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Abstract

This work addresses the critical question of why and when diffusion models, despite1

their generative design, are capable of learning high-quality representations in a self-2

supervised manner. We hypothesize that diffusion models excel in representation3

learning due to their ability to learn the low-dimensional distributions of image4

datasets via optimizing a noise-controlled denoising objective. Our empirical5

results support this hypothesis, indicating that variations in the representation6

learning performance of diffusion models across noise levels are closely linked to7

the quality of the corresponding posterior estimation. Grounded on this observation,8

we offer theoretical insights into the unimodal representation dynamics of diffusion9

models as noise scales vary, demonstrating how they effectively learn meaningful10

representations through the denoising process. We also highlight the impact of11

the inherent parameter-sharing mechanism in diffusion models, which accounts12

for their advantages over traditional denoising auto-encoders in representation13

learning.14

1 Introduction15

Diffusion models, a new family of likelihood-based generative models, have demonstrated superior16

performance among many generative tasks, including image generation [Alkhouri et al., 2024, Ho17

et al., 2020, Rombach et al., 2022, Zhang et al., 2024], video generation [Bar-Tal et al., 2024, Ho18

et al., 2022], speech and audio synthesis [Kong et al., 2020, 2021], semantic editing [Roich et al.,19

2022, Ruiz et al., 2023, Chen et al., 2024a] and solving inverse problem [Chung et al., 2022, Song20

et al., 2024, Li et al., 2024, Alkhouri et al., 2023]. At its core, diffusion models are learning a data21

distribution from training samples by imitating the non-equilibrium thermodynamic diffusion process22

[Sohl-Dickstein et al., 2015, Ho et al., 2020, Song et al., 2021]. In the forward process, training23

samples are gradually combined with increasing Gaussian noise until the data structure is completely24

destroyed while in the backward process, a model is trained to restore the structure from the noised25

data [Hyvärinen and Dayan, 2005, Song et al., 2021].26

In addition to their impressive generative capabilities, recent studies [Baranchuk et al., 2021, Xiang27

et al., 2023, Mukhopadhyay et al., 2023, Chen et al., 2024b, Tang et al., 2023] have highlighted the28

exceptional representation power of diffusion models, suggesting that they could serve as a unified29

foundation model for both generative and discriminative vision tasks. Specifically, recent evaluations30

across various applications, including classification [Xiang et al., 2023, Mukhopadhyay et al., 2023],31

semantic segmentation [Baranchuk et al., 2021], and image alignment [Tang et al., 2023], show32

that diffusion models are capable of learning high-quality representations, often matching or even33

surpassing the performance of previous state-of-the-art methods. However, it remains unclear whether34

the representation capabilities of diffusion models stem from the diffusion process or the denoising35
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Figure 1: Representation learning ability of a diffusion model at different time steps reflects the
granularity in posterior estimation. (a) Intermediate feature accuracy and posterior accuracy of the
diffusion model exhibit a similar unimodal trend as noise level increases. (b) Posterior estimation
for clean image inputs shows a transition from fine to coarse granularity with increasing noise
levels. (c)-(d) Using clean image input x0 for feature extraction achieves comparable or superior
representation learning performance compared to using noisy input xt.

mechanism [Fuest et al., 2024]. More fundamentally, given their generative design, when and why36

diffusion models can learn high-quality representations in a self-supervised manner?37

This work aims to address this question through a comprehensive investigation, both empirically and38

theoretically, grounded in the formulation of denoising auto-encoders (DAEs) for learning diffusion39

models [Vincent et al., 2008, 2010, Vincent, 2011]. We hypothesize that diffusion models can learn40

high-quality representations without supervision due to their superior ability to approximate the41

low-dimensional distributions of image datasets, as supported by recent findings [Wang et al., 2024].42

Although image dataset can be very high-dimensional, recent results [Pope et al., 2021, Stanczuk43

et al., 2022, Wang et al., 2024] demonstrate that the intrinsic dimension of these datasets are much44

lower than the ambient dimension, and it has shown that the number of samples to learn the underlying45

distribution using diffusion models scales with the intrinsic low-dimensionality. Therefore, by being46

trained to capture the underlying structure of data through a controlled process of noise injection and47

denoising, diffusion models effectively learn meaningful and compact features.48

On the empirical side, we support our claim by reconciling several intriguing phenomena related49

to the quality of learned representations in diffusion models. Recent studies Zhang et al. [2023]50

reveal that diffusion models operate in two regimes: memorization and generalization, depending on51

training data size. In the memorization regime with limited samples, the model captures only the52

empirical distribution of training data without the ability to generate new samples. In contrast, in the53

generalization regime, diffusion models are able to learn the underlying distribution. Our experiments54

in Figure 2 confirm that high-quality representations are only learned in the generalization regime with55

sufficient samples due to its ability of learning the underlying distribution. More importantly, in the56

generalization regime, we show that the quality of hidden representations in diffusion models/DAEs57

follows a uni-modal curve (see Figure 1 and Figure 7): high-quality representations are learned58

at an intermediate step close to the clean image, whereas the representation quality degrades as it59

approaches either pure noise or the clean image.60

Building on these empirical observations, we provide theoretical insights using a noisy mixture of61

low-rank Gaussian distributions. Our assumption captures the inherent low-dimensionality of the62

image data distribution [Pope et al., 2021, Gong et al., 2019, Stanczuk et al., 2022], where the data63

lies on a union of low-dimensional subspaces. We analyze the unimodal trend in representation64

performance by relating it to the Class-specific Signal-to-Noise Ratio (CSNR). Specifically, we65

consider the optimal posterior estimation function under our data assumption and show that the66

CSNR is determined by the interplay between data “denoising" and class confidence rate as the67

noise scale increases. Additionally, our study reveals an implicit weight-sharing mechanism inherent68

in diffusion models, which helps explain their strengths compared to traditional one-step DAEs,69

particularly in the small noise regions.70
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(a) Phase transition in generalization score
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(b) Phase transition in representation learning

Figure 2: Better representations are learned in the generaliation regime. We train EDM-based
[Karras et al., 2022] diffusion models on the CIFAR-10 dataset using different training dataset sizes,
ranging from 26 to 215. (a) The change in the generalization score [Zhang et al., 2023] as the dataset
size increases, where regions with a generalization score close to 0 are labeled as the memorization
regime, and those close to 1 are labeled as the generalization regime. (b) The peak representation
learning accuracy achieved as a function of dataset size.

