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Abstract
The Segment Anything Model (SAM), a foun-
dation model pretrained on millions of images
and segmentation masks, has significantly ad-
vanced semantic segmentation, a fundamental
task in computer vision. Despite its strengths,
SAM encounters two major challenges. Firstly,
it struggles with segmenting specific objects au-
tonomously, as it relies on users to manually input
prompts like points or bounding boxes to iden-
tify targeted objects. Secondly, SAM faces chal-
lenges in excelling at specific downstream tasks,
like medical imaging, due to a disparity between
the distribution of its pretraining data, which pre-
dominantly consists of general-domain images,
and the data used in downstream tasks. Current
solutions to these problems, which involve fine-
tuning SAM, often lead to overfitting, a notable
issue in scenarios with very limited data, like in
medical imaging. To overcome these limitations,
we introduce BLO-SAM, which finetunes SAM
based on bi-level optimization (BLO). Our ap-
proach allows for automatic image segmentation
without the need for manual prompts, by opti-
mizing a learnable prompt embedding. Further-
more, it significantly reduces the risk of overfit-
ting by training the model’s weight parameters
and the prompt embedding on two separate sub-
sets of the training dataset, each at a different
level of optimization. We apply BLO-SAM to di-
verse semantic segmentation tasks in general and
medical domains. The results demonstrate BLO-
SAM’s superior performance over various state-
of-the-art image semantic segmentation methods.
The code of BLO-SAM is available at https:
//github.com/importZL/BLO-SAM.
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1. Introduction
Semantic segmentation is a critical task in computer vision,
which aims to assign each pixel with a semantic class (ob-
ject classes such as dog and cat, or scene categories such as
sky and ocean) (Mo et al., 2022). Deep learning has demon-
strated great success in advancing the performance of seman-
tic segmentation (Lateef & Ruichek, 2019). This progress
has been further propelled by the emergence of foundation
models (FMs) (Bommasani et al., 2021), a.k.a. large pre-
trained models, which have demonstrated unprecedented
prevalence across diverse tasks, including vision (Radford
et al., 2021; Moor et al., 2023), language (Brown et al., 2020;
Touvron et al., 2023a;b), and multi-modality (Alayrac et al.,
2022; Wang et al., 2022). Building on a data engine using
11 million image-mask pairs, the Segment Anything Model
(SAM) (Kirillov et al., 2023) emerges as a noteworthy seg-
mentation foundation model, and demonstrates strong ca-
pabilities in segmenting diverse natural images. As a novel
promptable segmentation model, SAM distinguishes itself
by yielding desired segmentation masks when provided with
appropriate points or bounding boxes as prompts (detailed
descriptions about SAM can be found in Appendix B).

Despite its strong performance in producing accurate seg-
mentation masks based on prompts, SAM faces a notable
limitation - it cannot autonomously segment specific ob-
jects, as it requires points or bounding boxes as manual
prompts1. For example, if we would like to segment lungs
from a chest X-ray image, we need to provide at least one
point on the lung region or bounding boxes enclosing the
lungs to indicate that the objects aimed to segment are the
lungs. Another significant challenge of applying SAM for
downstream segmentation tasks arises from the distribution
discrepancy between the pretraining data of SAM and the
data in downstream tasks. On tasks where the data distri-
bution deviates from the pretraining data, SAM struggles
to segment the desired objects accurately even with proper
prompts (Mazurowski et al., 2023; He et al., 2023).

To address the distribution discrepancy issue, Med-SA (Wu

1Although the SAM paper mentions that SAM can accept tex-
tual prompts, only points, bounding boxes, and coarse masks are
supported as prompts in its public codebase.
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Figure 1. (a) BLO-SAM Overview: The majority of original SAM parameters are frozen. LoRA layers enable parameter-efficient
finetuning of the mask decoder’s Transformer layers. Learnable parameters are categorized into two groups: learnable model parameters
in the mask decoder and learnable embeddings as input to the prompt encoder. (b) Two parameter groups are updated through two
interdependent optimization problems.

Figure 2. Dice scores on the train and test sets versus training
epochs, on (a) gastrointestinal disease and (b) human body seg-
mentation tasks. The train and test curves for SAMed exhibit a
large gap between epochs 60 and 100, indicating that severe over-
fitting to the training data occurs. A similar pattern is observed in
the case of Med-SA. Conversely, the train-test gap for BLO-SAM
is much smaller compared to SAMed and Med-SA, underscoring
our method’s effectiveness in mitigating overfitting.

et al., 2023) utilizes Adapter (Houlsby et al., 2019) to fine-
tune SAM’s image encoder and mask decoder in down-
stream tasks, resulting in superior performance over several
SOTA segmentation methods on various medical datasets.
Nevertheless, Med-SA still needs prompts manually pro-
vided by humans or generated from an initial segmentation
mask, during both training and inference phases, making
it less practical in real-world applications. To address both
challenges (i.e., distribution discrepancy and the need for
manual prompts), SAMed (Zhang & Liu, 2023) finetunes
SAM with a default prompt (i.e., a learnable vector) instead
of manual prompts, directly outputting multiple segmenta-
tion masks for all the classes. However, the above methods
still have limitations. They bear a risk of overfitting when
labeled data are very limited in downstream tasks. For exam-
ple, in medical domains, images with labeled segmentation
masks are often scarce, either due to the limited number of
input images (e.g., for privacy concerns) or the difficulty of
obtaining segmentation masks (e.g., requiring domain ex-
perts to annotate, which is time-consuming and expensive).
Finetuning large foundation models like SAM on these label-
scarce settings often leads to overfitting to training data and
poor generalization to test images. As demonstrated in our
experiments (see Fig. 2), SAMed and Med-SA suffer from
severe overfitting and low test performance.

In response to the above challenges, we introduce BLO-
SAM, a finetuning method for SAM that addresses the over-
fitting issue based on bi-level optimization (BLO). BLO-
SAM combats overfitting by updating two separate sets
of learnable parameters on two splits of the training data.
Illustrated in Fig. 1(a), BLO-SAM involves two sets of
parameters: i) segmentation model’s weight parameters,
including LoRA layers (Hu et al., 2021), transposed con-
volutions, and MLP heads, and ii) the prompt embedding.
These parameters undergo optimization through two lev-
els of nested optimization problems, as shown in Fig. 1(b).
In the lower level, we iteratively train segmentation model
weights by minimizing a finetuning loss on a designated
subset of the training dataset while keeping the learnable
prompt embedding fixed. Following this finetuning, we tran-
sition to the upper level to validate the model’s effectiveness
on the remaining subset of the training data. The prompt
embedding is then updated by minimizing the validation
loss. By segregating the learning processes for different
learnable parameters onto distinct data subsets within two
optimization problems, our method effectively mitigates the
risk of overfitting to a single dataset, enhancing the model’s
generalization on test examples.

BLO-SAM’s mechanism of combating overfitting is inspired
by the well-established practice of hyper-parameter tun-
ing (Franceschi et al., 2018). Typically, a model’s weight
parameters (such as weights and biases in a neural network)
are trained on a training dataset, while the hyper-parameters
(like the number of layers in a neural network) are tuned on
a separate validation set, which prevents overfitting the train-
ing data. If hyper-parameters were also tuned on the training
set, it would lead to significant overfitting. Similarly, in the
context of SAM, prompt embeddings can be regarded as a
form of ‘hyper-parameters’. Overfitting arises when these
embeddings, along with the segmentation model weights,
are optimized together by minimizing a loss function on a
single dataset, as SAMed do. Our BLO-SAM follows the
correct way of ‘hyper-parameter tuning’: it optimizes the
‘hyper-parameters’ - the prompt embedding - on a ‘valida-
tion set’ - a subset of the training data, while training the
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segmentation model weights on the other subset.

Our work makes two key contributions:

• We propose BLO-SAM, an overfitting-resilient ap-
proach for finetuning SAM with only a few training
examples. We propose to learn the prompt embedding
and model parameters of SAM on two distinct sub-
datasets in a BLO framework, effectively combating
overfitting in ultra-low data regimes. Furthermore, our
method enables fully automated segmentation with-
out the need for manual prompts during inference and
training. This substantially enhances the practical ap-
plicability of SAM in real-world scenarios.

