'

How fluent/grammatical is the text?
Question

Text

Is the blanket cleaned ?

Figure 8: Interface of ’Evaluation of Grammaticality’ for AMT task.
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Instructions

Is it a correct/resonable answer for the question given
the image?

QuestionText  (and image)

We give some examples for 'unsure' option.
"Unsure - the question doesn't make sense given the picture." (e.g. question asking
about "a man" when there is only a child in the picture.)
"Unsure - I can't verify the answer given the picture." (e.g. question asking whether
someone smiles, but it's hard to see.)
"Unsure - the question is difficult to understand because it's ungrammatical" (e.g. the
question is highly ungrammatical and disfluent)
"Unsure - the question is ambiguous given the picture." (e.g. the question has more
than one answer)

Figure 9: Interface of ’Evaluation of Label Consistency’ for AMT task.
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