Contribution of this work. In summary, our findings can be highlighted as follows:71

• Linking posterior estimation ability of diffusion models to representation learning. Our72

empirical results reveal that, much like the dynamics of diffusion representation learning, posterior73

estimation quality across noise levels follows a similar unimodal curve. This indicates that changes74

in representation quality are a direct reflection of changes in posterior estimation quality, prompting75

us to explore representation learning through the more fundamental lens of posterior recovery.76

• Theoretical analysis of the unimodal curve in the denoising process. Building on the connection77

between posterior estimation and representation learning, we present the first theoretical framework78

for analyzing the unimodal evolution of representation quality. Using a mixture of low-rank79

Gaussian data model, we demonstrate that the unimodal curve arises from the interplay between80

denoising strength and class confidence as the noise level varies.81

• Weight sharing in the diffusion process. Furthermore, we reveal that the diffusion process, by82

minimizing losses across all noise levels simultaneously, fosters an implicit parameter sharing83

mechanism within a diffusion model. This mechanism plays a crucial role for diffusion models84

to achieve superior and more consistent representation learning performances compared with85

traditional DAEs.86

2 Representation Learning via diffusion models87

In this section, we first review the fundamentals of diffusion models and outline the feature extraction88

method used in this work. Following this, we illustrate the connection between diffusion posterior89

estimation and representation learning, which serves as the foundation for the subsequent analysis in90

Section 3.91

2.1 Preliminaries on denoising diffusion models92

Diffusion models are a class of probabilistic generative models that aim to reverse a progressive93

noising process by mapping an underlying data distribution, pdata, to a Gaussian distribution.94

The forward process. Starting from clean data x0, noise is gradually introduced according to a95

noise schedule determined by the time step t until the data becomes indistinguishable from pure96

Gaussian noise. Specifically, at any time step t, the noised data can be expressed as: xt = stx0+stσtϵ97

where ϵ ∼ N (0, I) represents noise sampled from a Gaussian distribution, st and stσt represent the98

scaling of the signal and noise, respectively.99
The reverse process. Noise is gradually removed from x1 following the reverse-time SDE:100

dxt =
(
f(t)xt − g2(t)∇ log pt(xt)

)
dt+ g(t)dw̄t, (1)

where {w̄t}t∈[0,1] is the standard Wiener process running backward in time from t = 1 to t = 0 and101

the functions f(t), g(t) : R → R respectively denote the drift and diffusion coefficients. Notably, if102

both x1 and ∇ log pt are known, the reverse process mirrors the forward process at each time step103

t ≥ 0 [Anderson, 1982].104
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Score approximation and denoising auto-encoders (DAEs). However, the score function ∇ log pt105

is typically unknown, as it depends on the underlying data distribution pdata. To address this, a neural106

network sθ is trained to estimate the score at various time steps [Ho et al., 2020, Song et al., 2021].107

Given the relationship between the score function and the posterior mean E[x̂0|xt] [Vincent, 2011,108

Wang et al., 2024]:109

st E [x̂0|xt] = xt + s2tσ
2
t∇ log pt(xt) ≈ xt + s2tσ

2
t sθ(xt), (2)

prior works [Chen et al., 2024b, Xiang et al., 2023, Kadkhodaie et al., 2023] have also proposed an110

alternative DAE-based training objective that directly estimates the posterior mean E[x0|xt]:111

min
θ

ℓ(θ) :=
1

2N

N∑
i=1

∫ 1

0

λt Eϵ∼N (0,In)

[∥∥∥xθ(stx
(i)
0 + stσtϵ, t)− x

(i)
0

∥∥∥2]dt, (3)

where xθ(x0, t) denotes the posterior estimating network, N represents the size of the training112

dataset, and λt denotes the weighting for each noise level. To simplify the analysis, we assume113

throughout the paper that st = 1 and λt remain constant across all noise levels, with the noise level114

denoted as σt.115
We note that if we remove the integration in (3) and fix t, the loss simplifies to the traditional116

single-level DAE loss [Vincent et al., 2008], where the DAE is trained at a single noise level.117

Previous work [Chen et al., 2024b] has decomposed the training objective of diffusion models into the118

denoising process (through the denoising loss) and the diffusion process (integrating the loss across119

all noise levels in (3)). To comprehensively investigate the distinct roles of these two processes in120

representation learning, we consider both diffusion models and individual DAEs in our experiments121

where the individual DAEs serve as a control group, allowing us to isolate and analyze the effects of122

the denoising process alone.123

2.2 Extracting representations from diffusion model124

In this work, we adopt the following feature extraction setups to leverage diffusion models for125

representation learning:126

Use clean images as network inputs. First, we use the clean image x0 as input to the network127

in contrast to conventional approaches that use the noisy image xt [Xiang et al., 2023, Baranchuk128

et al., 2021, Tang et al., 2023]. This setup aligns with the goal of representation learning, where129

additive noise is not necessary (e.g., similar to training a classifier with data augmentations while130

using non-augmented data during inference). As demonstrated in Figure 1(c)-(d), this approach131

preserves the overall unimodal representation dynamic while achieving better performance at higher132

noise levels. As such, throughout the remainder of this paper, we use the clean data x0 as input to the133

diffusion model, i.e., we always consider xθ(x0, t) where t serves solely as an indicator of the noise134

level for diffusion model to adopt during feature extraction.135

Layer selection for representations. Second, we extract features only from the bottleneck layer136

of the U-Net architecture [Ronneberger et al., 2015],1 following the protocols used in [Kwon et al.,137

2022, Park et al., 2023].2 Unlike prior methods [Xiang et al., 2023, Baranchuk et al., 2021], we do138

not conduct a grid search for the optimal layer, as our focus is on understanding the process rather139

than achieving state-of-the-art results.140

2.3 Relationship Between Learned Representations & Posterior Estimation141

Relationship among posterior estimation, distribution recovery, and representation learning.142

Since directly studying representation ability is challenging, in Section 3 we approach the problem143

through its strong correlation with posterior mean estimation, E[x0|xt]. As we will argue, diffusion144

representation quality is closely linked with the semantic information encoded in the posterior145

estimation. Additionally, empirical validations can be found in Figure 1.146

• Posterior estimation and distribution recovery. Diffusion models are trained to learn the underlying147

data distribution by reconstructing the posterior mean E[x0|xt] for a given input xt at the specified148

noise level. Therefore, the quality of posterior estimation E[x0|xt] reflects the degree to which the149

underlying distribution is captured [Choi et al., 2022].150

1In other words, the layer with the smallest feature resolution.
2After feature extraction, we apply a global average pooling to the features. For instance, given a feature map

of dimension 256× 4× 4, we pool the last two dimensions, resulting in a 256-dimensional vector.
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Figure 3: Visualization of posterior estimation for a clean input. The same MoLRG data is fed
into the models; each row represents a different denoising model, and each column corresponds to
a different time step with noise scale (σt). The red box indicates the best posterior estimation and
feature probing accuracy.