• Our extensive experiments on six datasets from general
domains and medical domains demonstrate the strong
effectiveness of BLO-SAM with less than 10 train-
ing examples. Our method significantly outperforms
vanilla SAM, SAM-based models, few-shot seman-
tic segmentation methods, and popular segmentation
models, without requiring manual prompts.

2. Related Work
2.1. Semantic Segmentation

In the realm of semantic segmentation, substantial progress
has been made recently, particularly within the context of
deep learning-based methods. Many works focus on the
architectural design of segmentation neural networks, such
as fully convolutional networks (FCNs) (Long et al., 2015),
U-Net (Ronneberger et al., 2015), DeepLab (Chen et al.,
2017a), and SegFormer (Xie et al., 2021). The incorpora-
tion of attention mechanisms, exemplified in Atrous Spatial
Pyramid Pooling (ASPP) (Chen et al., 2017a) and non-local
neural networks (Wang et al., 2018), has further improved
contextual understanding in semantic segmentation. Re-
cently, the Segment Anything Model (SAM) (Kirillov et al.,
2023) emerged as an FM for image segmentation. SAM
uses an MAE-pretrained ViT (He et al., 2022) to encode
the input image, positional embedding to encode prompts,
and a lightweight Transformer (Vaswani et al., 2017) based
mask decoder to produce high-quality segmentation masks.
Please see Appendix B for details.

As discussed in Section 1, multiple works (Mazurowski
et al., 2023; He et al., 2023) have shown SAM demonstrates
reduced effectiveness in downstream tasks when there is a
noticeable difference between the data it was pretrained on
and the task-specific data. For example, He et al. (2023)
studied the performance of SAM on 12 medical segmenta-
tion datasets, showing SAM performs significantly worse
than five SOTA algorithms on some datasets. The findings
underscore the necessity of finetuning SAM when it is ap-
plied to domains other than natural images. To address this,
MedSAM (Ma & Wang, 2023), Med-SA (Wu et al., 2023),

and SAMed (Zhang & Liu, 2023) finetune SAM on medical
images, outperforming several SOTA methods. To enable
prompting SAM using texts, LISA (Lai et al., 2023) inte-
grates a multi-modal large language model, LLaVA (Liu
et al., 2023a), with SAM. In addition, Yang et al. (2023) and
Cheng et al. (2023) further extend SAM to video segmen-
tation and object tracking in videos, demonstrating SAM’s
versatility across a range of visual tasks

2.2. Model Finetuning

Finetuning techniques have demonstrated state-of-the-art
effectiveness in adapting large-scale foundation models for
specialized downstream tasks (Radford et al., 2018; De-
vlin et al., 2018). However, as foundation models grow in
size, finetuning all parameters becomes increasingly expen-
sive (Brown et al., 2020; Touvron et al., 2023a; Kirillov
et al., 2023) in computation. Therefore, various parameter-
efficient finetuning methods have been proposed to alle-
viate this issue. For instance, Adapter (Houlsby et al.,
2019) injects trainable adapter layers into pretrained Trans-
formers (Vaswani et al., 2017). Low-Rank Adaptation
(LoRA) (Hu et al., 2021) adds learnable low-rank matri-
ces to the pretrained weight matrices of foundation models
and only optimizes the low-rank matrices in the finetun-
ing stage with the pretrained parameters frozen. Zhang
et al. (2023a) proposes to adaptively allocate budgets for
updating different LoRA layers based on their importance
scores when adapting to a specific downstream task. Prompt-
tuning (Lester et al., 2021) proposes optimizable ‘soft
prompts’ for a specific downstream task and only optimizes
the trainable prompts during finetuning. P-tuning (Liu et al.,
2023b) finetunes the pretrained foundation model by train-
ing a neural network to generate prompt embeddings while
keeping the pretrained parameters frozen. IA3 (Liu et al.,
2022) proposes to multiply the output of activation layers
in the pretrained foundation models with trainable vectors
and optimize these vectors in the finetuning stage. Contrary
to these methods that emphasize parameter efficiency, our
approach is centered on mitigating overfitting. It is designed
to complement these methods rather than replace them.

2.3. Bi-Level Optimization

Bi-level optimization (BLO) refers to a class of optimiza-
tion problems in which one optimization problem (lower
level) is nested within another optimization problem (upper
level) (Sinha et al., 2017). Various tasks can be formualted
in a BLO framework, including meta-learning (Finn et al.,
2017; Killamsetty et al., 2022; Qin et al., 2023), neural archi-
tecture search (Liu et al., 2018; Hosseini & Xie, 2022), and
data reweighting (Shu et al., 2019; Garg et al., 2022; Hos-
seini et al., 2023). In these tasks, model weights are usually
learnt during lower-level optimization on the training split
of the dataset, while meta-variables like hyper-parameters
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or architectures are learnt in the upper-level optimization on
a separate validation split to alleviate the issue of overfitting.

Numerous gradient-based optimization algorithms and soft-
ware have been developed for solving BLO problems. For
example, Liu et al. (2018) develop a finite difference approx-
imation method to efficiently compute the gradients with
regard to the upper level variables in BLO problems. Finn
et al. (2017) propose to compute the gradient updates of
meta variables directly with iterative differentiation (Grazzi
et al., 2020). Choe et al. (2022) develop a software for users
to easily and efficiently compute gradients within BLO prob-
lems with different approximation methods.

3. Method
3.1. Overview of BLO-SAM

Our approach, BLO-SAM, finetunes SAM for downstream
semantic segmentation tasks using bi-level optimization
(BLO). In the pretrained SAM model, certain parameters
undergo finetuning, whereas others remain static throughout
the finetuning process, as shown in Fig. 1. Furthermore, to
eliminate the need for manual prompts, we learn a prompt
embedding vector. To combat overfitting, we split the train-
ing set into two halves (denoted by D1 and D2), which
are used for learning SAM’s finetunable parameters and
the prompt embedding, respectively. In the lower-level of
our BLO framework, SAM’s finetunable parameters (de-
noted by W ) are optimized on the sub-dataset D1, with the
prompt embedding (denoted by A) tentatively fixed. The
optimal solution W ∗(A), dependent on A, is then passed to
the upper level. In the upper-level optimization, W ∗(A) is
validated on the sub-dataset D2. The validation loss, which
is a function of the prompt embedding A, indicates the gen-
eralization performance of the finetuned SAM. We optimize
A to minimize this validation loss for reducing the risk of
overfitting and improving generalization. The two levels
of problems share the same form of loss function designed
for semantic segmentation. The two levels are optimized
iteratively until convergence, as shown in Algorithm 1.

Finetuning SAM with LoRA. We employ Low-Rank
Adaptation (LoRA) (Hu et al., 2021) for parameter-efficient
finetuning of SAM. LoRA introduces an additional learn-
able matrix (known as a LoRA layer), which is of lower
rank, as an update to the existing pretrained weight matrix.
During finetuning, the focus is on optimizing this lower-rank
matrix, while keeping the pretrained matrix static. Notably,
the LoRA layer comprises considerably fewer parameters
than the original matrix, enhancing the efficiency of the fine-
tuning process. As shown in Fig. 3, a LoRA layer is added to
each query and value projection layer of all attention blocks
in SAM’s mask decoder, including self-attention, image-to-
token attention, and token-to-image attention. Each LoRA

Figure 3. Finetune SAM with LoRA. We add LoRA layers to query
and value projection layers within the attention block of SAM’s
mask decoder. ‘Q proj.’, ‘K proj.’, ‘V proj.’, and ‘Out proj.’ denote
the projection layers for the query, key, value, and output.

layer consists of two sequential linear layers where the first
one projects the input token to a low-dimensional space and
the second one projects from the low-dimensional space
back to the original feature space so that the output of LoRA
can be added to the output of the frozen Transformer layer
(Fig. 3). For different attention blocks, the input tokens
differ. In the self-attention block, the prompt embedding
serves as all three input tokens. For image-to-token atten-
tion blocks, the prompt embedding is used for both key and
value projections, while the image embedding is used for the
query projection. Conversely, in the token-to-image atten-
tion blocks, the image embedding is employed for key and
value projections, and the prompt embedding is utilized for
the query projection. In the end, the learnable parameters of
SAM encompass those in the LoRA layers, the transposed
convolutions, and the multi-layer perceptron (MLP) head lo-
cated in the mask decoder, with all other model parameters
frozen, as shown in Fig. 1(a).