• Representation learning through distribution approximation. On the other hand, achieving high-151

quality distribution approximation results in more meaningful and informative representations in152

unsupervised learning. This is supported by Figure 2, where the findings, inspired by recent works153

[Zhang et al., 2023], demonstrate that diffusion models transition from memorizing the training154

data distribution to accurately approximating the underlying data distribution as the amount of155

training data increases. Consequently, better approximation of the underlying data distribution156

improves the quality of representation learning.157

Given this relationship, we use posterior estimation as a proxy for representation quality throughout158

our analysis. Additionally, since diffusion models tend to memorize the training data instead of159

learning underlying data distribution when the training dataset is small [Zhang et al., 2023], we focus160

on the case where sufficient training data is available throughout our analysis in Section 3.161

Unimodal curve of representation quality. Previous studies [Xiang et al., 2023, Baranchuk et al.,162

2021, Tang et al., 2023] have empirically shown that the representation dynamics of diffusion models163

follow a unimodal curve as the noise scale increases, across various tasks such as classification,164

segmentation, and image correspondence. Our findings corroborate this observation, as demonstrated165

in Figure 1(a), where the representation quality consistently exhibits a unimodal trend, regardless166

of the specific network architecture or dataset used (see Figure 1(c)-(d)). In the following analysis,167

we argue that this unimodal behavior arises from subtle differences between the requirements of168

representation learning and the generative nature of diffusion models.169

High-fidelity image generation demands that diffusion models capture every aspect of the data170

distribution—from coarse structures to fine details. In contrast, representation learning, particularly171

for high-level tasks such as classification [Allen-Zhu and Li, 2022], prefers an abstract representation,172

where finer image details may even act as ‘noise’ that hinders performance. As shown in Figure 1(b),173

as the noise level increases, the predicted posteriors for clean input x0 transition from ‘fine’ to ‘coarse’174

[Wang and Vastola, 2023], gradually removing fine-grained details. For the classification task in the175

plot, the best performance is achieved when the posterior estimation retains the essential information176

while discarding some class-irrelevant details. These findings indicate a trade-off between generative177

quality and representation performance [Chen et al., 2024b], prompting us to attribute variations in178

feature quality across noise levels to differences in posterior prediction.179

3 Theoretical Understanding Through Low-Dimensional Models180

In this section, we theoretically examine the representation learning capabilities of diffusion models181

across varying noise levels by evaluating the quality of posterior estimation, E[x0|xt] for low-182

dimensional distributions.183
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3.1 Assumptions of Low-Dimensional Data Distribution184

Although real-world image datasets are high-dimensional in terms of pixel count and data volume,185

extensive empirical studies Gong et al. [2019], Pope et al. [2021], Stanczuk et al. [2022] suggest that186

their intrinsic dimensionality is considerably lower. Moreover, state-of-the-art large-scale diffusion187

models [Peebles and Xie, 2023, Podell et al., 2023] commonly employ auto-encoders [Kingma, 2013]188

to map images to a low-dimensional latent space [Rombach et al., 2022] for better training efficiency.189

Consequently, image datasets often reside on a union of low-dimensional manifolds.190

In light of this, many recent studies of diffusion models have been focused on approximating low-191

dimensional distributions [Wang et al., 2024]. Moreover, as union of low-dimensional manifolds can192

be locally approximated by a union of linear subspaces, it motivates us to model the underlying data193

distribution as a mixture of low-rank Gaussians (MoLRG). The data points generated by MoLRG lie on194

a union of subspaces. Within each subspace, the data follows a Gaussian distribution with a low-rank195

covariance matrix that represents the subspace basis. Formally, we introduce a noisy version of the196

MoLRG distribution as follows:197

Assumption 1 (K-Subspace Noisy MoLRG Distribution). For any sample x0 drawn from the noisy198

MoLRG distribution with K subspaces, the following holds:199

x0 = Uka+ δU⊥
k e, with probability πk ≥ 0, k ∈ [K]. (4)

Here,
∑K

k=1 πk = 1, Uk ∈ On×dk denotes an orthonormal basis for the k-th subspace, dk is the200

subspace dimension with dk ≪ n, and the coefficient a i.i.d.∼ N (0, Idk
) is drawn from a standard201

normal distribution. For the noise, we assume e
i.i.d.∼ N (0, In−dk

) with magnitude controlled by the202

scalar δ < 1. Additionally, U⊥
k ∈ On×(n−dk) is the orthogonal compliment of Uk.203

For simplicity of analysis, we let d1 = · · · = dK = d, and we assume that the basis {Uk} are204

orthogonal to each other with UT
k Ul = 0 for all k ̸= l. Additionally, we assume all mixing weights205

{πk} are equal with π1 = · · · = πK = 1/K, and we define U⊥ =
⋂K

k=1 U
⊥
k ∈ On×(n−Kd) to be206

the noise space that is the orthogonal complement to all basis {Uk}Kk=1.207

We note that the noise term δU⊥
k ei captures perturbations unrelated to the k-th subspace via the208

orthogonal complement U⊥
k , thereby aligning the model more closely with real-world scenarios.209

These perturbations can be interpreted as attributes irrelevant to the subspace, such as the background210

in an image of a bird or the color/texture of a car. The extra noise term may not be relevant for211

representation learning, but it plays an importance role for diffusion model to generate high-fidelity212

samples. Additionally, for the noisy MoLRG distribution, ground truth posterior mean E [x̂0|xt] is:213

Proposition 1. For a K-class MoLRG data distribution, for each time t > 0, it holds that214

x⋆
θ(xt, t) := E [x̂0|xt] =

K∑
k=1

w⋆
k(xt)

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
xt (5)

where w⋆
k(xt) :=

exp (gk(xt, t))∑K
k=1 exp (gk(xt, t))

, (6)

and gk(x) =
1

2σ2
t (1 + σ2

t )
∥UT

k x∥2 + δ2

2σ2
t (δ

2 + σ2
t )
∥U⊥T

k x∥2. (7)

Remark. In the above proposition, we present the ground truth posterior estimation function that215

a diffusion model can achieve by minimizing the training objective defined in (3). We denote this216

optimal model x⋆
θ . Given the established relationship between posterior estimation and representation217

learning on clean inputs x0, we can now analyze the representation learning dynamics under this218

optimal setting by evaluating x⋆
θ(x0, t) at different time step t.219

3.2 Main Theoretical Results220

As we discussed in Section 2.3, based upon the strong correlation between representation quality and221

the posterior mean estimation, we analyze x⋆
θ(x0, t) across different time step t ∈ [0, 1]. Here, we222

use x0 as the input instead of xt according to our discussion in Section 2.2.223
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(a) Probing accuracy of diffusion models
and DAEs

(b) CSNR of diffusion model 
and DAEs

(c) Interplay between denoising rate 
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Figure 4: Dynamics of feature probing accuracy, CSNR, and denoising/class confidence rate
with increasing noise levels. Panels (a) and (b) show the feature probing accuracy and CSNR trends
using the same MoLRG data as in Figure 3, both exhibiting a unimodal pattern. The interplay between
the “denoising rate" and the class confidence rate for the approximate optimal solution f⋆ is illustrated
in panel (c).

Given x0 ∼ MoLRG and without loss of generality, let k represent the true class to which x0 belongs.224

We quantify the accuracy of posterior mean estimation by introducing a measure of Class-specific225

Signal-to-Noise Ratio (CSNR) as follows:226

CSNR(t,x⋆
θ) :=

Ex0
[∥UkU

T
k x⋆

θ(x0, t)∥2]
Ex0 [

∑
l ̸=k ∥UlUT

l x⋆
θ(x0, t)∥2]

(8)

We know that successful prediction of the class for x0 occurs when the class-specific signal227

∥UkU
T
k x⋆

θ(x0, t)∥ dominates over the noise term ∥U⊥
k U⊥T

k x⋆
θ(x0, t)∥. On the other hand, be-228

cause229

∥U⊥
k U⊥T

k x⋆
θ(x0, t)∥2 =

∑
l ̸=k

∥UlU
T
l x⋆

θ(x0, t)∥2 + ∥U⊥U
T
⊥x⋆

θ(x0, t)∥2

and U⊥ does not affect classification due to its presence in every data point, it leads to our definition230

of CSNR in (8) which measures the ratio between the true class signal and irrelevant noise from231

other classes.232

Therefore, intuitively, a higher CSNR indicates a better recovery of the underlying low-dimensional233

data subspace, and thus the predicted posterior is more likely to be assigned to the correct class. This234

is supported by Figure 4(a)-(b) which shows that both CSNR(t) and classification accuracy using the235

learned representation follow similar unimodal curves.236

To simplify the calculation of (8), which involves the expectation over the softmax term w⋆
k, we237

approximate x⋆
θ as follows:238

f⋆(x, t) =

K∑
k=1

ŵk

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
x,

where ŵk :=
exp (Ex0

[gk(x0, t)])∑K
k=1 exp (Ex0

[gk(x0, t)])
.

(9)

In other words, we use ŵk in (9) to approximate w⋆
k(x0) in (6) by taking expectation inside the239

softmax with respect to x0. This allows us to treat ŵk as a constant when calculating CSNR, making240

the analysis more tractable while maintaining E[∥UlU
T
l x⋆

θ(x0, t)∥2] ≈ E[∥UlU
T
l f

⋆(x, t)(x0, t)∥2]241

for all l ∈ [K]. We verify the tightness of this approximation at Appendix A.3 (Figure 9). Now, we242

are ready to state our main theorem as follows.243

Theorem 1. Let data x0 be any arbitrary data point drawn from the MoLRG distribution defined in244

Assumption 1 and let k denote the true class x0 belongs to. Then CSNR introduced in (8) depends245

on the noise level σt in the following form:246

CSNR(t, f⋆) =
1

(K − 1)δ2
·

(
1 +

σ2
t

δ2 h(ŵk, δ)

1 +
σ2
t

δ2 h(ŵl, δ)

)2

(10)

where h(w, δ) := (1− δ2)w + δ2. Since δ is fixed, h(w, δ) is a monotonically increasing function247

with respect to w. Note that here δ represents the magnitude of the fixed intrinsic noise in the data248

where σt denotes the level of additive Gaussian noise introduced during the diffusion training process.249
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(a) Probing Accuracy of diffusion models and DAEs (b) CSNR of diffusion models and DAEs

Figure 5: Dynamics of feature probing accuracy and CSNR on CIFAR10. Panels (a) and (b)
show the feature probing accuracy and CSNR trends computed using the CIFAR10 test dataset, both
exhibiting a unimodal pattern.

Remark. Intuitively, the unimodal curve of CSNR reflects how the additive noise level σt in the250

diffusion process helps counteract the intrinsic data noise δ. The noise ratio (σt/δ) can be interpreted251

as the “denoising" rate, where a larger ratio indicates more data noise being canceled out and vice252

versa. Meanwhile, h(ŵk, δ) represents the class confidence rate, with lower values meaning less class-253

specific information is captured by the model. With σt increases from 0 to ∞, the “denoising rate"254

rises accordingly, while the class confidence rate decreases monotonically. Thus, from Theorem 1,255

we can derive the rationale behind the unimodal behavior of CSNR.256

• The unimodal curve of CSNR. The unimodal curve is decided by the interplay between the257

“denoising rate" and the class confidence rate as noise increases. As observed in Figure 4(c), the258

“denoising rate" (σ2
t /δ

2) increases monotonically with σt while the class confidence rate h(ŵk, δ)259

monotonically declines. Initially, as σt increases, the class confidence rate remains relatively260

stable due to its flat slope (as seen in Figure 4(c)), and an increasing “denoising rate" enhances the261

CSNR, resulting in improved posterior estimation. However, as indicated by (7), when σt becomes262

too large, h(ŵk, δ) approaches h(ŵl, δ), leading to a drop in CSNR, which limits the model’s263

ability to project x0 onto the correct signal space and ultimately impairs posterior estimation. This264

interpretation is validated by the visualization in Figure 3. In the plot, each class is represented by265

a colored straight line, while deviations from these lines correspond to the δ-related noise term.266

Initially, increasing the noise scale effectively cancels out the δ-related data noise, resulting in a267

cleaner posterior estimation and improved probing accuracy. However, as the noise continues to268

increase, the class confidence rate drops, leading to an overlap between classes, which ultimately269

degrades the feature quality and probing performance.270

Back to our real-world analogy, the proportion of data associated with δ represents class-irrelevant271

attributes or finer image details. The unimodal representation learning dynamic thus captures a “fine-272

to-coarse" shift [Choi et al., 2022, Wang and Vastola, 2023], where these details are progressively273

stripped away. During this process, peak representation performance is achieved at a balance point274

where class-irrelevant attributes are eliminated, while class-essential information is preserved.275

3.3 Empirical Validation276

In this subsection, we conduct experiments on both synthetic and real datasets to validate our theory277

on the representation learning dynamics.278

We use two datasets: a 3-class MoLRG dataset, where each subspace has dimension d = 1 and ambient279

dimension n = 10, with noise scale δ = 0.2 , and the standard CIFAR10 dataset [Krizhevsky et al.,280

2009]. We consider two training settings: (a) a DDPM-based diffusion training configuration and281

(b) a vanilla DAE training configuration, where separate DAEs are trained for different noise levels.282

Here, the separate DAEs serve as a control group, enabling us to isolate the effects of the denoising283

process, as discussed in Section 2.1. We leave further training details in Appendix A.2.284

After training, we extract intermediate features and posterior predictions from both diffusion models285

and DAEs, followed by linear probing on the features and computation of empirical CSNR for286

the posterior estimations. The results for the two datasets are presented in Figure 4 and Figure 5,287

respectively. As shown in the plots, both feature probing accuracy and the empirical CSNR exhibit a288
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Figure 6: Comparison of representation learning performance and feature similarity between
diffusion model and individual DAEs. We train DDPM-based diffusion models and individual
DAEs on the CIFAR10 and CIFAR100 datasets. After training, we plotted their representation
learning performance and feature similarity against the best features (indicated by ⋆) as the noise
level increases.