3.2. Bi-Level Finetuning Framework

Lower-Level Optimization Problem. In the lower level,
we tentatively fix the prompt embedding A and optimize
SAM’s finetunable parameters W on the first sub-dataset
D1 by minimizing the following loss:

L = (1− λ)LCE(W,A;D1) + λLDice(W,A;D1), (1)

where LCE and LDice represent cross-entropy loss and dice
loss, respectively, between predicted masks and ground-
truth masks, and λ is a tradeoff parameter. The (W,A;D1)
arguments indicate the loss depends on the model parame-
ters and prompt embedding while computed on dataset D1.
The lower level aims to solve the following problem:

W ∗(A) = argminW L(W,A;D1). (2)

W ∗(A) implies the optimal solution W ∗ depends on A as
W ∗ depends on the loss function which depends on A.
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Algorithm 1 Optimization Algorithm for BLO-SAM
1: Input: Sub-datasets D1, D2. Learning rates η1, η2.

Parameter initialization W (0), A(0).
2: for t = 1, 2, 3, · · · do
3: Sample a batch from D1. Update W (t) via Eq. (2).
4: Sample a batch from D2. Update A(t) via Eq. (3).
5: end for

Upper-Level Optimization Problem. In the upper level,
we validate the finetuned model W ∗(A) on the second sub-
dataset D2. The learnable prompt embedding is updated by
minimizing the validation loss:

minA L(W ∗(A), A;D2), (3)

which is the same loss function as Eq. (1) but with D1 re-
placed by D2 and W replaced by W ∗(A). The key in Eq. 3
is that the loss depends on W ∗(A) which also depends on
A. Thus, we need to “unroll” W ∗(A) to correctly compute
the gradient w.r.t. A, as detailed in Appendix A.

Bi-Level Optimization Framework. Integrating the
aforementioned two optimization problems, we have a bi-
level optimization framework:

min
A

L(W ∗(A), A;D2)

s.t. W ∗(A) = argminW L(W,A;D1) (4)

In this framework, the two optimization problems are inter-
dependent. The output of the lower level, W ∗(A), serves as
the input for the upper level. The optimization variable A in
the upper level is used in the lower-level loss function.

3.3. Optimization Algorithm

We employ a gradient-based optimization algorithm to solve
the problem in Eq. (4). Drawing inspiration from Liu et al.
(2018), we perform a one-step gradient descent for Eq. (2)
to approximate the optimal solution W ∗(A). Subsequently,
we substitute the approximation of W ∗(A) into the upper-
level optimization problem. A is updated by minimizing the
approximated upper-level loss function via gradient descent.
These steps constitute one global optimization step. We
iteratively perform global steps between the lower level and
upper level until convergence, as shown in Algorithm 1.
Detailed derivations are provided in Appendix A.

4. Experiments
In this section, we evaluate BLO-SAM across a diverse set
of semantic segmentation tasks from both general domains
and medical domains, including human face components
segmentation, car components segmentation, human body
segmentation, teeth segmentation, gastrointestinal disease

segmentation, and lung segmentation. To be compatible
with SAM, each multi-class segmentation task is converted
to multiple binary segmentation tasks, one for each class.
Our experiments focus on ultra-low data regimes, where the
number of training examples is less than ten.

4.1. Datasets

For the human facial components segmentation task, we
employed the CelebAMask-HQ dataset (Lee et al., 2020), a
collection of high-resolution face images accompanied by
segmentation masks of various facial components including
brow, eye, hair, nose, and mouth. For the car segmenta-
tion task, we used the dataset from David (2020), which
contains images of cars and their segmentation masks with
four semantic components: car body, wheel, light, and win-
dows. We only used the car body, wheel, and windows
as the ‘light’ category is missing in many data examples.
For human body segmentation, we used the TikTok dances
dataset (Roman, 2023). For teeth, gastrointestinal disease,
and lung segmentation tasks, we utilized the children’s den-
tal panoramic radiographs dataset (Zhang et al., 2023b),
Kvasir-SEG dataset (Jha et al., 2020), and JSRT dataset (Shi-
raishi et al., 2000), respectively. Every dataset is comprised
of a training set and a test set. By randomly sampling a
small number of examples from the original training set, we
create a new few-shot training set which is then used to train
our model and baselines. More details about the datasets can
be found in Appendix C. We repeated each sampling three
times at random, and the mean performance over the test
set is reported in the main paper, while standard deviations
are detailed in Appendix F. In our method, the sampled new
training set is further randomly split into two subsets D1

and D2 with equal size. Baseline methods utilize the entire
new training set without any subdivision.

4.2. Experimental Settings

Baselines and Metrics. We compared our method with
a variety of baselines, including supervised, few-shot, and
SAM-based approaches. The supervised methods include
DeepLabV3 (Chen et al., 2017b), a widely adopted model in
semantic segmentation, and SwinUnet (Cao et al., 2022), an
UNet-like transformer designed for medical image segmen-
tation. Few-shot learning methods include HSNet (Zhang
et al., 2022) which uses cross-semantic attention to bridge
the gap between low-level and high-level features, and
SSP (Fan et al., 2022) which introduces a self-support match-
ing strategy to capture consistent underlying characteris-
tics of query objects. SAM-based baselines include vanilla
SAM (Kirillov et al., 2023), Med-SA (Wu et al., 2023) and
SAMed (Zhang & Liu, 2023) which use Adapter (Houlsby
et al., 2019) and LoRA (Hu et al., 2021) for SAM finetuning
respectively. Med-SA and SAMed update all learnable pa-
rameters on a single training set. For vanilla SAM, we con-
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Table 1. Average Dice score (%) on the CelebAMask dataset, with different numbers of training examples. Standard deviations are in
Appendix F. The overall performance is calculated by averaging the results for different facial components. The last column indicates
whether manual prompts are needed.

Method Training with 4 labeled examples Training with 8 labeled examples Manual
PromptsOverall Brow Eye Hair Nose Mouth Overall Brow Eye Hair Nose Mouth

DeepLab 49.5 33.2 55.9 55.2 55.8 47.5 54.9 37.3 59.7 58.0 64.0 55.7 %

SwinUnet 35.2 21.7 21.7 46.7 44.4 41.6 42.4 28.8 33.1 52.7 47.6 49.8 %

HSNet 49.9 30.1 41.9 58.9 59.6 59.0 60.1 43.6 58.1 76.6 58.2 64.2 %

SSP 56.9 40.3 33.6 73.2 71.6 65.6 60.0 45.4 31.2 76.6 74.0 72.7 %

SAM 32.9 20.8 30.6 44.0 44.1 25.2 32.9 20.8 30.6 44.0 44.1 25.2 !

Med-SA 62.9 36.3 63.6 77.6 71.0 66.0 67.7 42.9 65.5 82.4 74.6 73.1 !

SAMed 58.2 28.3 55.9 78.5 65.1 63.0 65.0 39.5 66.0 82.4 70.5 66.4 %

BLO-SAM 65.9 39.4 65.5 82.8 74.3 67.6 69.9 45.8 71.1 83.6 76.1 72.7 %

Table 2. The comparison of BLO-SAM with baselines on the car components and human body datasets evaluated by Dice Score (%) with
different numbers of training examples. Standard deviations are in Appendix F. The overall performance is calculated by averaging the
results for different components.