matching unimodal curve, consistent across training configurations and datasets, thus supporting our289

theoretical results.290

4 Additional Experiments291

In Section 3, we analyzed diffusion representation dynamics with a focus on the denoising process,292

assuming sufficient training data for learning the underlying distribution. In this section, we explore293

the impact of the diffusion process (Section 4.1) and data complexity (Section 4.2) in shaping294

diffusion models’ representation learning dynamics.295

4.1 Weight sharing in diffusion models helps representation learning296

In this subsection, we demonstrate how the inherent weight-sharing mechanism in diffusion models,297

stemming from their loss design, enhances representation learning performances compared with298

traditional DAEs.299

Previously, in Section 3, we analyzed the optimal posterior function by treating each noise level300

independently. However, the training objective for diffusion models in (3) involves minimizing301

the loss across all noise levels simultaneously, which results in interactions and parameter sharing302

among denoising subcomponents at different noise levels. We hypothesize that these interactions303

and parameter sharing create greater feature similarity across noise scales, effectively functioning as304

an implicit “ensemble" mechanism that enhances the performance of diffusion models compared to305

individual DAEs [Chen et al., 2024b], which accounts for the significant performance gap between306

DAEs and diffusion models, as shown in Figure 4(a) and Figure 5(a).307

To test this hypothesis, we trained 10 individual DAEs, each at a different noise level, as well as a308

single DDPM-based diffusion model on CIFAR10 and CIFAR100 datasets. We then conducted linear309

probing on the features extracted from both setups. To evaluate feature similarity, we calculated310

the sliced Wasserstein distance (SWD) [Doan et al., 2024] between features for both diffusion and311

DAE models at various noise levels and their corresponding features at σt = 0.06, which achieves312

near-optimal accuracy for all scenarios.313

As shown in Figure 6, diffusion models consistently outperform individual DAEs, particularly at314

lower noise levels, where the performance gap is most pronounced. In these low-noise regions, due315

to the almost negligible additive noise, individual DAEs are more likely to be trained as identity316

functions, leading to trivial representations. In contrast, the parameter sharing in diffusion models317

alleviates this issue significantly. The SWD curve demonstrates an inverse correlation with the test318

accuracy curve, indicating that features closer to their optimal state possess stronger representational319

capacity. Furthermore, the plot shows that diffusion model features across different noise levels320

remain significantly closer to their optimal features at σt = 0.06, while DAE features show less321

similarity. These results strongly support our hypothesis.322
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Figure 7: The influence of data complexity in diffusion-based representation learning. With the
same model trained in Figure 2, we plot the representation learning dynamics for each trained model
as a function of changing noise levels.

The concept of this “sharing mechanism" is also supprted by previous empirical studies on DAEs,323

which have shown that sequential training over multiple noise scales enhances representation quality324

[Chandra and Sharma, 2014, Geras and Sutton, 2014, Zhang and Zhang, 2018]. In this work, we325

conduct an ablation study to explore methods for improving DAE performance at lower noise levels,326

finding that training with multiple noise scales provided the most promising results. Further details327

can be found in Appendix A.3 (Table 1).328

4.2 The influence of data complexity in diffusion representation learning329

So far, our analyses are based on the assumption that the training dataset contains sufficient samples330

for the diffusion model to learn the underlying distribution. Interestingly, if this assumption is violated331

by training the model on insufficient data, the unimodal representation learning dynamic disappears332

and the probing accuracy also drops severely.333

As illustrated in Figure 7, we train 2 different UNets following the EDM [Karras et al., 2022]334

configuration with training dataset size ranging from 25 to 215. The unimodal curve emerges only335

when the dataset size exceeds 212, whereas smaller datasets produce flat curves.336

The underlying reason for this observation is that, when training data is limited, diffusion models337

memorize all individual data points rather than learn the true underlying data structure [Wang et al.,338

2024]. In this scenario, the model memorizes an empirical distribution that lacks meaningful low-339

dimensional structures and thus deviates from the setting in our theory, leading to the loss of the340

unimodal representation dynamic. To confirm this, we calculated the generalization score, which341

measures the percentage of generated data that does not belong to the training dataset, as defined in342

[Zhang et al., 2023]. As shown in Figure 2, representation learning only achieves strong accuracy343

and displays the unimodal dynamic when the generalization score approaches 1, aligning with our344

theoretical assumptions.345

5 Conclusion346

In this work, we establish a link between distribution recovery, posterior estimation, and representation347

learning, providing the first theoretical study of diffusion-based representation learning dynamics348

across varying noise scales. Using a low-dimensional mixture of low-rank Gaussians, we show that349

the unimodal representation learning dynamic arises from the interplay between data denoising and350

class specification. Additionally, our analysis highlights the inherent weight-sharing mechanism351

in diffusion models, demonstrating its benefits for peak representation performance as well as its352

limitations in optimizing high-noise regions due to increased complexity. Experiments on both353

synthetic and real datasets validate our findings.354
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A Appendix / supplemental material507

The Appendis is organized as follows: in Appendix A.1, we discuss related works; in Appendix A.2,508

we present the detailed experimental setups for the empirical results in the paper; in Appendix A.3, we509

provide complementary experiments. Lastly, in Appendix A.4, we provide proof details for Section 3.510

A.1 Related Works511

Denoising auto-encoders. Denoising autoencoders (DAEs) are trained to reconstruct corrupted512

images to extract semantically meaningful information, which can be applied to various vision513

[Vincent et al., 2008, 2010] and language downstream tasks [Lewis, 2019]. Related to our analysis514

of the weight-sharing mechanism, several studies have shown that training with a noise scheduler515

can enhance downstream performance [Chandra and Sharma, 2014, Geras and Sutton, 2014, Zhang516

and Zhang, 2018]. On the theoretical side, prior works have studied the learning dynamics [Pretorius517

et al., 2018, Steck, 2020] and optimization landscape [Kunin et al., 2019] through the simplified518

linear DAE models.519

Diffusion-based representation learning. Diffusion-based representation learning Fuest et al.520

[2024] has demonstrated significant success in various downstream tasks, including image classi-521

fication [Xiang et al., 2023, Mukhopadhyay et al., 2023], segmentation [Baranchuk et al., 2021],522

correspondence [Tang et al., 2023], and image editing [Shi et al., 2024]. To further enhance the utility523

of diffusion features, knowledge distillation methods [Yang and Wang, 2023, Li et al., 2023] have524

been proposed, aiming to bypass the computationally expensive grid search for the optimal t in feature525

extraction and improving downstream performance. Beyond directly using intermediate features from526

pre-trained diffusion models, research efforts has also explored novel loss functions [Abstreiter et al.,527

2021, Wang et al., 2023] and network modifications [Hudson et al., 2024, Preechakul et al., 2022] to528

develop more unified generative and representation learning capabilities within diffusion models. Un-529

like the aforementioned efforts, our work focuses more on understanding the representation learning530

capabilities of diffusion models.531

A.2 Experimental Details532

In this section, we provide technical details for all the experiments in the main body of the paper.533