Method
Car components Human body

Training with 2 labeled examples Training with 4 labeled examples 4 examples 8 examplesOverall Body Wheel Window Overall Body Wheel Window
DeepLab 46.5 58.5 55.0 26.1 59.8 62.9 66.6 49.8 31.8 37.0
SwinUnet 31.4 22.2 33.4 38.7 47.3 49.3 53.7 38.9 30.9 56.8

HSNet 51.0 67.1 32.4 53.4 68.8 70.8 70.3 65.4 50.6 55.8
SSP 64.1 62.8 76.2 53.3 72.2 77.7 78.2 60.6 58.9 76.5
SAM 35.1 40.8 41.7 22.9 35.1 40.8 41.7 22.9 26.0 26.0

Med-SA 67.3 80.8 70.9 50.3 75.9 84.4 78.1 65.3 58.8 80.6
SAMed 60.4 78.8 65.0 37.5 74.0 85.3 72.5 64.2 63.8 81.5

BLO-SAM 71.1 83.2 74.5 55.6 78.3 86.3 79.9 68.6 76.3 85.1

structed three different types of prompts from each ground-
truth mask, including a positive point from the foreground,
a negative point from the background, and bounding boxes
of target objects. For Med-SA, its prompts are extracted
from the ground-truth masks as well. During inference, both
SAM and Med-SA necessitate user-generated prompts, a re-
quirement that is unfeasible when test images are numerous.
Following the evaluation protocols of SAM and Med-SA,
these prompts are derived in advance from the ground-truth
masks. It is important to recognize that such an approach
is impractical, as it needs to access the ground-truth masks
of test images. Nevertheless, they remain the most accessi-
ble baselines we can compare against. All experiments are
conducted on an A100 GPU with 80G memory.

We used the Dice score as the evaluation metric. The Dice
score is defined as 2|A∩B|

|A|+|B| , where A and B represent the
predicted and ground truth mask respectively.

Hyper-parameters. In our method, the trade-off parame-
ter λ in Eq. (1) was set to 0.8 following the setting in Zhang
& Liu (2023). LoRA layers and other non-frozen model
components were optimized in the lower level using the

AdamW optimizer (Loshchilov & Hutter, 2017). We set the
initial learning rate to 5e-3, betas to (0.9, 0.999), and weight
decay to 0.1. The learning rate in the i-th iteration followed
the formula (Zhang & Liu, 2023): lri = lr0(1−i/Itermax)

0.9.
Here, lr0 and Itermax represent the initial learning rate and
maximal training iteration, respectively. For updating the
prompt embedding in the upper level, we used the same set-
tings as in the lower-level optimization. We set the number
of training epochs to 100 and selected the best checkpoint
based on segmentation performance on the D2 sub-dataset.

4.3. Results and Analysis

Human Facial Components Segmentation. In our eval-
uation of BLO-SAM for human facial components segmen-
tation on the CelebAMask dataset, we have two settings with
different numbers (4 or 8) of training examples. The results
presented in Table 1 reveal some noteworthy observations.

Firstly, BLO-SAM demonstrates its strong capability to fine-
tune SAM for accurate facial component segmentation even
with a very small number of training examples. For instance,
with just 4 labeled examples (2 for D1 and the other 2 for
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Table 3. The comparison of BLO-SAM with baselines on the teeth, gastrointestinal disease and lung datasets evaluated by Dice Score (%)
with different numbers of training examples. Standard deviations are in Appendix F. The last three columns show the total number of
model parameters, the number of trainable parameters (in millions), and the training time (in GPU hours).

Method Teeth Kvasir Lung Total
Param(M)

Trainable
Param(M)

Train Cost
(GPU hours)4 examples 8 examples 4 examples 8 examples 2 examples 4 examples

DeepLab 56.8 63.9 31.9 37.8 61.1 76.4 41.9 41.9 0.27
SwinUnet 28.6 50.6 37.8 39.0 62.1 76.4 27.2 27.2 0.29

HSNet 70.2 72.2 30.0 35.1 83.1 84.5 28.1 2.6 0.16
SSP 33.7 51.7 27.4 27.7 83.2 90.1 8.7 8.3 0.22
SAM 21.2 21.2 14.7 14.7 31.4 31.4 91.0 0 0

Med-SA 69.8 75.1 33.5 59.3 82.9 91.7 104.4 10.7 0.62
SAMed 69.9 76.4 42.7 57.1 84.4 91.8 91.0 1.1 0.46

BLO-SAM 73.2 77.3 59.7 61.6 87.1 93.7 91.0 1.1 0.57

D2), BLO-SAM achieves an overall Dice score of 65.9%,
and the score improves to 69.9% when the training dataset
size is increased to 8. The effectiveness of BLO-SAM ex-
tends to individual facial components, exemplified by the
82.8% Dice score for hair segmentation with only 4 training
examples, achieved without any manual input prompts.

Secondly, our BLO-SAM method demonstrates a signif-
icant improvement over the standard SAM. For instance,
when finetuned with just 4 labeled examples, BLO-SAM
dramatically improves the Dice score of SAM from 32.9%
to 65.9%. These results clearly indicate the superiority of
our method as an effective finetuning approach for SAM. It
adeptly adapts the pretrained SAM to the specific data dis-
tributions of downstream tasks, using just a few examples.

Thirdly, BLO-SAM surpasses other SAM-based methods,
including Med-SA and SAMed, which also finetune the
pretrained SAM for specific semantic segmentation tasks.
Unlike Med-SA or SAMed, which update all learnable pa-
rameters on a single training set, BLO-SAM employs bi-
level optimization to update segmentation model weights
and prompt embedding on disjoint subsets of the training
data, effectively mitigating the risk of overfitting. While
Med-SA’s performance is close to that of our method, it
requires manual prompts from users during testing. This
requirement substantially restricts its practicality in real-
world applications. In contrast, our method operates entirely
autonomously, eliminating the need for manual prompting.

Finally, compared to general supervised methods such as
DeepLab and SwinUnet, BLO-SAM shows a substantial ad-
vantage when trained with very few examples. For instance,
with 4 labeled examples, DeepLab achieves an overall Dice
score of 49.5%, whereas BLO-SAM attains a substantially
higher Dice score of 65.9%. BLO-SAM also outperforms
few-shot learning methods including HSNet and SSP, except
for brow segmentation with 4 examples. This superiority is
attributed to its ability to transfer the capacity of SAM to
downstream tasks via finetuning.

Figure 4. Qualitative results on some randomly sampled test im-
ages from the CelebAMask dataset. ‘GT’ denotes ground-truth
segmentation masks.

Fig. 4 shows some qualitative comparisons. We can see that
BLO-SAM generates more accurate segmentation masks
compared to the baselines.

Car Segmentation and Human Body Segmentation.
We further assess BLO-SAM’s performance in segment-
ing car components. Table 2 demonstrates that BLO-SAM
surpasses all baseline methods in terms of the overall Dice
score. For individual components, BLO-SAM excels over
the baselines in most categories, with only an exception in
‘wheel’. In the task of human body segmentation, BLO-
SAM similarly outperforms the baseline models, as evi-
denced in Table 2. Again, the superiority of our method lies
in its strong ability to adapt SAM to the data distributions
of downstream tasks with just a few data examples, while
combating overfitting using the BLO framework and elimi-
nating the need for manual prompts. We further increased
the number of training examples in the body segmentation
task. The results are deferred to Appendix I.

Medical Image Semantic Segmentation. To further
evaluate our method, we perform experiments on several
medical image segmentation tasks, where there may be a
significant distribution shift from the pretraining data of
SAM to the medical datasets. This distribution shift can sig-
nificantly impair SAM’s capability in the medical domain.
We perform experiments on teeth, gastrointestinal disease,
and lung segmentation tasks and report the results in Table 3.
For all medical segmentation tasks, BLO-SAM attains the

7



BLO-SAM: Bi-level Optimization Based Overfitting-Preventing Finetuning of SAM

Table 4. The comparison of BLO-SAM with baselines for out-of-
domain performance.

Human body Car body Teeth Lung

SAM 26.0 40.8 21.2 31.4
SAMed 40.4 51.1 44.5 59.5
BLO-SAM 69.9 68.2 65.5 68.9

best performance compared with baselines. The advantage
of BLO-SAM over the baselines is more evident in the
4-example case than in the 8-example case, which under-
scores BLO-SAM’s strong ability to combat overfitting and
improve generalization in few-shot settings. BLO-SAM’s
superiority can also be demonstrated by comparing the pre-
dicted segmentation masks, as shown in Appendix M.