Experimental details for Figure 1 (a)-(b). We utilize a minimal implementation of the original534

DDPM model from an online public repository [BohaoZou, 2022], consisting of a 12-layer UNet535

(including input/output embedding layers), and train it on the CIFAR10 dataset with T = 1000 time536

steps for 200 epochs with an AdamW optimizer and learning rate 1× 10−4. Features are extracted as537

512-dimensional vectors from the output of the 7th layer (i.e., the bottleneck layer) at time steps [1, 5,538

10, 20, 30, 40, 60, 80, 100, 200, 400, 500, 600], each corresponding to a specific σt ranging from539

0.01 to 6.17. Linear probing is applied to the extracted features, as in [Xiang et al., 2023], to plot540

the feature probing accuracy curve in Figure 1(a). For the posterior estimation (xθ(x0, t)) probing541

accuracy curve, also shown in Figure 1(a), we use a two-layer MLP probe with ReLU activation. The542

estimated posterior at these time steps is visualized in Figure 1(b).543

Experimental details for Figure 1 (c)-(d). We train diffusion models based on the unified frame-544

work proposed by Karras et al. [2022]. Specifically, we use the DDPM+ network, and use EDM545

configuration for Figure 1 (c) while taking VP configuration Figure 1 (d). Karras et al. [2022]546

has shown equivalence between VP configuration and the traditional DDPM setting, thus we call547

the models in Figure 1 (d) as DDPM* models. For each of EDM and VP configuration, we train548

two models on CIFAR10 and CIFAR100, respectively. After training, we conduct linear probe on549

CIFAR10 and CIFAR100. At a specific noise level σ(t), we either use clean image x0 or noisy550

image xt = x0 + n as input to the EDM or the DDPM* models for extracting features after the551

’8x8_block3’ layer. Here, n represents random noise and n ∼ N
(
0, σ(t)2I

)
. We train a logistic552

regression on features in the train split and report the classification accuracy on the test split of the553

dataset. We perform the linear probe for each of the following noise levels: [0.002, 0.008, 0.023,554

0.060, 0.140, 0.296, 0.585, 1.088, 1.923, 3.257].555

15



Experimental details for Figure 3 and Figure 4. For the MoLRG experiments, we train a 3-layer556

MLP with ReLU activation and a hidden dimension of 128, following the setup provided in an557

open-source repository [tanelp, 2022]. The MLP is trained for 200 epochs using DDPM scheduling558

with T = 500, employing the Adam optimizer with a learning rate of 1×10−3. For feature extraction,559

we use the activations of the second layer of the MLP (dimension 128) as intermediate features for560

linear probing. For CSNR computation, we follow the definition in Equation (8) since we have access561

to the ground-truth basis for the MoLRG data. In Figure 3, we visualize the posterior estimations562

at time steps [1, 20, 80, 200, 260] by projecting them onto the union of U1,U2, and U3 (a 3D563

space), then further projecting onto the 2D plane along the (1, 1, 1) direction. The subtitles of each564

visualization show the corresponding probing accuracy and CSNR calculated as explained above. For565

Figure 4(a)(b), we plot the accuracy and CSNR at time steps [1, 5, 10, 20, 40, 60, 80, 100, 120, 140,566

160, 180, 220, 240, 260]. We perform linear probing using the features extracted from the training set567

and test on five different MoLRG datasets generated with five different random seeds, reporting the568

average accuracy.569

Experimental details for Figure 5. We use the same experimental settings as in Figure 1(a)(b).570

Additionally, we train individual DAEs for each different time step. The accuracy curves in Figure 5(a)571

are plotted identically as in Figure 1(a). The CSNR metric in Figure 5(b) is calculated from the572

definition Equation (8), with the basis Uk for each CIFAR10 class estimated as the first five right573

singular vectors of the data from the k-th class.574

Experimental details for Figure 6. We train individual DAEs using the DDPM++ net-575

work and VP configuration outlined in Karras et al. [2022] at the following noise scales:576

[0.002, 0.008, 0.023, 0.06, 0.14, 0.296, 0.585, 1.088, 1.923, 3.257]. Each model is trained for 500577

epochs using the Adam optimizer [Kingma, 2014] with a fixed learning rate of 1× 10−4. For the578

diffusion models, we reuse the model from Figure 1(d). The sliced Wasserstein distance is computed579

according to the implementation described in Doan et al. [2024].580

Experimental details for Figure 7. We use the DDPM++ network and VP configuration to train581

diffusion models[Karras et al., 2022] on the CIFAR10 dataset, using two network configurations:582

UNet-64 and UNet-128, by varying the embedding dimension of the UNet. Training dataset sizes583

range exponentially from 26 to 215. For each dataset size, both UNet-64 and UNet-128 are trained on584

the same subset of the training data. All models are trained with a duration of 50K images following585

the EDM training setup. After training, we calculate the generalization score as described in Zhang586

et al. [2023], using 10K generated images and the full training subset to compute the score.587

A.3 Additional Experiments588

Additional representation learning experiments on DDPM. Apart from EDM and DDPM*589

models pre-trained using the framework proposed by Karras et al. [2022], we also experiment with590

the features extracted by classic DDPM models [Ho et al., 2020] to make sure the observations do not591

depend on the specific training framework. We use the same groups of noise levels and also test using592

clean or noisy images as input to extract features at the bottleneck layer, and then conduct the linear593

probe. The DDPM models we use are trained on the Flowers-102 [Nilsback and Zisserman, 2008]594

and the CIFAR10 dataset accordingly. Different from the framework proposed by Karras et al. [2022],595

the input to the classic DDPM model is the same as the input to the UNet inside. Therefore, we596

calculate the scaling factor
√
ᾱt = 1/

√
σ2(t) + 1, and use

√
ᾱtx0 as the clean image input. Besides,597

for noisy input, we set xt =
√
ᾱt(x0 + n), with n ∼ N

(
0, σ(t)2I

)
. The linear probe results are598

presented in Figure 8, where we consistently see an unimodal curve, as well as compatible or even599

superior representation learning performance of clean input x0.600

Validation of f⋆ approximation in Section 3. In Section 3, we approximate the optimal posterior601

estimation function xθ using f⋆ by taking the expectation inside the softmax with respect to x0. To602

validate this approximation, we compare the CSNR calculated from xθ and from f⋆ using (8) and603

(9), respectively. We use a fixed dataset size of 2400 and set the default parameters to n = 50, d = 5,604

K = 3, and δ = 0.1 to generate MoLRG data. We then vary one parameter at a time while keeping605

the others constant, and present the computed CSNR in Figure 9. As shown, the approximated606

CSNR score consistently aligns with the actual score.607

16



0.0 0.01 0.02 0.06 0.14 0.3 0.58 1.09 1.92
Time step ( t)

40

50

60

70

80

C
IF

A
R

10
 T

es
t a

cc
.