Out-of-domain performance. We conducted experi-
ments to evaluate BLO-SAM’s adaptability to unseen tasks.
We used BLO-SAM to train a model on the Kvasir dataset
for the polyp segmentation task and subsequently evaluated
its performance on the tasks of segmenting the human body,
car body, lung, and teeth without further training, which
have substantial domain differences compared to polyp seg-
mentation. The same experimental protocol was applied
to baseline methods as well for comparative analysis. The
Dice scores (%) on test sets are presented in the Table 4.
Our method substantially outperforms the baselines, which
underscores our method’s robustness and strong adaptability
to unseen tasks. The inherent design of BLO-SAM, which
mitigates overfitting by learning distinct parameter subsets
on two disjoint data splits, significantly contributes to its
improved out-of-domain generalization capabilities. Other
results that show models’ out-of-domain generalization per-
formance can be found in Appendix E.

Computational Costs and Parameter Counts. We mea-
sured the training cost for all methods on an A100 GPU.
We can see that BLO-SAM has comparable training time
(Table 3) and inference time (Appendix D) to other SAM-
based methods. More detailed analysis can be found in
Appendix D. Furthermore, as shown in Table 3, BLO-SAM
has minimal trainable parameters among all trainable meth-
ods, underscoring its parameter efficiency.

4.4. Ablation Studies

Ablation of Trainable Components of SAM. SAM com-
prises three primary components: image encoder, prompt
encoder, and mask decoder. We have 4 ablation settings,
including 1) finetuning the mask decoder (same as BLO-
SAM), 2) the image encoder (via LoRA layers that are
integrated into the inner Transformer blocks), 3) the prompt
encoder (by updating the convolution layers), and 4) finetun-
ing all the above components. This ablation experiment was

Figure 5. Ablation study of different trainable components. “All”
represents finetuning all three components of SAM.

Figure 6. Ablation study on approaches for optimizing the prompt
embedding.

conducted on body and teeth segmentation datasets, each
with 4 labeled examples during finetuning. The results are
shown in Fig. 5, where we have several key observations.
Firstly, the mask decoder stands out as the most pivotal
component for finetuning when adapting SAM to specific
semantic segmentation tasks. Secondly, finetuning all three
components of SAM yields improved performance, albeit at
the expense of increased trainable parameters and training
cost. For this reason, we only finetune the mask decoder in
our BLO-SAM approach.

Ablation on Methods for Optimizing Prompt Embed-
ding. In this study, we investigate the effectiveness of
three approaches for optimizing prompt embedding. The
experiments are performed on the body and teeth segmen-
tation tasks with 4 labeled examples. The first approach
optimizes both the prompt embedding A and model param-
eters W on the combination of D1 and D2. The second and
third approaches optimize the prompt embedding on D2 as
in BLO-SAM but use first-order and second-order approxi-
mation, respectively, to compute the gradients in the BLO
problem (see Appendix A for details). In the previously
mentioned experiments, we use first-order approximation,
which is computationally more efficient than the second-
order approximation, to reduce computational cost.

Analysis of the results presented in Fig. 6 reveals that opti-
mizing parameters A on sub-dataset D2, while concurrently
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Table 5. Ablation study on the influence of end-to-end mechanism
comparing with performing two stages separately. “Eye-4” refers
to the eye segmentation task with four training examples.

Eye-4 Eye-8 Kvasir-4
Separate 58.3 64.6 52.9
End-to-end 65.5 71.1 59.7

Kvasir-8 Human-4 Human-8
Separate 57.7 71.6 81.4
End-to-end 61.6 76.3 85.1

optimizing parametersW on sub-datasetD1, yields superior
performance compared to the simultaneous optimization of
both parameter sets A and W on the combination of D1

and D2. This observation underscores the advantage of
separately optimizing distinct parameter sets on disjoint sub-
datasets, which is demonstrated to be effective in mitigating
the risk of overfitting compared to optimizing all parame-
ters on a single dataset. Moreover, the results show that
second-order optimization holds the potential to further im-
prove the final performance of the model, compared with the
first-order method. However, it is crucial to acknowledge
that these benefits come with computational challenges and
necessitate increased computational resources.

Ablation of end-to-end optimization. We conducted an
ablation study to verify the end-to-end tuning mechanism.
Specifically, we compared our method, which performs
the two stages end-to-end, against an ablation baseline that
performs the two stages separately. In this baseline, the
prompt embedding is initially set to random values, and the
LoRA layers are trained using dataset D1. Subsequently,
with the LoRA layers fixed, the prompt embedding is trained
on dataset D2. As can be seen in Table 5, our approach
outperforms this baseline. This underscores the advantages
of end-to-end learning. In our method, the LoRA layers
and prompt embedding are learned jointly so that they can
mutually influence each other to achieve the overall best
performance. Such a mechanism is missing in the baseline.

Ablation for the training set split strategy. We exam-
ined whether the performance of our method is significantly
influenced by the strategies used to split the training data
into two subsets, D1 and D2. We experimented with two
strategies: in strategy 1, we randomly split the training data
into two equal-sized subsets, while in strategy 2, we divide
the data into a 3:1 ratio for D1 and D2. In strategy 2, we
make D1 larger than D2 because the LoRA layers trained
using D1 have more parameters than the prompt embedding
trained using D2. To investigate whether the segmentation
performance is significantly affected by the random seeds
utilized to split data, we ran each splitting strategy three
times with different random seeds.

Table 6. Ablation study on training set split strategy. “S1” and “S2”
refer to the Strategy 1 and 2, respectively. “Teeth-4” refers to the
teeth segmentation task with four training examples.

Teeth-4 Wheel-4 Lung-4 Window-4
S1 73.0±0.3 79.6±0.3 93.8±0.4 68.7±0.5
S2 72.2±0.7 79.2±0.8 93.6±0.4 67.4±0.8

Table 7. Ablation study on only updating the model weights of
LoRA layers (without updating prompt embedding). “Human-8”
refers to the human body segmentation task with eight training
examples.

Nose-4 Mouth-4 Eye-4
No Prompt 59.6 57.9 46.2
BLO-SAM 74.3 67.6 65.5

Brow-4 Kvasir-4 Human-8
No Prompt 30.0 52.4 77.5
BLO-SAM 39.4 59.7 85.1

Table 6 shows the average and standard deviation of the test
Dice scores (%) across the three runs. The results show
that Strategies 1 and 2 result in similar performance, which
indicates that the performance of our method is stable un-
der different split ratios. Furthermore, the small standard
deviations indicate that our method’s performance is rela-
tively unaffected by the random seeds used for splitting data.
These findings imply that extensive tuning to identify the
optimal data splits can be avoided. Randomly splitting the
training data into two equal-sized subsets is adequate for
obtaining good segmentation performance.

Ablation on only updating LoRA layers. We performed
this ablation study termed “No Prompt”, where the prompt
embedding was set to randomly sampled values, which
is fixed during the training process, and only the LoRA
layers were updated using D1 and D2. Table 7 presents
the Dice scores on test sets. The performance under this
ablation setting is inferior to our method. This underscores
the importance of learning both the prompt embedding and
LoRA layers, rather than solely focusing on the LoRA layers.

Appendix G presents three additional ablation studies.

5. Conclusion
In this paper, we propose BLO-SAM, a new approach for
finetuning the Segment Anything Model (SAM) to perform
downstream semantic segmentation tasks without requiring
manual prompting. Leveraging a bi-level optimization strat-
egy, we optimize the segmentation model parameters and
prompt embedding on two different sub-datasets, mitigating
the risk of overfitting and enhancing generalization. Experi-
ments across diverse tasks with limited labeled training data
strongly demonstrate the effectiveness of BLO-SAM.
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Impact Statement
The paper that focuses on finetuning the Segment Anything
Model (SAM) represents a significant stride in advancing se-
mantic segmentation in few-shot settings, particularly in the
context of both general and medical domains. Ethically, this
endeavor raises questions about the responsible use of pow-
erful AI technologies in healthcare, potentially improving
diagnostic processes but also necessitating careful consider-
ation of patient privacy and data security. The societal impli-
cations are broad, as the improved segmentation capabilities
can benefit diverse industries, from autonomous vehicles
to medical imaging. However, the responsible deployment
of such advancements is crucial to avoid unintended conse-
quences and biases. Striking a balance between innovation
and ethical considerations will be pivotal in harnessing the
full potential of the research for the betterment of society.
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A. Detailed Optimization Algorithm
In this section, we offer a detailed description of the optimization algorithm of BLO-SAM. We employ a gradient-based
optimization algorithm to tackle the problem outlined in Eq. 4. Drawing inspiration from Liu et al. (2018), we approximately
update W ∗(A) via one-step gradient descent in the lower level optimization. Then we plug the approximate W ∗(A) into the
learning process of prompt embedding in the upper level and update A via one-step gradient descent. By using the one-step
gradient descent updates for the bi-level optimization framework, we reduce the computational complexity. The detailed
derivation of the update is as follows.

Lower-level. For the lower level, we perform a one-step gradient descent for Eq. (2) to approximate the optimal solution
W ∗(A) on D1. Specifically, at step t with an initial W (t) and a learning rate η1, the updated W (t+1) is computed via
gradient descent as follows:

W (t+1) =W (t) − η1
dL(W (t), A(t);D1)

dW (t)
(5)

Upper-level. Subsequently, we substitute W (t+1) as an approximation W ∗(A) into the upper-level optimization problem.
Employing a similar one-step gradient descent, we approximate the optimal solution for A by minimizing the loss on D2.
At step t with an initial A(t) and a learning rate η2, the updated A(t+1) is calculated as follows:

A(t+1) = A(t) − η2
dL(W ∗(A), A(t);D2)

dA(t)
(6)

Inspired by Liu et al. (2018), we apply the unrolled model for the parameters of prompt embedding, A. In such a setting, the
gradient w.r.t. A is:

∇ALD2
(W ∗(A), A) ≈ ∇ALD2

(W − ξ∇WLD1
(W,A), A) (7)

where ξ is the learning rate of the lower-level optimization problem. Applying the chain rule to the approximate gradient
yields:

∇ALD2
(W − ξ∇WLD1

(W,A), A)

=∇ALD2(W
∗, A)− ξ∇2

A,WLD1
(W,A) · ∇W∗LD2

(W ∗, A) (8)

for the second part of Eq. (8), we can apply the infinite difference approximation to simplify it to be:

∇ALD2
(W ∗, A)− ξ∇2

A,WLD1
(W,A) · ∇W∗LD2

(W ∗, A)

≈∇ALD1(W
+, A)−∇ALD1(W

−, A)

2ε
(9)

where, W± = W ± ε∇W∗LD2
(W ∗, A), and ε = 0.01/‖∇W∗LD2

(W ∗, A)‖2. If we set the ξ in Eq. (8) to be 0, we can
get the first-order optimization for prompt embedding, otherwise we get the second-order optimization for the prompt
embedding. For our main method, we utilize the first-order optimization method for its low computational cost. In the
ablation studies in the main paper, we analyze the effect of using the second-order optimization method.

B. Preliminaries of Segment Anything Model (SAM)
The Segment Anything Model (SAM) (Kirillov et al., 2023) follows a comprehensive workflow, as shown in Fig. 7,
beginning with the encoding of an input image and a prompt that indicates the object to segment. SAM comprises three key
components: an image encoder that processes the input image and generates an image embedding, which captures the visual
features of the input image; a prompt encoder that encodes the provided prompts, which captures the semantics of the object
or region to segment; and a lightweight mask decoder that takes both image and prompt features as input and generates a
segmentation mask for the object or region described in the prompt. The image encoder is a ViT (Dosovitskiy et al., 2020),
which outputs a sequence of image tokens (vectors). For the prompts, SAM accommodates various types of prompts, such as
points, bounding boxes, and coarse masks. Point or bounding box prompts are represented by positional encodings (Tancik
et al., 2020). Mask prompts are encoded using a convolutional neural network. If no prompts are manually provided to SAM,
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Figure 7. SAM overview. The image encoder takes an image as input to get the corresponding image embedding. The prompt encoder
takes the input prompts, indicated as green point, red point and the rectangle shown in the image, to generate the prompt embedding. The
mask decoder takes the image and prompts embedding as input to output the final masks.

Table 8. Number of test examples in different tasks.
Dataset CelebAMask Car Body Teeth Kvasir Lung
Test size 2000 100 2000 70 500 147

it dynamically uses a default embedding as the input prompt. The mask decoder, which is a modification of a Transformer
decoder block (Vaswani et al., 2017), efficiently maps the image embedding, prompt embeddings, and an output token to a
mask. In conclusion, SAM is a powerful and versatile tool for promptable segmentation, capable of handling a wide range
of segmentation tasks efficiently and effectively. There are three model versions of the SAM with three different types of
image encoders, scaling from ViT-B, ViT-L and ViT-H. ViT-B represents the encoder with the smallest model size. And, in
our experiments, we use the ViT-B for computational efficiency by default.

C. Datasets
We evaluate our method on six tasks, including three tasks in the general domain, and three tasks in the medical domain.
Correspondingly, we used a total of six datasets in our experiments, each of which was publicly available. The statistics of
the test sets are listed in Table 8.

For the facial components segmentation task, we use the CelebAMask-HQ dataset 2, which is a large-scale face image
dataset that has 30,000 high-resolution face images selected from the CelebA dataset by following CelebA-HQ. Each image
has its segmentation mask of facial attributes corresponding to CelebA. We use the last 2,000 examples as the test set.
For the car components segmentation task, we use the Car segmentation dataset 3, which contains 211 images of cars and
their segmentation masks. The images exhibit a diverse range of car models and environmental contexts, ensuring that our
segmentation method is tested across various visual scenarios. We split the last 100 examples as the test set. For the human
body segmentation task, we use the Human Segmentation Dataset - TikTok Dances 4, which includes 2615 images of a
segmented dancing people that are extracted from the videos from TikTok. We split the last 2000 examples as the test set,
ensuring a robust evaluation of our method across a spectrum of dance scenarios.

For the teeth segmentation task, we use the Children’s Dental Panoramic Radiographs Dataset 5, which is the world’s first
dataset of children’s dental panoramic radiographs for caries segmentation and dental disease detection by segmenting and
detecting annotations is published in this dataset. This dataset has already split its original examples into train and test
sets, thus we just follow the original setting. For the gastrointestinal disease segmentation task, we use the Kvasir dataset 6,
which contains 1000 polyp images and their corresponding ground truth. The diverse set of polyp images captures various

2https://drive.google.com/open?id=1badu11NqxGf6qM3PTTooQDJvQbejgbTv
3https://www.kaggle.com/datasets/intelecai/car-segmentation
4https://www.kaggle.com/datasets/tapakah68/segmentation-full-body-tiktok-dancing-dataset
5https://www.kaggle.com/datasets/truthisneverlinear/childrens-dental-panoramic-radiographs-dataset/data
6https://www.kaggle.com/datasets/abdallahwagih/kvasir-dataset-for-classification-and-segmentation
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shapes, sizes, and locations within the gastrointestinal tract, contributing to the robustness of our segmentation algorithm.
We split the last 500 examples as the test set. For lung segmentation, we utilize the JSRT (Japanese Society of Radiological
Technology) database 7, containing 247 chest radiographs annotated with precise lung masks. This valuable dataset enhances
the robustness of our segmentation method, capturing diverse clinical scenarios. The last 147 examples serve as our test set,
ensuring a comprehensive evaluation of our algorithm’s performance.