DDPM model

10
15
20
25
30
35
40

C
IF

A
R

10
0 

Te
st

 a
cc

.

CIFAR10 (xt)
CIFAR10 (x0)

Flowers102 (xt)
Flowers102 (x0)

Figure 8: Performance comparison: clean vs. noisy inputs. We use pre-trained DDPM model on
the Flowers-102 [Nilsback and Zisserman, 2008] and CIFAR10 dataset. The feature probing accuracy
is plotted to compare the performance when using clean versus noisy inputs.
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Figure 9: Comparison between CSNR calculated using the optimal model x⋆
θ and the CSNR cal-

culated with our approximation in Theorem 1. We generate MoLRG data and calculate CSNR using
both the corresponding optimal posterior function x⋆

θ and our approximation f⋆ from Theorem 1.
Default parameters are set as n = 50, d = 5, K = 3, and δ = 0.1. In each row, we vary one
parameter while keeping the others fixed, comparing the actual and approximated CSNR.

Mitigating the performance gap between DAE and diffusion models. Throughout the empirical608

results presented in this paper, we consistently observe a performance gap between individual DAEs609

and diffusion models, especially in low-noise regions. Here, we use a DAE trained on the CIFAR-10610

dataset with a single noise level σ = 0.002, using the NCSN++ architecture [Karras et al., 2022].611

In the default setting, the DAE achieves a test accuracy of 32.3. We then explore three methods to612

improve the test performance: (a) adding dropout, as noise regularization and dropout have been613

effective in preventing autoencoders from learning identity functions [Steck, 2020]; (b) adopting614

EDM-based preconditioning during training, including input/output scaling, loss weighting, etc.;615

and (c) multi-level noise training, in which the DAE is trained simultaneously on three noise levels616

[0.002, 0.012, 0.102]. Each modification is applied independently, and the results are reported in617

Table 1. As shown, dropout helps improve performance, but even with a dropout rate of 0.95, the618

improvement is minor. EDM-based preconditioning achieves moderate improvement, while multi-619

level noise training yields the most promising results, demonstrating the benefit of incorporating the620

diffusion process in DAE training.621
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Table 1: Improve DAE representation performance at low noise region. A vanilla DAE trained on
the CIFAR-10 dataset with a single noise level of σ = 0.002 serves as the baseline. We evaluate the
performance improvement of dropout regularization, EDM-based preconditioning, and multi-level
noise training (σ = {0.002, 0.012, 0.102}). Each technique is applied independently to assess its
contribution to performance enhancement.

Modifications Test acc.
Vanilla DAE 32.3

+Dropout (0.5) 35.3
+Dropout (0.9) 36.4

+Dropout (0.95) 38.1
+EDM preconditioning 49.2

+Multi-level noise training 58.6

A.4 Proofs622

A.4.1 Proof of Proposition 1623

Proof. We follow the same proof steps as in [Wang et al., 2024] Lemma 1 with a change of variable.624

Let ck =

[
ak

ek

]
and Ũk =

[
Uk δU⊥

k

]
, we first compute625

pt(x|Y = k)

=

∫
pt (x|Y = k, ck)N (ck;0, Id+D) dck

=

∫
pt(x|x0 = Ũkck)N (ck;0, Id+D) dck

=

∫
N (x; stŨkck, γ

2
t In)N (ck;0, Id+D) dck

=
1

(2π)n/2(2π)(d+D)/2γnt

∫
exp

(
− 1

2γ2t
∥x− stŨkck∥2

)
exp

(
−1

2
∥ck∥2

)
dck

=
1

(2π)n/2(2π)(d+D)/2γnt

∫
exp

(
− 1

2γ2t

(
xTx− 2stx

T Ũkck + s2tc
T
k Ũk

T
Ũkck + γ2t c

T
k ck

))
dck

=
1

(2π)n/2γnt

(
s2t + γ2t
γ2t

)−d/2(
s2t δ

2 + γ2t
γ2t

)−D/2

exp

(
− 1

2γ2t
xT

(
In − s2t

s2t + γ2t
UkU

T
k − s2t δ

2

s2t δ
2 + γ2t

U⊥
k U⊥T

k

)
x

)
∫

1

(2π)d/2

(
γ2t

s2t + γ2t

)−d/2

exp

(
−s

2
t + γ2t
2γ2t

∥∥∥∥ak − st
s2t + γ2t

UT
k x

∥∥∥∥2
)
dak

∫
1

(2π)D/2

(
γ2t

s2t δ
2 + γ2t

)−D/2

exp

(
−s

2
t δ

2 + γ2t
2γ2t

∥∥∥∥ek − stδ

s2t δ
2 + γ2t

U⊥T
k x

∥∥∥∥2
)
dek

=
1

(2π)n/2
1

(s2t + γ2t )
d/2(s2t δ

2 + γ2t )
D/2

exp

(
− 1

2γ2t
xT

(
In − s2t

s2t + γ2t
UkU

T
k − s2t δ

2

s2t δ
2 + γ2t

U⊥
k U⊥T

k

)
x

)
=

1

(2π)n/2 det1/2(s2tUkUT
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)

exp

(
−1

2
xT
(
s2tUkU

T
k + s2t δ

2U⊥
k U⊥T

k + γ2t In
)−1

x

)
= N (x;0, s2tUkU

T
k + s2t δ

2U⊥
k U⊥T

k + γ2t In),

where we repeatedly apply the pdf of multi-variate Gaussian and the second last equality uses626

det(s2tUkU
T
k +s2t δ

2U⊥
k U⊥T

k +γ2t In) = (s2t +γ
2
t )

d(s2t δ
2+γ2t )

D and (s2tUkU
T
k +s2t δ

2U⊥
k U⊥T

k +627

γ2t In)
−1 =

(
In − s2t/(s

2
t + γ2t )UkU

T
k − s2t δ

2/(s2t δ
2 + γ2t )U

⊥
k U⊥T

k

)
/γ2t because of the Wood-628
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bury matrix inversion lemma. Hence, with P (Y = k) = πk for each k ∈ [K], we have629

pt(x) =

K∑
k=1

pt(x|Y = k)P(Y = k) =

K∑
k=1

πkN (x;0, s2tUkU
T
k + s2t δ

2U⊥
k U⊥T

k + γ2t In).

Now we can compute the score function630

∇ log pt(x) =
∇pt(x)
pt(x)

=

∑K
k=1 πkN (x;0, s2tUkU

T
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)(
− 1

γ2
t
x+

s2t
γ2
t (s

2
t+γ2

t )
UkU

T
k x+

s2tδ
2

γ2
t (s

2
tδ

2+γ2
t )
U⊥

k U⊥T
k x

)
∑K

k=1 πkN (x;0, s2tUkUT
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)

= − 1

γ2t

x−

∑K
k=1 πkN (x;0, s2tUkU

T
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)(
s2t

s2t+γ2
t
UkU

T
k x) +

s2tδ
2

s2tδ
2+γ2

t
U⊥

k U⊥T
k x)

)
∑K

k=1 πkN (x;0, s2tUkUT
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)

 .