D. Training and Inference Cost
In Table 9, we show the training and inference cost comparison for all methods on the teeth segmentation task that are
trained with 4 labeled examples. All the experiments are conducted on an A100 GPU with 80G memories. We use the GPU
hours/seconds to measure the time cost for training and inference, respectively. From the results, we can see that BLO-SAM
can achieve comparable performance in the training time, and BLO-SAM is among the smallest inference cost groups
upon the inference time. Specifically, from the comparison of SAMed and BLO-SAM, We can see that the application
of the bi-level optimization strategy will increase the training time slightly, but it will not influence the inference time at
all. And, compared with other SAM-based methods (e.g. vanilla SAM and Med-SA), BLO-SAM also shows a superior
inference time, because it doesn’t need to input the prompts manually. Finally, compared with other baselines, including the
supervised and few-shot methods, BLO-SAM shows slightly inferior performance in both training and inference costs, but
BLO-SAM also shows a much better semantic segmentation performance.

Table 9. The training and inference time cost comparisons for the teeth segmentation task with 4 examples.

Method DeepLab SwinUnet HSNet SSP SAM Med-SA SAMed BLO-SAM
Training (GPU hours) 0.27 0.29 0.16 0.22 0 0.62 0.46 0.57

Inference (GPU seconds) 9.5 9.6 14.7 37.9 11.2 32.9 10.4 10.4

E. Out-of-domain performance
We conducted experiments in polyp and lung segmentation tasks to evaluate our method’s out-of-domain generalization
ability. For polyp segmentation, we trained a model using the KVasir dataset and then tested it on the CVC-ClinicDB polyp
segmentation dataset without additional training. Similarly, in lung segmentation, we trained a model on the JSRT dataset
and assessed it on the NLM-MC lung segmentation dataset, again without further training. This experimental protocol was
applied to baseline methods as well for comparison. The Dice scores on test sets presented in Table 10 show that our method
outperforms the baselines, underscoring its superior out-of-domain generalization capabilities. This enhanced robustness
can be attributed to our method’s design, which mitigates overfitting by learning two parameter subsets on two separate data
subsets.

Table 10. The comparison of BLO-SAM with baselines for out-of-domain performance.

Polyp segmentation Lung segmentation
Train Set Kvasir JSRT
Test Set CVC-ClinicDB NLM-MC
SAM 20.8 36.7
SAMed 29.5 80.9
BLO-SAM 37.0 85.6

F. Detailed Results
We present a comprehensive analysis of all results, including mean and standard values, in Table 11, Table 12, and Table 13.
A notable trend emerges as we observe the standard values: consistently, BLO-SAM outperforms the baselines by exhibiting
smaller standard deviations across the majority of experiments. This trend indicates that BLO-SAM demonstrates enhanced
stability compared to the baselines. The smaller standard deviations underscore the method’s robustness and reliability,

7http://db.jsrt.or.jp/eng.php
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Table 11. The comparison of BLO-SAM with baselines on the CelebAMask dataset evaluated by Dice Score (%), with different numbers
of training examples. The overall performance is calculated by averaging the results for different facial components.

Method Training with 4 labeled examples
Overall Brow Eye Hair Nose Mouth

DeepLab 49.5±3.5 33.2±0.7 55.9±2.9 55.2±5.7 55.8±3.1 47.5±5.3
SwinUnet 35.2±1.8 21.7±1.8 21.7±2.5 46.7±1.6 44.4±2.0 41.6±0.9

HSNet 49.9±1.9 30.1±2.9 41.9±1.5 58.9±2.2 59.6±1.6 59.0±1.1
SSP 56.9±0.6 40.3±0.6 33.6±1.0 73.2±0.3 71.6±0.5 65.6±0.8
SAM 32.9±2.3 20.8±2.4 30.6±1.9 44.0±1.7 44.1±1.0 25.2±4.7

Med-SA 62.9±0.9 36.3±1.2 63.6±0.6 77.6±0.9 71.0±0.9 66.0±1.1
SAMed 58.2±1.5 28.3±1.4 55.9±2.7 78.5±1.3 65.1±1.8 63.0±0.5

BLO-SAM 65.9±0.6 39.4±0.9 65.5±0.4 82.8±0.8 74.3±0.8 67.6±0.1

Method Training with 8 labeled examples
Overall Brow Eye Hair Nose Mouth

DeepLab 54.9±1.4 37.3±0.7 59.7±1.9 58.0±2.3 64.0±1.1 55.7±0.8
SwinUnet 42.4±1.4 28.8±1.5 33.1±1.7 52.7±1.6 47.6±0.9 49.8±1.3

HSNet 60.1±1.9 43.6±2.3 58.1±0.7 76.6±2.9 58.2±2.9 64.2±0.8
SSP 60.0±0.9 45.4±0.7 31.2±0.2 76.6±1.4 74.0±1.2 72.7±0.9
SAM 32.9±2.1 20.8±2.4 30.6±0.9 44.0±1.7 44.1±1.0 25.2±4.7

Med-SA 67.7±0.9 42.9±0.7 65.5±1.5 82.4±0.6 74.6±0.8 73.1±0.7
SAMed 65.0±1.0 39.5±1.4 66.0±0.6 82.4±0.6 70.5±1.2 66.4±1.2

BLO-SAM 69.9±0.7 45.8±0.6 71.1±1.2 83.6±0.5 76.1±1.3 72.7±0.1

showcasing its ability to consistently yield precise results across diverse segmentation tasks.

G. Other Ablations
In this section, we show some results for other ablation studies, without other declarations, all the ablation studies are
conducted on the body and teeth segmentation tasks with 4 labeled examples in default.

Sensitivity Analysis of the Trade-off Parameter λ. In this experiment, we investigate how different settings of the
trade-off parameter (λ) in Eq. 1 affect the model’s final performance. Analyzing the results presented in Fig. 8, it is
evident that setting λ to a value in the middle ground yields the optimal performance for both tasks. It is important to
balance the two losses as the cross-entropy loss primarily concentrates on the classification for each pixel independently,
making it susceptible to overfitting in the presence of class imbalance, where images may consist of a substantial number
of background pixels. In contrast, the Dice loss mitigates this issue by prioritizing spatial overlap. These results show the
importance of striking a balance between pixel-level classification accuracy and spatial overlap. The default value of 0.8
suggested by (Zhang & Liu, 2023) is a good choice.

Ablation of the Setting the Rank of the LoRA Layers. Analyzing the results in Fig. 9, it becomes apparent that, for
body and teeth segmentation tasks, setting the number of ranks to 4 yields the best generalization on test examples. The
choice of the number of ranks is primarily determined by the complexity of specific tasks; increasing the rank excessively
can lead to a more complex model that overfits a small training set and fails to generalize to unseen test examples.

Comparison with Full Finetuning. In this experiment, we compare our method with full finetuning, denoting as FT-SAM,
in which we set all the parameters of vanilla SAM to be trainable and tuned them without any modification. As shown in
Table 10, FT-SAM suffers severe overfitting on the body segmentation task, in which FT-SAM only achieves the dice score
of 47.5%, while BLO-SAM achieves the dice score of 75.5%. This is mainly because, with very limited training examples,
full finetuning is easy to overfit to the training examples, causing a very poor generalization on the test examples. And, for
the teeth segmentation task, BLO-SAM can also achieve comparable performance with the FT-SAM on the test set.
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Table 12. The comparison of BLO-SAM with baselines on the car components (left of the vertical bar) and human body (right of the
vertical bar) datasets evaluated by Dice Score (%) with different numbers of training examples. The overall performance is calculated by
averaging the results for different components.

Method
Car components Human body

Training with 2 labeled examples Training with 4 labeled examples 4 examples 8 examplesOverall Body Wheel Window Overall Body Wheel Window
DeepLab 46.5±4.6 58.5±5.6 55.0±3.2 26.1±5.0 59.8±1.5 62.9±1.4 66.6±0.8 49.8±2.2 31.8±2.3 37.0±0.8
SwinUnet 31.4±6.8 22.2±6.5 33.4±5.2 38.7±8.7 47.3±3.1 49.3±5.6 53.7±1.7 38.9±2.0 30.9±3.6 56.8±0.5

HSNet 51.0±1.5 67.1±2.2 32.4±1.0 53.4±1.2 68.8±0.9 70.8±0.8 70.3±0.8 65.4±1.0 50.6±3.1 55.8±2.4
SSP 64.1±1.0 62.8±1.1 76.2±1.1 53.3±0.9 72.2±0.9 77.7±0.3 78.2±0.5 60.6±1.8 58.9±0.1 76.5±0.1
SAM 35.1±1.6 40.8±2.5 41.7±1.1 22.9±1.2 35.1±1.6 40.8±2.5 41.7±1.1 22.9±1.2 26.0±1.3 26.0±1.3

Med-SA 67.3±2.1 80.8±1.5 70.9±0.5 50.3±4.2 75.9±1.3 84.4±1.0 78.1±0.3 65.3±2.5 58.8±0.7 80.6±0.4
SAMed 60.4±1.5 78.8±1.4 65.0±1.6 37.5±1.6 74.0±1.4 85.3±0.6 72.5±0.6 64.2±3.0 63.8±1.3 81.5±1.2

BLO-SAM 71.1±0.7 83.2±0.6 74.5±0.5 55.6±1.0 78.3±0.5 86.3±0.1 79.9±0.9 68.6±0.4 76.3±0.8 85.1±0.5

Table 13. The comparison of BLO-SAM with baselines on the teeth, gastrointestinal disease and lung datasets evaluated by Dice Score
(%) with different numbers of training examples.

Method Teeth Kvasir Lung
4 examples 8 examples 4 examples 8 examples 2 examples 4 examples

DeepLab 56.8±0.3 63.9±1.0 31.9±0.7 37.8±0.3 61.1±0.3 76.4±0.5
SwinUnet 28.6±1.6 50.6±1.1 37.8±0.3 39.0±0.8 62.1±0.1 76.4±0.3

HSNet 70.2±1.3 72.2±0.4 30.0±0.7 35.1±0.8 83.1±0.5 84.5±0.4
SSP 33.7±0.5 51.7±1.2 27.4±0.3 27.7±0.4 83.2±0.3 90.1±0.6
SAM 21.2±1.6 21.2±1.6 14.7±3.8 14.7±3.8 31.4±0.1 31.4±0.1

Med-SA 69.7±0.3 76.2±0.4 33.5±3.5 59.3±0.4 82.9±0.5 91.7±0.4
SAMed 69.8±0.5 75.1±2.2 42.7±0.5 57.1±0.7 84.4±0.5 91.8±0.4

BLO-SAM 73.2±0.7 77.3±0.2 59.7±0.2 61.6±0.3 87.1±0.3 93.7±0.1

H. Comparison with LISA
We conducted experiments to compare our method with LISA. To utilize LISA (Lai et al., 2023) for segmenting teeth,
polyps (on the Kvasir dataset), and car wheels, we employed specific prompts for each task, including “please segment the
dental caries in the input image”, “please segment the polyp area in the input image”, and “please segment the car wheels in
the input image”. Table 14 shows the Dice scores on test sets. The term ”Teeth-4” refers to the teeth segmentation task
with four training examples. Our method outperforms LISA substantially, which is attributed to our method’s capability to
prevent overfitting by learning different parameter subsets on different data subsets.

I. Train with More Examples
We conduct experiments to explore what would occur when increasing the number of training examples on the body
segmentation task. We increased the number of training sets to 128 and 512, and conducted experiments for Med-SA,
SAMed, and BLO-SAM. As shown in Table 11, After increasing the number of training examples, the performance of
BLO-SAM can be further improved, as it achieves the highest dice score of 92.8% among all experiments when training
with 512 labeled examples. What’s more, when faced with very limited training examples, BLO-SAM also shows a strong
capability to overcome the risk of overfitting, which can be demonstrated by the biggest performance gap with Med-SA and
SAMed when training with only 4 labeled examples.
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Table 14. The comparison of BLO-SAM with LISA

Teeth-4 Kvasir-4 Eye-4 Lung-4 Mouth-4
LISA 47.8 33.9 54.7 76.6 57.3
BLO-SAM 73.2 59.7 65.5 93.7 67.6

Figure 8. Ablation study of optimization methods for prompt
embedding.

Figure 9. Ablation study of the setting of the number of ranks
for added LoRA layers.

Figure 10. Ablation study of comparing with the full fine-
tuning. ”FT-SAM” denotes the full finetuning of SAM.

Figure 11. Ablation study of training with different number of
examples on body segmentation task.

J. Comparison with Auto-SAM.
We experimented with an additional baseline, Auto-SAM. In this baseline, given an input image, we first use scatter dots
in a mesh format to prompt SAM to generate segments for each image. Each segment is enclosed within the smallest
possible rectangular image region, which is then fed into a trained CNN to classify whether the segment belongs to the
target object or background. Segments classified as the target object are combined to form the final segmentation output.
To train the CNN, segments in the training set are labeled based on whether at least 50% of their pixels match the target
object in the ground-truth segmentation map. Table 15 shows Dice scores on test sets. Our approach surpasses the baseline
in performance. In the baseline method, SAM initially produces preliminary segmented patches, which are subsequently
classified to derive the final segmentation mask, with these two processes occurring separately. If the initial segmented
patches are inaccurate, such as merging parts of the foreground objects with the background in one segment, these errors
cannot be rectified during the classification phase. Conversely, our method streamlines the process by directly creating the
final segmentation mask from the input, thus circumventing the intermediate errors inherent in the baseline approach.

K. Results on other benchmarks.
We conducted additional experiments using datasets from Med-SA and SAMed, Specifically, we utilized the ISIC2018
dataset for skin lesion segmentation and the Synapse dataset for segmentation of the gallbladder, pancreas, liver, and kidney.
The Dice scores (%) are presented in Table 16. The term ”Skin-4” refers to the skin lesion segmentation task with four
training examples. Our method surpasses both Med-SA and SAMed, further underscoring its superiority compared to
baseline approaches.
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Table 15. The comparison of BLO-SAM with Auto-SAM

Teeth-4 Human-4 Kvasir-4 Eye-4
Auto-SAM 40.6 48.7 27.9 40.1
BLO-SAM 73.2 76.3 59.7 65.5

Table 16. The comparison of BLO-SAM with baselines on the other two benchmarks.

Skin-4 Gallbladder-8 Pancreas-8 Gallbladder-10 Liver-20 Kidney-20
Med-SA 58.2 23.5 10.8 32.8 60.6 40.5
SAMed 62.5 27.2 23.9 32.1 60.8 39.8
BLO-SAM 66.7 34.3 29.8 37.1 65.2 44.3

L. Comparison against the standard UNet.
We compared our method with UNet for the tasks of the human body and teeth segmentation. Tabel 17 shows the Dice
scores on the test sets. The term ”Human-4” refers to the human body segmentation task with four training examples. Our
method outperforms UNet by a large margin. This superiority is attributed to our method’s ability to transfer the capacity of
pretrained SAM to downstream tasks via finetuning. Unlike SAM, UNet was not pretrained on large-scale data, making it
prone to overfitting when the number of training examples is very limited, such as 4 and 8.

M. Qualitative Results
In Figures 12, 13, 14, 15, and 16, we present the segmentation masks generated by different methods. A noteworthy
observation is that, across various tasks, the segmentation masks predicted by BLO-SAM consistently exhibit a superior
level of detail, demonstrating finer prediction of target components with minimal interference from the background. This is
particularly evident when compared to the segmentation masks produced by alternative baselines. The qualitative results
underscore the efficacy of BLO-SAM in capturing intricate features while maintaining a cleaner distinction between the
foreground and background, emphasizing its robust performance across diverse segmentation tasks.
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Table 17. The comparison of BLO-SAM with UNet

Human-4 Human-8 Teeth-4 Teeth-8
UNet 33.5 37.1 55.6 64.3
BLO-SAM 76.3 85.1 73.2 77.3

Figure 12. Qualitative results on some randomly sampled test examples from the car dataset.

Figure 13. Qualitative results on some randomly sampled test examples from the body dataset.

Figure 14. Qualitative results on some randomly sampled test examples from the teeth dataset.
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Figure 15. Qualitative results on some randomly sampled test examples from the gastrointestinal disease dataset.

Figure 16. Qualitative results on some randomly sampled test examples from the lung dataset.

21