According to Tweedie’s formula, we have631

E [x0|xt] =
xt + γ2t∇ log pt(xt)

st

=
st

s2t + γ2t

∑K
k=1 πkN (x;0, s2tUkU

T
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)UkU
T
k x

N (x;0, s2tUkUT
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)

+
stδ

2

s2t δ
2 + γ2t

∑K
k=1 πkN (x;0, s2tUkU

T
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)U
⊥
k U⊥T

k x

N (x;0, s2tUkUT
k + s2t δ

2U⊥
k U⊥T

k + γ2t In)

=
st

s2t + γ2t

∑K
k=1 πk exp

(
ϕt∥UT

k xt∥2
)
exp

(
ψt∥U⊥T

k xt∥2
)
UkU

T
k xt∑K

k=1 πk exp
(
ϕt∥UT

k xt∥2
)
exp

(
ψt∥U⊥T

k xt∥2
)

+
stδ

2

s2t δ
2 + γ2t

∑K
k=1 πk exp

(
ϕt∥UT

k xt∥2
)
exp

(
ψt∥U⊥T

k xt∥2
)
U⊥

k U⊥T
k xt∑K

k=1 πk exp
(
ϕt∥UT

k xt∥2
)
exp

(
ψt∥U⊥T

k xt∥2
) ,

with ϕt = s2t/(2γ
2
t (s

2
t + γ2t )) and ψt = s2t δ

2/(2γ2t (s
2
t δ

2 + γ2t )). The final equality uses the pdf of632

multi-variant Gaussian and the matrix inversion lemma discussed earlier.633

Now since πk is consistent for all k and st = 1, we have634

E [x0|xt] =

K∑
k=1

w⋆
k(xt)

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
xt

where w⋆
k(xt) :=

exp
(

1
2σ2

t (1+σ2
t )
∥UT

k xt∥2 + δ2

2σ2
t (δ

2+σ2
t )
∥U⊥T

k xt∥2
)

∑K
k=1 exp

(
1

2σ2
t (1+σ2

t )
∥UT

k xt∥2 + δ2

2σ2
t (δ

2+σ2
t )
∥U⊥T

k xt∥2
) .

635
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A.4.2 Proof of Theorem 1636

Proof. Following Equation (8) and Lemma 1, we can write637

CSNR(t, f⋆) =
Ex0 [∥UkU

T
k f

⋆(x0, t)∥2]
Ex0 [

∑
l ̸=k ∥UlUT

l f⋆(x0, t)∥2]
=

Ex0
[∥UkU

T
k f

⋆(x0, t)∥2]∑
l ̸=k Ex0 [∥UlUT

l f⋆(x0, t)∥2]
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+ δ2(ŵk+(K−2)ŵl)
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2
t
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·
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t

(
ŵk + (K − 1)δ2ŵl

)
δ2 + σ2

t (ŵl + δ2ŵk + (K − 2)δ2ŵl)
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1

(K − 1)δ2
·

(
1 +

σ2
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(
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)
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σ2
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·
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·

(
1 +

σ2
t
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σ2
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where h(w, δ) := (1− δ2)w + δ2.638

Lemma 1. With the set up of a K-class MoLRG data distribution as defined in (4), consider the639

following the function:640

f⋆(x, t) =

K∑
k=1

ŵk(x)

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
x, (11)

where ŵk(x) :=
exp (Ex[gk(x, t)])∑K
k=1 exp (Ex[gk(x, t)])

, (12)

and gk(x) =
1

2σ2
t (1 + σ2

t )
∥UT

k x∥2 + δ2

2σ2
t (δ

2 + σ2
t )
∥U⊥T

k x∥2. (13)

I.e., we consider a simplified version of the expected posterior mean as in (5) by taking expectation641

of gk(x) prior to the softmax operation. Under this setting, for any clean x0 from class k (i.e.,642

x0 = Ukai + bU⊥
k ei), we have:643

Ex0
[∥UkU

T
k f

⋆(x0, t)∥2] =
(

ŵk

1 + σ2
t
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(K − 1)δ2ŵl
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t
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d (14)
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T
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ŵl
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δ2 + σ2
t

)2

δ2d (15)
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δ6(n− kd)
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2
(16)
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E[∥f⋆(x0, t)∥2] =
(
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and644

ŵk := ŵk(x0) =
exp

(
d

2σ2
t (1+σ2

t )
+ δ4D

2σ2
t (δ

2+σ2
t )

)
exp

(
d

2σ2
t (1+σ2

t )
+ δ4D

2σ2
t (δ

2+σ2
t )

)
+ (K − 1) exp

(
δ2d

2σ2
t (1+σ2

t )
+ δ2d+δ4(D−d)

2σ2
t (δ

2+σ2
t )

) ,
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for all class index l ̸= k.645

Proof. Throughout the proof, we use the following notation for slices of vectors.646

ei[a : b] Slices of vector ei from ath entry to bth entry.

We begin with the softmax terms. Since each class has its unique disjoint subspace, it suffices to647

consider gk(x0, t) and gl(x0, t) for any l ̸= k. Let at = 1
2σ2

t (1+σ2
t )

and ct = δ2

2σ2
t (δ

2+σ2
t )

, we have:648

E[gk(x0, t)] = E[at∥UT
k x0∥2 + ct∥U⊥T

k x0∥2]
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k (Ukai + bU⊥
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= E[at∥ai∥2] + E[ct∥bei∥2]
= atd+ ctδ

2D

where the last equality follows from ai
i.i.d.∼ N (0, Id) and ei

i.i.d.∼ N (0, ID).649

Without loss of generality, assume the j = k + 1, we have:650

E[gl(x0, t)] = E[at∥UT
l x0∥2 + ct∥U⊥T

l x0∥2]
= E[at∥UT
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]
+ b

[
0 ∈ Rd

ei[d : D]]

] ∥∥∥2]
= atδ

2d+ ct(d+ δ2(D − d))

Plug at and bt back with the exponentials, we get ŵk and ŵl.651

652

21



Now we prove (14):653
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Since Uk ∈ On×d:654
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and similarly for (15):655
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= ŵk

(
δ2

δ2 + σ2
t

UlU
T
l x0

)
+ ŵl
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where the third equality follows since ŵj = ŵl for all j ̸= k, l. Further, we have:656
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Next, we consider (16):657
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T
⊥

(
1

1 + σ2
t

UkU
T
k +

δ2

δ2 + σ2
t

U⊥
k U⊥T

k

)
x0

+
∑
l ̸=k
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Hence:658
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Lastly, we prove (17). Given that the subspaces of all classes and the complement space are both659

orthonormal and mutually orthogonal, we can write:660
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Combine terms, we get:661
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